JP2011184560A - Gas oil composition - Google Patents

Gas oil composition Download PDF

Info

Publication number
JP2011184560A
JP2011184560A JP2010051155A JP2010051155A JP2011184560A JP 2011184560 A JP2011184560 A JP 2011184560A JP 2010051155 A JP2010051155 A JP 2010051155A JP 2010051155 A JP2010051155 A JP 2010051155A JP 2011184560 A JP2011184560 A JP 2011184560A
Authority
JP
Japan
Prior art keywords
volume
oil composition
carbon atoms
light oil
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010051155A
Other languages
Japanese (ja)
Other versions
JP5357088B2 (en
Inventor
Akio Suzuki
昭雄 鈴木
Masato Murase
真人 村瀬
Yoshikatsu Suzuki
善克 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010051155A priority Critical patent/JP5357088B2/en
Publication of JP2011184560A publication Critical patent/JP2011184560A/en
Application granted granted Critical
Publication of JP5357088B2 publication Critical patent/JP5357088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas oil composition which can decrease the weight of the whole PM and the number of microparticles in an exhaust gas of a diesel engine, and is good in fuel consumption. <P>SOLUTION: A gas oil composition includes a density at 15°C of 0.78 to 0.83 g/cm<SP>3</SP>, a 90% distillation temperature of 280 to 380°C, a cetane index of ≥45, a pour point of ≤-20°C, a cloud point of -20 to -8°C, a 15C-29C naphthene content of 5 to 25 vol.%, and a total of a 10C-14C bicyclic aromatic content and a 10C-14C 2.5-cyclic aromatic content of 2 to 8 vol.%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軽油組成物、特には、排気ガス中の微小粒子の個数を低減させることが可能で且つ燃費が良好な軽油組成物に関するものである。   The present invention relates to a light oil composition, and more particularly to a light oil composition capable of reducing the number of fine particles in exhaust gas and having good fuel efficiency.

ディーゼルエンジンの排気ガスには、粒子状物質(Particulate Matter、以下PM)が含まれており、近年、環境問題等の観点から、ディーゼルエンジンを搭載した自動車の排気系にディーゼル・パーティキュレート・フィルタ(Diesel Particulate Filter、以下DPF)を設けることによって、大気に放出されるPM全体の量、PMを構成する粒子の総粒子数を低減する方法が提案されている。   Diesel engine exhaust gas contains particulate matter (hereinafter referred to as PM), and recently, from the viewpoint of environmental problems, etc., diesel particulate filters ( A method for reducing the total amount of PM released into the atmosphere and the total number of particles constituting the PM by providing a diesel particulate filter (hereinafter referred to as DPF) has been proposed.

一方で、PM排出量の削減については、燃料の面からも検討されており、排ガス中に含まれるPM全体の量、PMを構成する粒子の総粒子数及び当該粒子のうち直径の分布中心が50nm付近である粒子の粒子数、並びにアルデヒド類の量を同時に且つ十分に低減することが可能な軽油組成物(特許文献1)や、粒子直径が50nm以下の粒子の排出を抑制することが可能なディーゼルエンジン用燃料油組成物が提案されている(特許文献2及び3)。また、過渡運転時におけるエンジンから排出される窒素酸化物、炭化水素、一酸化炭素、二酸化炭素、PM、微小粒子、直径100nm以下の粒子、アルデヒド類の排出量の低減、排ガス後処理装置への負荷の低減、燃費の向上、運転性及び加速性の向上、燃料噴射ポンプの駆動力の低減、エンジン運転時の騒音の低減の他、エンジン始動性に優れ、酸化安定性に優れ、部材への影響を少なくすることが可能な軽油組成物が提案されている(特許文献4〜6)。   On the other hand, the reduction of PM emissions has been studied from the aspect of fuel, and the total amount of PM contained in the exhaust gas, the total number of particles constituting the PM, and the distribution center of the diameter of the particles are determined. It is possible to suppress the emission of light oil compositions (Patent Document 1) capable of simultaneously and sufficiently reducing the number of particles in the vicinity of 50 nm and the amount of aldehydes, and particles having a particle diameter of 50 nm or less. Fuel oil compositions for diesel engines have been proposed (Patent Documents 2 and 3). In addition, nitrogen oxides, hydrocarbons, carbon monoxide, carbon dioxide, PM, fine particles, particles with a diameter of 100 nm or less, emission of aldehydes discharged from the engine during transient operation, reduction to exhaust gas aftertreatment equipment In addition to reducing load, improving fuel efficiency, improving drivability and acceleration, reducing fuel injection pump driving force, and reducing noise during engine operation, engine startability is excellent, oxidation stability is excellent, Gas oil compositions capable of reducing the influence have been proposed (Patent Documents 4 to 6).

PMは、主として炭素質の固体粒子と有機溶剤に溶ける可溶性有機成分(Soluble Organic Fraction、以下SOF)とによって構成されているが、SOFは、燃料や潤滑油由来の高沸点炭化水素が発生源であると推察されている。また、粒径が数nm〜20nmの微小な粒子(以下、ナノ粒子)は、揮発したSOFの凝縮によって生成すると考えられており、重量換算では少量であるが、粒子数が多く表面積も大きい為、呼吸器系細胞への影響を考慮すれば、ナノ粒子の排出量は少ない方が好ましいと考えられている。ナノ粒子の排出は、特に減速時において観察されるが、これは、燃料カット時にシリンダ壁面に付着した未燃焼の燃料が気化し、排気管内で凝縮して生成したものと考えられている。   PM is mainly composed of carbonaceous solid particles and a soluble organic fraction (hereinafter referred to as SOF) that is soluble in an organic solvent. SOF is a source of high-boiling hydrocarbons derived from fuel and lubricating oil. It is assumed that there is. In addition, it is considered that fine particles (hereinafter referred to as nanoparticles) having a particle diameter of several nm to 20 nm are generated by condensation of volatilized SOF and are small in terms of weight, but have a large number of particles and a large surface area. Considering the influence on respiratory system cells, it is considered that a smaller amount of nanoparticles is preferable. Nanoparticle emission is observed particularly during deceleration, which is thought to be caused by the unburned fuel adhering to the cylinder wall surface during fuel cut and vaporizing and condensing in the exhaust pipe.

また、上述のように、PMを低減するための有力な手段としては、DPFの使用が知られているが、このDPFにより捕捉されたPMを構成するSOFの中には、負荷の増大により高温となって蒸発し、大気中で再凝縮して微小粒子化するものが存在している可能性もある(非特許文献1)。   Further, as described above, the use of DPF is known as an effective means for reducing PM. However, SOF constituting PM captured by DPF has a high temperature due to an increase in load. There is also a possibility that there is a material that evaporates and re-condenses in the atmosphere to form fine particles (Non-patent Document 1).

特開2004−2550号公報JP 2004-2550 A 特開2006−232978号公報JP 2006-232978 A 特開2006−232979号公報Japanese Patent Laid-Open No. 2006-232979 特開2004−67899号公報JP 2004-67899 A 特開2004−269682号公報JP 2004-269682 A 特開2004−269683号公報JP 2004-269683 A

「自動車排出ナノ粒子およびDEPの測定と生体影響評価」,株式会社エヌ・ティー・エス,p.6−7,2005年“Measurement of car exhausted nanoparticles and DEP and assessment of biological effects”, NTS, p. 6-7, 2005

従って、自動車排気ガス中のPMの排出量を低減させると共に、炭素質の固体粒子とSOFを主成分とする微小粒子の排出量を低減させることも重要であると考えられる。   Therefore, it is considered important to reduce the emission amount of PM in automobile exhaust gas and to reduce the emission amount of carbonaceous solid particles and fine particles mainly composed of SOF.

