JP2011195877A - Method for recovering copper from copper sulfide - Google Patents

Method for recovering copper from copper sulfide Download PDF

Info

Publication number
JP2011195877A
JP2011195877A JP2010063297A JP2010063297A JP2011195877A JP 2011195877 A JP2011195877 A JP 2011195877A JP 2010063297 A JP2010063297 A JP 2010063297A JP 2010063297 A JP2010063297 A JP 2010063297A JP 2011195877 A JP2011195877 A JP 2011195877A
Authority
JP
Japan
Prior art keywords
copper
iron
leaching
sulfuric acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010063297A
Other languages
Japanese (ja)
Other versions
JP5370683B2 (en
Inventor
Noriyuki Nagase
範幸 長瀬
Satoshi Asano
聡 浅野
Shinichi Hiragori
伸一 平郡
Masatoshi Takano
雅俊 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010063297A priority Critical patent/JP5370683B2/en
Publication of JP2011195877A publication Critical patent/JP2011195877A/en
Application granted granted Critical
Publication of JP5370683B2 publication Critical patent/JP5370683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering copper which can reduce the using amounts of sulfuric acid and a neutralizer consumed by a process in a wet type copper refining process of leaching a copper-containing sulfide using sulfuric acid.SOLUTION: In the method for recovering copper, copper is separated and recovered from a copper and iron-containing sulfide, and the method includes the following steps (1) to (3): a leaching step (1) wherein, while the temperature range of a slurry obtained by mixing a copper and iron-containing sulfide with a sulfuric acid solution is held to the range of 102 to 180°C, oxygen or air is blown therein to form leaching slurry, and the obtained leaching slurry is subjected to solid-liquid separation into a leachate and leaching residue; a deferrization step (2) wherein the temperature of the leachate is held to 230 to 270°C while blowing oxygen or air into the leachate to form deferrized slurry, and next, the deferrized slurry is subjected to solid-liquid separation into a deferrized liquid and iron precipitates; and a step (3) wherein the electrowinning of copper is performed with the deferrized liquid as an electrolysis starting liquid, and it is separated into an electrolysis waste liquid and electrodeposited copper.

Description

本発明は、銅と鉄を含有する硫化物から湿式法により銅を回収する製錬プロセスに用いられる銅硫化物からの銅の回収方法に関するものである。   The present invention relates to a method for recovering copper from a copper sulfide used in a smelting process for recovering copper from a sulfide containing copper and iron by a wet method.

銅精鉱や銅鉱石などの硫化銅鉱物や中間原料などの含銅硫化物から、湿式法により銅を製錬する湿式銅製錬プロセスは、含銅硫化物中の銅を溶液に浸出する際に用いる液の種類によって、塩化系と硫酸系のプロセスに大別できる。   The wet copper smelting process, in which copper is smelted from copper sulfide minerals such as copper concentrate and copper ore and copper-containing sulfides such as intermediate raw materials by a wet method, is performed when leaching the copper in the copper-containing sulfide into a solution. Depending on the type of liquid used, it can be broadly divided into chlorinated and sulfuric acid processes.

塩化系のプロセスは、塩化物やその他のハロゲン化合物などを含有する溶液を用い、塩素ガスなどの酸化剤を併用して銅を溶液中へ浸出するものである。一方、硫酸系のプロセスは、硫酸や硫酸塩の溶液を用いて酸素や空気などの酸化剤を併用して銅を溶液中へ浸出するものである。   In the chlorination process, a solution containing chloride or other halogen compounds is used, and copper is leached into the solution in combination with an oxidizing agent such as chlorine gas. On the other hand, in the sulfuric acid process, copper is leached into the solution using a solution of sulfuric acid or sulfate in combination with an oxidizing agent such as oxygen or air.

このような塩化系および硫酸系いずれのプロセスを用いても、上記で得た銅を含有する浸出液は、溶媒抽出などの処理により浸出液中の鉄やヒ素などの不純物を分離、除去して最後に電解採取などの方法を用いて電着銅を回収するものである。   Regardless of whether such a chlorinated or sulfuric acid process is used, the copper-containing leachate obtained above is subjected to a process such as solvent extraction to separate and remove impurities such as iron and arsenic in the leachate. Electrodeposited copper is recovered using a method such as electrolytic collection.

硫酸系のプロセスは、例えば特許文献1に開示されるように、硫酸を含有する水溶液中で酸素または空気を導入し銅の硫化鉱物中の銅を硫酸により酸化浸出する方法である。
特許文献1には、硫化銅鉱を加圧酸化し、さらに、硫酸溶液を用いて銅を浸出し、次に得た硫酸銅溶液を溶媒抽出によって銅を硫酸溶液から分離、電解採取して銅を回収する方法が示されている。この方法では、黄銅鉱を酸化浸出する際には、化1に示すように黄銅鉱に含有される銅1モルに対して2倍となる量の硫酸を添加し浸出する。
For example, as disclosed in Patent Document 1, the sulfuric acid-based process is a method in which oxygen or air is introduced into an aqueous solution containing sulfuric acid, and copper in the copper sulfide mineral is oxidized and leached with sulfuric acid.
In Patent Document 1, copper sulfide ore is pressure-oxidized, and copper is further leached using a sulfuric acid solution. Then, the obtained copper sulfate solution is separated from the sulfuric acid solution by solvent extraction, and the copper is collected by electrowinning. The method of recovery is shown. In this method, when oxidizing and leaching chalcopyrite, as shown in Chemical Formula 1, an amount of sulfuric acid that is twice as much as 1 mol of copper contained in chalcopyrite is added and leached.

Figure 2011195877
Figure 2011195877

浸出により黄銅鉱に含有される銅は硫酸銅の形態、すなわち2価の銅イオンとして硫酸溶液中に存在する。また、黄銅鉱中に含有される鉄は、硫酸鉄の形態すなわち2価および一部は3価の鉄イオンとして硫酸溶液中に存在する。一部の2価鉄イオンは、化2に示すように、加水分解を受けて難溶性の三酸化二鉄(ヘマタイト)を生成し同時に硫酸を副生する。つまり、化1から化2の反応を考えると、黄銅鉱1モルを浸出するには1モルの硫酸が必要となる。   Copper contained in chalcopyrite by leaching is present in the sulfuric acid solution in the form of copper sulfate, that is, as divalent copper ions. Further, iron contained in chalcopyrite is present in the sulfuric acid solution in the form of iron sulfate, that is, divalent and partly trivalent iron ions. As shown in Chemical Formula 2, some of the divalent iron ions undergo hydrolysis to produce poorly soluble ferric trioxide (hematite), and at the same time, by-produce sulfuric acid. That is, considering the reaction from Chemical Formula 1 to Chemical Formula 2, 1 mole of sulfuric acid is required to leach 1 mole of chalcopyrite.

