JP2011185623A - Device for evaluation of surface treatment - Google Patents

Device for evaluation of surface treatment Download PDF

Info

Publication number
JP2011185623A
JP2011185623A JP2010048519A JP2010048519A JP2011185623A JP 2011185623 A JP2011185623 A JP 2011185623A JP 2010048519 A JP2010048519 A JP 2010048519A JP 2010048519 A JP2010048519 A JP 2010048519A JP 2011185623 A JP2011185623 A JP 2011185623A
Authority
JP
Japan
Prior art keywords
surface treatment
frequency
eddy current
inspection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048519A
Other languages
Japanese (ja)
Inventor
Yasumoto Sato
康元 佐藤
Tsunaji Kitayama
綱次 北山
Natsuki Ogura
夏樹 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010048519A priority Critical patent/JP2011185623A/en
Publication of JP2011185623A publication Critical patent/JP2011185623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate surface treatment in a surface treatment evaluation device, without being affected by arrangement of a workpiece, and without needing a calibration curve. <P>SOLUTION: The surface treatment evaluation device 20 includes: a sensor unit 30 including an exciting coil 32 for providing an exchange magnetic field to the workpiece 10 and a detection coil 34 for detecting a surplus current produced by the exchange magnetic field; an excitation set unit for applying an exchange electric current to the exciting coil 32 while exchanging an inspection frequency in the range of a plurality of frequencies; a peak extraction unit for determining a surplus current signal of the workpiece 10 for each of the inspection frequencies by the sensing coil 34, calculating a signal ratio for each of the inspection frequencies, the signal ratio being a ratio to the surplus current signal for an untreated object which is in the same kind and is not subjected to surface treatment, and extracting a peak frequency in which the signal ratio is a peak; and an evaluation value calculation unit for calculating an evaluation value of the surface treatment of the workpiece 10, based on the extracted peak frequency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面処理評価装置に係り、特に表面処理が行われている検査対象物に交流磁場を与えて生じる渦電流に関する渦電流信号に基いて評価する表面処理評価装置に関する。   The present invention relates to a surface treatment evaluation apparatus, and more particularly, to a surface treatment evaluation apparatus that performs evaluation based on an eddy current signal related to an eddy current generated by applying an alternating magnetic field to an object to be inspected.

例えば、鋼材の表面処理として焼入処理を行った場合、表面処理の評価としてその焼入深さを知るには、硬さの深さ分布を求めて、硬さが変化する深さを焼入深さとすることが行われる。この方法は破壊検査であるが、非破壊的に焼入深さを評価するには、焼入れ深さによって鋼材の電気的特性、磁気的特性が変化することが利用される。その1つとして、鋼材に交流磁場を与えて生じる渦電流の大きさから焼入深さを評価することが行われる。   For example, when quenching is performed as a surface treatment for steel materials, the depth of hardness can be obtained by calculating the depth distribution of hardness and quenching the depth at which the hardness changes as the evaluation of surface treatment. Depth is done. Although this method is a destructive inspection, in order to evaluate the quenching depth in a nondestructive manner, it is utilized that the electrical and magnetic properties of the steel material change depending on the quenching depth. As one of them, the quenching depth is evaluated from the magnitude of the eddy current generated by applying an alternating magnetic field to the steel material.

例えば、特許文献1には、焼入深度測定方法として、励磁コイルで発生させた低周波交流磁場によって検査対象の鋼材を表面に沿った方向に磁化し、それによって発生する渦電流で誘起される磁場を検出コイルで検出し、検出コイルの出力電圧を予め較正された焼入深度の相関データと比較して、焼入深度を測定することが述べられている。   For example, in Patent Document 1, as a quenching depth measurement method, a steel material to be inspected is magnetized in a direction along the surface by a low-frequency AC magnetic field generated by an exciting coil, and induced by an eddy current generated thereby. It is described that the magnetic field is detected by a detection coil, and the output voltage of the detection coil is compared with the correlation data of the depth of quenching calibrated in advance to measure the quenching depth.

また、特許文献2には、硬化層深さ検査方法として、同心状または同軸状に配置され物理的構造の異なる2つの検出コイルを、励磁コイルに同心状に内挿した構成のプローブを備える渦電流センサを用い、励磁コイルに交流電流を流して磁場を発生させ、その磁場によって被検体に発生した渦電流を2つの検出コイルで検出し、2つの検出コイルの検出信号の差に基く値を予め設定されている良否判定用閾値と比較して、硬化層深さの良否を判定することが述べられている。このように物理的構造の異なる2つの検出コイルの検出値の差を用いるので、環境温度が変化しやすい製造ラインにおいても、温度補正を行うことなく、全数検査を行うことができると述べられている。   Patent Document 2 discloses, as a hardened layer depth inspection method, a vortex including a probe having a configuration in which two detection coils arranged concentrically or coaxially and having different physical structures are inserted concentrically with an excitation coil. Using a current sensor, an alternating current is passed through the exciting coil to generate a magnetic field. The eddy current generated in the subject by the magnetic field is detected by the two detection coils, and a value based on the difference between the detection signals of the two detection coils is calculated. It is described that the quality of the hardened layer is determined as compared with a predetermined quality determination threshold value. As described above, since the difference between detection values of two detection coils having different physical structures is used, it is stated that 100% inspection can be performed without performing temperature correction even in a production line in which environmental temperature is likely to change. Yes.

また、非特許文献1には、較正データを用いない焼入深さの推定方法が述べられている。ここでは、鋼材ロッドの両端に交流電流を印加し、鋼材の軸方向に沿った2点の間のインピーダンスを測定する方法を用いている。ここでは、軸対称モデルを用いて、交流電流の周波数と、インピーダンスの実数部と虚数部との関係を求めており、実際に交流電流の周波数を変化させてインピーダンスの実数部と虚数部とを測定し、これに適合する計算式を求め、その結果から、導電率σと透磁率μを求めることが示されている。   Non-Patent Document 1 describes a quenching depth estimation method that does not use calibration data. Here, a method is used in which an alternating current is applied to both ends of the steel rod and the impedance between two points along the axial direction of the steel rod is measured. Here, an axisymmetric model is used to obtain the relationship between the frequency of the alternating current and the real part and imaginary part of the impedance, and the actual part and imaginary part of the impedance are changed by actually changing the frequency of the alternating current. It is shown that the measurement formula is calculated and a calculation formula adapted thereto is obtained, and the conductivity σ and the permeability μ are obtained from the result.

そして、焼入れ層のない均質構造の鋼材ロッドの場合と、焼入れ層のある2層構造の鋼材ロッドの場合について、それぞれ実測値とこれに適合する計算式を求めることで、均質構造のときの導電率と透磁率、2層構造のときの導電率と透磁率、2層構造の境界である焼入れ深さを求めている。そして、このようにして求められた焼入れ深さが、ロックウェル硬さの変化から求めた焼入れ深さとよく合うことが示され、これによって、較正データを要せず、計算のみから焼入れ深さを求めることができると述べられている。   Then, in the case of a steel rod with a homogeneous structure without a hardened layer and the case of a steel rod with a two-layered structure with a hardened layer, the measured values and the calculation formulas corresponding thereto are obtained, respectively. The permeability and permeability in the case of a two-layer structure and the quenching depth that is the boundary between the two-layer structure are obtained. And it was shown that the quenching depth obtained in this way matches well with the quenching depth found from the change in Rockwell hardness. It is stated that it can be sought.

なお、ここでは、米国規格でSAE/AISI 1056鋼材ロッドが実験に用いられ、焼入れ層のない均質構造のときの導電率は4.77MSm-1、比透磁率は66であることが示されている。また、焼入れ層のある2層構造については、3種類の焼入れ深さについての平均値で、その導電率は3.84MSm-1、比透磁率は49.4であることが示されている。 Here, SAE / AISI 1056 steel rod is used in the experiment in the US standard, and it is shown that the electric conductivity is 4.77 MSm −1 and the relative magnetic permeability is 66 in the case of a homogeneous structure without a hardened layer. Yes. Further, it is shown that the two-layer structure having a quenching layer is an average value for three quenching depths, and has an electrical conductivity of 3.84 MSm −1 and a relative magnetic permeability of 49.4.

特開2002−14081号公報JP 2002-14081 A 特開2009−36682号公報JP 2009-36682 A

John R. Bowler et.al.,Alternating current potential-drop measurement of the depth of case hardening steel rods,Measurement Science and Technology, 19(2008),075204,p1-8John R. Bowler et.al., Alternating current potential-drop measurement of the depth of case hardening steel rods, Measurement Science and Technology, 19 (2008), 075204, p1-8

特許文献1と特許文献2の方法によれば、励磁コイル、検出コイルのそれぞれの環状穴の中に検査対象物を挿入して励磁コイルによって交流磁場を与え、検出コイルによって渦電流の大きさを評価するので、各コイルに対する検査対象物の配置関係で、渦電流の検出値が左右されることが生じる。   According to the methods of Patent Document 1 and Patent Document 2, an inspection object is inserted into each annular hole of the excitation coil and the detection coil, an alternating magnetic field is applied by the excitation coil, and the magnitude of the eddy current is increased by the detection coil. Since the evaluation is performed, the detected value of the eddy current is influenced by the arrangement relationship of the inspection object with respect to each coil.

例えば、励磁コイルの環状穴または検出コイルの環状穴に対して検査対象物が同軸に配置される場合と、偏心して配置される場合とで渦電流の検出値が異なることが生じ得る。また、励磁コイルの環状穴と検出コイルの環状穴の中心軸に対し、斜めに検査対象物が挿入される場合には、その斜め度合いで、渦電流の検出値が変化することが生じ得る。   For example, the detected value of the eddy current may be different between the case where the inspection object is arranged coaxially with respect to the annular hole of the exciting coil or the annular hole of the detection coil and the case where the inspection object is arranged eccentrically. Further, when the inspection object is inserted obliquely with respect to the central axis of the annular hole of the exciting coil and the annular hole of the detection coil, the detected value of the eddy current may change depending on the degree of inclination.