そこで、本発明の目的は、上記従来技術の課題を解決し、ディーゼルエンジンの排気ガス中のPM全体の重量及び微小粒子の個数を低減させることが可能である上、燃費が良好な軽油組成物を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to reduce the weight of the whole PM and the number of fine particles in the exhaust gas of a diesel engine, and further, a light oil composition with good fuel efficiency. Is to provide.

本発明者らは、軽油中の特定の成分及び性状を最適化することで、上記従来技術の課題を解決できることを想到し、軽油中の特定の成分及び性状とPM全体の重量、微小粒子の個数及び燃費との相関を鋭意研究した。その結果、軽油性状に加えて、炭素数10〜14の2環及び2.5環芳香族化合物、炭素数15〜29のナフテン成分が、PM全体の重量、微小粒子の個数及び燃費と相関を持つことが分かり、これらの成分の含有量を最適化することで、ディーゼルエンジン排気ガス中のPM全体の重量及び微小粒子の個数を同時に低減させると共に、燃費を良好に維持できることを見出し、本発明を完成させるに至った。   The inventors of the present invention have conceived that the above-mentioned problems of the prior art can be solved by optimizing specific components and properties in light oil, and the specific components and properties in light oil, the weight of the entire PM, We have intensively studied the correlation between the number and fuel consumption. As a result, in addition to the light oil properties, bicyclic and 2.5 ring aromatic compounds having 10 to 14 carbon atoms and naphthene components having 15 to 29 carbon atoms are correlated with the weight of the entire PM, the number of fine particles, and fuel consumption. It has been found that by optimizing the content of these components, it is possible to simultaneously reduce the weight of the entire PM and the number of fine particles in the exhaust gas of the diesel engine and to maintain good fuel economy. It came to complete.

即ち、本発明の軽油組成物は、
15℃における密度が0.78〜0.83g/cm3
90%留出温度が280〜380℃、
セタン指数が45以上、
流動点が−20℃以下、
曇り点が−20℃〜−8℃、
炭素数15〜29のナフテン分が5〜25容量%、
炭素数10〜14の2環芳香族分と炭素数10〜14の2.5環芳香族分の合計が2〜8容量%である
ことを特徴とする。
That is, the light oil composition of the present invention is
A density at 15 ° C. of 0.78 to 0.83 g / cm 3 ,
90% distillation temperature is 280-380 ° C,
Cetane index is 45 or more,
Pour point is -20 ° C or lower,
Cloud point of -20 ° C to -8 ° C,
5 to 25% by volume of naphthene having 15 to 29 carbon atoms,
The total of the C10-14 bicyclic aromatic component and the C10-14 2.5 ring aromatic component is 2-8% by volume.

また、本発明の軽油組成物は、
下記式(1)及び式(2):
A/Bの比=0.1〜3 ・・・ (1)
C/Dの比=0.5〜10 ・・・ (2)
[式中、Aは炭素数5〜14のナフテン分(容量%)であり、Bは炭素数15〜29のナフテン分(容量%)であり、Cは炭素数10〜14の2環芳香族分(容量%)と炭素数10〜14の2.5環芳香族分(容量%)の合計であり、Dは炭素数15〜29の2環芳香族分(容量%)と炭素数15〜29の2.5環芳香族分(容量%)の合計である]を満たすことが好ましい。
Further, the light oil composition of the present invention comprises:
The following formula (1) and formula (2):
A / B ratio = 0.1-3 (1)
C / D ratio = 0.5 to 10 (2)
[In the formula, A is a naphthene content (capacity%) having 5 to 14 carbon atoms, B is a naphthene content (capacity%) having 15 to 29 carbon atoms, and C is a bicyclic aromatic having 10 to 14 carbon atoms. % (Volume%) and a 2.5-ring aromatic part (volume%) having 10 to 14 carbon atoms, D is a bicyclic aromatic part (volume%) having 15 to 29 carbon atoms and 15 to 29 carbon atoms 29 of 2.5 ring aromatic content (volume%)].

さらに、本発明の軽油組成物は、
下記式(3):
Z1=A+A/(0.1+0.5×B) ・・・ (3)
(式中、A及びBは上記と同義である)で定義されるZ1の値が4〜19であり、
下記式(4):
Z2=C+C/(0.1+0.5×D) ・・・ (4)
(式中、C及びDは上記と同義である)で定義されるZ2の値が2以上であることが好ましい。
Furthermore, the light oil composition of the present invention comprises:
Following formula (3):
Z1 = A + A / (0.1 + 0.5 × B) (3)
(Wherein A and B are as defined above), the value of Z1 is 4 to 19,
Following formula (4):
Z2 = C + C / (0.1 + 0.5 × D) (4)
It is preferable that the value of Z2 defined by (wherein C and D are as defined above) is 2 or more.

本発明の軽油組成物によれば、ディーゼルエンジンの排気ガス中に含まれるPM全体の重量及び微小粒子の個数を同時に低減させると共に、燃費を良好に維持することができる。   According to the light oil composition of the present invention, it is possible to simultaneously reduce the weight of the entire PM and the number of fine particles contained in the exhaust gas of the diesel engine, and to maintain good fuel efficiency.

(芳香族分)
本発明の軽油組成物は、全芳香族分が5〜16容量%の範囲であることが好ましい。全芳香族分が上記の範囲内であれば、PM全体の重量並びに微小粒子の個数を低減することができ、低温流動特性及び燃費を維持することもできる。なお、本発明の軽油組成物の全芳香族分は、さらに好ましくは6〜15容量%であり、特に好ましくは10〜15容量%である。
(Aromatic content)
The light oil composition of the present invention preferably has a total aromatic content in the range of 5 to 16% by volume. If the total aromatic content is within the above range, the weight of the entire PM and the number of fine particles can be reduced, and the low-temperature flow characteristics and fuel consumption can be maintained. In addition, the total aromatic content of the light oil composition of the present invention is more preferably 6 to 15% by volume, and particularly preferably 10 to 15% by volume.

また、同様にPM全体の重量並びに微小粒子の個数を低減しながら低温流動特性及び燃費を維持するためには、本発明の軽油組成物において、3環以上芳香族分を0.0〜13容量%の範囲にすることが好ましく、さらに好ましくは0.2〜1.0容量%、特に好ましくは0.5〜0.8容量%である。一方、本発明の軽油組成物において、1環芳香族分は、2.5〜15容量%の範囲が好ましく、3〜14容量%の範囲が更に好ましく、5〜14容量%の範囲がより一層好ましい。1環芳香族分が2.5容量%以上であれば、発熱量を維持することができ、また、15容量%以下であれば、ディーゼルエンジン排気ガス中のPM全体の重量並びに微小粒子の個数を更に低減することができる。なお、これらの芳香族分は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法で求められる。   Similarly, in order to maintain the low-temperature flow characteristics and fuel consumption while reducing the total weight of PM and the number of fine particles, the aromatic oil content of 3 or more rings is 0.0 to 13 volumes in the light oil composition of the present invention. %, Preferably 0.2 to 1.0% by volume, particularly preferably 0.5 to 0.8% by volume. On the other hand, in the light oil composition of the present invention, the monocyclic aromatic component is preferably in the range of 2.5 to 15% by volume, more preferably in the range of 3 to 14% by volume, and still more in the range of 5 to 14% by volume. preferable. If the 1-ring aromatic content is 2.5 vol% or more, the calorific value can be maintained, and if it is 15 vol% or less, the total weight of PM and the number of fine particles in the diesel engine exhaust gas Can be further reduced. In addition, these aromatic components are calculated | required by the method prescribed | regulated to JPI-5S-49-97 "Petroleum product-hydrocarbon type test method-high performance liquid chromatograph method".