Figure 2011195877
Figure 2011195877

上記2価の銅イオンを含有する硫酸溶液は、三酸化二鉄を固液分離後、有機抽出剤を用いた溶媒抽出によって2価の銅イオンを有機抽出剤中へ抽出して不純物と分離し、同時に電解採取に適した高銅濃度の逆抽出液を得る処理が行なわれる。   The sulfuric acid solution containing divalent copper ions is separated from impurities by extracting divalent copper ions into an organic extractant by solvent extraction using an organic extractant after solid-liquid separation of ferric trioxide. At the same time, a process for obtaining a high copper concentration back extract suitable for electrolytic collection is performed.

特許文献1の方法では1モルの黄銅鉱を処理すると、浸出工程で1モルの硫酸が消費されるため硫酸を補給しなければならない。一方抽出工程では、溶媒抽出の反応により硫酸1モルが過剰に生じるため、溶媒抽出の反応を円滑に進めるには、副生した硫酸を随時中和する処理が必要となるなど硫酸と中和剤が無駄になっていた。   In the method of Patent Document 1, if 1 mol of chalcopyrite is processed, 1 mol of sulfuric acid is consumed in the leaching step, so that sulfuric acid must be replenished. On the other hand, in the extraction process, 1 mol of sulfuric acid is excessively generated by the solvent extraction reaction, so that the process of neutralizing the by-produced sulfuric acid as needed is necessary to facilitate the solvent extraction reaction. Was wasted.

また、特許文献2では、銅の硫化鉱物に反応触媒として塩化物を添加し、200〜220℃の温度域で酸素もしくは空気を吹き込んで酸化しながら加熱し、硫化鉱物に含有される硫黄を酸化して硫酸を生成させ、銅や鉄を硫酸溶液中に溶解させる浸出方法が示されている。   In Patent Document 2, chloride is added to a copper sulfide mineral as a reaction catalyst, and oxygen or air is blown in a temperature range of 200 to 220 ° C. and heated while oxidizing to oxidize sulfur contained in the sulfide mineral. Thus, a leaching method in which sulfuric acid is produced and copper or iron is dissolved in a sulfuric acid solution is shown.

この方法は、化3に示すように、浸出する際は酸素だけを用い、鉱物中の硫黄分を硫酸塩の原料として利用するために、新たに硫酸を添加する必要はない。しかしながら、化4に示すように、浸出液中の硫酸鉄から酸化鉄が生じる際には硫酸が副生する。さらに、得た浸出液から溶媒抽出によって銅と不純物とを分離する必要があるので、抽出工程においても硫酸が副生し、浸出から電解採取までのプロセス全体としては、1モルの銅を処理するに伴って2モルの硫酸が副生するなど硫酸の処置を考慮する必要があった。   As shown in Chemical Formula 3, this method uses only oxygen when leaching and uses the sulfur content in the mineral as a raw material for sulfate, so that it is not necessary to newly add sulfuric acid. However, as shown in Chemical Formula 4, when iron oxide is produced from iron sulfate in the leachate, sulfuric acid is by-produced. Furthermore, since it is necessary to separate copper and impurities from the obtained leachate by solvent extraction, sulfuric acid is also produced as a by-product in the extraction process, and as a whole process from leaching to electrowinning, 1 mol of copper is treated. Accordingly, it was necessary to consider the treatment of sulfuric acid such that 2 mol of sulfuric acid was by-produced.

Figure 2011195877
Figure 2011195877

Figure 2011195877
Figure 2011195877

このように、銅の溶媒抽出工程では、銅を抽出する際に銅1モルの抽出に対して1モルの硫酸が副生するため、硫酸を無害化するには中和剤の添加が欠かせない。
その中和剤として、例えば、銅の酸化鉱を代用することもできる。酸化鉱を添加すると硫酸が硫酸銅になり中和と同じ効果が得られる。同時に酸化鉱中の銅も浸出される効果もあり有利である。しかし、酸化鉱が常に利用できるとは限らず、一般には消石灰などのアルカリを中和剤として用いる必要がある。このため、銅硫化物を硫酸系のプロセスにより湿式処理する場合、使用する硫酸および中和剤に要するコストが大きな課題となっていた。
Thus, in the copper solvent extraction step, when extracting copper, 1 mol of sulfuric acid is by-produced with respect to 1 mol of copper, so the addition of a neutralizing agent is indispensable for detoxifying sulfuric acid. Absent.
As the neutralizing agent, for example, copper oxide ore can be substituted. When oxide ore is added, sulfuric acid becomes copper sulfate, and the same effect as neutralization is obtained. At the same time, copper in the oxide ore is also leached, which is advantageous. However, oxide ore is not always available, and generally an alkali such as slaked lime needs to be used as a neutralizing agent. For this reason, when copper sulfide is wet-processed by a sulfuric acid-based process, the cost required for the sulfuric acid and the neutralizing agent to be used has been a major issue.

また、特許文献3では170〜235℃で硫化銅鉱物を硫酸浸出後、過剰な酸を水で希釈し、pHを1.2〜2.0の範囲に調整する方法が開示されている。しかしながら、液を希釈して酸濃度を低下させてpHを調整するには、膨大な希釈水の添加が必要となり、設備容量や水バランス、廃水処理の手間とコストなどを考えると、実用的な方法ではない。   Patent Document 3 discloses a method of adjusting a pH to a range of 1.2 to 2.0 by diluting an excess acid with water after leaching a copper sulfide mineral at 170 to 235 ° C. with sulfuric acid. However, in order to adjust the pH by diluting the liquid to reduce the acid concentration, it is necessary to add a large amount of diluted water, which is practical considering the equipment capacity, water balance, labor and cost of wastewater treatment, etc. Not a way.