このように、複数のコイルの環状穴の中に検査対象物を挿入する方法の場合、配置関係によって渦電流の検出値にばらつきが生じ、正確な評価が困難となることがある。また、焼入深さを求めるには、予め焼入れ深さと渦電流の大きさ等との間の関係について較正曲線を求めておく必要があり、渦電流の検出値から直接的に焼入深さを求めることができない。   As described above, in the method of inserting the inspection object into the annular holes of the plurality of coils, the detected value of the eddy current varies depending on the arrangement relationship, and accurate evaluation may be difficult. In addition, in order to obtain the quenching depth, it is necessary to obtain a calibration curve for the relationship between the quenching depth and the magnitude of the eddy current in advance, and the quenching depth is directly determined from the detected value of the eddy current. Cannot be asked.

本発明の目的は、検査対象物の配置の影響を受けずに表面処理の評価を行える表面処理評価装置を提供することである。他の目的は、較正曲線を要せずに表面処理の評価を行える表面処理評価装置を提供することである。以下の手段は、上記目的の少なくとも1つに貢献する。   The objective of this invention is providing the surface treatment evaluation apparatus which can evaluate surface treatment, without being influenced by arrangement | positioning of a test target object. Another object is to provide a surface treatment evaluation apparatus that can evaluate surface treatment without requiring a calibration curve. The following means contribute to at least one of the above objects.

本発明に係る表面処理評価装置は、表面処理が行われている検査対象物に交流磁場を与える励磁コイルと、交流磁場によって生じる渦電流に関する渦電流信号を検出する検出コイルとを含むセンサ部と、センサ部の励磁コイルに予め設定された複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加する励磁設定部と、各検査周波数のそれぞれについて、検出コイルによって検査対象物の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出するピーク抽出部と、抽出されたピーク周波数に基いて検査対象物の表面処理の評価値を算出する評価値算出部と、を備えることを特徴とする。   A surface treatment evaluation apparatus according to the present invention includes a sensor unit including an excitation coil that applies an alternating magnetic field to an object to be inspected and a detection coil that detects an eddy current signal related to an eddy current generated by the alternating magnetic field. An excitation setting unit that applies an alternating current while switching the inspection frequency in a range of a plurality of frequencies set in advance in the excitation coil of the sensor unit, and an eddy current signal of the inspection object is detected by the detection coil for each of the inspection frequencies. A peak extraction unit that calculates a signal ratio, which is a ratio to an eddy current signal for an unprocessed object of the same type that has not been subjected to surface treatment, for each inspection frequency, and extracts a peak frequency at which the signal ratio reaches a peak And an evaluation value calculation unit that calculates an evaluation value of the surface treatment of the inspection object based on the extracted peak frequency.

また、本発明に係る表面処理評価装置において、評価値算出部は、予め求められている検査対象物の渦電流に関連する物性値と、ピーク周波数とに基いて検査対象物の表面処理の評価値を算出することが好ましい。   Further, in the surface treatment evaluation apparatus according to the present invention, the evaluation value calculation unit evaluates the surface treatment of the inspection object based on the physical property value related to the eddy current of the inspection object and the peak frequency obtained in advance. It is preferable to calculate the value.

また、本発明に係る表面処理評価装置において、評価値算出部は、表面処理が焼入処理であるときに、渦電流に関する物性値として導電率と透磁率を用い、表皮深さの計算式に基いて検査対象物の表面処理の評価値を算出することが好ましい。   Further, in the surface treatment evaluation apparatus according to the present invention, the evaluation value calculation unit uses the conductivity and permeability as physical property values related to eddy current when the surface treatment is a quenching treatment, and uses the equation for calculating the skin depth. Based on this, it is preferable to calculate the evaluation value of the surface treatment of the inspection object.

また、本発明に係る表面処理評価装置において、センサ部は、検査対象物の表面処理が行われた表面に対し垂直方向に交流磁場を与えるように相互に離間して配置される2つの励磁コイルと、2つの励磁コイルの離間された間に配置され、検査対象物の表面に平行な方向の渦電流信号を検出するように配置される少なくとも1つの検出コイルと、を含むことが好ましい。   Moreover, in the surface treatment evaluation apparatus according to the present invention, the sensor unit includes two excitation coils that are spaced apart from each other so as to apply an alternating magnetic field in a vertical direction to the surface on which the surface treatment of the inspection object is performed. And at least one detection coil arranged between the two exciting coils and arranged to detect an eddy current signal in a direction parallel to the surface of the object to be inspected.

上記構成により、表面処理評価装置は、励磁コイルと検出コイルとを含み、励磁コイルに予め設定された複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加し、各検査周波数のそれぞれについて、検出コイルによって検査対象物の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出する。そして、抽出されたピーク周波数に基いて検査対象物の表面処理の評価値を算出する。   With the above configuration, the surface treatment evaluation apparatus includes an excitation coil and a detection coil, and applies an alternating current while switching the inspection frequency in a range of a plurality of frequencies set in advance in the excitation coil. An eddy current signal of the inspection object is obtained by the detection coil, and a signal ratio, which is a ratio to the eddy current signal of the same kind of untreated object that has not been surface-treated, is calculated for each inspection frequency. The peak frequency that becomes the peak is extracted. Then, an evaluation value of the surface treatment of the inspection object is calculated based on the extracted peak frequency.

渦電流は、表皮効果があり、表皮深さδの部分に集まって流れる。表皮深さδは、δ={1/(πμ0μrσf)}1/2で表される。ここで、μ0は真空の透磁率、μrは比透磁率、σは導電率、fは検査周波数である。このように、表皮深さに周波数依存性と透磁率依存性があるので、検査周波数の変化によって電流が流れる深さが異なり、また、透磁率の変化によっても電流が流れる深さが異なってくる。表面処理によって透磁率が変化するものとすると、これらのことから、未処理対象物について周波数を変化させたときの渦電流の変化の様子と、検査対象物について周波数を変化させたときの渦電流の変化の様子が異なってくる。 The eddy current has a skin effect and flows in a portion having a skin depth δ. Skin depth [delta] is expressed by δ = {1 / (πμ 0 μ r σf)} 1/2. Here, μ 0 is the vacuum permeability, μ r is the relative permeability, σ is the conductivity, and f is the inspection frequency. Thus, since the skin depth has frequency dependency and permeability dependency, the depth at which the current flows varies depending on the change in the inspection frequency, and the depth at which the current flows also varies depending on the change in the permeability. . Assuming that the magnetic permeability changes due to surface treatment, the eddy current changes when the frequency is changed for the untreated object and the eddy current when the frequency is changed for the inspection object. The state of change will be different.

特に、検査対象物は、検査周波数が低いときには表面処理が行われている表面部分と表面処理が行われていない中心部とで渦電流の発生の仕方が相違する特性の2層構造となっているが、周波数を高くして表面処理が行われた深さより表皮深さが浅くなると、渦電流はその表面処理が行われた層の中にのみ生じるようになる。つまり、検査周波数で定まる表皮深さが表面処理深さより浅いか深いかで、渦電流の発生の仕方が大きく異なることになる。その意味で、検査対象物における渦電流の周波数特性は、表面処理深さと同じ深さの表皮深さに対応する検査周波数を境に大きく様子が異なってくる。   In particular, when the inspection frequency is low, the inspection object has a two-layer structure having a characteristic in which eddy currents are generated differently in the surface portion where the surface treatment is performed and the central portion where the surface treatment is not performed. However, when the skin depth is shallower than the depth at which the surface treatment is performed at a higher frequency, eddy currents are generated only in the layer on which the surface treatment has been performed. That is, the method of generating eddy currents differs greatly depending on whether the skin depth determined by the inspection frequency is shallower or deeper than the surface treatment depth. In that sense, the frequency characteristics of the eddy current in the inspection object vary greatly from the inspection frequency corresponding to the skin depth of the same depth as the surface treatment depth.

これに対し未処理対象物は、検査周波数を変化させて表皮深さが浅くなっても依然として、表面処理が行われていない層の中で渦電流が生じることに変わりがなく、検査周波数の変化によって大きく渦電流の発生の様子が変わるわけではない。ここで、検査対象物における渦電流特性と、未処理対象物の渦電流特性の比を取って、その比について周波数特性を取ってみると、先ほどの表面処理深さが表皮深さに一致する検査周波数のところでピークを有する特性となることが実験的に分かった。   On the other hand, the unprocessed object still has the effect that eddy currents are generated in the layer that has not been surface-treated even when the skin depth is reduced by changing the inspection frequency, and the change in the inspection frequency. The state of eddy current generation does not change significantly depending on Here, taking the ratio between the eddy current characteristics of the inspection object and the eddy current characteristics of the untreated object, and taking the frequency characteristics of the ratio, the surface treatment depth is the same as the skin depth. It has been experimentally found that the characteristic has a peak at the inspection frequency.

このピークとなる検査周波数をピーク周波数と呼ぶことにすると、このピーク周波数は表面処理深さに表皮深さが一致する周波数であるので、例えば、励磁コイル、検出コイルに対する検査対象物の配置関係のばらつきにほとんど左右されない。このように、ピーク周波数に基いて表面処理深さ等の表面処理評価を行うものとすることで、検査対象物の配置の影響を受けずに表面処理の評価を行うことが可能である。   If the inspection frequency at the peak is called a peak frequency, the peak frequency is a frequency at which the skin depth matches the surface treatment depth. For example, the arrangement relationship of the inspection object with respect to the excitation coil and the detection coil Little affected by variation. As described above, the surface treatment evaluation such as the surface treatment depth is performed based on the peak frequency, so that the surface treatment can be evaluated without being influenced by the arrangement of the inspection object.

また、上記のように表皮深さδは、δ={1/(πμ0μrσf)}1/2で表される。したがって、検査周波数fをピーク周波数fCとおけば、σとμ0μrを知られている物性値を用いることによって、ピーク周波数fCにおける表皮深さδを求めることができる。ピーク周波数fCにおける表皮深さδは、上記のように表面処理深さである。このように、ピーク周波数fCが分かれば、あとは公知の物性値を用いて、直接的に表面処理深さを求めることができ、特別な較正曲線等を要しない。 Also, the skin depth [delta], as described above is expressed by δ = {1 / (πμ 0 μ r σf)} 1/2. Thus, it puts the test frequency f and the peak frequency f C, by using the physical property values that are known to σ and mu 0 mu r, it is possible to obtain the skin depth δ at the peak frequency f C. The skin depth δ at the peak frequency f C is the surface treatment depth as described above. Thus, once the peak frequency f C is known, the surface treatment depth can be directly obtained using known physical property values, and no special calibration curve or the like is required.

