JP2011193858A - γ-AMINOBUTYRIC ACID-CONTAINING FEED, METHOD FOR PRODUCING THE SAME, AND METHOD FOR RAISING LIVESTOCK USING THE FEED - Google Patents

γ-AMINOBUTYRIC ACID-CONTAINING FEED, METHOD FOR PRODUCING THE SAME, AND METHOD FOR RAISING LIVESTOCK USING THE FEED Download PDF

Info

Publication number
JP2011193858A
JP2011193858A JP2010067464A JP2010067464A JP2011193858A JP 2011193858 A JP2011193858 A JP 2011193858A JP 2010067464 A JP2010067464 A JP 2010067464A JP 2010067464 A JP2010067464 A JP 2010067464A JP 2011193858 A JP2011193858 A JP 2011193858A
Authority
JP
Japan
Prior art keywords
feed
aminobutyric acid
lactic acid
gaba
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010067464A
Other languages
Japanese (ja)
Inventor
Takayo Saegusa
貴代 三枝
Yoshimi Sai
義民 蔡
Motohiko Ishida
元彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2010067464A priority Critical patent/JP2011193858A/en
Priority to PCT/JP2010/071446 priority patent/WO2011118088A1/en
Publication of JP2011193858A publication Critical patent/JP2011193858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Birds (AREA)
  • Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for producing feeds much containing γ-aminobutyric acid, which is not a method of administering an antibiotic and does not add glutamic acid.SOLUTION: The feeds containing γ-aminobutyric acid are produced by adding water to a pulverized gramineae seeds so that the moisture content is more than 20% but not more than 40%, inoculating Lactococcus lactis RO50 strain (FERM P-18931) thereto, and fermenting the resultant mixture.

Description

本発明は、γ−アミノ酪酸含有飼料とその製造方法、並びにそれを用いた家畜の飼育方法に関する。   The present invention relates to a feed containing γ-aminobutyric acid, a method for producing the feed, and a method for raising livestock using the feed.

子豚はストレスに弱く、非常に高い確率で消化器官感染症に罹患し、死亡する。子豚の死亡率は、養豚業において採算を決定する重要な因子の一つである。特に豚舎の環境が悪いと、子豚の死亡率はしばしば10%もの高率に達する。   Piglets are vulnerable to stress and have a very high probability of suffering from gastrointestinal infections and dying. Piglet mortality is an important factor in the profitability of the pig industry. Especially in poor pig housing, piglet mortality is often as high as 10%.

子豚の感染症防止のために、抗生物質を使用することが提案されており(特許文献1参照)、実際上も通常は抗生物質入りの餌が与えられている。
しかしながら、抗生物質は高価なだけでなく、子豚の腸内細菌層を破壊するので、本来望ましくない物質である。
さらに、2006年からEU圏では、離乳子豚に抗生物質を投与することが禁止された。この措置をうけ、将来的には日本でも抗生物質投与が制限される可能性がある。
In order to prevent infection of piglets, it has been proposed to use antibiotics (see Patent Document 1), and in practice, food containing antibiotics is usually given.
However, antibiotics are inherently undesirable because they are not only expensive, but also destroy the intestinal bacterial layer of piglets.
Furthermore, since 2006, it has been prohibited to administer antibiotics to weaned piglets in the EU. With this measure, antibiotics may be restricted in Japan in the future.

また、肥育豚も神経質な生き物であり、過密な豚舎環境などが原因でストレスが高じると仲間の尾を囓るなどの問題行動を起こすことが知られている。尾囓りが発生すると、被害豚は感染症によりしばしば死亡する。   Also, fattening pigs are also nervous creatures and are known to cause problematic behavior such as scolding their peers when stress increases due to an overcrowded piggery environment. When tailing occurs, the affected pigs often die from infection.

従って、抗生物質の投与という方法でなく、子豚や肥育豚などのストレスを抑制し、ひいては感染症を防止することが望まれている。   Therefore, it is desired not to administer antibiotics, but to suppress stresses such as piglets and fattening pigs, thereby preventing infectious diseases.

ところで、γ-アミノ酪酸(GABA;ギャバ)は抑制系の神経伝達物質で、経口投与によって哺乳動物の血圧抑制に寄与することが知られているアミノ酸である。高齢者を対象にギャバを蓄積させた米胚芽を与えた実験では、精神的に落ち着き、不眠が解消したなどのストレス低減効果が確認されている。
また、離乳子豚に、γ-アミノ酪酸を20mg/kg/day経口投与すると闘争が減少し、外傷が減少する部位が見られたとの報告がある(非特許文献1参照)。
By the way, γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter and is an amino acid known to contribute to suppression of blood pressure in mammals by oral administration. In an experiment in which rice germs with accumulated GABA were given to elderly people, stress reduction effects such as mental calmness and insomnia were confirmed.
In addition, it has been reported that when γ-aminobutyric acid is orally administered to weaned piglets at a dose of 20 mg / kg / day, struggles are reduced and trauma is reduced (see Non-Patent Document 1).

しかしながら、上記技術は試薬などのγ-アミノ酪酸を用いたものに過ぎず、コストの点からみても、実際上、飼料としての利用には適さないものであった。   However, the above technique is merely a technique using γ-aminobutyric acid such as a reagent, and from the viewpoint of cost, it is practically unsuitable for use as a feed.

なお、γ-アミノ酪酸(GABA;ギャバ)を富化した食品素材の製法としては、イネ科穀物内に存在する植物酵素を利用した方法が知られている(特許文献2参照)。
しかしながら、植物酵素を用いる場合、酵素が熱に不安定であるため、原材料の履歴によっては、望むだけの濃度までγ-アミノ酪酸(GABA;ギャバ)を増大させることができなかった。
In addition, as a method for producing a food material enriched with γ-aminobutyric acid (GABA), a method using a plant enzyme present in gramineous grains is known (see Patent Document 2).
However, when a plant enzyme is used, the enzyme is unstable to heat, and depending on the history of raw materials, γ-aminobutyric acid (GABA) cannot be increased to a desired concentration.