(2環芳香族分と2.5環芳香族分)
本発明の軽油組成物は、2環芳香族分(2環芳香族の含有量)と2.5環芳香族分(2.5環芳香族の含有量)の合計(以下、2+2.5環芳香族分という)が2〜10容量%であることが好ましい。なお、2環芳香族とは、ベンゼン環2個が縮合した骨格を持つ炭化水素化合物と、ベンゼン環1個とナフテン環1個が縮合した骨格を持つ炭化水素化合物の両方を指す。例えば、ベンゼン環2個が縮合した骨格を持つ炭化水素化合物としては、ナフタレンが挙げられ、更に、ナフタレンを骨格として一つのベンゼン環に1つ以上の側鎖を有するメチルナフタレン、ジメチルナフタレンが挙げられる。また、ベンゼン環1個とナフテン環1個が縮合した骨格を持つ炭化水素化合物としては、テトラリンが挙げられ、更に、ナフテン環に側鎖を1つ以上有するジメチルテトラヒドロナフタレン、エチルテトラヒドロナフタレン、テトラメチルヒドロナフタレンが挙げられる。また、2.5環芳香族とは、ベンゼン環2個が単結合した骨格を持つ炭化水素化合物と、ベンゼン環1個とナフテン環1個が単結合した骨格を持つ炭化水素化合物の両方を指す。例えば、ベンゼン環2個が単結合した骨格を持つ炭化水素化合物としては、ビフェニルを骨格として1つのベンゼン環に側鎖を1つ以上有するメチルビフェニル、ジメチルビフェニルが挙げられる。また、ベンゼン環1個とナフテン環1個が単結合した骨格を持つ炭化水素化合物としては、メチルシクロヘキシルベンゼンが挙げられる。また、本発明の軽油組成物において、2+2.5環芳香族分は、さらに好ましくは3〜9容量%、特には4〜9容量%である。2+2.5環芳香族分が2容量%以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、10容量%以下であればディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。
(2 ring aromatics and 2.5 ring aromatics)
The gas oil composition of the present invention comprises a total of the 2-ring aromatic content (content of 2-ring aromatic) and the 2.5-ring aromatic content (content of 2.5-ring aromatic) (hereinafter, 2 + 2.5 rings). The aromatic content is preferably 2 to 10% by volume. The bicyclic aromatic refers to both a hydrocarbon compound having a skeleton in which two benzene rings are condensed and a hydrocarbon compound having a skeleton in which one benzene ring and one naphthene ring are condensed. For example, examples of the hydrocarbon compound having a skeleton in which two benzene rings are condensed include naphthalene, and methyl naphthalene and dimethylnaphthalene having naphthalene as a skeleton and one or more side chains in one benzene ring. . Examples of the hydrocarbon compound having a skeleton in which one benzene ring and one naphthene ring are condensed include tetralin, and dimethyltetrahydronaphthalene, ethyltetrahydronaphthalene, tetramethyl having one or more side chains in the naphthene ring. And hydronaphthalene. The 2.5-ring aromatic refers to both a hydrocarbon compound having a skeleton in which two benzene rings are single-bonded and a hydrocarbon compound having a skeleton in which one benzene ring and one naphthene ring are single-bonded. . For example, examples of the hydrocarbon compound having a skeleton in which two benzene rings are single-bonded include methylbiphenyl and dimethylbiphenyl having biphenyl as a skeleton and one or more side chains in one benzene ring. Examples of the hydrocarbon compound having a skeleton in which one benzene ring and one naphthene ring are single-bonded include methylcyclohexylbenzene. In the light oil composition of the present invention, the 2 + 2.5 ring aromatic content is more preferably 3 to 9% by volume, and particularly 4 to 9% by volume. If the 2 + 2.5 ring aromatic content is 2% by volume or more, the calorific value per volume is high and the fuel consumption per volume is good, and if it is 10% by volume or less, it is included in the exhaust gas of the diesel engine. The number of fine particles is reduced.

本発明の軽油組成物は、2+2.5環芳香族分のうち、炭素数が10〜14の範囲の成分の含有量が2〜8容量%であり、好ましくは3〜7容量%、さらに好ましくは3〜6容量%である。2+2.5環芳香族分のうち、炭素数が10〜14の範囲の成分の含有量が2容量%以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、8容量%以下であれば、ディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。   In the light oil composition of the present invention, the content of components having 10 to 14 carbon atoms in the 2 + 2.5 ring aromatic component is 2 to 8% by volume, preferably 3 to 7% by volume, and more preferably. Is 3-6% by volume. If the content of the component having a carbon number of 10 to 14 in the 2 + 2.5 ring aromatic content is 2% by volume or more, the calorific value per capacity is high, the fuel consumption per capacity is improved, If the volume is 8% by volume or less, the number of fine particles contained in the exhaust gas of the diesel engine is reduced.

本発明の軽油組成物は、2+2.5環芳香族分のうち、炭素数が15〜29の範囲の成分の含有量が0.5〜5容量%であることが好ましく、さらに好ましくは0.5〜4容量%、特に好ましくは0.5〜3容量%である。2+2.5環芳香族分のうち、炭素数が15〜29の範囲の成分の含有量が0.5容量%以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、5容量%以下であれば、ディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。   In the light oil composition of the present invention, the content of the component having 15 to 29 carbon atoms in the 2 + 2.5 ring aromatic component is preferably 0.5 to 5% by volume, and more preferably 0.8. It is 5 to 4% by volume, particularly preferably 0.5 to 3% by volume. If the content of the component having a carbon number of 15 to 29 in the 2 + 2.5 ring aromatic content is 0.5% by volume or more, the calorific value per capacity is high, and the fuel consumption per capacity is improved. Moreover, if it is 5 volume% or less, the number of the microparticles contained in the exhaust gas of a diesel engine will decrease.

本発明の軽油組成物は、下記式(2):
C/Dの比=0.5〜10 ・・・ (2)
を満たすことが好ましい。ここで、Cは炭素数10〜14の2+2.5環芳香族分(容量%)であり、Dは炭素数15〜29の2+2.5環芳香族分(容量%)である。また、C/Dの比は、さらに好ましくは1〜6、特には2〜6が好ましい。C/Dの比が0.5以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、C/Dの比が10以下であれば、ディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。
The light oil composition of the present invention has the following formula (2):
C / D ratio = 0.5 to 10 (2)
It is preferable to satisfy. Here, C is a 2 + 2.5 ring aromatic content (volume%) having 10 to 14 carbon atoms, and D is a 2 + 2.5 ring aromatic content (volume%) having 15 to 29 carbon atoms. Further, the ratio of C / D is more preferably 1 to 6, and particularly preferably 2 to 6. If the C / D ratio is 0.5 or more, the calorific value per capacity is high and the fuel consumption per capacity is good, and if the C / D ratio is 10 or less, it is in the exhaust gas of a diesel engine. The number of fine particles contained in is reduced.

なお、上記の2環芳香族分、2.5環芳香族分の詳細な分析には、Agilent Technologies社製HP−6890N型FID検出器付きGC及び日本電子社製AccuTOF JMS−T100GC飛行時間型質量分析計からなるGCシステムを用いた。詳細な分析条件は次の通りである。   In addition, for the detailed analysis of the above-mentioned bicyclic aromatic components and 2.5-ring aromatic components, GC-6 with HP-6890N type FID detector manufactured by Agilent Technologies and AccuTOF JMS-T100GC time-of-flight mass manufactured by JEOL Ltd. A GC system consisting of an analyzer was used. Detailed analysis conditions are as follows.