以上のように、硫化銅を硫酸で浸出し、溶媒抽出によって銅とそれ以外の不純物を分離するプロセスにおいては、浸出時に硫酸を加え、一方で、溶媒抽出で生成した硫酸を中和する処理が必要となり、過大な設備が必要でコストの増加をもたらしていた。   As described above, in the process of leaching copper sulfide with sulfuric acid and separating copper and other impurities by solvent extraction, sulfuric acid is added at the time of leaching, while the process of neutralizing sulfuric acid generated by solvent extraction is performed. Necessary and excessive equipment was required, resulting in an increase in cost.

特開平10−510585号公報Japanese Patent Laid-Open No. 10-510585 特許3609421号公報Japanese Patent No. 3609421 特開2007−297717号公報JP 2007-297717 A

本発明は、含銅硫化物を硫酸を用いて浸出する湿式銅製錬プロセスにおけるプロセスで消費する硫酸および中和剤の使用量を低減できる銅の回収方法の提供を目的とするものである。   An object of the present invention is to provide a method for recovering copper capable of reducing the amount of sulfuric acid and neutralizing agent consumed in a process in a wet copper smelting process in which a copper-containing sulfide is leached using sulfuric acid.

上記課題を解決するための本発明の第1の発明は、銅及び鉄を含有する硫化物から銅を分離、回収する銅の回収方法であって、以下の(1)から(3)の工程を有することを特徴とするものである。
(1)銅と鉄を含有する硫化物と、硫酸溶液とを混合したスラリーを102℃以上180℃以下の範囲の温度に維持しながら、酸素または空気を吹き込んで浸出スラリーを形成し、得られた浸出スラリーを浸出液と浸出残渣に固液分離する浸出工程。
(2)前記浸出液に、酸素または空気を吹き込みながら、浸出液の温度を230℃以上270℃以下に維持することにより脱鉄スラリーを形成し、次いで前記脱鉄スラリーを脱鉄液と鉄澱物に固液分離する脱鉄工程。
(3)前記脱鉄液を電解始液として銅の電解採取を行い、電解廃液と電着銅に分離する電解工程。
さらに、この電解工程で分離された電解廃液を、浸出工程における硫酸溶液として再利用する工程を有するものである。
A first invention of the present invention for solving the above-mentioned problems is a copper recovery method for separating and recovering copper from a sulfide containing copper and iron, and the following steps (1) to (3) It is characterized by having.
(1) While maintaining a slurry in which a sulfide containing copper and iron and a sulfuric acid solution are mixed at a temperature in the range of 102 ° C. or higher and 180 ° C. or lower, oxygen or air is blown to form a leach slurry. A leaching process in which the leached slurry is separated into a leaching solution and a leaching residue.
(2) While blowing oxygen or air into the leachate, the temperature of the leachate is maintained at 230 ° C. or more and 270 ° C. or less to form a deiron slurry, and then the deiron slurry is converted into a deiron solution and an iron starch. Deironing process for solid-liquid separation.
(3) An electrolysis process in which copper is electrolyzed using the deiron solution as an electrolytic start solution and separated into an electrolytic waste solution and electrodeposited copper.
Furthermore, it has the process of reusing the electrolytic waste liquid isolate | separated by this electrolysis process as a sulfuric acid solution in a leaching process.

本発明によれば、以下に示す工業上顕著な効果を奏するものである。
(1)浸出時に使用する硫酸の量を削減でき、コストが低減できる。
(2)中和剤を使わずに鉄を除去するために、発生する澱物量を削減できる。
According to the present invention, the following industrially significant effects can be achieved.
(1) The amount of sulfuric acid used during leaching can be reduced, and the cost can be reduced.
(2) Since iron is removed without using a neutralizing agent, the amount of starch generated can be reduced.

図1は本発明の回収方法の工程フロー図である。FIG. 1 is a process flow diagram of the recovery method of the present invention.

本発明では、銅硫化鉱物と硫酸溶液とを混合してスラリーとし、これをオートクレーブなどの耐熱・耐圧を備えた反応容器に入れて酸素もしくは空気により浸出し、得られた浸出液を再度耐熱・耐圧性のある反応容器中で高温に加熱することで浸出液中の鉄を沈殿として分離し、その脱鉄液から銅を電解採取するもので、その際に、本発明者らは、浸出時の温度を特定の範囲に維持すると、硫黄の酸化が抑制されるだけでなく、浸出液中の鉄イオンと遊離硫酸が鉄明礬石(Jarosite、M[Fe(SO](OH)6 M:Hもしくは一価金属陽イオン)を生成し、沈殿することを見出した。このことは、この性質を利用し、鉄明礬石を生成させる条件で操業することで鉄イオンを利用して過剰な硫酸を浸出液から分離可能であることを意味している。 In the present invention, a copper sulfide mineral and a sulfuric acid solution are mixed to form a slurry, put into a reaction vessel equipped with heat and pressure resistance such as an autoclave, and leached with oxygen or air, and the obtained leachate is again heat and pressure resistant. In the reaction vessel, the iron in the leachate is separated as a precipitate by heating to a high temperature, and copper is electrolyzed from the deiron solution. Is maintained in a specific range, not only the oxidation of sulfur is suppressed, but also iron ions and free sulfuric acid in the leachate are converted into iron albite (Jarosite, M [Fe 3 (SO 4 ) 2 ] (OH) 6 M: H 3 O + or a monovalent metal cation) was produced and found to precipitate. This means that excess sulfuric acid can be separated from the leachate using iron ions by utilizing this property and operating under conditions that produce iron alunite.