また、スピルリナを乳酸発酵させて、γ-アミノ酪酸(GABA;ギャバ)を高含有させたとの報告もある(非特許文献2参照)。
しかしながら、この場合、グルタミン酸を1%添加した培地を用いたときにγ-アミノ酪酸(GABA;ギャバ)を100mg/100mlを超えて高含有させているのであって、グルタミン酸を添加しないときには、1〜44mg/100ml程度にとどまっている。グルタミン酸は高価な食品添加物であり、飼料としての利用には適さないものであることから、グルタミン酸を使用することなく、γ-アミノ酪酸(GABA;ギャバ)を高含有させた(例えば、100mg/100ml以上と高含有させた)飼料が求められている。
There is also a report that Spirulina was lactic acid fermented to contain a high content of γ-aminobutyric acid (GABA) (see Non-Patent Document 2).
However, in this case, when a medium supplemented with 1% glutamic acid is used, γ-aminobutyric acid (GABA; GABA) is contained in a high amount exceeding 100 mg / 100 ml. When no glutamic acid is added, Only 44 mg / 100 ml. Since glutamic acid is an expensive food additive and is not suitable for use as a feed, γ-aminobutyric acid (GABA) is highly contained (eg, 100 mg / g) without using glutamic acid. There is a need for feed that is highly contained (100 ml or more).

特開2004−511498号公報JP 2004-511498 A 特許第2810993号Japanese Patent No. 2810993

中村ら、日本家畜管理学会誌・応用動物行動学会誌 (2009) 45, 9-18Nakamura et al., Journal of Japanese Society for Animal Care and Applied Animal Behavior (2009) 45, 9-18 DIC Technical Review No.12/2006DIC Technical Review No.12 / 2006

本発明は、上記従来の問題点を解消し、抗生物質の投与という方法でなく、しかもグルタミン酸を添加することなく、γ-アミノ酪酸を高含量含む飼料を作成する技術を提供することを目的とするものである。
γ-アミノ酪酸はストレスを抑制する効果があることから、γ-アミノ酪酸を高含量含む飼料を家畜に給与することにより、安全に家畜、特に子豚や肥育豚のストレスを抑制し、ひいては感染症を防止することができるものと期待される。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a technique for producing a feed containing a high content of γ-aminobutyric acid without adding antibiotics and without adding antibiotics. To do.
Since γ-aminobutyric acid has the effect of suppressing stress, feeding livestock with a high content of γ-aminobutyric acid safely suppresses stress in livestock, especially piglets and fattening pigs, and infectious It is expected that the disease can be prevented.

本発明者らは、鋭意研究を重ねた結果、イネ科穀物と特定の乳酸菌を用い、まずイネ科穀物の種子を粉砕し、次いでその水分率を20〜40%に調整した後、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させることにより、ストレス抑制物質であるγ-アミノ酪酸を高含量含む飼料が得られることを見出し、この知見に基づいて、本発明を完成したものである。   As a result of intensive research, the inventors of the present invention used a gramineous grain and a specific lactic acid bacterium, first pulverized gramineous grain seeds, and then adjusted the moisture content to 20 to 40%, and further to this. We found that a feed containing a high content of γ-aminobutyric acid, a stress-inhibiting substance, can be obtained by inoculating and fermenting the lactic acid bacterium Lactococcus lactis RO50 strain (FERM P-18931). Based on this, the present invention has been completed.

即ち、本発明は次のとおりのものである。
(1);イネ科穀物の種子を粉砕したものに水を加えてその水分率を20%を超え、40%以下に調整し、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させて得られる、γ−アミノ酪酸含有飼料に関する。
(2);イネ科穀物の種子が玄米である、前記(1)に記載のγ−アミノ酪酸含有飼料に関する。
(3);脱気密封状態で発酵させる、前記(1)又は(2)に記載のγ−アミノ酪酸含有飼料に関する。
(4);イネ科穀物の種子を粉砕し、次いで水を加えてその水分率を20%を超え、40%以下に調整した後、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させることを特徴とする、γ−アミノ酪酸含有飼料の製造方法に関する。
(5);イネ科穀物の種子が玄米である、前記(4)に記載のγ−アミノ酪酸含有飼料の製造方法に関する。
(6);脱気密封状態で発酵させる、前記(4)又は(5)に記載のγ−アミノ酪酸含有飼料の製造方法に関する。
(7);前記(1)〜(3)のいずれかに記載のγ−アミノ酪酸含有飼料を用いて家畜を飼育することを特徴とする、家畜の飼育方法に関する。
(8);家畜が豚である、前記(7)に記載の飼育方法に関する。
That is, the present invention is as follows.
(1): Water is added to the pulverized gramineous seed to adjust the water content to more than 20% and less than 40%, and to this, the lactic acid bacterium Lactococcus lactis RO50 strain (FERM) The present invention relates to a γ-aminobutyric acid-containing feed obtained by inoculating and fermenting P-18931).
(2): The γ-aminobutyric acid-containing feed according to (1), wherein the gramineous grain seed is brown rice.
(3): The γ-aminobutyric acid-containing feed according to (1) or (2), wherein fermentation is performed in a degassed and sealed state.
(4): After grinding the seeds of Gramineae grains and then adding water to adjust the water content to over 20% and below 40%, the lactic acid bacteria Lactococcus lactis RO50 strain ( The present invention relates to a method for producing a feed containing γ-aminobutyric acid, which is inoculated with FERM P-18931) and fermented.
(5): The method for producing a γ-aminobutyric acid-containing feed according to (4) above, wherein the gramineous grain seed is brown rice.
(6): The method for producing a γ-aminobutyric acid-containing feed according to (4) or (5), wherein fermentation is performed in a degassed and sealed state.
(7): A method for raising livestock, comprising raising livestock using the γ-aminobutyric acid-containing feed according to any one of (1) to (3).
(8) The method according to (7), wherein the livestock is a pig.

本発明によれば、グルタミン酸を添加することなく、γ-アミノ酪酸を高含量含む飼料を作成する技術が提供される。
本発明によれば、グルタミン酸を添加することなく、γ-アミノ酪酸を高含量含む飼料が得られることから、これを家畜に給与することにより、多量に蓄積するギャバによって、家畜、特に豚(子豚や肥育豚など)のストレスを低減させることができる。しかも、乳酸菌の効果で整腸作用も期待される。
さらに、本発明により得られるγ−アミノ酪酸含有飼料は、乳酸発酵されていることから、家畜、特に豚(子豚や肥育豚など)にとって、飼料に対する嗜好性が向上したものとなっている。
また、本発明により得られるγ−アミノ酪酸含有飼料は、安全性の点でも問題がない。
According to the present invention, there is provided a technique for producing a feed containing a high content of γ-aminobutyric acid without adding glutamic acid.
According to the present invention, a feed containing a high content of γ-aminobutyric acid can be obtained without adding glutamic acid. The stress of pigs and fattening pigs) can be reduced. In addition, the effect of adjusting the intestine is expected due to the effect of lactic acid bacteria.
Furthermore, since the γ-aminobutyric acid-containing feed obtained by the present invention is lactic acid fermented, it has improved palatability for feed for livestock, particularly pigs (eg, piglets and fattening pigs).
Moreover, the γ-aminobutyric acid-containing feed obtained by the present invention has no problem in terms of safety.