特に、表面処理が焼入処理であるときに、σとμ0μrを焼入鋼材の導電率と透磁率を用いることで、上記のように、表皮深さの計算式に基いて、焼入深さを直接的に求めることができる。 In particular, when the surface treatment is a quenching treatment, the σ and mu 0 mu r by using the conductivity and permeability of hardened steel, as described above, based on the formula for skin depth, baked The depth of penetration can be determined directly.

また、表面処理評価装置において、センサ部として、検査対象物の表面処理が行われた表面に対し垂直方向に交流磁場を与えるように相互に離間して配置される2つの励磁コイルと、2つの励磁コイルの離間された間に配置され、検査対象物の表面に平行な方向の渦電流信号を検出するように配置される少なくとも1つの検出コイルを用いる。このように、コイルの環状穴に検査対象物を挿入することをしないので、コイルの環状穴と検査対象物との間の同軸度等の配置関係の問題が生じない。   Further, in the surface treatment evaluation apparatus, as the sensor unit, two excitation coils arranged so as to be separated from each other so as to apply an alternating magnetic field in a direction perpendicular to the surface on which the surface treatment of the inspection object is performed, and two At least one detection coil is used which is arranged between the excitation coils and is arranged to detect an eddy current signal in a direction parallel to the surface of the inspection object. As described above, since the inspection object is not inserted into the annular hole of the coil, there is no problem of the arrangement relationship such as the degree of coaxiality between the annular hole of the coil and the inspection object.

本発明に係る実施の形態の表面処理評価装置の構成を説明する図である。It is a figure explaining the structure of the surface treatment evaluation apparatus of embodiment which concerns on this invention. 本発明に係る実施の形態におけるセンサ部の励磁コイルと検出コイルの配置関係を説明する図である。It is a figure explaining the arrangement | positioning relationship of the exciting coil of a sensor part and detection coil in embodiment which concerns on this invention. 本発明に係る実施の形態において、励磁コイルに流れる電流と、検査対象物に流れる渦電流の関係を示す平面図である。In embodiment which concerns on this invention, it is a top view which shows the relationship between the electric current which flows into an exciting coil, and the eddy current which flows into a test object. 図3に対応し、検査対象物に流れる渦電流と、渦電流による磁場と、励磁コイルからの漏れ磁場と、検出コイルが検出する磁場の様子を説明する図である。FIG. 4 is a diagram for explaining the state of an eddy current flowing through an inspection object, a magnetic field due to the eddy current, a leakage magnetic field from an excitation coil, and a magnetic field detected by a detection coil corresponding to FIG. 3. 本発明に係る実施の形態において、未処理対象物と、全部が焼入処理された対象物と、表面から焼入深さまで焼入処理された検査対象物のそれぞれについて、渦電流による磁場の大きさの周波数特性の様子を説明する図である。In the embodiment according to the present invention, the magnitude of the magnetic field due to the eddy current for each of the untreated object, the object that has been completely quenched, and the inspection object that has been quenched from the surface to the quenching depth. It is a figure explaining the mode of the frequency characteristic. 図5に対応して、検出コイルが検出する渦電流信号について、未処理対象物の渦電流信号に対する検査対象物の渦電流信号の比の周波数特性の様子を説明する図である。FIG. 6 is a diagram for explaining the frequency characteristics of the ratio of the eddy current signal of the inspection object to the eddy current signal of the unprocessed object with respect to the eddy current signal detected by the detection coil, corresponding to FIG. 5. 本発明に係る実施の形態において、表面処理評価方法の手順を説明するフローチャートである。In embodiment which concerns on this invention, it is a flowchart explaining the procedure of the surface treatment evaluation method. 本発明に係る方法に従って、焼入深さが1.00mmのときのピーク周波数を求める様子を説明する図である。It is a figure explaining a mode that the peak frequency when a quenching depth is 1.00 mm is calculated | required according to the method which concerns on this invention. 図8に対し、焼入深さが2.00mmのときのピーク周波数を求める様子を説明する図である。It is a figure explaining a mode that a peak frequency when a quenching depth is 2.00 mm is calculated | required with respect to FIG. 図8、図9に対し、焼入深さが3.00mmのときのピーク周波数を求める様子を説明する図である。It is a figure explaining a mode that the peak frequency when a hardening depth is 3.00 mm is calculated | required with respect to FIG. 8, FIG. 図8から図10の結果に基く表面処理深さの計算値と、実際の焼入深さとの比較をまとめた図である。It is the figure which put together the comparison with the calculated value of the surface treatment depth based on the result of FIGS. 8-10, and actual quenching depth.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、表面処理として、鋼材の表面から所定深さまでの焼入処理を説明するが、処理によって表皮深さが変化するような表面処理であれば、これ以外の処理であっても構わない。例えば、ピーニング等の残留応力層が生じる強加工処理、鋼材の表面から所定深さまでの浸炭処理、メッキ処理、導電材のコーティング処理等であってもよい。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Hereinafter, as the surface treatment, a quenching process from the surface of the steel material to a predetermined depth will be described. However, other surface treatments may be used as long as the surface treatment changes the skin depth. For example, it may be a strong working process that generates a residual stress layer such as peening, a carburizing process from the surface of the steel material to a predetermined depth, a plating process, a coating process of a conductive material, and the like.

また、以下では、励磁コイルの数を2、検出コイルの数を2として説明するが、励磁コイルの数は3以上であってもよく、検出コイルの数は1であっても3以上であってもよい。   In the following description, the number of excitation coils is 2 and the number of detection coils is 2. However, the number of excitation coils may be 3 or more, and the number of detection coils is 1 or 3 or more. May be.

また、以下で述べる材料、形状、寸法、周波数等は説明のための例示であって、検査対象の内容あるいは、表面処理検査装置の仕様に応じ、適宜変更が可能である。また、以下では、較正曲線を用いずに、計算結果から、焼入深さを求めているが、勿論適当な較正曲線を用いるものとしてもよい。その場合の較正曲線としては、予め、焼入深さとピーク周波数との関係を求めたものを用いることができる。   The materials, shapes, dimensions, frequencies, and the like described below are illustrative examples, and can be appropriately changed according to the contents of the inspection object or the specifications of the surface treatment inspection apparatus. In the following, the quenching depth is obtained from the calculation result without using the calibration curve, but of course, an appropriate calibration curve may be used. As a calibration curve in that case, a curve obtained by obtaining a relationship between the quenching depth and the peak frequency in advance can be used.

以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。   Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted. In the description in the text, the symbols described before are used as necessary.

図1は、焼入深さの評価に用いられる表面処理評価装置20の構成を説明する図である。ここでは、表面処理評価装置20の構成要素ではないが、検査対象物10として、焼入処理が及んでいない母材部分12と、表面から焼入深さdまでの焼入処理された焼入処理層14を有する鋼材が示されている。   FIG. 1 is a diagram for explaining the configuration of a surface treatment evaluation apparatus 20 used for the evaluation of the quenching depth. Here, although not a constituent element of the surface treatment evaluation apparatus 20, as the inspection object 10, the base material portion 12 that has not been subjected to the quenching process and the quenching process that has been quenched from the surface to the quenching depth d. A steel material having a treated layer 14 is shown.

表面処理評価装置20は、励磁コイル32と検出コイル34とを含むセンサ部30と、励磁コイル32に励磁信号を供給するための発振器40と電流源42と、検出コイル34からの渦電流信号を計測する渦電流信号計測部50と、渦電流信号計測部50からの信号を処理して、表面処理評価値を出力する評価値算出部60と、評価値算出部60に接続され、処理に必要な物性値等を記憶する記憶部70を含んで構成される。   The surface treatment evaluation apparatus 20 includes a sensor unit 30 including an excitation coil 32 and a detection coil 34, an oscillator 40 for supplying an excitation signal to the excitation coil 32, a current source 42, and an eddy current signal from the detection coil 34. Connected to the eddy current signal measurement unit 50 to measure, the evaluation value calculation unit 60 that processes the signal from the eddy current signal measurement unit 50 and outputs the surface treatment evaluation value, and the evaluation value calculation unit 60, and is necessary for processing And a storage unit 70 that stores various physical property values.

センサ部30は、上記のように、励磁コイル32と検出コイル34を含み、これらを予め定めた配置関係で一体的にまとめたものである。励磁コイル32の下面と検出コイル34の下面が検査対象物10の表面に接触する接触下面となる。   As described above, the sensor unit 30 includes the excitation coil 32 and the detection coil 34, and these are integrated together in a predetermined arrangement relationship. The lower surface of the excitation coil 32 and the lower surface of the detection coil 34 are contact lower surfaces that contact the surface of the inspection object 10.

図1では、その接触下面と検査対象物10の表面との間の隙間がリフトオフ量16として示されている。このリフトオフ量16は、センサ部30を一体化したときに、励磁コイル32、検出コイル34のそれぞれの下面が必ずしも1つの平面にならない場合、あるいは、一体化のための材料厚さがある場合、検査対象物10の表面が必ずしも平坦面でない場合等に生じる。このリフトオフ量16が、この表面処理評価装置20の場合の配置関係の誤差となる。リフトオフ量16が表面処理評価にほとんど影響を与えないことについては後述する。   In FIG. 1, a gap between the contact lower surface and the surface of the inspection object 10 is shown as a lift-off amount 16. This lift-off amount 16 is obtained when the lower surfaces of the excitation coil 32 and the detection coil 34 are not necessarily one plane when the sensor unit 30 is integrated, or when there is a material thickness for integration. This occurs when the surface of the inspection object 10 is not necessarily a flat surface. This lift-off amount 16 becomes an error in the arrangement relationship in the case of the surface treatment evaluation apparatus 20. The fact that the lift-off amount 16 hardly affects the surface treatment evaluation will be described later.

図2にセンサ部30の具体的な配置関係を斜視図で示す。ここでは、励磁コイル32,33は2つ用いられ、検出コイル34,35も2つ用いられる。   FIG. 2 is a perspective view showing a specific arrangement relationship of the sensor unit 30. Here, two excitation coils 32 and 33 are used, and two detection coils 34 and 35 are also used.