1次カラム:微極性カラム(Supelco社製PTE−5、長さ30m、内径0.25mm、フィルム厚0.25μm)
モジュレータ中空カラム:長さ2m、内径0.25mm
2次カラム:高極性カラム(Supelco社製SpelcoWAX10、長さ2m、内径0.25mm、フィルム厚0.25μm)
昇温条件:10℃/分(50℃(5分保持)から280℃(27分保持))
注入口温度:280℃
注入量:1.0μl
スプリット比:100:1
キャリアガス:ヘリウム(He)、1.0ml/分
モジュレータ温度:下記のコールド温度、ホット温度を繰り返す。
ホットジェットガス温度:150℃(5分保持)から320℃(33分保持)に10℃/分で昇温。
コールドジェットガス温度:約−140℃
モジュレータ頻度:6秒間で0.3秒間ホット温度、その後5.7秒間コールド温度。
インターフェイス中空カラム:長さ0.5m、内径0.25mm
FIDガス条件:水素(45mL/分)、空気(450mL/分)、メークアップヘリウム(25mL/分)
Primary column: Slight polar column (PTE-5 manufactured by Supelco, length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Modulator hollow column: length 2m, inner diameter 0.25mm
Secondary column: High-polarity column (SpelcoWAX10 from Supelco, length 2 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Temperature rising condition: 10 ° C./min (from 50 ° C. (5 min hold) to 280 ° C. (27 min hold))
Inlet temperature: 280 ° C
Injection volume: 1.0 μl
Split ratio: 100: 1
Carrier gas: helium (He), 1.0 ml / min Modulator temperature: The following cold temperature and hot temperature are repeated.
Hot jet gas temperature: The temperature was raised from 150 ° C. (5 minutes hold) to 320 ° C. (33 minutes hold) at 10 ° C./min.
Cold jet gas temperature: about -140 ° C
Modulator frequency: 6 seconds for 0.3 seconds hot temperature, then 5.7 seconds for cold temperature.
Interface hollow column: 0.5m length, 0.25mm inner diameter
FID gas conditions: hydrogen (45 mL / min), air (450 mL / min), make-up helium (25 mL / min)

ここで、上記GCシステムは、炭素数7〜44の化合物を測定することが可能であり、測定したピーク(山形)の溶出時間とマススペクトルから、それぞれのピーク(山形)に対応する化合物を同定する。同定された全ピーク(山形)の合計を含有量合計(100ピーク体積%)とし、それぞれのピーク(山形)から対応するそれぞれの化合物の含有量をピーク体積%として算出し、これを容量%とする。また、成分(化合物群)ごとに特定の炭素数の範囲における容量%を求めた。   Here, the GC system can measure a compound having 7 to 44 carbon atoms, and the compound corresponding to each peak (yamagata) is identified from the elution time and mass spectrum of the measured peak (yamagata). To do. The sum of all identified peaks (yamagata) is defined as the total content (100 peak volume%), and the content of each corresponding compound is calculated as the peak volume% from each peak (yamagata). To do. Moreover, the volume% in the range of specific carbon number was calculated | required for every component (compound group).

(ナフテン分)
本発明の軽油組成物は、ナフテン分が8〜25容量%であることが好ましく、さらに好ましくは10〜25容量%、特には18〜25容量%が好ましい。ナフテン分が8容量%以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、ナフテン分が25容量%以下であれば、ディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。
(For naphthenic)
The light oil composition of the present invention preferably has a naphthene content of 8 to 25% by volume, more preferably 10 to 25% by volume, and particularly preferably 18 to 25% by volume. If the naphthene content is 8% by volume or more, the calorific value per capacity is high and the fuel consumption per capacity is good. If the naphthene content is 25% by volume or less, the minute amount contained in the exhaust gas of the diesel engine The number of particles is reduced.

本発明の軽油組成物は、炭素数15〜29のナフテン分が1〜12容量%であり、好ましくは4〜12容量%、さらに好ましくは4〜10容量%である。炭素数15〜29のナフテン分が1容量%以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、12容量%以下であれば、ディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。   In the light oil composition of the present invention, the naphthene content having 15 to 29 carbon atoms is 1 to 12% by volume, preferably 4 to 12% by volume, more preferably 4 to 10% by volume. If the amount of naphthene having 15 to 29 carbon atoms is 1% by volume or more, the calorific value per volume is high and the fuel consumption per volume is good, and if it is 12% by volume or less, it is contained in the exhaust gas of the diesel engine. The number of microparticles contained is reduced.

また、本発明の軽油組成物において、炭素数5〜14のナフテン分は1〜15容量%が好ましく、さらに好ましくは5〜15容量%、特には10〜15容量%が好ましい。炭素数5〜14のナフテン分が1容量%以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、15容量%以下であれば、ディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。   In the light oil composition of the present invention, the naphthene having 5 to 14 carbon atoms is preferably 1 to 15% by volume, more preferably 5 to 15% by volume, and particularly preferably 10 to 15% by volume. If the amount of naphthene having 5 to 14 carbon atoms is 1% by volume or more, the calorific value per capacity is high and the fuel consumption per capacity is good, and if it is 15% by volume or less, it is contained in the exhaust gas of the diesel engine. The number of microparticles contained is reduced.

本発明の軽油組成物は、下記式(1):
A/Bの比=0.1〜3 ・・・ (1)
を満たすことが好ましい。ここで、Aは炭素数5〜14のナフテン分(容量%)であり、Bは炭素数15〜29のナフテン分(容量%)である。また、A/Bの比は、さらに好ましくは0.4〜1.5、特には0.8〜1.5が好ましい。A/Bの比が0.1以上であれば、容量あたりの発熱量が高く、容量あたりの燃費が良好となり、また、3以下であればディーゼルエンジンの排気ガス中に含まれる微小粒子の個数が少なくなる。なお、上記のナフテン分の詳細な分析には、上記のGCシステムを用いた。
The light oil composition of the present invention has the following formula (1):
A / B ratio = 0.1-3 (1)
It is preferable to satisfy. Here, A is a naphthene content (capacity%) having 5 to 14 carbon atoms, and B is a naphthene content (capacity%) having 15 to 29 carbon atoms. Further, the A / B ratio is more preferably 0.4 to 1.5, and particularly preferably 0.8 to 1.5. If the A / B ratio is 0.1 or more, the calorific value per capacity is high and the fuel consumption per capacity is good, and if it is 3 or less, the number of fine particles contained in the exhaust gas of the diesel engine. Less. In addition, said GC system was used for the detailed analysis of said naphthene.

(蒸留性状)
本発明の軽油組成物においては、燃費を良好に維持する観点から、90%留出温度を280〜380℃の範囲にすることが必要である。なお、該90%留出温度は、更なる燃費の向上の観点から、290〜360℃の範囲が好ましく、290〜330℃の範囲が特に好ましい。また、本発明の軽油組成物においては、燃焼及び排気ガスの性状を良好に維持する観点から、50%留出温度を好ましくは200〜280℃、さらに好ましくは220〜260℃、特に好ましくは220〜240℃の範囲とする。なお、これらの蒸留性状は、JIS K2254「蒸留試験方法」に規定された方法により求められる。
(Distillation properties)
In the light oil composition of this invention, it is necessary to make 90% distillation temperature into the range of 280-380 degreeC from a viewpoint of maintaining a fuel consumption favorable. The 90% distillation temperature is preferably in the range of 290 to 360 ° C, particularly preferably in the range of 290 to 330 ° C, from the viewpoint of further improving fuel consumption. In the light oil composition of the present invention, the 50% distillation temperature is preferably 200 to 280 ° C, more preferably 220 to 260 ° C, and particularly preferably 220, from the viewpoint of maintaining good combustion and exhaust gas properties. It is set as the range of -240 degreeC. These distillation properties are determined by a method defined in JIS K2254 “Distillation test method”.