実施例1において、所定期間保存後のγ−アミノ酪酸(GABA;ギャバ)含量を測定した結果を示すグラフである。In Example 1, it is a graph which shows the result of having measured the content of (gamma) -aminobutyric acid (GABA; GABA) after storage for a predetermined period. 実施例2において、所定期間保存後のγ−アミノ酪酸(GABA;ギャバ)含量を測定した結果を示すグラフである。In Example 2, it is a graph which shows the result of having measured the content of (gamma) -aminobutyric acid (GABA; GABA) after storage for a predetermined period. 実施例3において、pHの変化を調べたグラフである。In Example 3, it is the graph which investigated the change of pH. 実施例4において、pHの変化を調べたグラフである。In Example 4, it is the graph which investigated the change of pH.

本発明のγ−アミノ酪酸含有飼料は、イネ科穀物の種子を粉砕し、次いで水を加えてその水分率を20〜40%に調整し、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させて得られるものである。   The γ-aminobutyric acid-containing feed of the present invention is prepared by pulverizing the seeds of gramineous grains and then adding water to adjust the water content to 20 to 40%. Further, the lactic acid bacterium Lactococcus lactis RO50 A strain (FERM P-18931) is inoculated and fermented.

ここでイネ科穀物としては、イネの他、コムギ、オオムギ、ライムギ、エンバク、ヒエ、アワ、トウモロコシ、モロコシなどの麦類が挙げられ、とりわけイネが好適である。イネ科穀物としては、本発明が飼料に関するものであることから、飼料用のもの(例えば、飼料用イネ)を用いるのが通常であるが、必ずしもこれに限定されるものではない。
なお、イネ科穀物は、イモ類や豆類より、タンパク質中のギャバの原料になるグルタミン酸含量割合が高いことに加えて、ギャバの吸収を阻害するペクチンが含まれておらず、吸収阻害効果がないという利点がある。
Here, examples of the gramineous grain include wheat, wheat, barley, rye, oat, millet, millet, maize, sorghum and the like, with rice being particularly preferred. As the gramineous grain, since the present invention relates to feed, it is usually used for feed (for example, rice for feed), but is not necessarily limited thereto.
Gramineous grains have a higher content of glutamic acid as a raw material for GABA in proteins than potatoes and beans, and do not contain pectin, which inhibits GABA absorption, and have no absorption inhibitory effect. There is an advantage.

イネ科穀物は、γ-アミノ酪酸(GABA;ギャバ)の前駆物質のグルタミン酸を多く含んでおり、本発明では、イネ科穀物を原料とすることによって、高ギャバ飼料調製に必要とされているグルタミン酸の添加を不要にしたものである。
なお、例えば、玄米やダイズ種子などの植物中に存在する酵素を利用してギャバを蓄積させようとすると、植物酵素は熱に弱く不安定であるので、材料の履歴によっては、しばしば必要とする濃度に達しないことがある。この方法での玄米中のギャバ蓄積量は、通常、25mg/100g(乾物重)程度が限界であった。また、乳酸菌を増殖させるために、原料に水分を大量に加えると、飼料の重量が増大して、豚舎で扱いにくいという問題があった。
Gramineous grains contain a large amount of glutamic acid, a precursor of γ-aminobutyric acid (GABA). In the present invention, glutamic acid is required for the preparation of high gabba feed by using gramineous grains as a raw material. Is unnecessary.
In addition, for example, when trying to accumulate GABA using enzymes present in plants such as brown rice and soybean seeds, plant enzymes are weak to heat and unstable, so depending on the history of the material, it is often necessary Concentration may not be reached. The amount of GABA accumulation in brown rice by this method is usually limited to about 25 mg / 100 g (dry matter weight). In addition, when a large amount of water is added to the raw material for growing lactic acid bacteria, there is a problem that the weight of the feed increases and it is difficult to handle in the pig house.

本発明では、数ある乳酸菌の中でも、水分含量が低い穀物粉の中でもよく増殖し、しかも高濃度でギャバを蓄積する能力がある乳酸菌である、ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を用いることによって、高ギャバ含有飼料の安定生産に成功したものである。ラクトコッカス・ラクティス(Lactococcus lactis)RO50株にこのような能力があることは、本発明者らによって初めて解明されたものである。   In the present invention, Lactococcus lactis RO50 strain (FERM P), which is a lactic acid bacterium that grows well in cereal flour with a low water content among many lactic acid bacteria and has the ability to accumulate GABA at a high concentration. -18931) has succeeded in stable production of high-yield feed. The ability of the Lactococcus lactis RO50 strain to have such ability was first elucidated by the present inventors.

まず、このイネ科穀物の種子、そのうちコメの場合を例にとると、例えば玄米を粉砕する。一般に、イネ科穀物の種子の胚芽部分と、穀粒表層部分(例えば、糠や麩など)に、γ-アミノ酪酸(GABA;ギャバ)の前駆物質のグルタミン酸が高濃度に含まれていることから、少なくともこの部分が含まれるようにする。
粉砕は、例えば遠心式粉砕器などを用いて行うことができる。
粉砕の程度は、特に限定されないが、通常、直径が1mm〜5mm程度となるように粉砕すればよい。
First, for example, the rice of this Gramineae grain, of which rice is used, for example, brown rice is crushed. Generally, glutamic acid, which is a precursor of γ-aminobutyric acid (GABA), is contained in a high concentration in the germ part of the grain seed and the surface part of the grain (for example, cocoons and cocoons). At least this part should be included.
The pulverization can be performed using, for example, a centrifugal pulverizer.
Although the degree of pulverization is not particularly limited, the pulverization is usually performed so that the diameter is about 1 mm to 5 mm.

次いで、上記のようにイネ科穀物の種子を粉砕したものに水を加えて、その水分率を20%を超え、40%以下に、好ましくは25〜35%、特に好ましくは30%前後に調整する。ここで、水分率が40%を超えたものであると、最終的に得られる飼料の重量が増大して、取り扱いにくくなってしまう。一方、水分率が20%以下であると、飼料中のγ−アミノ酪酸の含有量が少なくなってしまうため、好ましくない。   Next, water is added to the grinded gramineous seeds as described above, and the water content is adjusted to more than 20%, 40% or less, preferably 25 to 35%, particularly preferably around 30%. To do. Here, if the moisture content exceeds 40%, the weight of the finally obtained feed increases and it becomes difficult to handle. On the other hand, a moisture content of 20% or less is not preferable because the content of γ-aminobutyric acid in the feed is reduced.