本発明では、銅と鉄を含有する硫化物から銅を分離、回収する際に以下の3つの工程を少なくとも有している。
(1)浸出工程
銅と鉄を含有する硫化物と硫酸溶液とを混合したスラリーを、耐熱、耐圧反応容器中で102℃以上180℃以下の温度範囲に維持しながら、このスラリーに酸素または空気を吹き込み、次いで酸素または空気を吹き込まれたスラリーを、浸出液と浸出残渣に固液分離する工程である。
(2)脱鉄工程
浸出工程で得られた浸出液に、耐熱、耐圧反応容器中で酸素または空気を吹き込みながら、浸出液の温度を230℃以上270℃以下に維持することにより脱鉄スラリーを形成し、次いで、その脱鉄スラリーを脱鉄液と鉄澱物に固液分離する工程である。
(3)電解工程
脱鉄工程で得た脱鉄液を電解始液として電解採取を行い、電解廃液と電着銅とに分離する工程である。
In this invention, when separating and collect | recovering copper from the sulfide containing copper and iron, it has at least the following three processes.
(1) Leaching step While maintaining a slurry in which a sulfide containing copper and iron and a sulfuric acid solution are mixed in a heat resistant and pressure resistant reactor in a temperature range of 102 ° C. or higher and 180 ° C. or lower, oxygen or air is added to the slurry. The slurry into which oxygen or air is blown is then solid-liquid separated into a leachate and a leach residue.
(2) Deironing process A deironing slurry is formed by maintaining the temperature of the leachate at 230 ° C. or more and 270 ° C. or less while blowing oxygen or air into the heat and pressure resistant reactor in the leachate obtained in the leaching step. Then, the deiron slurry is solid-liquid separated into a deiron solution and an iron starch.
(3) Electrolytic step This is a step of performing electrowinning using the iron removal solution obtained in the iron removal step as an electrolysis starting solution and separating it into an electrolytic waste solution and electrodeposited copper.

図1に本発明の回収方法の工程フロー図を示す。
本発明では、図1に示すように浸出工程、脱鉄工程、電解工程と、電解廃液(電解終液)を所定の濃度に中和後、再度浸出工程に供給する工程を有しても良い。
以下、各工程の内容を詳細に説明する。
FIG. 1 shows a process flow diagram of the recovery method of the present invention.
In the present invention, as shown in FIG. 1, the leaching step, the iron removal step, the electrolysis step, and the step of neutralizing the electrolytic waste liquid (electrolysis final solution) to a predetermined concentration and then supplying it again to the leaching step may be included. .
Hereinafter, the contents of each step will be described in detail.

〔浸出工程〕
1.浸出条件
鉄と銅を含有する硫化物から銅を浸出する場合、所定の処理温度にスラリーを保持して、酸素または空気を吹き込んで酸化反応により硫酸銅の形態で銅を浸出するもので、その処理温度が102℃未満の温度で浸出すると硫化銅鉱の浸出時間が遅くなり、設備規模が過大となるなど効率の点で好ましくない。一方、180℃を超えた温度で浸出すると、硫黄の酸化が銅の浸出よりも優先的に進行し、遊離硫酸が多く発生するので鉄明礬石の生成が妨げられ、さらに生成した鉄明礬石が再溶解する問題もある。したがって、浸出温度は102℃以上、180℃以下の範囲とすることが適している。
[Leaching process]
1. Leaching conditions When copper is leached from a sulfide containing iron and copper, the slurry is held at a predetermined treatment temperature, and oxygen or air is blown to leached copper in the form of copper sulfate by an oxidation reaction. If the treatment temperature is less than 102 ° C., the leaching time of the copper sulfide ore is delayed, and the scale of equipment is excessive, which is not preferable in terms of efficiency. On the other hand, when leaching is performed at a temperature exceeding 180 ° C., sulfur oxidation proceeds preferentially over copper leaching, and a large amount of free sulfuric acid is generated, thereby preventing the production of iron aurite. There is also a problem of redissolving. Therefore, the leaching temperature is suitably in the range of 102 ° C. or higher and 180 ° C. or lower.

その反応時間は、例えば1〜3時間程度であれば充分に反応を進めることができるが、実際には銅の浸出率や硫黄の酸化率を観察しながら適宜調整すればよい。また空気あるいは酸素の吹き込み量も同様に観察しながら適宜調整すればよい。   If the reaction time is, for example, about 1 to 3 hours, the reaction can be sufficiently advanced, but in practice, it may be appropriately adjusted while observing the leaching rate of copper and the oxidation rate of sulfur. Further, the amount of air or oxygen blown may be adjusted as appropriate while observing similarly.

2.固液分離
反応容器から排出された浸出液と浸出残渣からなるスラリーは、ヌッチェ、デンバー、シックナー、遠心分離機、フィルタープレスなど既知の適当な1つ以上のろ過方法を用いて浸出液と浸出残渣とに固液分離する。
2. Solid-liquid separation Slurry consisting of leachate and leach residue discharged from the reaction vessel can be separated into leachate and leach residue using one or more known appropriate filtration methods such as Nutsche, Denver, Thickener, Centrifuge, Filter Press, etc. Solid-liquid separation.

〔脱鉄工程〕
脱鉄工程では、浸出工程で得た浸出液を、反応容器中で再加熱することで、浸出液中の鉄イオンを鉄沈殿物、共存していた硫酸イオンを硫酸として電解採取時の電解液の電気伝導度を確保する。
[Deironing process]
In the iron removal process, the leachate obtained in the leaching process is reheated in a reaction vessel, so that the iron ions in the leachate are iron precipitates and the coexisting sulfate ions are sulfuric acid. Ensure conductivity.

1.脱鉄条件
脱鉄工程では、浸出工程と同じタイプの反応容器を使用することができる。反応時の加熱温度は230℃以上270℃以下の範囲とすることが好ましい。230℃未満の温度では鉄の残渣への固定が不十分な場合があり、液中に鉄イオンが残存する場合を生じる。一方、270℃を超える温度で加熱した場合、鉄は酸化物として残渣に分配し安定に固定されるが、それ以上温度を上げても鉄イオンから鉄沈殿物への変化はあまり変わらず、エネルギーのロスが大きくなるだけで効果が少ないためである。
1. Iron removal conditions In the iron removal step, the same type of reaction vessel as in the leaching step can be used. The heating temperature during the reaction is preferably in the range of 230 ° C. or higher and 270 ° C. or lower. If the temperature is lower than 230 ° C., the iron may not be sufficiently fixed to the residue, and iron ions may remain in the liquid. On the other hand, when heated at a temperature exceeding 270 ° C., iron is distributed to the residue as an oxide and is stably fixed, but even if the temperature is increased further, the change from iron ions to iron precipitates does not change much, and the energy This is because the effect is small only by increasing the loss.