励磁コイル32,33は、検査対象物10に交流磁場を与えて渦電流を発生させるための環状巻線コイルである。励磁コイル32,33は上記のように2つ用いられが、その2つの励磁コイル32,33は、検査対象物10の表面処理が行われた側の表面に対し、垂直方向に交流磁場を与えるように相互に離間して配置される。すなわち、励磁コイル32,33は、環状に巻かれた巻線コイルであるが、その環状形状の中心軸が検査対象物10の表面に垂直になるように配置される。   The exciting coils 32 and 33 are annular winding coils for applying an alternating magnetic field to the inspection object 10 to generate eddy currents. The two exciting coils 32 and 33 are used as described above, and the two exciting coils 32 and 33 apply an alternating magnetic field in the vertical direction to the surface of the inspection object 10 on which the surface treatment is performed. So as to be spaced apart from each other. That is, the exciting coils 32 and 33 are winding coils wound in an annular shape, and are arranged so that the center axis of the annular shape is perpendicular to the surface of the inspection object 10.

2つの励磁コイル32,33は、基本的構造が同じで、寸法も同じに設定される。2つの励磁コイル32,33の配置は、検出コイル34,35が配置されるに十分な間隔であれば、適当に定めることができる。   The two exciting coils 32 and 33 have the same basic structure and the same dimensions. The arrangement of the two exciting coils 32 and 33 can be appropriately determined as long as the intervals are sufficient for the detection coils 34 and 35 to be arranged.

検出コイル34,35は、励磁コイル32,33によって検査対象物10に発生した渦電流による磁場を検出するための環状巻線コイルである。検出コイル34,35は上記のように2つ用いられるが、その2つの検出コイル34,35は、2つの励磁コイル32,33の離間された間に配置され、検査対象物10の表面に平行な方向の渦電流信号を検出するように配置される。すなわち、検出コイル34,35は、環状に巻かれた巻線コイルであるが、その環状形状の中心軸が検査対象物10の表面に平行になるように配置される。   The detection coils 34 and 35 are annular winding coils for detecting a magnetic field due to an eddy current generated in the inspection object 10 by the excitation coils 32 and 33. Two detection coils 34 and 35 are used as described above, and the two detection coils 34 and 35 are disposed between the two excitation coils 32 and 33 and are parallel to the surface of the inspection object 10. It is arranged to detect eddy current signals in various directions. That is, the detection coils 34 and 35 are winding coils wound in an annular shape, and are arranged so that the central axis of the annular shape is parallel to the surface of the inspection object 10.

2つの検出コイル34,35は、基本的構造が同じで、寸法も同じに設定される。2つの検出コイル34,35の高さは、励磁コイル32,33の高さよりも低く設定される。すなわち、励磁コイル32,33の高さ方向の中心線である(1/2)高さ軸と、検出コイル34,35の環状形状の中心軸とのあいだにずれがあり、前者のほうが高い位置にある。これによって、検査対象物10がない状態でも、励磁コイル32,33に励磁電流が流されると、検出コイル34,35は、励磁コイル32,33の間に流れる漏れ磁場を検出することになる。なお、励磁電流は検査対象物10に渦電流を発生するための励磁信号に相当する。   The two detection coils 34 and 35 have the same basic structure and the same dimensions. The heights of the two detection coils 34 and 35 are set lower than the heights of the excitation coils 32 and 33. That is, there is a deviation between the (1/2) height axis that is the center line in the height direction of the excitation coils 32 and 33 and the center axis of the annular shape of the detection coils 34 and 35, and the former is a higher position. It is in. As a result, even when the inspection object 10 is not present, the detection coils 34 and 35 detect the leakage magnetic field flowing between the excitation coils 32 and 33 when an excitation current is passed through the excitation coils 32 and 33. The excitation current corresponds to an excitation signal for generating an eddy current in the inspection object 10.

2つの検出コイル34,35は、渦電流による磁場の検出感度を高めるために2つ用いているので、2つの検出コイル34,35は密接して配置されることが好ましい。   Since the two detection coils 34 and 35 are used in order to increase the detection sensitivity of the magnetic field due to the eddy current, it is preferable that the two detection coils 34 and 35 are arranged closely.

再び図1に戻り、発振器40と電流源42は、励磁コイル32,33に複数の交流励磁電流を供給する励磁電流供給部に相当するものである。   Returning to FIG. 1 again, the oscillator 40 and the current source 42 correspond to an excitation current supply unit that supplies a plurality of AC excitation currents to the excitation coils 32 and 33.

発振器40は、複数の交流信号を発生することができる交流信号生成装置である。発振器40は、予め設定された周波数間隔で複数の周波数の交流信号を生成し、電流源42に供給する。周波数の切替タイミングは、渦電流信号計測部50から伝送される信号に基いて行われる。複数の周波数としては、例えば、数10Hzから数kHzの範囲で、10個から数10個の種類の周波数となるように設定することができる。なお、周波数範囲が数桁となるので、周波数間隔は、対数目盛に対し、均等な幅となるように設定することが好ましい。   The oscillator 40 is an AC signal generation device that can generate a plurality of AC signals. The oscillator 40 generates AC signals having a plurality of frequencies at preset frequency intervals and supplies the AC signals to the current source 42. The frequency switching timing is performed based on a signal transmitted from the eddy current signal measuring unit 50. As the plurality of frequencies, for example, in the range of several tens of Hz to several kHz, the frequency can be set to be 10 to several tens of types. Since the frequency range is several digits, the frequency interval is preferably set so as to have an even width with respect to the logarithmic scale.

電流源42は、発振器40から供給される交流信号について、予め定めた電流振幅となる電流を出力するためのドライバ回路である。電流振幅としては、例えば数mAppから数Appの間の適当な値とすることができる。   The current source 42 is a driver circuit for outputting a current having a predetermined current amplitude with respect to the AC signal supplied from the oscillator 40. The current amplitude can be set to a suitable value between several mApp and several App, for example.

渦電流信号計測部50は、上記のように検出コイル34,35において検出される信号について、励磁コイル32,33に供給される交流励磁信号と同じ周波数の検出信号のみを抽出し、抽出された信号を適当に増幅して、渦電流信号として、評価値算出部60に出力する機能を有する信号処理回路である。渦電流信号計測部50は、位相検波器52と、増幅器54と、フィルタ56と表示器58とを含んで構成される。   The eddy current signal measuring unit 50 extracts only the detection signal having the same frequency as the AC excitation signal supplied to the excitation coils 32 and 33 from the signals detected by the detection coils 34 and 35 as described above. The signal processing circuit has a function of appropriately amplifying the signal and outputting the signal to the evaluation value calculation unit 60 as an eddy current signal. The eddy current signal measuring unit 50 includes a phase detector 52, an amplifier 54, a filter 56 and a display 58.

上記のように、励磁コイル32,33には複数の周波数の励磁信号が供給されるので、渦電流信号計測部50では、1つの周波数に対する計測が終了すると、その旨の信号を発振器40に伝送する。そして、その信号を受け取って発振器40が次の周波数の交流信号を電流源42に出力することになる。したがって、この信号は、周波数切替信号に相当する。   As described above, since excitation signals of a plurality of frequencies are supplied to the excitation coils 32 and 33, the eddy current signal measurement unit 50 transmits a signal to that effect to the oscillator 40 when measurement for one frequency is completed. To do. When the signal is received, the oscillator 40 outputs an AC signal having the next frequency to the current source 42. Therefore, this signal corresponds to a frequency switching signal.

評価値算出部60は、上記のように、渦電流信号計測部50から出力される渦電流信号に基いて、検査対象物10の表面処理評価値を算出して出力する機能を有するデータ処理回路である。評価値算出部60は、A/D変換器62、データ処理部64、メモリ66、表示器68を含んで構成される。メモリ66は、渦電流信号計測部50から出力される各周波数ごとの渦電流信号値を一時記憶する装置である。データ処理部64は、評価値算出部60の中核をなすもので、メモリ66に記憶される複数の周波数についての渦電流信号値から、後述するピーク周波数fCを求め、そのピーク周波数fCに基いて、表面処理評価値を算出する機能を有する。表面処理評価値は、今の場合、焼入深さである。表面処理評価値の算出の内容については後述する。 The evaluation value calculation unit 60 has a function of calculating and outputting the surface treatment evaluation value of the inspection object 10 based on the eddy current signal output from the eddy current signal measurement unit 50 as described above. It is. The evaluation value calculation unit 60 includes an A / D converter 62, a data processing unit 64, a memory 66, and a display 68. The memory 66 is a device that temporarily stores an eddy current signal value for each frequency output from the eddy current signal measurement unit 50. The data processing unit 64 is the core of the evaluation value calculation unit 60. The data processing unit 64 obtains a peak frequency f C described later from eddy current signal values for a plurality of frequencies stored in the memory 66, and sets the peak frequency f C to the peak frequency f C. Therefore, it has a function of calculating the surface treatment evaluation value. In this case, the surface treatment evaluation value is the quenching depth. The details of the calculation of the surface treatment evaluation value will be described later.

記憶部70は、データ処理部64のデータ処理に必要な物性値等を予め記憶するための記憶装置である。記憶部70とメモリ66とは兼用して1つの記憶装置としてもよい。記憶部70には、検査対象物10と同じ材質の鋼材で焼入処理が行われていない未焼入材について、複数の周波数ごとの渦電流信号値である未焼入材データ72を記憶する。未焼入材は、検査対象物10と同じ材質のもので表面処理が行われていないものであるから、これを未処理対象物と呼ぶことができる。また、記憶部70は、検査対象物10である焼入材の物性値を記憶する。ここでは、焼入材についての導電率σと透磁率μが記憶される。透磁率μとしては、比透磁率μrが記憶されるが、比透磁率μrに真空の透磁率μ0を乗じた値であるμ0μrを記憶してもよい。 The storage unit 70 is a storage device for storing in advance physical property values and the like necessary for data processing by the data processing unit 64. The storage unit 70 and the memory 66 may be combined to form one storage device. The storage unit 70 stores unquenched material data 72 that is an eddy current signal value for each of a plurality of frequencies for an unquenched material that has not been subjected to a quenching process using the same steel material as that of the inspection object 10. . Since the unquenched material is the same material as the inspection object 10 and has not been subjected to surface treatment, it can be called an untreated object. Further, the storage unit 70 stores physical property values of the quenching material that is the inspection object 10. Here, the electrical conductivity σ and the magnetic permeability μ for the quenched material are stored. The permeability mu, but relative permeability mu r is stored, may store mu 0 mu r is a value obtained by multiplying the permeability mu 0 of vacuum relative permeability mu r.