さらに、これに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株を接種する。
この乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株は、独立行政法人産業技術総合研究所 特許生物寄託センターに平成14年7月9日に寄託されており、その受託番号は、FERM P−18931である。
乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)は、乳酸発酵能が高い乳酸菌として知られたものであるが、γ−アミノ酪酸生産能力があることは、これまで知られていない。
本発明者は、この乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)が、水分含量が低い穀物粉の中でもよく増殖し、しかも高濃度でγ−アミノ酪酸(GABA;ギャバ)を蓄積する能力があることを突き止め、これを用いて高ギャバ飼料の安定生産に成功したものである。
Furthermore, this is inoculated with lactic acid bacteria Lactococcus lactis strain RO50.
This Lactococcus lactis RO50 strain was deposited on July 9, 2002 at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology, and its deposit number is FERM P-18931 is there.
The lactic acid bacterium Lactococcus lactis RO50 strain (FERM P-18931) is known as a lactic acid bacterium having a high lactic acid fermentation ability, but it has been known that it has the ability to produce γ-aminobutyric acid. Absent.
The present inventor has found that the lactic acid bacterium Lactococcus lactis RO50 strain (FERM P-18931) grows well in cereal flour having a low water content, and also has a high concentration of γ-aminobutyric acid (GABA). It has been found that it has the ability to accumulate sucrose, and has succeeded in stable production of high gabba feed using this.

上記乳酸菌の接種は、通常、粉砕されたイネ科穀物の種子(水分率15%換算)1kgに対して、対数増殖期(菌数105〜108/ml)の培養液0.1〜1.0ml程度で充分であるが、これに限定されるものではない。 Inoculation with the lactic acid bacteria is usually performed in a logarithmic growth phase (bacterial number 10 5 to 10 8 / ml) of a culture solution 0.1 to 1 per 1 kg of crushed gramineous grain seeds (converted to a moisture content of 15%) Although about 0.0 ml is sufficient, it is not limited to this.

乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種後、発酵させる。
発酵させるにあたっては、脱気密封状態で発酵させることが好ましい。
具体的には、例えばポリエチレン袋などの酸素不透過性の容器に入れ、これを脱気して真空密封することが好ましい。
このように脱気密封状態で発酵させることにより、腐敗させることなく、高ギャバ飼料を得ることができる。
Lactococcus lactis RO50 strain (FERM P-18931) is inoculated and fermented.
In fermenting, it is preferable to ferment in a degassed and sealed state.
Specifically, it is preferable to put in an oxygen-impermeable container such as a polyethylene bag, and deaerate and vacuum-seal it.
Thus, by fermenting in a degassed and sealed state, a high gabba feed can be obtained without being spoiled.

このようにイネ科穀物の種子を粉砕したものに水を加えてその水分率を20%を超え、40%以下に調整し、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵(好ましくは脱気密封状態で発酵)させてなるものが、目的とするγ−アミノ酪酸含有飼料である。
即ち、目的とするγ−アミノ酪酸含有飼料は、イネ科穀物の種子を粉砕し、次いで水を加えてその水分率を20%を超え、40%以下に調整した後、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させることにより得られる。
乳酸菌は嫌気発酵であるので、発酵過程でカロリーはほとんど消費せず、例えば発酵終了後の玄米の栄養成分は原料とほとんど違いがない。玄米は、飼料中のコーンとほぼ全量まで置き換え可能であることが確認されていることから、このようにして得られたγ−アミノ酪酸含有飼料は、家畜や家禽などの飼料として充分な栄養素を含んでいる。
このγ−アミノ酪酸含有飼料には、必要に応じて、市販の飼料を混合することもできる。
さらには、このγ−アミノ酪酸含有飼料を、市販の飼料に添加する、飼料添加剤の形で用いることも可能である。例えば、子豚の飼料中に所定量添加することにより、子豚のストレスを低減させることができる。
In this way, water is added to the pulverized gramineous seeds to adjust the water content to over 20% and below 40%, and to this, the lactic acid bacterium Lactococcus lactis RO50 strain (FERM P -18931) is inoculated and fermented (preferably fermented in a degassed and sealed state) is the target γ-aminobutyric acid-containing feed.
That is, the target γ-aminobutyric acid-containing feed is obtained by pulverizing the seeds of gramineous grains and then adding water to adjust the water content to more than 20% and 40% or less. -It is obtained by inoculating Lactococcus lactis RO50 strain (FERM P-18931) and fermenting it.
Since lactic acid bacteria are anaerobic fermentation, almost no calories are consumed during the fermentation process. For example, the nutrient components of brown rice after the fermentation are almost the same as the raw materials. Since it has been confirmed that brown rice can be replaced by almost the whole amount of corn in the feed, the γ-aminobutyric acid-containing feed obtained in this way has sufficient nutrients for feed such as livestock and poultry. Contains.
A commercially available feed can be mixed with the γ-aminobutyric acid-containing feed as necessary.
Furthermore, this γ-aminobutyric acid-containing feed can be used in the form of a feed additive that is added to a commercially available feed. For example, the stress of the piglet can be reduced by adding a predetermined amount to the feed of the piglet.

発酵条件としては、温度15〜45℃にて、10〜60日間、好ましくは温度25〜35℃にて、15〜30日間発酵させる。   As fermentation conditions, it is fermented at a temperature of 15 to 45 ° C. for 10 to 60 days, preferably at a temperature of 25 to 35 ° C. for 15 to 30 days.

このようにして得られたγ−アミノ酪酸含有飼料は、γ−アミノ酪酸を100mg/100g(乾物重=DW)程度以上と高含量蓄積したものである。
本発明によれば、グルタミン酸を添加することなく、このようにγ-アミノ酪酸を高含量含む飼料を作成することができるが、より一層γ-アミノ酪酸を高含量含むようにするため、必要に応じて、培地にグルタミン酸を添加することもできる。
なお、γ−アミノ酪酸含量の測定は、次のようにして行うことができる。
即ち、飼料1.0g(含水)を8%(w/v)トリクロロ酢酸水溶液5.0mlで抽出、アミノ酸アナライザー(L-8500、日立製)で生体液プログラムを用いて定量することができる。
The γ-aminobutyric acid-containing feed thus obtained is a high-accumulated accumulation of γ-aminobutyric acid of about 100 mg / 100 g (dry weight = DW) or more.
According to the present invention, a feed containing a high content of γ-aminobutyric acid can be prepared in this way without adding glutamic acid. Accordingly, glutamic acid can be added to the medium.
The measurement of γ-aminobutyric acid content can be performed as follows.
That is, 1.0 g of feed (containing water) can be extracted with 5.0 ml of 8% (w / v) trichloroacetic acid aqueous solution and quantified using an amino acid analyzer (L-8500, manufactured by Hitachi) using a biological fluid program.