その反応時間は、例えば1〜3時間程度であれば充分に反応を進めることができるが、実際には得た残渣の形態を観察しながら適宜調整すればよい。
また、空気あるいは酸素の吹き込み量も、得られる脱鉄液や残渣を観察しながら適宜調整すればよい。
If the reaction time is, for example, about 1 to 3 hours, the reaction can be sufficiently advanced, but in practice, it may be appropriately adjusted while observing the form of the obtained residue.
Further, the amount of air or oxygen blown may be adjusted as appropriate while observing the obtained iron removal liquid and residue.

2.固液分離
脱鉄処理を施された脱鉄スラリーは、浸出工程と同様なろ過方法を用いて脱鉄液と鉄澱物とに分離する。
2. Solid-liquid separation The iron removal slurry that has been subjected to the iron removal treatment is separated into a iron removal solution and an iron starch using the same filtration method as in the leaching step.

〔電解工程〕
脱鉄工程で得た脱鉄液は、電解液として用いられて電解採取して銅を回収する。電解採取は、例えば陽極に鉛、陰極にステンレス板を用い300A/m前後の電流密度で通電するなど、従来から行われている方法を用いることで、陰極上に銅を電着させて回収できる。
電解工程では、電析した銅のモル量と同モル量だけの硫酸が副生する。そのため、電解採取後の電解廃液は、含銅硫化物を浸出する浸出始液として繰り返し、再び使用することができる。
[Electrolysis process]
The iron removal solution obtained in the iron removal step is used as an electrolytic solution, and is subjected to electrolytic collection to recover copper. Electrolytic extraction is performed by electrodepositing copper on the cathode by using a conventional method, for example, using lead as the anode and a stainless steel plate as the cathode and energizing at a current density of about 300 A / m 2. it can.
In the electrolysis process, sulfuric acid is produced as a by-product in the same molar amount as the molar amount of electrodeposited copper. Therefore, the electrolytic waste liquid after electrolytic collection can be repeatedly used as a leaching start liquid for leaching the copper-containing sulfide.

すなわち、本発明では、浸出と電解採取工程とを有するプロセスにおいて、中和剤の添加や新たな硫酸添加を行うことなしに、硫化物から銅を回収することができる。
なお、溶媒抽出を用いた従来のプロセスに対して、本発明では溶媒抽出工程による不純物の分離工程は設けなくても良い。
That is, in the present invention, copper can be recovered from sulfide without adding a neutralizing agent or adding new sulfuric acid in a process having a leaching and an electrowinning step.
Note that in the present invention, a process for separating impurities by a solvent extraction process may not be provided in contrast to a conventional process using solvent extraction.

〔不純物の処理〕
銅鉱石や銅精鉱を、硫酸溶液を用いて浸出した場合、得られる浸出液中には目的とする銅イオンのほかに、鉄イオン、硫黄が参加した硫酸イオン、さらに不純物としての砒素イオンなどが存在する。
[Treatment of impurities]
When copper ore or copper concentrate is leached using a sulfuric acid solution, the resulting leachate contains not only the target copper ions but also iron ions, sulfate ions with sulfur participation, and arsenic ions as impurities. Exists.

この中で鉄イオンは、電解採取時に電流効率の低下をもたらすなどの弊害があるが、本発明の方法では、鉄イオンは鉄明礬石および鉄沈殿物として除去されるので電解始液に含有される鉄イオンの濃度は1g/L以下の濃度にまで低減でき、実用上の問題はない。
また、浸出工程で鉄明礬石を生成する際に、存在した砒素イオンは鉄イオンと主に安定なスコロダイトとして固定され、分離して廃棄することが出来るので砒素による電着銅汚染の恐れもない。
Among these, iron ions have a detrimental effect such as a decrease in current efficiency during electrowinning, but in the method of the present invention, iron ions are removed as iron agate stone and iron precipitates, so they are contained in the electrolytic starting solution. The iron ion concentration can be reduced to a concentration of 1 g / L or less, and there is no practical problem.
Also, when producing iron alunite in the leaching process, the existing arsenic ions are fixed as iron ions and mainly stable scorodite, and can be separated and discarded, so there is no risk of electrodeposited copper contamination by arsenic .

その他の不純物として硫化物の種類によっては、亜鉛やマグネシウム、アルミニウムなどが存在する場合もあるが、これらは電位的に銅よりも卑な金属であるため、電解採取により銅と共析し、品質に影響することは小さい。なお、これら卑な金属がプロセス系内に蓄積し濃度が上昇した場合には、電解廃液の一部を中和して処分するなどによりプロセスへの影響を防止出来る。   Depending on the type of sulfide, other impurities such as zinc, magnesium, and aluminum may be present, but these are base metals that are less potential than copper. It is small to affect. If these base metals accumulate in the process system and increase in concentration, the influence on the process can be prevented by neutralizing and disposing a part of the electrolytic waste liquid.

また、本発明は、銅精鉱や黄銅鉱のような硫化銅鉱物に限定されず、銅と鉄を含有する硫化物であれば適用することができる。   Moreover, this invention is not limited to copper sulfide minerals, such as copper concentrate and chalcopyrite, but can be applied if it is a sulfide containing copper and iron.

以下、実施例を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail using examples.

銅20.6%、鉄25.7%、硫黄24.6%、砒素0.5%の組成である黄銅鉱と黄鉄鉱の混合物から成る銅鉱物を用いた。この銅鉱物を湿式粉砕し、粒径10μm以下の粒子が全体の80%以上を占めるように粒度を調製した。   A copper mineral composed of a mixture of chalcopyrite and pyrite having a composition of 20.6% copper, 25.7% iron, 24.6% sulfur, and 0.5% arsenic was used. The copper mineral was wet pulverized, and the particle size was adjusted so that particles having a particle size of 10 μm or less occupied 80% or more of the total.