(粒子数排出係数)
上述のように、本発明者らが、2環芳香族分と2.5環芳香族分、並びに、ナフテン分において、それぞれ特定の範囲の炭素数の含有量について最適化を試みたところ、ディーゼルエンジン排気ガス中に含まれる微小粒子の個数を低減させるためには、下記式(3)又は式(4):
Z1=A+A/(0.1+0.5×B) ・・・ (3)
Z2=C+C/(0.1+0.5×D) ・・・ (4)
[式中、Aは炭素数5〜14のナフテン分(容量%)であり、Bは炭素数15〜29のナフテン分(容量%)であり、Cは炭素数10〜14の2+2.5環芳香族分(容量%)であり、Dは炭素数15〜29の2+2.5環芳香族分(容量%)である]で算出されるZ1の値を4〜19とすることが好ましく、Z2を2以上とすることが好ましいことを見出した。また、Z1は、微小粒子の個数をさらに低減する観点から、さらに好ましくは4〜15、特には10〜14が好ましい。また、Z2は、微小粒子の個数を低減する観点から、さらに好ましくは4以上、特には5以上が好ましい。
(Particle number emission coefficient)
As described above, the present inventors tried to optimize the carbon content in a specific range in the bicyclic aromatic component, the 2.5 cyclic aromatic component, and the naphthene component. In order to reduce the number of fine particles contained in the engine exhaust gas, the following formula (3) or formula (4):
Z1 = A + A / (0.1 + 0.5 × B) (3)
Z2 = C + C / (0.1 + 0.5 × D) (4)
[In the formula, A is a naphthene content (capacity%) having 5 to 14 carbon atoms, B is a naphthene content (capacity%) having 15 to 29 carbon atoms, and C is a 2 + 2.5 ring having 10 to 14 carbon atoms. It is preferable that the value of Z1 calculated by the aromatic content (volume%) and D is a 2 + 2.5 ring aromatic content (volume%) having 15 to 29 carbon atoms is 4 to 19, Has been found to be preferably 2 or more. Z1 is more preferably 4-15, particularly 10-14, from the viewpoint of further reducing the number of fine particles. Z2 is more preferably 4 or more, and particularly preferably 5 or more, from the viewpoint of reducing the number of fine particles.

(密度)
本発明の軽油組成物においては、15℃における密度を0.78〜0.83g/cm3である。軽油組成物の15℃における密度を上記の範囲にすることで、燃費を良好に維持することができる。また、軽油組成物の15℃における密度は、燃費及び排出ガス性状を更に向上させる観点から、好ましくは0.80〜0.83g/cm3、さらに好ましくは0.81〜0.83g/cm3である。なお、該密度は、JIS K2249「原油及び石油製品密度試験方法」に規定された方法で求められる。
(density)
In the light oil composition of the present invention, the density at 15 ° C. is 0.78 to 0.83 g / cm 3 . By setting the density of the light oil composition at 15 ° C. within the above range, the fuel efficiency can be favorably maintained. Further, the density of the light oil composition at 15 ° C. is preferably 0.80 to 0.83 g / cm 3 , more preferably 0.81 to 0.83 g / cm 3 from the viewpoint of further improving fuel consumption and exhaust gas properties. It is. The density is obtained by a method defined in JIS K2249 “Crude oil and petroleum product density test method”.

(動粘度)
本発明の軽油組成物においては、30℃における動粘度を1.8〜6.5mm2/sの範囲にすることが好ましい。軽油組成物の30℃における動粘度を上記の範囲にすることにより、燃料噴射ポンプでの潤滑性を保持することができ、また、燃料噴射時の燃料の微粒化を促進して排出ガス性状を良好にすることができる。該動粘度は、潤滑性及び排出ガス性状を更に向上させる観点から、さらに好ましくは2〜5mm2/s、特に好ましくは2〜3mm2/sの範囲である。ここで、30℃における動粘度は、JIS K2283「動粘度試験方法」に規定された方法で求められる。
(Kinematic viscosity)
In the light oil composition of this invention, it is preferable to make kinematic viscosity in 30 degreeC into the range of 1.8-6.5 mm < 2 > / s. By setting the kinematic viscosity at 30 ° C. of the light oil composition within the above range, the lubricity in the fuel injection pump can be maintained, and the atomization of the fuel at the time of fuel injection is promoted, and the exhaust gas properties are improved. Can be good. The kinematic viscosity is more preferably in the range of 2 to 5 mm 2 / s, particularly preferably in the range of 2 to 3 mm 2 / s, from the viewpoint of further improving the lubricity and exhaust gas properties. Here, the kinematic viscosity at 30 ° C. is determined by a method defined in JIS K2283 “Kinematic Viscosity Test Method”.

(硫黄分)
本発明の軽油組成物においては、排ガス中の硫黄酸化物の低減、排ガスの後処理装置の耐久性向上、及び燃料噴射ポンプでの潤滑性維持、更には燃料の酸化安定性維持の観点から、硫黄分を1〜7質量ppmの範囲にすることが好ましく、1〜6質量ppmの範囲が更に好ましく、2〜5質量ppmの範囲が特に好ましい。なお、硫黄分は、JIS K2541−6「硫黄分試験方法(紫外蛍光法)」に規定された方法で求められる。
(Sulfur content)
In the light oil composition of the present invention, from the viewpoint of reducing sulfur oxides in the exhaust gas, improving the durability of the exhaust gas aftertreatment device, maintaining the lubricity in the fuel injection pump, and maintaining the oxidation stability of the fuel, The sulfur content is preferably in the range of 1 to 7 ppm by mass, more preferably in the range of 1 to 6 ppm by mass, and particularly preferably in the range of 2 to 5 ppm by mass. In addition, a sulfur content is calculated | required by the method prescribed | regulated to JISK2541-6 "Sulfur content test method (ultraviolet fluorescence method)".

(流動点及び曇り点)
本発明の軽油組成物においては、低温時の運転性を向上させつつ燃費を良好に維持する観点から、流動点を−20℃以下にする必要があり、好ましくは−40℃〜−22℃、さらに好ましくは−30℃〜−22℃である。また、同様に低温時の運転性を向上させつつ燃費を良好に維持する観点から、本発明の軽油組成物においては、曇り点を−20℃〜−8℃にする必要があり、好ましくは−15℃〜−8℃、さらに好ましくは−15℃〜−10℃とする。ここで、流動点及び曇り点は、JIS K2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に規定された方法で求められる。
(Pour point and cloud point)
In the light oil composition of the present invention, the pour point needs to be −20 ° C. or lower, preferably −40 ° C. to −22 ° C., from the viewpoint of maintaining good fuel efficiency while improving drivability at low temperatures. More preferably, it is -30 degreeC--22 degreeC. Similarly, from the viewpoint of maintaining good fuel efficiency while improving drivability at low temperatures, the light oil composition of the present invention needs to have a cloud point of −20 ° C. to −8 ° C., preferably − 15 to -8 ° C, more preferably -15 to -10 ° C. Here, the pour point and cloud point are determined by the method specified in JIS K2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.

(目詰まり点)
本発明の軽油組成物においては、低温時の運転性向上、燃費の良好な維持、及び低温流動性向上剤の添加によるコスト抑制等の観点から、目詰まり点を0℃以下にすることが好ましく、さらに好ましくは−10℃以下、特に好ましくは−15℃以下である。また、特に制限されるものではないが、本発明の軽油組成物においては、目詰まり点が−25℃以上であることが好ましい。なお、目詰まり点は、JIS K2288「石油製品−軽油−目詰まり点試験方法」に規定された方法で求められる。
(Clogging point)
In the light oil composition of the present invention, it is preferable to set the clogging point to 0 ° C. or less from the viewpoints of improving drivability at low temperatures, maintaining good fuel economy, and controlling costs by adding a low-temperature fluidity improver. More preferably, it is −10 ° C. or less, particularly preferably −15 ° C. or less. Moreover, although it does not restrict | limit in particular, In the light oil composition of this invention, it is preferable that a clogging point is -25 degreeC or more. The clogging point is determined by a method defined in JIS K2288 “Petroleum products—light oil—clogging point test method”.