このようにして得られたγ−アミノ酪酸含有飼料は、これを家畜に給与することにより、乳酸菌の効果で整腸作用が期待されるだけでなく、多量に蓄積するギャバによって、家畜、特に豚(子豚や肥育豚など)のストレスを低減させる。
また、このようにして得られたγ−アミノ酪酸含有飼料は、乳酸発酵されていることから、家畜、特に豚(子豚や肥育豚など)にとって、飼料に対する嗜好性が向上したものとなっている。このような乳酸発酵による嗜好性の向上効果は、本発明により初めて確認されたものである。
従って、本発明のγ−アミノ酪酸含有飼料は、豚、牛、羊、山羊、馬、鶏などの家畜、特に豚(とりわけ子豚や肥育豚など)の飼育に有効に利用される。
The feed containing γ-aminobutyric acid thus obtained is not only expected to have an intestinal regulating action due to the effect of lactic acid bacteria by feeding it to livestock, but also due to the accumulation of a large amount, Reduce stress in piglets and fattening pigs.
In addition, since the γ-aminobutyric acid-containing feed thus obtained is lactic acid fermented, it has improved palatability for feed for livestock, particularly pigs (eg, piglets and fattening pigs). Yes. Such an effect of improving palatability by lactic acid fermentation has been confirmed for the first time by the present invention.
Therefore, the γ-aminobutyric acid-containing feed of the present invention is effectively used for breeding livestock such as pigs, cows, sheep, goats, horses and chickens, particularly pigs (particularly piglets and fattening pigs).

本発明は、このようにして得られたγ−アミノ酪酸含有飼料を用いて家畜を飼育することを特徴とする、家畜の飼育方法をも提供するものである。
家畜の飼育方法としては、このようにして得られたγ−アミノ酪酸含有飼料を用いること以外は、それぞれの家畜にとって通常行われている飼育方法に従って行えばよい。
また、特に子豚の群編成のようなストレスのかかる条件の前には、このようにして得られたγ−アミノ酪酸含有飼料を予め給与しておくことが望ましい。
The present invention also provides a domestic animal breeding method characterized by breeding livestock using the γ-aminobutyric acid-containing feed thus obtained.
As a domestic animal breeding method, except for using the γ-aminobutyric acid-containing feed thus obtained, it may be carried out in accordance with a breeding method usually performed for each domestic animal.
Moreover, it is desirable to feed the γ-aminobutyric acid-containing feed thus obtained in advance before a stressful condition such as group formation of piglets.

以下、実施例を挙げて本発明を説明するが、本発明の範囲はこれらにより限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, the scope of the present invention is not limited by these.

<実施例1;各種乳酸菌を使用した飼料の調製>
各種乳酸菌を用い、以下に示すようにして、4種の飼料(本発明区、比較対照区1、比較対照区2、比較対照区3)を調製し、所定期間保存後のγ−アミノ酪酸(GABA;ギャバ)含量を測定した。結果を表1及び図1に示す。
<Example 1; Preparation of feed using various lactic acid bacteria>
Using various lactic acid bacteria, as shown below, four types of feed (invention group, comparative control group 1, comparative control group 2, comparative control group 3) were prepared, and γ-aminobutyric acid ( GABA content was measured. The results are shown in Table 1 and FIG.

なお、本発明区では、乳酸菌としては、ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を用いた。
次に、比較対照区1では、乳酸菌を使用しなかった。
また、比較対照区2では、乳酸菌としては、ペディオコッカス・アシィディラクティシィ(Pediococcus acidilactici)CA25株を用いた。
さらに、比較対照区3では、乳酸菌としては、エンテロコッカス・フェシウム(Enterococcus faecium)It62株を用いた。
In the present invention group, Lactococcus lactis RO50 strain (FERM P-18931) was used as the lactic acid bacterium.
Next, in Comparative Control Group 1, no lactic acid bacteria were used.
In Comparative Control Group 2, Pediococcus acidilactici CA25 strain was used as the lactic acid bacterium.
Further, in Comparative Control Group 3, Enterococcus faecium It62 strain was used as the lactic acid bacterium.

1)茨城県つくばみらい市で栽培したモミロマン(飼料用米品種)玄米を、1.5mmメッシュのふるいをつけた遠心式粉砕器(puluerisette 14、FRITSCH社)で粉砕して、米粉を得た。
2)一方、乳酸菌を、GAM寒天培地(日水製薬株式会社製)の平板に広げ、30℃で24〜48時間培養した。得られたコロニーを、変法GAMブイヨン(日水製薬株式会社製)液体培地に移し、30℃で24〜48時間静置培養して、乳酸菌培養液を得た。
3)前記1)で得られた米粉を水分率30%に調湿後、この米粉1kg(水分率15%換算)に対して、前記2)で得られた乳酸菌培養液(対数増殖期(菌数105〜108/ml)の培養液)を1.0ml加え、混合した。これを0.1mm厚のポリエチレン袋に入れ、真空密封し、飼料とした。その後、30℃の恒温機に所定期間保存した。
4)所定期間保存(1、3、5、10、17、24、32日間保存)後のγ−アミノ酪酸(GABA;ギャバ)含量を測定した。
なお、GABA含量は、次のようにして測定した。
飼料1.0g(含水)を8%(w/v)トリクロロ酢酸水溶液5.0mlで抽出、アミノ酸アナライザー(L-8500、日立製)で生体液プログラムを用いて定量した。
1) Rice flour was obtained by crushing brown rice (forage rice variety) brown rice cultivated in Tsukuba Mirai City, Ibaraki Prefecture with a centrifugal grinder (puluerisette 14, FRITSCH) equipped with a 1.5 mm mesh sieve.
2) On the other hand, lactic acid bacteria were spread on a flat plate of GAM agar medium (manufactured by Nissui Pharmaceutical Co., Ltd.) and cultured at 30 ° C. for 24 to 48 hours. The obtained colonies were transferred to a modified GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) liquid medium and left to stand for 24 to 48 hours at 30 ° C. to obtain a lactic acid bacteria culture solution.
3) After conditioning the rice flour obtained in 1) above to a moisture content of 30%, 1 kg of this rice flour (converted to a moisture content of 15%) was used for the lactic acid bacteria culture solution (logarithmic growth phase (fungus) 1.0 ml of the culture solution of several 10 5 to 10 8 / ml) was added and mixed. This was put into a polyethylene bag having a thickness of 0.1 mm, vacuum-sealed, and used as feed. Then, it preserve | saved for the predetermined period in a 30 degreeC thermostat.
4) The content of γ-aminobutyric acid (GABA) after storage for a predetermined period (storage for 1, 3, 5, 10, 17, 24, 32 days) was measured.
The GABA content was measured as follows.
1.0 g of feed (containing water) was extracted with 5.0 ml of an 8% (w / v) aqueous trichloroacetic acid solution, and quantified with an amino acid analyzer (L-8500, manufactured by Hitachi) using a biological fluid program.