次に、上記構成の表面処理評価装置20の作用等について説明する。図3、図4は、検査対象物10の渦電流の測定の様子を説明する模式図である。図3は検査対象物10の表面を見た平面図、図4は検査対象物10の断面を見た正面図に相当する。   Next, the operation and the like of the surface treatment evaluation apparatus 20 having the above configuration will be described. 3 and 4 are schematic diagrams for explaining how the eddy current of the inspection object 10 is measured. FIG. 3 corresponds to a plan view of the surface of the inspection object 10 and FIG. 4 corresponds to a front view of a cross section of the inspection object 10.

図3においては、励磁コイル32,33と、それらに流される励磁電流80,81の向きが示されている。励磁電流80,81は上記のように交流電流であるが、図3に示されるように、励磁コイル32に流される励磁電流80の向きと、励磁コイル33に流される励磁電流81の向きとは、平面図で見たときに相互に逆向きとされる。図3の例では、励磁電流80の向きは紙面上で時計方向であり、励磁電流81の向きは紙面上で反時計方向である。したがって、この例の場合、励磁コイル32には、紙面の上側から下側に向かう磁場が発生し、励磁コイル33には、紙面の下側から上側に向かう磁場が発生する。   In FIG. 3, the excitation coils 32 and 33 and the directions of the excitation currents 80 and 81 flowing through them are shown. The excitation currents 80 and 81 are alternating currents as described above. As shown in FIG. 3, the direction of the excitation current 80 flowing through the excitation coil 32 and the direction of the excitation current 81 flowing through the excitation coil 33 are as follows. When viewed in a plan view, the directions are opposite to each other. In the example of FIG. 3, the direction of the excitation current 80 is clockwise on the paper surface, and the direction of the excitation current 81 is counterclockwise on the paper surface. Therefore, in this example, the exciting coil 32 generates a magnetic field from the upper side to the lower side of the paper, and the exciting coil 33 generates a magnetic field from the lower side to the upper side of the paper.

検査対象物10には、この励磁電流80,81を打ち消すように渦電流82,83が発生する。すなわち、励磁電流80の流れる方向と反対側に渦電流82が流れ、励磁電流81の流れる方向と反対側に渦電流83が流れる。渦電流82,83は、紙面上では相互に逆向きに流れるが、その結果として、2つの励磁コイル32,33の間の検出コイルが配置される部分では、渦電流82,83は同じ方向に揃って流れる。図3の紙面では、紙面の下側から上側に向かって、渦電流82,83が流れる。   In the inspection object 10, eddy currents 82 and 83 are generated so as to cancel the excitation currents 80 and 81. That is, eddy current 82 flows on the opposite side to the direction in which exciting current 80 flows, and eddy current 83 flows on the opposite side to the direction in which exciting current 81 flows. The eddy currents 82 and 83 flow in opposite directions on the paper surface. As a result, in the portion where the detection coil between the two excitation coils 32 and 33 is arranged, the eddy currents 82 and 83 are in the same direction. It flows all together. 3, eddy currents 82 and 83 flow from the lower side to the upper side of the page.

図4には、その渦電流82,83によって生じる磁場86が示されている。この磁場86は、図4の例では、紙面上で時計方向に流れ、検出コイル34,35を紙面の左側から右側に流れる磁場BEとなる。一方、2つの励磁コイル32,33の間において漏れ磁場84は、検出コイル34,35を紙面の右側から左側に向かって流れる磁場BCとなる。つまり、検出コイル34,35が検出する磁場は、(励磁コイル32,33の漏れ磁場BC)−(渦電流82,83の磁場BE)となる。 FIG. 4 shows a magnetic field 86 generated by the eddy currents 82 and 83. In the example of FIG. 4, the magnetic field 86 flows in the clockwise direction on the paper surface, and becomes the magnetic field BE flowing from the left side to the right side of the paper in the detection coils 34 and 35. On the other hand, the leakage magnetic field 84 between the two excitation coils 32 and 33 becomes a magnetic field B C that flows from the right side to the left side of the paper on the detection coils 34 and 35. That is, the magnetic field detected by the detection coils 34 and 35 is (leakage magnetic field B C of the excitation coils 32 and 33) − (magnetic field B E of the eddy currents 82 and 83).

検出コイル34,35は、磁場を検出して、電流信号を出力する。この信号を渦電流信号Sと呼ぶこととすると、S=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEによる信号SE)となる。このように、検出コイル34,35は、励磁コイル32,33に励磁電流80,81が流されると、検査対象物10がない状態でも、渦電流信号Sとして、SCを出力し、検査対象物10があると、そのSCからSEが差し引かれた値を出力することになる。 The detection coils 34 and 35 detect a magnetic field and output a current signal. If this signal is called an eddy current signal S, then S = (signal S C due to leakage magnetic field B C of excitation coils 32 and 33) − (signal S E due to magnetic field B E of eddy currents 82 and 83). Thus, the detection coil 34 and 35, the excitation current 80, 81 is passed through the exciting coil 32, even in the absence of a diagnosis object 10, as an eddy current signal S, and outputs a S C, inspected If there is an object 10, a value obtained by subtracting S E from the S C is output.

次に、この渦電流信号Sと周波数fの関係について説明する。なお、周波数fは励磁信号の周波数であり、また、図1で説明したように、渦電流信号計測部50において、検出コイル34,35が検出する信号は励磁信号の周波数に相当する信号が抽出されるので、検出信号の周波数でもある。   Next, the relationship between the eddy current signal S and the frequency f will be described. The frequency f is the frequency of the excitation signal, and as described with reference to FIG. 1, the signal detected by the detection coils 34 and 35 in the eddy current signal measuring unit 50 is extracted from the signal corresponding to the frequency of the excitation signal. Therefore, it is also the frequency of the detection signal.

渦電流信号Sは、上記のように(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEによる信号SE)であるが、SEは表皮効果によって周波数fの影響を受けるが、SCは励磁コイル32,33の間の漏れ磁場によるものであるから周波数特性を有しない一定値と考えてよい。 Eddy current signal S (signal S C due to the leakage magnetic field B C of the exciting coil 32, 33) as described above - is a (signal S E by the magnetic field B E of eddy currents 82 and 83), S E epidermal Although it is affected by the frequency f due to the effect, S C is due to the leakage magnetic field between the exciting coils 32 and 33, and therefore may be considered as a constant value having no frequency characteristics.

Eは、渦電流82,83が検査対象物10においてどの深さを流れるかによって、その値が異なってくる。渦電流82,83が検査対象物10の表面近くを流れる場合と、深いところを流れる場合とでは、渦電流82,83の大きさが同じでも、前者のSEの方が後者のSEよりも大きくなる。渦電流82,83の流れる深さは、表皮深さδで表すことができる。 The value of S E varies depending on which depth the eddy currents 82 and 83 flow in the inspection object 10. Even when the eddy currents 82 and 83 flow near the surface of the inspection object 10 and when they flow deeper, the former S E is greater than the latter S E even if the eddy currents 82 and 83 have the same magnitude. Also grows. The depth through which the eddy currents 82 and 83 flow can be expressed by the skin depth δ.

表皮深さδは、δ={1/(πμ0μrσf)}1/2で表される。ここで、μ0は真空の透磁率、μrは比透磁率、σは導電率、fは周波数である。このように、表皮深さδは、f1/2に反比例するので、周波数fが大きくなると、表皮深さδが小さくなる。また、透磁率μ1/2=(μ0μr1/2に反比例する。焼入処理が行われた材料の透磁率は、未処理の材料の透磁率よりも小さいので、前者の表皮深さの方が後者の表皮深さよりも大きくなる。 Skin depth [delta] is expressed by δ = {1 / (πμ 0 μ r σf)} 1/2. Here, μ 0 is the vacuum permeability, μ r is the relative permeability, σ is the conductivity, and f is the frequency. In this way, the skin depth δ is inversely proportional to f 1/2 , so that the skin depth δ decreases as the frequency f increases. Further, the magnetic permeability μ 1/2 = (μ 0 μ r ) 1/2 is inversely proportional. Since the magnetic permeability of the material subjected to the quenching treatment is smaller than the magnetic permeability of the untreated material, the former skin depth is larger than the latter skin depth.

このように、検査対象物10として、焼入処理が及んでいない母材部分12と、表面から焼入深さdまでの焼入処理された焼入処理層14を有する鋼材の場合、そのSEと周波数fとの関係は、表皮深さδの周波数依存性と、母材部分12と焼入処理層14の間の透磁率の相違、その相違による表皮深さδの相違、焼入深さdと表皮深さδの大小関係等の影響を受けることになる。 Thus, in the case of a steel material having the base material portion 12 not subjected to the quenching treatment and the quenching treatment layer 14 subjected to the quenching treatment from the surface to the quenching depth d as the inspection object 10, the S The relationship between E and frequency f is that the frequency dependence of the skin depth δ, the difference in permeability between the base material portion 12 and the quenching treatment layer 14, the difference in the skin depth δ due to the difference, the quenching depth, It is affected by the magnitude relationship between the thickness d and the skin depth δ.

Eは渦電流による磁場BEの大きさに関係するが、図5は、BEの周波数特性を、焼入処理が行われていない未処理対象物についての磁場BE0、鋼材の全部が焼入処理されている全部焼入対象物についての磁場BEQ、表面から焼入深さdまで焼入処理されている検査対象物についての磁場BEqのそれぞれについて実験的に確かめられた結果を示す模式図である。この図5を用いながら、検査対象物10のSEの周波数特性を説明する。 Although S E is related to the magnitude of the magnetic field B E due to eddy currents, FIG. 5, the frequency characteristic of the B E, the magnetic field B E0 for the untreated object quenching treatment is not performed, the entire steel The experimentally verified results for the magnetic field B EQ for the entire quenching object being quenched and the magnetic field B Eq for the inspection object being quenched from the surface to the quenching depth d. It is a schematic diagram shown. The frequency characteristics of S E of the inspection object 10 will be described with reference to FIG.

周波数が低周波数の場合、検査対象物10の渦電流82,83は、焼入処理層14と母材部分12の2層に流れる。そして周波数が増加するに応じて、渦電流82,83は、上記のように表皮深さδがf1/2に反比例するので、表面の方向に集中してゆき、やがて、ほとんどの成分が焼入処理層14のみに集中するようになる。 When the frequency is a low frequency, the eddy currents 82 and 83 of the inspection object 10 flow through two layers of the quenching treatment layer 14 and the base material portion 12. As the frequency increases, the eddy currents 82 and 83 are concentrated in the direction of the surface because the skin depth δ is inversely proportional to f 1/2 as described above. Only the incoming processing layer 14 is concentrated.