(真発熱量)
本発明の軽油組成物においては、燃費を良好にするために、真発熱量を好ましくは42500kJ/kg以上、さらに好ましくは42800kJ/kg以上、特に好ましくは43000kJ/kg以上とする。また、特に制限されるものではないが、本発明の軽油組成物においては、真発熱量を43400kJ/kg以下にすることが好ましい。なお、真発熱量は、JIS K2279「原油及び石油製品−発熱量試験方法及び計算による推定方法」に規定された方法で求められる。
(True calorific value)
In the light oil composition of the present invention, in order to improve fuel efficiency, the true calorific value is preferably 42500 kJ / kg or more, more preferably 42800 kJ / kg or more, and particularly preferably 43000 kJ / kg or more. Further, although not particularly limited, in the light oil composition of the present invention, the true calorific value is preferably 43400 kJ / kg or less. The true calorific value is obtained by the method defined in JIS K2279 “Crude oil and petroleum products—The calorific value test method and the estimation method by calculation”.

(セタン指数)
本発明の軽油組成物のセタン指数は、着火性を良好にし、適度な予混合を促進するために、45以上であり、好ましくは50〜75、さらに好ましくは53〜75である。なお、セタン指数は、JIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」に規定された方法で測定されるものである。
(Cetane index)
The cetane index of the light oil composition of the present invention is 45 or more, preferably 50 to 75, more preferably 53 to 75, in order to improve ignitability and promote appropriate premixing. The cetane index is measured by the method defined in JIS K2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane index calculation method”.

(軽油組成物の調製)
本発明の軽油組成物は、原料油として、例えば、常圧蒸留装置、接触分解装置、熱分解装置等から得られる各種の軽油留分、すなわち初留点から終点までの沸点範囲(以下、沸点範囲という)が140〜400℃の範囲で留出する留分を用いて、適宜混合して水素化脱硫するか、水素化脱硫後に適宜混合することにより得られるが、芳香族を多く含む原料油を処理する場合は、製品の硫黄分や芳香族分を所定範囲にするために、反応温度や水素分圧を高くし、また、水素/オイル比を高くすることが有効である。なお、芳香族を多く含む原料油は難脱硫成分も多く含むことから、水素化脱硫にあたっては硫黄分を選択的に除去する触媒を用いる必要がある。また、炭素数が比較的少ないナフテン分や芳香族分を、炭素数が多いナフテン分や芳香族分に対して多くするためには、前記原料油の各種軽油留分の97%留出温度が385℃、好ましくは370℃、さらに好ましくは360℃を超えないように蒸留分離するか、軽質な軽油留分の原料油基材を多く混合することが有効である。
(Preparation of light oil composition)
The gas oil composition of the present invention is used as a raw oil, for example, various gas oil fractions obtained from an atmospheric distillation apparatus, a catalytic cracking apparatus, a thermal cracking apparatus, etc., that is, a boiling point range from the initial boiling point to the end point (hereinafter referred to as boiling point Can be obtained by appropriately mixing and hydrodesulfurizing using a distillate distilling in the range of 140 to 400 ° C., or by appropriately mixing after hydrodesulfurization. In order to treat the sulfur content and aromatic content of the product within a predetermined range, it is effective to increase the reaction temperature and hydrogen partial pressure and to increase the hydrogen / oil ratio. In addition, since the raw material oil containing a lot of aromatics contains a lot of difficult desulfurization components, it is necessary to use a catalyst that selectively removes sulfur in hydrodesulfurization. Also, in order to increase the naphthene content and aromatic content having a relatively small number of carbon atoms relative to the naphthene content and aromatic content having a large number of carbon atoms, the 97% distillation temperature of various gas oil fractions of the feedstock oil is It is effective to carry out distillation separation so as not to exceed 385 ° C., preferably 370 ° C., more preferably 360 ° C., or to mix a large amount of raw material base material of light gas oil fraction.

上記水素化脱硫は、Co、Mo及びNiの1種以上を含有し、又所望によりPを担持した水素化触媒を用い、反応温度270〜380℃、好ましくは295〜360℃、反応圧力2.5〜8.5MPa、好ましくは2.7〜7.0MPa、LHSV0.9〜6.0h-1、好ましくは0.9〜5.4h-1、水素/オイル比130〜300Nm3/kLの条件の範囲から適宜選択して、上述の軽油組成物が得られる様にするとよい。 The hydrodesulfurization uses a hydrogenation catalyst containing one or more of Co, Mo and Ni, and optionally carrying P, with a reaction temperature of 270 to 380 ° C., preferably 295 to 360 ° C., a reaction pressure of 2. Conditions of 5-8.5 MPa, preferably 2.7-7.0 MPa, LHSV 0.9-6.0 h −1 , preferably 0.9-5.4 h −1 , hydrogen / oil ratio 130-300 Nm 3 / kL It is good to select suitably from the range so that the above-mentioned light oil composition may be obtained.

本発明では、上記水素化脱硫した軽油留分に、灯油留分、GTL、BTXを製造する際の副生成留分、潤滑油を製造する際の副生成留分、ノルマルパラフィン化合物、ノルマルパラフィン系溶剤、イソパラフィン化合物、イソパラフィン系溶剤、芳香族化合物、芳香族系溶剤、バイオマス由来の燃料基材、ナフテン化合物、ナフテン系溶剤等を適宜配合して、上述の性状、品質に合った軽油組成物を調製することができる。   In the present invention, the hydrodesulfurized gas oil fraction is a kerosene fraction, a by-product fraction when producing GTL, BTX, a by-product fraction when producing a lubricating oil, a normal paraffin compound, a normal paraffin series. A light oil composition suitable for the above-mentioned properties and quality is appropriately blended with a solvent, isoparaffin compound, isoparaffin solvent, aromatic compound, aromatic solvent, biomass-derived fuel base material, naphthene compound, naphthenic solvent, etc. Can be prepared.

なお、上記方法で得られた軽油組成物には、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してもよい。低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐摩耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられ、10〜500質量ppm、好ましくは50〜100質量ppmの添加量で十分に耐摩耗性が向上する。   In addition, to the light oil composition obtained by the above method, known fuel additions such as a low temperature fluidity improver, an abrasion resistance improver, a cetane number improver, an antioxidant, a metal deactivator, and a corrosion inhibitor are added. An agent may be added. As the low temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used. As the wear resistance improver, for example, a long-chain fatty acid (carbon number 12 to 24) or a fatty acid ester thereof is preferably used, and the wear resistance is sufficient with an addition amount of 10 to 500 ppm by mass, preferably 50 to 100 ppm by mass. Will improve.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<軽油組成物の調製>
まず以下のようにして、評価試験のために用いる軽油組成物(供試燃料1〜8)を調製した。これらの供試燃料1〜8の組成等の分析値を表1〜2に示す。分析は、上述した方法によるが、引火点については、JIS K2265−3「引火点の求め方−第3部:ペンスキーマルテンス密閉法」に規定された方法で測定した。また、H分とC分は、有機元素分析装置(LECO社製CHN−1000型)を用いて測定した。
<Preparation of light oil composition>
First, light oil compositions (test fuels 1 to 8) used for the evaluation test were prepared as follows. Analytical values such as the composition of these test fuels 1-8 are shown in Tables 1-2. The analysis was performed according to the method described above, but the flash point was measured by the method defined in JIS K2265-3 “How to determine the flash point—Part 3: Penschem Lutens Sealing Method”. The H and C components were measured using an organic element analyzer (CHN-1000 model manufactured by LECO).

(実施例1)
供試燃料1:市販1号軽油40容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)50容量%、沸点範囲が255〜340℃のイソパラフィン系溶剤であるNAソルベントNAS−5H(日油株式会社製)10容量%をそれぞれ配合して調製した。
Example 1
Test fuel 1: Commercial No. 1 diesel oil 40% by volume, boiling point range 209-231 ° C naphthenic / paraffinic solvent exosol D80 (manufactured by TonenGeneral Sekiyu KK) 50% by volume, boiling point range 255-340 ° C Each was prepared by blending 10% by volume of NA solvent NAS-5H (manufactured by NOF Corporation), which is an isoparaffinic solvent.