〔浸出工程〕
この粉砕した銅鉱物を乾燥重量に換算して75g相当になるように分取した。分取した銅鉱物を銅濃度35.0g/L、鉄濃度1.0g/L、硫黄濃度50.9g/L(遊離硫酸濃度100g/L)の組成である水溶液1000ml中に懸濁し、さらに界面活性剤としてリグニンスルホン酸ナトリウムを0.5g/Lの濃度となるように添加し、スラリーを作製した。
[Leaching process]
The pulverized copper mineral was fractionated so as to correspond to 75 g in terms of dry weight. The separated copper mineral is suspended in 1000 ml of an aqueous solution having a composition of a copper concentration of 35.0 g / L, an iron concentration of 1.0 g / L, and a sulfur concentration of 50.9 g / L (free sulfuric acid concentration of 100 g / L). A slurry was prepared by adding sodium lignin sulfonate as an activator to a concentration of 0.5 g / L.

このスラリーを容量3リットルの耐熱ガラス容器に入れ、このガラス容器を3リットルの容量の容器まで収容できるチタン製の圧力容器内に装入、密閉し、スラリーを攪拌、混合しながら105℃まで昇温した。昇温後の内圧は0.1MPaだった。次に酸素ガスを容器内に吹き込み、内圧を1.3MPaにまで上昇させた。さらに上記温度を維持しながら攪拌を2時間継続し、その間で圧力が低下した分は圧力計を見ながら手動でボンベから酸素ガスを吹き込んで一定の圧力に維持した。なお、実施例で用いた圧力容器はバッチ式であるため、酸素ガスは圧力計の指示を見ながら手動で送り込んでいる。   This slurry is put in a heat-resistant glass container having a capacity of 3 liters, and the glass container is charged and sealed in a titanium pressure container capable of accommodating a container having a capacity of 3 liters. The slurry is heated to 105 ° C. while stirring and mixing. Warm up. The internal pressure after the temperature increase was 0.1 MPa. Next, oxygen gas was blown into the container to increase the internal pressure to 1.3 MPa. Further, stirring was continued for 2 hours while maintaining the above temperature, and the amount of the pressure decreased during that time was maintained at a constant pressure by manually blowing oxygen gas from a cylinder while watching the pressure gauge. In addition, since the pressure vessel used in the Example is a batch type, oxygen gas is sent in manually while looking at the instructions of the pressure gauge.

反応後のスラリーをヌッチェと濾瓶を用いて濾過し、浸出液1000mlと浸出残渣33.2g(乾燥重量)とに分けた。浸出液と浸出残渣中の銅、鉄、硫黄を、それぞれICPを用いて分析した。また遊離硫酸濃度は中和滴定によって求めた。   The slurry after the reaction was filtered using Nutsche and a filter bottle, and divided into 1000 ml of leaching solution and 33.2 g (dry weight) of leaching residue. Copper, iron, and sulfur in the leachate and leach residue were each analyzed using ICP. The free sulfuric acid concentration was determined by neutralization titration.

銅浸出率は、銅鉱物に含有された銅が浸出液中に溶出した量として算出した。硫黄の酸化率は、銅鉱物中に含有された硫黄の中で硫酸イオンとして浸出液中に溶出した割合として算出した。   The copper leaching rate was calculated as the amount of copper contained in the copper mineral eluted in the leachate. The sulfur oxidation rate was calculated as the proportion of sulfur contained in the copper mineral eluted in the leachate as sulfate ions.

実施例1における浸出液中の銅濃度は48.0g/Lであり、銅の浸出率は81.0%となった。また、鉄濃度は18g/L、鉄の浸出率は92.3%となった。遊離硫酸濃度は31.1g/Lであり、硫黄の酸化率は10%であった。   The copper concentration in the leachate in Example 1 was 48.0 g / L, and the copper leach rate was 81.0%. The iron concentration was 18 g / L, and the iron leaching rate was 92.3%. The free sulfuric acid concentration was 31.1 g / L, and the oxidation rate of sulfur was 10%.

〔脱鉄工程〕
次に、この浸出液を別の容量3リットルの耐熱ガラス製の容器に入れ、ついで3リットルの容量の容器まで収容できるチタン製の圧力容器内に装入、密閉し、混合しながら230℃まで昇温した。昇温後の内圧は2.9MPaだった。次に酸素ボンベから酸素ガスを容器内に吹き込み、圧力計を見ながら手動で調整して内圧を3.3MPaにまで上昇させた。さらに上記温度を維持しながら攪拌を1時間継続した。
[Deironing process]
Next, this leaching solution is put into another 3 liter heat-resistant glass container, and then charged in a titanium pressure container that can accommodate up to a 3 liter container, and the temperature is raised to 230 ° C. while mixing. Warm up. The internal pressure after the temperature increase was 2.9 MPa. Next, oxygen gas was blown into the container from the oxygen cylinder, and the internal pressure was increased to 3.3 MPa by manually adjusting the pressure gauge while looking at the pressure gauge. Further, stirring was continued for 1 hour while maintaining the above temperature.

脱鉄反応後のスラリーをヌッチェと濾瓶を用いて濾過し、脱鉄液と鉄澱物とに固液分離した。
脱鉄液中の銅濃度は48.5g/L、鉄濃度は0.9g/Lであり、遊離硫酸濃度は78g/Lであった。
The slurry after the deironation reaction was filtered using a Nutsche and a filter bottle, and solid-liquid separation was performed into a deiron solution and an iron starch.
The copper concentration in the iron removal solution was 48.5 g / L, the iron concentration was 0.9 g / L, and the free sulfuric acid concentration was 78 g / L.

〔電解工程〕
次に、この脱鉄液を電解始液として、液温度を57℃から62℃の範囲に保持し、鉛製のアノードとステンレス製のカソードとを電極として電流密度が300A/mとなる電流で通電して、電解液中の銅をカソード上に電析させた。電解液中の銅濃度が35g/Lになった時点で通電を止め停電した。そこで、カソードを引揚げ、電着した銅を剥ぎ取って洗浄した。回収した銅の重量から、電流効率を求めたところ、89%となった。停電時の電解廃液の遊離硫酸濃度は、101g/Lであり、電解採取によって浸出始液並みの濃度にまで硫酸が再生されていた。
また、電着した銅をICPを用いて分析したところ、純度は99%以上で、鉄や砒素の問題となる品位以上の析出は見られず、高品位な銅が得られることを確かめた。
[Electrolysis process]
Next, using this iron removal solution as an electrolytic starting solution, the solution temperature is maintained in the range of 57 ° C. to 62 ° C., and the current density is 300 A / m 2 using a lead anode and a stainless cathode as electrodes. The copper in the electrolyte was electrodeposited on the cathode. When the copper concentration in the electrolytic solution reached 35 g / L, the power supply was stopped and a power failure occurred. Therefore, the cathode was pulled up, and the electrodeposited copper was peeled off and washed. When the current efficiency was determined from the weight of the recovered copper, it was 89%. The concentration of free sulfuric acid in the electrolytic waste liquid at the time of a power failure was 101 g / L, and sulfuric acid was regenerated to the same concentration as the leaching start liquid by electrowinning.
Further, when the electrodeposited copper was analyzed using ICP, it was confirmed that the purity was 99% or more, and no precipitation exceeding the quality that caused problems of iron and arsenic was observed, and high-quality copper was obtained.