Figure 2011193858
Figure 2011193858

表1及び図1からは、次のことが明らかである。
即ち、実施例1によれば、乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を用いることによって、比較例1〜3に比し、GABA含量を著しく増強させることができることが分かる。
From Table 1 and FIG. 1, the following is clear.
That is, according to Example 1, GABA content can be remarkably enhanced as compared with Comparative Examples 1 to 3 by using lactic acid bacteria Lactococcus lactis RO50 strain (FERM P-18931). I understand.

<実施例2;米粉の水分率>
実施例1(本発明区)において、米粉の水分率を20%、30%、40%としたこと以外は、実施例1(本発明区)と同様にして飼料を調製し、所定期間保存後のγ−アミノ酪酸(GABA;ギャバ)含量を測定した。結果を図2に示す。
なお、米粉の水分率は、105℃で24時間乾燥後、重量測定によって求めた。
<Example 2; moisture content of rice flour>
In Example 1 (Invention), the feed was prepared in the same manner as in Example 1 (Invention) except that the moisture content of rice flour was 20%, 30%, and 40%. The content of γ-aminobutyric acid (GABA) was measured. The results are shown in FIG.
The moisture content of the rice flour was determined by weight measurement after drying at 105 ° C. for 24 hours.

図2によれば、米粉の水分率は40%のものと30%のものとで、所定期間保存後のγ−アミノ酪酸(GABA;ギャバ)含量について特に差異は認められず、保存日数が11日を超えてからは、いずれも100mg/100g・乾燥重を超える高い数値を示していた。
従って、米粉の水分率は、40%以下、特に30%でも充分であることが分かった。
According to FIG. 2, the moisture content of rice flour is 40% and 30%, and no particular difference is observed in the content of γ-aminobutyric acid (GABA) after storage for a predetermined period, and the storage days are 11 After exceeding the day, all showed high numerical values exceeding 100 mg / 100 g · dry weight.
Therefore, it was found that the moisture content of rice flour is 40% or less, particularly 30% is sufficient.

<実施例3;各種乳酸菌を使用した飼料のpHの変動>
実施例1において調製された4種の飼料(本発明区、比較対照区1、比較対照区2、比較対照区3)について、pHの変化を調べた。結果を図3に示す。
なお、pHは、次のようにして測定した。
調製された飼料15g(水分率0%換算)に対して、蒸留水140mlを加え、4℃で一夜保管後、ポリエチレン袋に入れミキサー(BAGMIXER 400、interscience社製)で60秒撹拌、濾紙(No.6、ADVANTEC製)で濾過、濾液のpHを測定した。
<Example 3; Variation in pH of feed using various lactic acid bacteria>
Changes in pH were examined for the four types of feeds prepared in Example 1 (invention group, comparative control group 1, comparative control group 2, and comparative control group 3). The results are shown in FIG.
The pH was measured as follows.
To 15 g of the prepared feed (converted to 0% moisture content), add 140 ml of distilled water, store overnight at 4 ° C., place in a polyethylene bag, stir for 60 seconds with a mixer (BAGMIXER 400, manufactured by interscience), filter paper (No .6, manufactured by ADVANTEC), and the pH of the filtrate was measured.

図3からは、次のことが明らかである。
即ち、乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を用いた本発明区によれば、乳酸菌ペディオコッカス・アシィディラクティシィ(Pediococcus acidilactici)CA25株を用いた比較対照区2や、乳酸菌としてエンテロコッカス・フェシウム(Enterococcus faecium)It62株を用いた比較対照区3のように、保管中にpHが4前後まで低下することがなく、特に保管日数が24日を超えたときには、乳酸菌なしの比較対照区1と同程度のpH4.8前後を維持していることが分かる。
From FIG. 3, the following is clear.
That is, according to the present invention using the lactic acid bacterium Lactococcus lactis RO50 strain (FERM P-18931), the comparative control using the lactic acid bacterium Pediococcus acidilactici CA25 strain The pH does not drop to around 4 during storage, as in Section 2 and Comparative Control 3 using Enterococcus faecium It62 strain as lactic acid bacteria, especially when the storage days exceed 24 days It can be seen that the pH of about 4.8 is maintained at the same level as the comparative control group 1 without lactic acid bacteria.

<実施例4;米粉の水分率とpHの変動>
実施例1(本発明区)において、米粉の水分率を20%、30%、40%としたこと以外は、実施例1(本発明区)と同様にして飼料を調製し、pHの変化を調べた。結果を図4に示す。
なお、pHは、実施例3に示した方法によって測定した。
<Example 4: Moisture content and pH change of rice flour>
In Example 1 (invention zone), except that the moisture content of rice flour was 20%, 30%, and 40%, a feed was prepared in the same manner as in Example 1 (invention zone), and the change in pH was adjusted. Examined. The results are shown in FIG.
The pH was measured by the method shown in Example 3.

図4からは、米粉の水分率が20%のものを用いた場合に最もpHが高いことが分かるが、米粉の水分率が30%と40%とでは特に差異は認められなかった。   From FIG. 4, it can be seen that the pH is highest when the moisture content of rice flour is 20%, but no particular difference was observed between the moisture content of rice flour of 30% and 40%.

<実施例5;子豚嗜好性について>
離乳後一週間、市販子豚用飼料を与えて固形飼料になれさせた大ヨークシャー種の子豚に、実施例1で調製された本発明区の飼料を自由採食させて嗜好性を調べたところ、喜んで食べるのが目視にて確認された。子豚は、食べないときは、全く口をつけないことがあることはよく知られたことである。
<Example 5: Piglet preference>
One week after weaning, the feed of the present invention prepared in Example 1 was freely fed to a large Yorkshire piglet fed a commercial piglet feed and allowed to become a solid feed, and the palatability was examined. However, it was confirmed visually that he was glad to eat. It is well known that piglets sometimes don't speak at all when they don't eat.

<参考例;各種乳酸菌を使用した飼料の調製とGABA含量等の測定>
実施例1において、表2に示す各種乳酸菌を用いて飼料を製造し、室温にて1週間、脱気保管したこと以外は、実施例1と同様にしてγ−アミノ酪酸(GABA;ギャバ)含量を測定した。合わせて、遊離アミノ酸の量とpHを測定した。結果を表2に示す。
<Reference Example: Preparation of feed using various lactic acid bacteria and measurement of GABA content, etc.>
In Example 1, a feed was produced using various lactic acid bacteria shown in Table 2, and the content of γ-aminobutyric acid (GABA) was the same as in Example 1 except that the feed was produced and stored at room temperature for one week. Was measured. Together, the amount of free amino acid and pH were measured. The results are shown in Table 2.