(実施例2)
供試燃料2:市販1号軽油30容量%、沸点範囲が213〜262℃のイソパラフィン系溶剤であるIPソルベント2028(出光興産株式会社製)15容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)40容量%,炭素数14〜16のノルマルパラフィンSHNP(株式会社ジャパンエナジー製)15容量%をそれぞれ配合して調製した。
(Example 2)
Test fuel 2: 30% by volume of commercially available No. 1 diesel oil, 15% by volume of IP solvent 2028 (made by Idemitsu Kosan Co., Ltd.), an isoparaffinic solvent having a boiling range of 213 to 262 ° C, and a naphthene / boiling range of 209 to 231 ° C It was prepared by blending 40% by volume of Exol D80 (manufactured by TonenGeneral Sekiyu KK) and 15% by volume of normal paraffin SHNP (manufactured by Japan Energy) having 14 to 16 carbon atoms, which are paraffinic solvents.

(実施例3)
供試燃料3:市販1号軽油28容量%、市販灯油25容量%、沸点範囲が213〜262℃のイソパラフィン系溶剤であるIPソルベント2028(出光興産株式会社製)5%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)40容量%、沸点範囲が160〜220℃の高沸点芳香族系溶剤であるカクタスソルベントP150(株式会社ジャパンエナジー製)2容量%をそれぞれ配合して調製した。
(Example 3)
Test fuel 3: 28% by volume of commercially available No. 1 diesel oil, 25% by volume of commercially available kerosene, 5% of IP solvent 2028 (made by Idemitsu Kosan Co., Ltd.), which is an isoparaffinic solvent having a boiling range of 213 to 262 ° C., and a boiling range of 209 to Exol D80 (manufactured by TonenGeneral Sekiyu Co., Ltd.), 40% by volume of 231 ° C. naphthene / paraffin solvent, Cactus solvent P150 (manufactured by Japan Energy Co., Ltd.), a high boiling aromatic solvent having a boiling range of 160-220 ° C. Each 2% by volume was prepared by blending.

(実施例4)
供試燃料4:市販1号軽油35容量%、市販灯油53容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)12容量%をそれぞれ配合して調製した。
Example 4
Test fuel 4: 35% by volume of commercial No. 1 diesel oil, 53% by volume of commercial kerosene, 12% by volume of Exol D80 (manufactured by TonenGeneral Sekiyu KK), a naphthenic / paraffinic solvent having a boiling point range of 209 to 231 ° C. Prepared.

(実施例5)
供試燃料5:市販1号軽油37.5容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)25容量%、沸点範囲が255〜340℃のイソパラフィン系溶剤であるNAソルベントNAS−5H(日油株式会社製)5容量%、市販灯油26.5容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)6容量%をそれぞれ配合して調製した。
(Example 5)
Test fuel 5: 37.5% by volume of commercial No. 1 diesel oil, 25% by volume of Exol D80 (manufactured by TonenGeneral Sekiyu KK), which is a naphthene / paraffin solvent having a boiling range of 209 to 231 ° C., and a boiling range of 255 to 340 5% by volume of NA solvent NAS-5H (manufactured by NOF Corporation), an isoparaffinic solvent at 5 ° C., 26.5% by volume of commercial kerosene, and exosol D80 (Tonen), a naphthenic / paraffinic solvent having a boiling point range of 209-231 ° C. (General Oil Co., Ltd.) 6 vol.

(比較例1)
供試燃料6:沸点範囲が255〜340℃のイソパラフィン系溶剤であるNAソルベントNAS−5H(日油株式会社製)50容量%、NAソルベントNAS−3(日油株式会社製)20容量%、炭素数14〜16のノルマルパラフィンSHNP(株式会社ジャパンエナジー製)20容量%、炭素数11〜14のノルマルパラフィンYHNP(株式会社ジャパンエナジー製)10容量%をそれぞれ配合して調製した。
(Comparative Example 1)
Test fuel 6: NA solvent NAS-5H (manufactured by NOF Corporation), which is an isoparaffinic solvent having a boiling range of 255 to 340 ° C., 50% by volume, NA solvent NAS-3 (manufactured by NOF Corporation), 20% by volume, It was prepared by blending 20% by volume of normal paraffin SHNP (made by Japan Energy Co., Ltd.) having 14 to 16 carbon atoms and 10% by volume of normal paraffin YHNP (made by Japan Energy Co., Ltd.) having 11 to 14 carbon atoms.

(比較例2)
供試燃料7:市販1号軽油15容量%、市販灯油10容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)70容量%、沸点範囲が290〜305℃の高沸点芳香族系溶剤である日石ハイゾールSASグレード296(新日本石油化学株式会社製)5容量%をそれぞれ配合して調製した。
(Comparative Example 2)
Test fuel 7: 15% by volume of commercial No. 1 diesel oil, 10% by volume of commercial kerosene, 70% by volume of exosol D80 (manufactured by TonenGeneral Sekiyu KK), a boiling point range of 209 to 231 ° C, naphthol / paraffinic solvent, boiling range Were blended with 5% by volume of Nisseki Hyzol SAS Grade 296 (manufactured by Nippon Petrochemical Co., Ltd.), which is a high-boiling aromatic solvent of 290 to 305 ° C.

(比較例3)
供試燃料8:市販1号軽油10容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)40容量%、沸点範囲が290〜305℃の高沸点芳香族系溶剤である日石ハイゾールSASグレード296(新日本石油化学株式会社製)11容量%、GTL軽油(モスガス社製)37容量%、沸点範囲が350〜400℃の高沸点芳香族系溶剤である日石ハイゾールSASグレードLH(新日本石油化学株式会社製)2容量%をそれぞれ配合して調製した。
(Comparative Example 3)
Test fuel 8: 10% by volume of commercially available No. 1 diesel oil, 40% by volume of Exol D80 (manufactured by TonenGeneral Sekiyu KK), a naphthene / paraffin solvent having a boiling range of 209 to 231 ° C, and a boiling range of 290 to 305 ° C High boiling point aromatic solvent with high boiling point aromatic solvent Nisseki Hyzol SAS grade 296 (manufactured by Nippon Petrochemical Co., Ltd.) 11% by volume, GTL gas oil (manufactured by Moss Gas) 37% by volume, boiling point range 350-400 ° C Nisseki Hyzol SAS Grade LH (manufactured by Shin Nippon Petrochemical Co., Ltd.) 2% by volume, which is a system solvent, was blended and prepared.

Figure 2011184560
Figure 2011184560

Figure 2011184560
Figure 2011184560

次に上記供試燃料について、以下に示す車両を用いて、PM全体の重量、ナノ粒子の個数及び燃費を以下に示す方法で測定した。なお、排出ガス試験は、国内認証試験モードである10・15モードで行った。結果を表3に示す。   Next, with respect to the test fuel, the weight of the whole PM, the number of nanoparticles, and the fuel consumption were measured by the following vehicle using the vehicle shown below. The exhaust gas test was conducted in the 10.15 mode, which is the domestic certification test mode. The results are shown in Table 3.

<車両諸元>
車両名:トヨタ自動車(株)製エスティマ
エンジン型式:3C−TE
総排気量:2184cc
圧縮比:22.6
最高出力:69kW/4000rpm
最大トルク:206Nm/2200rpm
規制適合:短期規制適合(平成5−6年)
<Vehicle specifications>
Vehicle name: Toyota Motor Corporation Estima Engine Model: 3C-TE
Total displacement: 2184cc
Compression ratio: 22.6
Maximum output: 69kW / 4000rpm
Maximum torque: 206Nm / 2200rpm
Regulatory compliance: Short-term regulatory compliance (1993-5)

(PM全体の重量の測定)
TRIAS 24−4−1999「ディーゼル自動車10・15モード排出ガス試験方法」に規定された方法により測定した。
(Measurement of total PM weight)
Measured by the method specified in TRIAS 24-4-1999 “Diesel vehicle 10/15 mode exhaust gas test method”.