このときは、表皮深さδが焼入深さdと一致しているときであるが、その周波数fCまでは、渦電流82,83が2層にまたがって流れる。そしてその周波数fCまでは周波数fの増加に伴って渦電流82,83の流れる深さが表面の方向に移動する。したがって、周波数fの増加に応じて、渦電流による磁場BEqは大きくなる。一方、未処理対象物の場合は、均質材料であるので、やはり、周波数fの増加に伴って渦電流82,83の流れる深さが表面の方向に移動する。したがって、この場合も、周波数fの増加に応じて、渦電流による磁場BE0は大きくなる。 At this time, the skin depth δ coincides with the quenching depth d, but until that frequency f C , eddy currents 82 and 83 flow across the two layers. Up to the frequency f C, the flow depth of the eddy currents 82 and 83 moves in the direction of the surface as the frequency f increases. Therefore, the magnetic field B Eq due to the eddy current increases as the frequency f increases. On the other hand, since the untreated object is a homogeneous material, the depth through which the eddy currents 82 and 83 flow is moved in the direction of the surface as the frequency f increases. Therefore, also in this case, the magnetic field B E0 due to the eddy current increases as the frequency f increases.

この2つの場合を比較すると、検査対象物10のBEqは、焼入処理層14と母材部分12の2層に流れ、未処理対象物のBE0は母材部分12と同じ材質で均質であるので、周波数fに対して磁場BEの増加の割合は、後者の方が大きくなる。 When these two cases are compared, B Eq of the inspection object 10 flows into two layers, the quenching treatment layer 14 and the base material part 12, and B E0 of the unprocessed object is homogeneous with the same material as the base material part 12. Therefore, the rate of increase of the magnetic field BE with respect to the frequency f is greater in the latter case.

次に、表皮深さδが焼入深さdと一致する周波数fCの近辺の場合は、検査対象物10において、ほとんどの渦電流82,83が焼入処理層14に流れる。焼入処理層14の透磁率は母材部分12の透磁率よりも小さいので、焼入処理層14に生じる渦電流82,83の増加が最も小さくなり、検出コイル34,35近辺の渦電流による磁場BEqの増加が最も小さくなる。これに対し、未処理対象物の場合は、均質材料であるので、やはり、周波数の増加に伴って渦電流82,83の流れる深さが表面の方向に移動してゆく。したがって、この場合も、依然として、周波数fの増加に応じて、渦電流による磁場BE0は大きくなる。 Next, when the skin depth δ is in the vicinity of the frequency f C that matches the quenching depth d, most eddy currents 82 and 83 flow in the quenching treatment layer 14 in the inspection object 10. Since the magnetic permeability of the quench treatment layer 14 is smaller than the magnetic permeability of the base material portion 12, the increase in the eddy currents 82 and 83 generated in the quench treatment layer 14 is the smallest, and is caused by the eddy current near the detection coils 34 and 35. The increase in the magnetic field B Eq is the smallest. On the other hand, since the untreated object is a homogeneous material, the depth through which the eddy currents 82 and 83 flow is moved in the direction of the surface as the frequency increases. Therefore, in this case as well, the magnetic field B E0 due to the eddy current increases as the frequency f increases.

次に、さらに周波数fCよりも周波数が高くなると、検査対象物10の渦電流82,83が焼入処理層14の中で表面に近づいてゆく。したがって、検出コイル34,35近辺の渦電流による磁場BEqは周波数fの増加に応じて増加する。この増加の程度は、渦電流82,83が2層に分かれていたときよりも少なくなる。これに対し、未処理対象物の場合は、均質材料であるので、やはり、周波数の増加に伴って渦電流82,83の流れる深さが表面の方向に移動してゆく。したがって、この場合も、依然として、周波数fの増加に応じて、渦電流による磁場BE0は大きくなる。 Next, when the frequency becomes higher than the frequency f C, the eddy currents 82 and 83 of the inspection object 10 approach the surface in the quenching treatment layer 14. Therefore, the magnetic field B Eq due to the eddy current in the vicinity of the detection coils 34 and 35 increases as the frequency f increases. The degree of this increase is less than when the eddy currents 82 and 83 are divided into two layers. On the other hand, since the untreated object is a homogeneous material, the depth through which the eddy currents 82 and 83 flow is moved in the direction of the surface as the frequency increases. Therefore, in this case as well, the magnetic field B E0 due to the eddy current increases as the frequency f increases.

以上のことをまとめると、図5に示されるように、未処理対象物の場合のBE0は、周波数fの増加ともに、単調に増加する。この増加特性は、表皮深さδの周波数依存性を示している。これに対し、検査対象物10のBEqは、表皮深さδが焼入深さdと同じとなる周波数fCよりも低周波側では周波数fの増加とともに単調増加であるが、周波数fCよりも高い周波数では、BEqの増加がそれまでに比較してかなり少なくなる。図5に示すように、BEqは、周波数fCで変極点となる。このように、検査対象物10のBEqの周波数特性は、周波数fCを境に大きく様子が異なってくる。 Summarizing the above, as shown in FIG. 5, B E0 in the case of an unprocessed object monotonously increases as the frequency f increases. This increase characteristic indicates the frequency dependence of the skin depth δ. On the other hand, B Eq of the object to be inspected 10 increases monotonously as the frequency f increases on the lower frequency side than the frequency f C at which the skin depth δ is the same as the quenching depth d, but the frequency f C. At higher frequencies, the increase in B Eq is much less than before. As shown in FIG. 5, B Eq becomes an inflection point at the frequency f C. As described above, the frequency characteristics of B Eq of the inspection object 10 are greatly different from each other at the frequency f C.

図6は、検査対象物10の渦電流信号Sqと、未処理対象物の渦電流信号S0の比を計算して、その周波数特性を調べた様子を示す図である。上記のように、S=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEによる信号SE)であるので、S0=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BE0による信号SE0)と表され、Sq=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEqによる信号SEq)で表される。 FIG. 6 is a diagram illustrating a state in which the ratio between the eddy current signal S q of the inspection object 10 and the eddy current signal S 0 of the unprocessed object is calculated and the frequency characteristics thereof are examined. As described above, S = (signal S C due to the leakage magnetic field B C of the exciting coil 32, 33) - are the (signal due to the magnetic field B E of eddy currents 82,83 S E), S 0 = ( exciting coil 32 , signal S C due to the leakage magnetic field B C 33) - (denoted as signal S E0) by the magnetic field B E0 of eddy currents 82 and 83, S q = (signal S C due to the leakage magnetic field B C of the exciting coils 32, 33 )-(Signal S Eq due to magnetic field B Eq of eddy currents 82 and 83).

したがって、Sq/S0=(SC−SEq)/(SC−SE0)=(SEq−SC)/(SE0−SC)となり、SCは周波数fに対して一定であるので、Sq/S0は、図5のBEqとBE0の比にほぼ近い特性となる。したがって、図5で説明したことから、Sq/S0の周波数特性は、周波数がfCより低周波側では、Sq/S0は周波数fの増加とともに増加するが、周波数がfCより高周波側では、BEqの増加傾向がBE0の増加傾向よりも小さくなるので、Sq/S0は周波数fの増加とともに減少する。このことから、Sq/S0は周波数fCでピークを示すようになる。このことは後述するように実験によっても確かめられた。 Therefore, S q / S 0 = (S C −S Eq ) / (S C −S E0 ) = (S Eq −S C ) / (S E0 −S C ), and S C is constant with respect to the frequency f. Therefore, S q / S 0 has characteristics that are substantially close to the ratio of B Eq and B E0 in FIG. Therefore, since described in FIG. 5, the frequency characteristics of S q / S 0 is a frequency lower frequency than f C is S q / S 0 increases with increasing frequency f, the frequency is higher than f C On the high frequency side, since the increasing tendency of B Eq is smaller than the increasing tendency of B E0 , S q / S 0 decreases as the frequency f increases. From this, S q / S 0 shows a peak at the frequency f C. This was confirmed by experiments as described later.

このように、周波数fCは、渦電流信号の比Sq/S0がピークを示す周波数であるので、これをピーク周波数と呼ぶことができる。また、上記のように、このピーク周波数は、表皮深さδが焼入深さdに一致する周波数でもあるので、例えば、励磁コイル32,33、検出コイル34,35に対する検査対象物10の配置関係のばらつきにほとんど左右されないことが予想される。後述するように、実際に、図1で説明したリフトオフ量16を変化させても、ピーク周波数はほとんど変化しない。このように、ピーク周波数に基いて焼入深さd等の表面処理評価を行うものとすることで、検査対象物10の配置の影響を受けずに表面処理の評価を行うことが可能となる。 Thus, since the frequency f C is a frequency at which the ratio S q / S 0 of the eddy current signal shows a peak, this can be called a peak frequency. As described above, this peak frequency is also a frequency at which the skin depth δ matches the quenching depth d. For example, the arrangement of the inspection object 10 with respect to the excitation coils 32 and 33 and the detection coils 34 and 35 is performed. It is expected that it will be largely unaffected by variations in relationships. As will be described later, even if the lift-off amount 16 described in FIG. 1 is actually changed, the peak frequency hardly changes. In this way, by performing the surface treatment evaluation such as the quenching depth d based on the peak frequency, it is possible to evaluate the surface treatment without being affected by the arrangement of the inspection object 10. .

図7は、上記で説明したことに基いて、表面処理評価を行うときの手順を示すフローチャートである。最初に計測条件を入力する(S10)。計測条件としては、発振器40における検査周波数の周波数範囲と、周波数間隔、電流源42における電流振幅値等がある。次に、計測条件に基いて、計測開始周波数を発振器40に設定する。例えば、予め定めた周波数間隔で検査周波数を順に並べておき、計測開始信号を与えることで、発振器40がその最初の周波数を計測開始周波数として、その計測開始周波数の交流信号を生成するものとできる。   FIG. 7 is a flowchart showing a procedure for performing surface treatment evaluation based on the above description. First, measurement conditions are input (S10). The measurement conditions include the frequency range of the inspection frequency in the oscillator 40, the frequency interval, the current amplitude value in the current source 42, and the like. Next, the measurement start frequency is set in the oscillator 40 based on the measurement conditions. For example, by arranging the inspection frequencies in order at predetermined frequency intervals and giving a measurement start signal, the oscillator 40 can generate an AC signal of the measurement start frequency with the initial frequency as the measurement start frequency.