〔電解廃液の再利用〕
さらに、電解工程で分離された電解廃液を、浸出始液として用い、同一種の銅鉱物と混合してスラリーを作製して、新たな硫酸を添加することなく、その他は上記と同一条件で浸出を行った。
得られた浸出液中の銅濃度は48.0g/Lであり、先の銅濃度と同程度が得られた。一方遊離硫酸濃度は30.0g/Lまで低下していた。このことから、用いた電解廃液(電解終液)が次回の浸出始液として再利用できることがわかる。
その結果をまとめて表1に示す。
[Reuse of electrolytic waste liquid]
In addition, the electrolytic waste liquid separated in the electrolysis process is used as a leaching start liquid, mixed with the same type of copper mineral to prepare a slurry, and other leaching is performed under the same conditions as above without adding new sulfuric acid. Went.
The copper concentration in the obtained leachate was 48.0 g / L, which was about the same as the previous copper concentration. On the other hand, the free sulfuric acid concentration was reduced to 30.0 g / L. This shows that the used electrolytic waste liquid (electrolytic final liquid) can be reused as the next leaching start liquid.
The results are summarized in Table 1.

Figure 2011195877
Figure 2011195877

(比較例1)
銅鉱物からの浸出温度を200℃まで昇温した以外は、電解廃液の再利用工程を除いて実施例1と同じ条件で銅の回収を行った。
浸出液中の銅濃度は50.1g/Lであり、銅の浸出率は97.7%であった。また、鉄濃度は19.6g/L、鉄の浸出率は96.4%となった。遊離硫酸濃度は110.8g/Lであった。この浸出液を脱鉄工程に付した脱鉄液の銅濃度は50.4g/Lであり、鉄濃度は12.6g/L、遊離硫酸濃度は118.2g/Lであった。これらをまとめて表1に併せて示す。
なお、上記から明らかなように浸出温度を高温とした場合、この段階での遊離硫酸濃度が高くなり、脱鉄工程での鉄の固定が困難となり、脱鉄液の鉄濃度が高いことから電解液としての利用は困難であるとして電解廃液の再利用工程は行わなかった。
(Comparative Example 1)
The copper was recovered under the same conditions as in Example 1 except that the leaching temperature from the copper mineral was raised to 200 ° C., except for the step of reusing the electrolytic waste liquid.
The copper concentration in the leachate was 50.1 g / L, and the copper leach rate was 97.7%. The iron concentration was 19.6 g / L, and the iron leaching rate was 96.4%. The free sulfuric acid concentration was 110.8 g / L. The copper concentration of the iron removal solution obtained by subjecting this leachate to the iron removal step was 50.4 g / L, the iron concentration was 12.6 g / L, and the free sulfuric acid concentration was 118.2 g / L. These are collectively shown in Table 1.
As is clear from the above, when the leaching temperature is high, the concentration of free sulfuric acid increases at this stage, making it difficult to fix iron in the iron removal process, and the iron concentration in the iron removal solution is high. The recycling process of the electrolytic waste liquid was not performed because it was difficult to use it as a liquid.

(比較例2)
浸出液から脱鉄する際の浸出液の温度を180℃で行った以外は、電解廃液の再利用工程を除いて実施例1と同じ条件で銅の回収を行った。
脱鉄液中の銅濃度は48.2g/L、鉄濃度は12.0g/L、遊離硫酸濃度は41.1g/Lであった。これらをまとめて表1に併せて示す。
なお、上記から明らかなように鉄濃度が高いことから電解液としての利用は困難であるとして電解廃液の再利用工程は行わなかった。
(Comparative Example 2)
Copper was recovered under the same conditions as in Example 1 except that the temperature of the leachate when removing iron from the leachate was 180 ° C., except for the step of reusing the electrolytic waste liquid.
The copper concentration in the iron removal solution was 48.2 g / L, the iron concentration was 12.0 g / L, and the free sulfuric acid concentration was 41.1 g / L. These are collectively shown in Table 1.
As apparent from the above, since the iron concentration is high, it is difficult to use as an electrolytic solution, and the recycling process of the electrolytic waste solution was not performed.

以上、本発明の方法により、銅や鉄を含有する硫化物から銅を浸出し、硫酸や中和剤の添加をせずに、銅電解採取により銅を回収できることは明らかである。   As described above, it is apparent that copper can be recovered by copper electrowinning without leaching copper from a sulfide containing copper or iron and adding sulfuric acid or a neutralizing agent by the method of the present invention.

Claims (2)