Figure 2011193858
Figure 2011193858

表2によれば、以下のことが分かる。
即ち、本例では、発酵に要した時間は一週間、温度も室温であったので、全体にγ−アミノ酪酸(GABA;ギャバ)の蓄積量は低いように見れるかもしれないが、RO50株を用いた本発明区によれば、他の乳酸菌を用いたものに比べて、顕著にギャバが蓄積されていることが分かる。
この実験条件の時、「無」とした乳酸菌無添加区において、RO50株以外の乳酸菌を添加した区より多くのギャバが蓄積しているのは、一部の乳酸菌を除き、ほとんどの乳酸菌は、植物が自然に作るギャバをむしろ分解する方角に代謝を進めるためである。
つまり、本発明によれば、RO50株が、乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)の中でもギャバを多く蓄積する傾向のある乳酸菌であるというだけでなく、イネ科植物に作用させることによって、ギャバを高濃度で蓄積できることが明らかとなった。
According to Table 2, the following can be understood.
That is, in this example, since the time required for fermentation was one week and the temperature was also room temperature, the accumulated amount of γ-aminobutyric acid (GABA) may seem to be low as a whole. According to the present invention section used, it can be seen that the GABA is remarkably accumulated as compared with those using other lactic acid bacteria.
Under these experimental conditions, in the lactic acid bacteria non-added group, which was “no”, more GABA was accumulated than the group to which lactic acid bacteria other than the RO50 strain were added, except for some lactic acid bacteria, This is to promote metabolism in the direction of breaking down the GABA naturally produced by plants.
That is, according to the present invention, the RO50 strain is not only a lactic acid bacterium that tends to accumulate a large amount of lactic acid bacteria among the lactic acid bacteria Lactococcus lactis. It became clear that it could accumulate at high concentration.

本発明は、畜産業界において、特に養豚産業において広く利用することが期待される。
また、既に子豚での給与実験(20日〜40日)を5回以上行い、安全であることを確認しているが、将来的には人間の食品としても応用が可能であると期待される。
The present invention is expected to be widely used in the livestock industry, particularly in the pig farming industry.
In addition, feeding experiments with piglets (20-40 days) have already been conducted five times or more, and it has been confirmed that it is safe, but in the future it is expected to be applicable as a human food. The

Claims (8)

イネ科穀物の種子を粉砕したものに水を加えてその水分率を20%を超え、40%以下に調整し、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させて得られる、γ−アミノ酪酸含有飼料。   Water is added to the crushed gramineous seeds to adjust the water content to more than 20% and less than 40%, and to this, the lactic acid bacterium Lactococcus lactis RO50 strain (FERM P-18931) A feed containing γ-aminobutyric acid, obtained by inoculating and fermenting. イネ科穀物の種子が玄米である、請求項1に記載のγ−アミノ酪酸含有飼料。   The feed containing γ-aminobutyric acid according to claim 1, wherein the seed of the Gramineae grain is brown rice. 脱気密封状態で発酵させる、請求項1又は2に記載のγ−アミノ酪酸含有飼料。   The feed containing γ-aminobutyric acid according to claim 1 or 2, which is fermented in a degassed and sealed state. イネ科穀物の種子を粉砕し、次いで水を加えてその水分率を20%を超え、40%以下に調整した後、さらにこれに乳酸菌ラクトコッカス・ラクティス(Lactococcus lactis)RO50株(FERM P−18931)を接種し、発酵させることを特徴とする、γ−アミノ酪酸含有飼料の製造方法。   The seeds of Gramineae grains are pulverized and then water is added to adjust the water content to more than 20% and below 40%, and then the lactic acid bacteria Lactococcus lactis RO50 strain (FERM P-18931) ), And fermented. A method for producing a feed containing γ-aminobutyric acid. イネ科穀物の種子が玄米である、請求項4に記載のγ−アミノ酪酸含有飼料の製造方法。   The method for producing a feed containing γ-aminobutyric acid according to claim 4, wherein the seed of the Gramineae grain is brown rice. 脱気密封状態で発酵させる、請求項4又は5に記載のγ−アミノ酪酸含有飼料の製造方法。   The method for producing a γ-aminobutyric acid-containing feed according to claim 4 or 5, wherein fermentation is performed in a degassed and sealed state. 請求項1〜3のいずれかに記載のγ−アミノ酪酸含有飼料を用いて家畜を飼育することを特徴とする、家畜の飼育方法。   A method for raising livestock, comprising raising livestock using the γ-aminobutyric acid-containing feed according to claim 1. 家畜が豚である、請求項7に記載の飼育方法。   The breeding method according to claim 7, wherein the livestock is a pig.
JP2010067464A 2010-03-24 2010-03-24 γ-AMINOBUTYRIC ACID-CONTAINING FEED, METHOD FOR PRODUCING THE SAME, AND METHOD FOR RAISING LIVESTOCK USING THE FEED Pending JP2011193858A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010067464A JP2011193858A (en) 2010-03-24 2010-03-24 γ-AMINOBUTYRIC ACID-CONTAINING FEED, METHOD FOR PRODUCING THE SAME, AND METHOD FOR RAISING LIVESTOCK USING THE FEED
PCT/JP2010/071446 WO2011118088A1 (en) 2010-03-24 2010-12-01 Feed containing γ-aminobutyric acid, process for production of same, and method for farming of livestock animals using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067464A JP2011193858A (en) 2010-03-24 2010-03-24 γ-AMINOBUTYRIC ACID-CONTAINING FEED, METHOD FOR PRODUCING THE SAME, AND METHOD FOR RAISING LIVESTOCK USING THE FEED

Publications (1)

Publication Number Publication Date
JP2011193858A true JP2011193858A (en) 2011-10-06

Family

ID=44672672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067464A Pending JP2011193858A (en) 2010-03-24 2010-03-24 γ-AMINOBUTYRIC ACID-CONTAINING FEED, METHOD FOR PRODUCING THE SAME, AND METHOD FOR RAISING LIVESTOCK USING THE FEED

Country Status (2)

Country Link
JP (1) JP2011193858A (en)
WO (1) WO2011118088A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101119A (en) * 2014-11-28 2016-06-02 ヤンマー株式会社 Feed production method
JP6272536B1 (en) * 2017-06-23 2018-01-31 日設工業株式会社 Feed additives for old livestock and feed for old livestock
JP2019118303A (en) * 2018-01-04 2019-07-22 雪印種苗株式会社 Lactobacillus preparation for silage preparation
JP7403096B2 (en) 2020-02-06 2023-12-22 宮崎県 Method for producing feed containing high GABA and ornithine content