次に、その計測開始周波数の交流信号に対応する励磁電流を励磁コイル32,33に印加する(S14)。具体的には、発振器40からの交流信号に対し、電流源42において、所定の電流振幅を有する励磁電流として、励磁コイル32,33に供給する。そして、検出コイル34,35からの信号を計測・記憶・表示する(S16)。具体的には、検出コイル34,35の信号を渦電流信号計測部50で励磁信号と同じ周波数成分を抽出し、適当に増幅して、その値を、計測開始周波数における渦電流信号Sqとしてメモリ66に記憶し、必要に応じ表示器58,68に表示する。 Next, an excitation current corresponding to the AC signal of the measurement start frequency is applied to the excitation coils 32 and 33 (S14). Specifically, the AC signal from the oscillator 40 is supplied to the exciting coils 32 and 33 as an exciting current having a predetermined current amplitude in the current source 42. Then, the signals from the detection coils 34 and 35 are measured, stored and displayed (S16). Specifically, a signal of the detection coil 34, 35 to extract the same frequency components as the excitation signal in the eddy current signal measurement section 50, and appropriately amplify, its value as an eddy current signal S q in the measurement start frequency It memorize | stores in the memory 66, and displays on the indicator 58,68 as needed.

そして、次の周波数を発振器40に設定し(S18)、その条件の下で、励磁電流を印加し(S20)、検出コイル34,35からの信号を計測・記憶・表示する(S22)。つまり、周波数を変えて、計測開始周波数について行った手順を繰り返す。このようにして、次の周波数における渦電流信号Sqがメモリ66に記憶される。 Then, the next frequency is set in the oscillator 40 (S18), an excitation current is applied under the conditions (S20), and signals from the detection coils 34 and 35 are measured, stored, and displayed (S22). That is, the procedure performed for the measurement start frequency is repeated while changing the frequency. In this way, the eddy current signal S q at the next frequency is stored in the memory 66.

次に、周波数が停止周波数か否かを判断する(S24)。停止周波数とは、計測条件の検査周波数の周波数範囲と、周波数間隔に従って、発振器40において並べられた複数の検査周波数の最後の周波数である。S24の判断が否定されると、S18に戻り、残っている周波数について計測を続け、得られた渦電流信号Sqがメモリ66に記憶される。 Next, it is determined whether or not the frequency is a stop frequency (S24). The stop frequency is the last frequency of the plurality of inspection frequencies arranged in the oscillator 40 according to the frequency range of the inspection frequency of the measurement condition and the frequency interval. If the determination in S24 is negative, the process returns to S18, the measurement is continued for the remaining frequency, and the obtained eddy current signal Sq is stored in the memory 66.

このようにして、計測条件で定めた全ての検査周波数について渦電流信号Sqが計測され、メモリ66に記憶されると、次に、最大信号比の周波数fCの抽出が行われる(S28)。信号比とは、上記のSq/S0であり、最大信号比の周波数fCとは、図6で説明したピーク周波数である。ピーク周波数の算出は、データ処理部64において、記憶部70の未焼入材データ72を読み出して(S26)実行される。未焼入材データ72は、計測条件の周波数範囲、周波数間隔で定められる全ての検査周波数についての未処理対象物の渦電流信号S0である。 Thus, when the eddy current signal Sq is measured and stored in the memory 66 for all the inspection frequencies determined by the measurement conditions, the frequency f C of the maximum signal ratio is extracted (S28). . The signal ratio is S q / S 0 described above, and the maximum signal ratio frequency f C is the peak frequency described in FIG. The calculation of the peak frequency is executed in the data processing unit 64 by reading the unquenched material data 72 in the storage unit 70 (S26). The unquenched material data 72 is an eddy current signal S 0 of an unprocessed object for all inspection frequencies determined by the frequency range and frequency interval of the measurement conditions.

この未処理対象物の渦電流信号S0と、メモリ66の検査対象物10の渦電流信号Sqとを用いて、信号比Sq/S0を全ての検査周波数ごとに計算する。そして、信号比Sq/S0がピークとなる周波数を抽出して、その周波数をピーク周波数fCとする。 Using this eddy current signal S 0 of the unprocessed object and the eddy current signal S q of the inspection object 10 in the memory 66, the signal ratio S q / S 0 is calculated for every inspection frequency. Then, a frequency at which the signal ratio S q / S 0 has a peak is extracted, and the frequency is set as a peak frequency f C.

ピーク周波数fCが求められると、焼入深さdの計算・記憶・表示が行われる(S32)。ここでは、ピーク周波数fCの表皮深さδが焼入深さdと一致する周波数であることを利用し、表皮深さδ={1/(πμ0μrσf)}1/2で関係式のfにfCを当てはめる。そして、記憶部70の焼入材物性値74から、導電率σ、透磁率μ0μrを読み出して(S30)、その値を表皮深さδの式に当てはめる。このようにしてピーク周波数fCにおける表皮深さδが計算で求められたら、これを焼入深さdとして出力し、例えば、表示器68に表示する。 When the peak frequency f C is obtained, the quenching depth d is calculated, stored, and displayed (S32). Here, using the fact that the skin depth δ of the peak frequency f C coincides with the quenching depth d, the relationship is expressed as skin depth δ = {1 / (πμ 0 μr σf)} 1/2 . Fit f C to f in the equation. Then, the baked Irizai physical properties 74 of the storage unit 70, the conductivity sigma, reads the magnetic permeability μ 0 μ r (S30), applying the values to equation skin depth [delta]. When the skin depth δ at the peak frequency f C is thus obtained by calculation, this is output as the quenching depth d and displayed on the display 68, for example.

上記手順に従って実験を行った結果を図8から図10のそれぞれにおいて黒丸印で示す。図8から図10は、いずれも横軸に検査周波数f、縦軸に渦電流信号比Sq/S0をとり、図8は、焼入深さd=1.0mm、図9は焼入深さd=2.0mm、図10は焼入深さd=3.0mmの検査対象物10についての結果である。 The results of the experiment conducted according to the above procedure are indicated by black circles in each of FIGS. 8 to 10, the horizontal axis represents the inspection frequency f, the vertical axis represents the eddy current signal ratio S q / S 0 , FIG. 8 shows the quenching depth d = 1.0 mm, and FIG. 9 shows the quenching. FIG. 10 shows the result of the inspection object 10 having the depth d = 2.0 mm and the quenching depth d = 3.0 mm.

図8において、焼入深さd=1.0mmの検査対象物10についての結果は、渦電流比の周波数特性がきれいなピーク特性を示し、ピーク周波数fCは500Hzとして求められる。同様に、図9において、焼入深さd=2.0mmの検査対象物10についての結果は、ピーク周波数fC=251Hzとなり、図10における焼入深さd=3.0mmの検査対象物10についての結果は、ピーク周波数fC=126Hzとなる。 In FIG. 8, the result for the inspection object 10 with the quenching depth d = 1.0 mm shows a peak characteristic with a clean frequency characteristic of the eddy current ratio, and the peak frequency f C is obtained as 500 Hz. Similarly, in FIG. 9, the result for the inspection object 10 with the quenching depth d = 2.0 mm is the peak frequency f C = 251 Hz, and the inspection object with the quenching depth d = 3.0 mm in FIG. The result for 10 is a peak frequency f C = 126 Hz.

なお、図8から図10の×印のデータは、リフトオフ量16が3mmのときのデータである。上記で説明した黒丸印のデータは、リフトオフ量16が2mmである。リフトオフ量16が2mmについては再現性確認のため各3回ずつ実験を行ったが、いずれも、ほとんど黒丸印と重なるデータ値であった。リフトオフ量16が3mmの場合でも、ピーク周波数fCの計算値はリフトオフ量16が2mmの場合とほとんど変化しない。これらの実験から、上記構成の評価法によれば、ピーク周波数fCの値がリフトオフ量16にほとんど影響を受けないことが分かる。 8 to 10 are data when the lift-off amount 16 is 3 mm. In the data of the black circles described above, the lift-off amount 16 is 2 mm. When the lift-off amount 16 was 2 mm, experiments were performed three times each for confirming reproducibility. In all cases, the data values almost overlapped with the black circles. Even when the lift-off amount 16 is 3 mm, the calculated value of the peak frequency f C is hardly changed from that when the lift-off amount 16 is 2 mm. From these experiments, it can be seen that according to the evaluation method of the above configuration, the value of the peak frequency f C is hardly influenced by the lift-off amount 16.

図11は、図8から図10で求められたピーク周波数fCに基き、表皮深さδ={1/(πμ0μrσf)}1/2に、非特許文献1に述べられている導電率σ=3.84MSm-1、比透磁率μr=49.4を適用して、表皮深さδ=焼入深さdを求め、実測の焼入深さdと比較した結果をまとめたものである。図11の結果から、較正曲線を全く用いずに計算から求めた焼入深さと、実測焼入深さが良好な一致を示していることが分かる。特に、実用上の焼入深さは2mm以上のことが多いことを考えると、上記表面処理評価法は、実用上十分な精度を有していると考えられる。 Figure 11 is based on the peak frequency f C obtained in FIGS. 8-10, the skin depth δ = {1 / (πμ 0 μ r σf)} 1/2, are described in Non-Patent Document 1 Applying conductivity σ = 3.84 MSm −1 and relative permeability μ r = 49.4, skin depth δ = quenching depth d was determined, and the results compared with measured quenching depth d were summarized. It is a thing. From the result of FIG. 11, it can be seen that the quenching depth obtained from the calculation without using any calibration curve and the measured quenching depth are in good agreement. In particular, considering that the practical quenching depth is often 2 mm or more, the surface treatment evaluation method is considered to have sufficient practical accuracy.

本発明に係る表面処理評価装置によれば、焼入処理、ピーニング等の強加工処理、鋼材の浸炭処理、メッキ処理、導電材のコーティング処理等の表面処理評価に利用できる。   The surface treatment evaluation apparatus according to the present invention can be used for surface treatment evaluations such as quenching, strong processing such as peening, carburization of steel, plating, and coating of conductive material.