銅及び鉄を含有する硫化物から銅を分離、回収する銅の回収方法であって、
以下の(1)から(3)の工程を有することを特徴とする。
(1)銅と鉄を含有する硫化物と、硫酸溶液とを混合したスラリーを102℃以上180℃以下の範囲の温度に維持しながら、酸素または空気を吹き込んで浸出スラリーを形成し、得られた浸出スラリーを浸出液と浸出残渣に固液分離する浸出工程。
(2)前記浸出液に、酸素または空気を吹き込みながら、浸出液の温度を230℃以上270℃以下に維持することにより脱鉄スラリーを形成し、次いで前記脱鉄スラリーを脱鉄液と鉄澱物に固液分離する脱鉄工程。
(3)前記脱鉄液を電解始液として銅の電解採取を行い、電解廃液と電着銅に分離する電解工程。
A copper recovery method for separating and recovering copper from a sulfide containing copper and iron,
It has the following processes (1) to (3).
(1) While maintaining a slurry in which a sulfide containing copper and iron and a sulfuric acid solution are mixed at a temperature in the range of 102 ° C. or higher and 180 ° C. or lower, oxygen or air is blown to form a leach slurry. A leaching process in which the leached slurry is separated into a leaching solution and a leaching residue.
(2) While blowing oxygen or air into the leachate, the temperature of the leachate is maintained at 230 ° C. or more and 270 ° C. or less to form a deiron slurry, and then the deiron slurry is converted into a deiron solution and an iron starch. Deironing process for solid-liquid separation.
(3) An electrolysis process in which copper is electrolyzed using the deiron solution as an electrolytic start solution and separated into an electrolytic waste solution and electrodeposited copper.
前記電解廃液を前記浸出工程の硫酸溶液として用いる電解廃液の再利用工程を有することを特徴とする請求項1記載の銅の回収方法。   The method for recovering copper according to claim 1, further comprising a step of reusing the electrolytic waste liquid using the electrolytic waste liquid as a sulfuric acid solution in the leaching step.
JP2010063297A 2010-03-18 2010-03-18 Method for recovering copper from copper sulfide Active JP5370683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063297A JP5370683B2 (en) 2010-03-18 2010-03-18 Method for recovering copper from copper sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063297A JP5370683B2 (en) 2010-03-18 2010-03-18 Method for recovering copper from copper sulfide

Publications (2)

Publication Number Publication Date
JP2011195877A true JP2011195877A (en) 2011-10-06
JP5370683B2 JP5370683B2 (en) 2013-12-18

Family

ID=44874466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063297A Active JP5370683B2 (en) 2010-03-18 2010-03-18 Method for recovering copper from copper sulfide

Country Status (1)

Country Link
JP (1) JP5370683B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095962A (en) * 2011-10-31 2013-05-20 Sumitomo Metal Mining Co Ltd Method for recovering copper from sulphide mineral containing copper and iron
KR101386701B1 (en) * 2012-03-28 2014-04-18 한국과학기술연구원 Recovery of high purity copper from spent electroless plating solutions
KR101465457B1 (en) * 2013-12-27 2014-11-27 (주) 화영 Method for hydrometallurgical recovering copper using by low grade copper oxide and copper slag
WO2016122280A1 (en) * 2015-01-30 2016-08-04 한경옥 Production method for copper using industrial wastewater
CN106011468A (en) * 2016-06-13 2016-10-12 云南祥云飞龙再生科技股份有限公司 Method for removing ferrous ions from iron-containing zinc sulfate solution by using industrial enriched oxygen
JP2017066504A (en) * 2015-10-02 2017-04-06 Jx金属株式会社 Processing method of arsenic-containing copper ore
CN110565120A (en) * 2019-10-18 2019-12-13 东北大学 Method for removing and recovering copper from copper-containing iron liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201510144UA (en) * 2015-12-10 2017-07-28 Metoxs Pte Ltd Method of Copper Concentrate Leaching and Sulfation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147102A (en) * 1978-05-05 1979-11-17 New Brunswick Res & Prod Nonnferrous metal recovery by heat treatment of solution containing nonnferrous metal sulphate and ferrous sulphate
JPH05306419A (en) * 1992-04-28 1993-11-19 Japan Energy Corp Method for removing arsenic in arsenic-containing dross
JP2009256764A (en) * 2008-03-27 2009-11-05 Nippon Mining & Metals Co Ltd Method for collecting copper from ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147102A (en) * 1978-05-05 1979-11-17 New Brunswick Res & Prod Nonnferrous metal recovery by heat treatment of solution containing nonnferrous metal sulphate and ferrous sulphate
JPH05306419A (en) * 1992-04-28 1993-11-19 Japan Energy Corp Method for removing arsenic in arsenic-containing dross
JP2009256764A (en) * 2008-03-27 2009-11-05 Nippon Mining & Metals Co Ltd Method for collecting copper from ore

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095962A (en) * 2011-10-31 2013-05-20 Sumitomo Metal Mining Co Ltd Method for recovering copper from sulphide mineral containing copper and iron
KR101386701B1 (en) * 2012-03-28 2014-04-18 한국과학기술연구원 Recovery of high purity copper from spent electroless plating solutions
KR101465457B1 (en) * 2013-12-27 2014-11-27 (주) 화영 Method for hydrometallurgical recovering copper using by low grade copper oxide and copper slag
WO2016122280A1 (en) * 2015-01-30 2016-08-04 한경옥 Production method for copper using industrial wastewater
JP2017066504A (en) * 2015-10-02 2017-04-06 Jx金属株式会社 Processing method of arsenic-containing copper ore
CN106011468A (en) * 2016-06-13 2016-10-12 云南祥云飞龙再生科技股份有限公司 Method for removing ferrous ions from iron-containing zinc sulfate solution by using industrial enriched oxygen
CN110565120A (en) * 2019-10-18 2019-12-13 东北大学 Method for removing and recovering copper from copper-containing iron liquid
CN110565120B (en) * 2019-10-18 2021-09-07 东北大学 Method for removing and recovering copper from copper-containing iron liquid

Also Published As

Publication number Publication date
JP5370683B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5370683B2 (en) Method for recovering copper from copper sulfide
CA2624609C (en) Processing of nickel sulphide ore or concentrates with sodium chloride
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP4468999B2 (en) Method for recovering metals from minerals
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
JP5069173B2 (en) Method for recovering copper from minerals
CN102859012B (en) The method of process nickel-bearing raw material
JP5439997B2 (en) Method for recovering copper from copper-containing iron
CN1382227A (en) Production of zinc oxide from complex sulfide concentrates using chloride processing
JP5721213B2 (en) Method for producing pure metal indium from zinc oxide and / or metal-containing solution
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
Ye et al. Ferric chloride leaching of antimony from stibnite
WO2020107122A1 (en) Process for the recovery of value metals from zinc-bearing ores, concentrates, intermediates and wastes
WO2014181833A1 (en) Zinc production method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP6233478B2 (en) Purification method of bismuth
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
WO2018138917A1 (en) Bismuth purification method
JP2019119895A (en) Manufacturing method of zinc bullion
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
WO2019113652A1 (en) Improved zinc oxide process
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
JP2018070943A (en) Method for removing impurity of bismuth electrolytic solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5370683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150