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320351B (en) * 2013-05-16 2014-12-17 沈阳药科大学 Lactococcus garvieae and biological feed-additive prepared therefrom

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032923A (en) * 1998-07-21 2000-02-02 Chugoku National Agricultural Experiment Station Fodder and its production
JP2002058343A (en) * 2001-09-04 2002-02-26 Omusubi Kororin Honpo:Kk Method for supplying germinated unpolished rice feed under acreage reduction policy
JP2004313032A (en) * 2003-04-14 2004-11-11 Sadaji Yokoyama Method for producing functional raw material
JP2005312438A (en) * 2004-03-29 2005-11-10 Marukome Kk FOOD MATERIAL WITH HIGH gamma-AMINOBUTYRIC ACID CONTENT AND METHOD FOR PRODUCING THE SAME
JP2006191881A (en) * 2005-01-14 2006-07-27 Showa Sangyo Co Ltd Wheat lactic fermented product
WO2007097374A1 (en) * 2006-02-21 2007-08-30 Kikkoman Corporation Lactic acid bacterium capable of producing ϝ-aminobutyric acid
JP2007289160A (en) * 2006-03-30 2007-11-08 National Agriculture & Food Research Organization Lactic fermentation drink of sugar cane and method for preparation of the same
JP2007319126A (en) * 2006-06-02 2007-12-13 National Agriculture & Food Research Organization FEED CONTAINING gamma-AMINOBUTYRIC ACID-CONTAINING COMPOSITION, AND METHOD FOR PRODUCING THE SAME
JP2009060896A (en) * 2007-08-10 2009-03-26 Morikawa Kenkoudou Kk PRODUCTION METHOD OF gamma-AMINOBUTYRIC ACID

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032923A (en) * 1998-07-21 2000-02-02 Chugoku National Agricultural Experiment Station Fodder and its production
JP2002058343A (en) * 2001-09-04 2002-02-26 Omusubi Kororin Honpo:Kk Method for supplying germinated unpolished rice feed under acreage reduction policy
JP2004313032A (en) * 2003-04-14 2004-11-11 Sadaji Yokoyama Method for producing functional raw material
JP2005312438A (en) * 2004-03-29 2005-11-10 Marukome Kk FOOD MATERIAL WITH HIGH gamma-AMINOBUTYRIC ACID CONTENT AND METHOD FOR PRODUCING THE SAME
JP2006191881A (en) * 2005-01-14 2006-07-27 Showa Sangyo Co Ltd Wheat lactic fermented product
WO2007097374A1 (en) * 2006-02-21 2007-08-30 Kikkoman Corporation Lactic acid bacterium capable of producing ϝ-aminobutyric acid
JP2007289160A (en) * 2006-03-30 2007-11-08 National Agriculture & Food Research Organization Lactic fermentation drink of sugar cane and method for preparation of the same
JP2007319126A (en) * 2006-06-02 2007-12-13 National Agriculture & Food Research Organization FEED CONTAINING gamma-AMINOBUTYRIC ACID-CONTAINING COMPOSITION, AND METHOD FOR PRODUCING THE SAME
JP2009060896A (en) * 2007-08-10 2009-03-26 Morikawa Kenkoudou Kk PRODUCTION METHOD OF gamma-AMINOBUTYRIC ACID

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014053584; 三枝 貴代、蔡 義民、樋口 浩二、石川 哲也、石田 元彦: '乳酸菌を添加した玄米ソフトグレインサイレージのGABA蓄積' 日本草地学会誌 第55巻 別号, 200903, P.121, 日本草地学会 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101119A (en) * 2014-11-28 2016-06-02 ヤンマー株式会社 Feed production method
JP6272536B1 (en) * 2017-06-23 2018-01-31 日設工業株式会社 Feed additives for old livestock and feed for old livestock
JP2019118303A (en) * 2018-01-04 2019-07-22 雪印種苗株式会社 Lactobacillus preparation for silage preparation
JP7062443B2 (en) 2018-01-04 2022-05-06 雪印種苗株式会社 Lactic acid bacteria preparation for silage preparation
JP7403096B2 (en) 2020-02-06 2023-12-22 宮崎県 Method for producing feed containing high GABA and ornithine content

Also Published As

Publication number Publication date
WO2011118088A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
RU2485175C2 (en) Composition containing yeast for use as fodder additive for cows
JP4198728B2 (en) Immune activity regulator for animals, and animal feed containing the regulator
KR102255611B1 (en) Method for preparing fermented total mixed ration using microbial strain complex
KR101216669B1 (en) A livestock feed additive comprising the fermented biotite using effective microorganisms for enhancing viability of livestock
CN1494374A (en) Preparation of compositions comprising bacterial strains and volatile plant extracts and therapeutic and industrial applications thereof
CN102422991A (en) Biologically fermented puffed particle forage for pigling and preparation method thereof
WO2011118088A1 (en) Feed containing γ-aminobutyric acid, process for production of same, and method for farming of livestock animals using same
WO2007034627A1 (en) Additive for animal feed
EP2517715B1 (en) Composition containing propionic acid bacteria for use in preventing and/or treating acidosis
JP4997500B2 (en) Animal viable agent, feed composition, and method of use
KR100876521B1 (en) A probiotics for fermenting mixed rations and a method for fermenting the mixed rations using the probiotics
CN102389037A (en) Bio-fermented and extruded pellet feed for chickling preparation method thereof
JP4199685B2 (en) New lactic acid bacteria
CN112175932A (en) Microbial inoculum carrier, preparation method and application thereof, and preparation method of lactobacillus solid microbial inoculum
CN106720956A (en) A kind of carp feed
KR101971241B1 (en) Feed additives improved heat resistane and method thereof
KR101476107B1 (en) EM fermented feed compound using fungus strain manufacturing method
KR100925173B1 (en) Functional feed additive and process for producing the same
KR102210145B1 (en) Method for preparing calcium-fortified heat-resistant feed additive and feed additive prepared thereby
KR20120122186A (en) Method of preparing probiotics of solid-state fermentation using korean rice wine cake for livestocks and the probiotics composition
KR101709248B1 (en) Probiotics for feed additives using a palm oil mesocarp, method for preparing, and utilizing the same
KR102548441B1 (en) Breeding method of korean native cattle using feed additive enhanced omega-3 fatty acid
KR102050658B1 (en) Probiotics comprising egg shell powder
JP2017118868A (en) Novel lactic acid bacteria for feed addition
Caraman et al. Impact of biomass of Streptomyces levoris CNMN-Ac-01 and some external factors on quality of combined fodder for rabbits.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150722