10 検査対象物、12 母材部分、14 焼入処理層、16 リフトオフ量、20 表面処理評価装置、30 センサ部、32,33 励磁コイル、34,35 検出コイル、40 発振器、42 電流源、50 渦電流信号計測部、52 位相検波器、54 増幅器、56 フィルタ、58,68 表示器、60 評価値算出部、62 A/D変換器、64 データ処理部、66 メモリ、70 記憶部、72 未焼入材データ、74 焼入材物性値、80,81 励磁電流、82,83 渦電流、84 (漏れ)磁場、86 (渦電流によって生じる)磁場。   DESCRIPTION OF SYMBOLS 10 Inspection object, 12 Base material part, 14 Hardening process layer, 16 Lift-off amount, 20 Surface treatment evaluation apparatus, 30 Sensor part, 32, 33 Excitation coil, 34, 35 Detection coil, 40 Oscillator, 42 Current source, 50 Eddy current signal measurement unit, 52 phase detector, 54 amplifier, 56 filter, 58, 68 display, 60 evaluation value calculation unit, 62 A / D converter, 64 data processing unit, 66 memory, 70 storage unit, 72 not yet Hardened material data, 74 Hardened material property values, 80, 81 Excitation current, 82, 83 Eddy current, 84 (leakage) magnetic field, 86 (generated by eddy current).

Claims (4)

表面処理が行われている検査対象物に交流磁場を与える励磁コイルと、交流磁場によって生じる渦電流に関する渦電流信号を検出する検出コイルとを含むセンサ部と、
センサ部の励磁コイルに予め設定された複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加する励磁設定部と、
各検査周波数のそれぞれについて、検出コイルによって検査対象物の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出するピーク抽出部と、
抽出されたピーク周波数に基いて検査対象物の表面処理の評価値を算出する評価値算出部と、
を備えることを特徴とする表面処理評価装置。
A sensor unit including an excitation coil that applies an alternating magnetic field to an object to be inspected and a detection coil that detects an eddy current signal related to an eddy current generated by the alternating magnetic field;
An excitation setting unit that applies an alternating current while switching the inspection frequency in a range of a plurality of frequencies set in advance in the excitation coil of the sensor unit;
For each inspection frequency, an eddy current signal of the inspection object is obtained by the detection coil, and a signal ratio that is a ratio to the eddy current signal of the same kind of untreated object that is not subjected to surface treatment is determined for each inspection frequency. And a peak extraction unit that extracts a peak frequency at which the signal ratio becomes a peak,
An evaluation value calculation unit that calculates an evaluation value of the surface treatment of the inspection object based on the extracted peak frequency;
A surface treatment evaluation apparatus comprising:
請求項1に記載の表面処理評価装置において、
評価値算出部は、
予め求められている検査対象物の渦電流に関連する物性値と、ピーク周波数とに基いて検査対象物の表面処理の評価値を算出することを特徴とする表面処理評価装置。
In the surface treatment evaluation apparatus according to claim 1,
The evaluation value calculation unit
A surface treatment evaluation apparatus that calculates an evaluation value of a surface treatment of an inspection object based on a physical property value related to an eddy current of the inspection object and a peak frequency obtained in advance.
請求項2に記載の表面処理評価装置において、
評価値算出部は、
表面処理が焼入処理であるときに、渦電流に関する物性値として導電率と透磁率を用い、表皮深さの計算式に基いて検査対象物の表面処理の評価値を算出することを特徴とする表面処理評価装置。
In the surface treatment evaluation apparatus according to claim 2,
The evaluation value calculation unit
When the surface treatment is a quenching treatment, the evaluation value of the surface treatment of the object to be inspected is calculated based on the skin depth calculation formula using the electrical conductivity and the magnetic permeability as the physical property values related to the eddy current. Surface treatment evaluation device.
請求項1に記載の表面処理評価装置において、
センサ部は、
検査対象物の表面処理が行われた表面に対し垂直方向に交流磁場を与えるように相互に離間して配置される2つの励磁コイルと、
2つの励磁コイルの離間された間に配置され、検査対象物の表面に平行な方向の渦電流信号を検出するように配置される少なくとも1つの検出コイルと、
を含むことを特徴とする表面処理評価装置。
In the surface treatment evaluation apparatus according to claim 1,
The sensor part
Two excitation coils arranged apart from each other so as to apply an alternating magnetic field in a direction perpendicular to the surface on which the surface treatment of the inspection object is performed;
At least one detection coil arranged between the two excitation coils spaced apart and arranged to detect an eddy current signal in a direction parallel to the surface of the object to be examined;
A surface treatment evaluation apparatus comprising:
JP2010048519A 2010-03-05 2010-03-05 Device for evaluation of surface treatment Pending JP2011185623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048519A JP2011185623A (en) 2010-03-05 2010-03-05 Device for evaluation of surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048519A JP2011185623A (en) 2010-03-05 2010-03-05 Device for evaluation of surface treatment

Publications (1)

Publication Number Publication Date
JP2011185623A true JP2011185623A (en) 2011-09-22

Family

ID=44792120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048519A Pending JP2011185623A (en) 2010-03-05 2010-03-05 Device for evaluation of surface treatment

Country Status (1)

Country Link
JP (1) JP2011185623A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126376A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device and hardening quality inspection method
WO2016208382A1 (en) * 2015-06-25 2016-12-29 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
WO2017081879A1 (en) * 2015-11-09 2017-05-18 新東工業株式会社 Steel surface characteristic evaluation method
JP2018025434A (en) * 2016-08-09 2018-02-15 国立大学法人東京工業大学 Analysis method, analysis program and analyzer
WO2019012991A1 (en) * 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
JP2019128161A (en) * 2018-01-19 2019-08-01 国立大学法人東京工業大学 Analysis method, analysis program, and analysis apparatus
US11994493B2 (en) 2019-03-08 2024-05-28 Sintokogio, Ltd. Method for nondestructive assessment of steel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126376A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device and hardening quality inspection method
CN107709982A (en) * 2015-06-25 2018-02-16 新东工业株式会社 The surface characteristic evaluating apparatus and surface characteristic evaluation method of steel
CN107709982B (en) * 2015-06-25 2021-10-22 新东工业株式会社 Surface property evaluation device and surface property evaluation method for steel material
US10768144B2 (en) 2015-06-25 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation apparatus and surface characteristics evaluation method for steel material
EP3299805A4 (en) * 2015-06-25 2018-12-26 Sintokogio, Ltd. Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
KR102504193B1 (en) 2015-06-25 2023-02-28 신토고교 가부시키가이샤 Steel surface property evaluation device and surface property evaluation method
KR20180018814A (en) * 2015-06-25 2018-02-21 신토고교 가부시키가이샤 Apparatus for evaluating surface properties of steel and method for evaluating surface properties
JPWO2016208382A1 (en) * 2015-06-25 2018-04-05 新東工業株式会社 Steel surface property evaluation apparatus and surface property evaluation method
WO2016208382A1 (en) * 2015-06-25 2016-12-29 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method for steel material
KR102503235B1 (en) 2015-11-09 2023-02-22 신토고교 가부시키가이샤 Method for evaluating the surface properties of steel
CN107709981B (en) * 2015-11-09 2022-02-25 新东工业株式会社 Method for evaluating surface characteristics of steel material
KR20180079284A (en) * 2015-11-09 2018-07-10 신토고교 가부시키가이샤 Method of evaluating surface properties of steel
CN107709981A (en) * 2015-11-09 2018-02-16 新东工业株式会社 The surface characteristic evaluation method of steel
WO2017081879A1 (en) * 2015-11-09 2017-05-18 新東工業株式会社 Steel surface characteristic evaluation method
TWI691711B (en) * 2015-11-09 2020-04-21 日商新東工業股份有限公司 Evaluation method for surface characteristics of steel
US10768129B2 (en) 2015-11-09 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation method for steel material
EP3299806A4 (en) * 2015-11-09 2018-12-26 Sintokogio, Ltd. Steel surface characteristic evaluation method
JPWO2017081879A1 (en) * 2015-11-09 2018-07-26 新東工業株式会社 Method for evaluating the surface properties of steel
JP2018025434A (en) * 2016-08-09 2018-02-15 国立大学法人東京工業大学 Analysis method, analysis program and analyzer
WO2019012991A1 (en) * 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
EP3654029A4 (en) * 2017-07-10 2021-03-31 Sintokogio, Ltd. Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
CN110869756A (en) * 2017-07-10 2020-03-06 新东工业株式会社 Surface property evaluation method, surface property evaluation device, and surface property evaluation system
CN110869756B (en) * 2017-07-10 2023-10-27 新东工业株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
JP2019128161A (en) * 2018-01-19 2019-08-01 国立大学法人東京工業大学 Analysis method, analysis program, and analysis apparatus
US11994493B2 (en) 2019-03-08 2024-05-28 Sintokogio, Ltd. Method for nondestructive assessment of steel

Similar Documents

Publication Publication Date Title
JP2011185623A (en) Device for evaluation of surface treatment
Lu et al. Conductivity Lift-off Invariance and measurement of permeability for ferrite metallic plates
JP6010606B2 (en) Improvements in sensors
EP2707705B1 (en) Surface property inspection device and surface property inspection method
US8269488B2 (en) Eddy current testing method, steel pipe or tube tested by the eddy current testing method, and eddy current testing apparatus for carrying out the eddy current testing method
Dziczkowski Elimination of coil liftoff from eddy current measurements of conductivity
JP2010164306A (en) Method and device for hardened depth
TWI691710B (en) Device and method for evaluating surface properties of steel members
JP2007040865A (en) Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material
KR102503235B1 (en) Method for evaluating the surface properties of steel
Bowler et al. Alternating current potential-drop measurement of the depth of case hardening in steel rods
GB2495292A (en) Calibrating barkhausen noise signals for evaluation of thickness of surface hardened layers of steels
EP3333572A1 (en) Surface property inspection method and surface property inspection device for steel product
JP2002014081A (en) Method and device for measuring hardness penetration
JP6015954B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
ES2593305T3 (en) Procedure, device and use of the device for quantitative non-destructive determination of layer thicknesses of a body having layers
JP2000266727A (en) Carburized depth measuring method
JP4029400B2 (en) Method for measuring carburization depth on the inner surface of steel pipe
JP5614752B2 (en) Quenching state inspection device and quenching state inspection method
JP2011257223A (en) Hardening quality inspection device
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP2011252787A (en) Hardening quality inspection device
JP5615161B2 (en) Quenching range detection method and quenching range inspection method
JP7502705B2 (en) Hardness calculation device, hardness measurement system, and hardness calculation method
CN111487311B (en) Hardness detection method and system