(微小粒子の個数の測定)
1次希釈器(MD19−2E,Matter Engineering社製)及び2次希釈器(ASET15−1,Matter Engineering社製)を用いて、車両からの排出ガスを空気で希釈及び加熱した。該希釈された排出ガスの総粒子数を凝縮粒子カウンター(Condensation Particle Counter,TSI社製)で測定した。更に、測定結果から微小粒子の個数を求めた。なお、希釈条件は以下の通りである。
希釈率:105倍(1次希釈)、7倍(2次希釈)
加熱温度:150℃(1次希釈)、300℃(2次希釈)
(Measurement of the number of fine particles)
The exhaust gas from the vehicle was diluted and heated with air using a primary diluter (MD19-2E, manufactured by Matter Engineering) and a secondary diluter (ASET15-1, manufactured by Matter Engineering). The total number of particles of the diluted exhaust gas was measured with a condensation particle counter (made by Condensation Particle Counter, TSI). Furthermore, the number of fine particles was determined from the measurement results. The dilution conditions are as follows.
Dilution rate: 105 times (primary dilution), 7 times (secondary dilution)
Heating temperature: 150 ° C. (primary dilution), 300 ° C. (secondary dilution)

(燃費の測定)
TRIAS 5−4−1999「ディーゼル自動車10・15モード燃料消費試験方法」に規定された方法(カーボンバランス法)により、燃費を測定した。
(Measurement of fuel consumption)
The fuel consumption was measured by the method (carbon balance method) defined in TRIAS 5-4-1999 “Diesel Vehicle 10/15 Mode Fuel Consumption Test Method”.

Figure 2011184560
Figure 2011184560

表3の結果から、本発明の軽油組成物である実施例1〜5の供試燃料は、比較例2及び3の供試燃料と比較して、燃費を良好にしつつ、PM全体の重量及び微小粒子の個数を大幅に低減できることが分かる。また、比較例1の供試燃料は、実施例1〜5の供試燃料と比較して、PM全体の重量と微小粒子の個数は良好であるものの、燃費が悪化する傾向にあることが分かる。従って、本発明の軽油組成物である実施例1〜5の供試燃料は、比較例1〜3の供試燃料と比較して、ディーゼルエンジン排気ガス中に含まれるPM全体の重量及び微小粒子の個数の双方を低減させると共に、燃費を良好に維持できることが分かる。   From the results in Table 3, the test fuels of Examples 1 to 5, which are light oil compositions of the present invention, compared with the test fuels of Comparative Examples 2 and 3, while improving fuel efficiency, It can be seen that the number of fine particles can be greatly reduced. Further, it can be seen that the test fuel of Comparative Example 1 has a tendency to deteriorate the fuel consumption, although the weight of the whole PM and the number of fine particles are good as compared with the test fuels of Examples 1 to 5. . Therefore, the test fuels of Examples 1 to 5, which are light oil compositions of the present invention, are compared with the test fuels of Comparative Examples 1 to 3, and the total weight and fine particles of PM contained in the exhaust gas of the diesel engine. It can be seen that both the number of the fuel can be reduced and the fuel efficiency can be maintained well.

本発明の軽油組成物は、ディーゼルエンジン用燃料又はその混合基材として好適に利用できる。   The light oil composition of the present invention can be suitably used as a diesel engine fuel or a mixed base material thereof.

Claims (3)

15℃における密度が0.78〜0.83g/cm3、90%留出温度が、280〜380℃、セタン指数が45以上、流動点が−20℃以下、曇り点が−20℃〜−8℃、炭素数15〜29のナフテン分が5〜25容量%、炭素数10〜14の2環芳香族分と炭素数10〜14の2.5環芳香族分の合計が2〜8容量%であることを特徴とする軽油組成物。 Density at 15 ° C. is 0.78 to 0.83 g / cm 3 , 90% distillation temperature is 280 to 380 ° C., cetane index is 45 or more, pour point is −20 ° C. or less, and cloud point is −20 ° C. to − 8 ° C, 15 to 29 carbon naphthene content is 5 to 25% by volume, and the total number of bicyclic aromatic components having 10 to 14 carbon atoms and 2.5 ring aromatic components having 10 to 14 carbon atoms is 2 to 8 volumes. % A light oil composition characterized by being 下記式(1)及び式(2):
A/Bの比=0.1〜3 ・・・ (1)
C/Dの比=0.5〜10 ・・・ (2)
[式中、Aは炭素数5〜14のナフテン分(容量%)であり、Bは炭素数15〜29のナフテン分(容量%)であり、Cは炭素数10〜14の2環芳香族分(容量%)と炭素数10〜14の2.5環芳香族分(容量%)の合計であり、Dは炭素数15〜29の2環芳香族分(容量%)と炭素数15〜29の2.5環芳香族分(容量%)の合計である]を満たすことを特徴とする請求項1に記載の軽油組成物。
The following formula (1) and formula (2):
A / B ratio = 0.1-3 (1)
C / D ratio = 0.5 to 10 (2)
[In the formula, A is a naphthene content (capacity%) having 5 to 14 carbon atoms, B is a naphthene content (capacity%) having 15 to 29 carbon atoms, and C is a bicyclic aromatic having 10 to 14 carbon atoms. % (Volume%) and a 2.5-ring aromatic part (volume%) having 10 to 14 carbon atoms, D is a bicyclic aromatic part (volume%) having 15 to 29 carbon atoms and 15 to 29 carbon atoms It is the sum total of 29 2.5 ring aromatic content (volume%)], The light oil composition of Claim 1 characterized by the above-mentioned.
下記式(3):
Z1=A+A/(0.1+0.5×B) ・・・ (3)
(式中、A及びBは上記と同義である)で定義されるZ1の値が4〜19であり、
下記式(4):
Z2=C+C/(0.1+0.5×D) ・・・ (4)
(式中、C及びDは上記と同義である)で定義されるZ2の値が2以上である
ことを特徴とする請求項1または2に記載の軽油組成物。
Following formula (3):
Z1 = A + A / (0.1 + 0.5 × B) (3)
(Wherein A and B are as defined above), the value of Z1 is 4 to 19,
Following formula (4):
Z2 = C + C / (0.1 + 0.5 × D) (4)
The light oil composition according to claim 1 or 2, wherein the value of Z2 defined by (wherein C and D are as defined above) is 2 or more.
JP2010051155A 2010-03-08 2010-03-08 Light oil composition Active JP5357088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051155A JP5357088B2 (en) 2010-03-08 2010-03-08 Light oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051155A JP5357088B2 (en) 2010-03-08 2010-03-08 Light oil composition

Publications (2)

Publication Number Publication Date
JP2011184560A true JP2011184560A (en) 2011-09-22
JP5357088B2 JP5357088B2 (en) 2013-12-04

Family

ID=44791221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051155A Active JP5357088B2 (en) 2010-03-08 2010-03-08 Light oil composition

Country Status (1)

Country Link
JP (1) JP5357088B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023136A (en) * 2003-06-30 2005-01-27 Nippon Oil Corp Gas oil composition
JP2005344001A (en) * 2004-06-02 2005-12-15 Idemitsu Kosan Co Ltd Light oil composition
JP2006342235A (en) * 2005-06-08 2006-12-21 Cosmo Oil Co Ltd Fuel oil composition for diesel engine
JP2007270107A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Gas oil composition
JP2007270106A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Gas oil composition
JP2009292932A (en) * 2008-06-04 2009-12-17 Cosmo Oil Co Ltd Fuel oil composition for diesel engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023136A (en) * 2003-06-30 2005-01-27 Nippon Oil Corp Gas oil composition
JP2005344001A (en) * 2004-06-02 2005-12-15 Idemitsu Kosan Co Ltd Light oil composition
JP2006342235A (en) * 2005-06-08 2006-12-21 Cosmo Oil Co Ltd Fuel oil composition for diesel engine
JP2007270107A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Gas oil composition
JP2007270106A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Gas oil composition
JP2009292932A (en) * 2008-06-04 2009-12-17 Cosmo Oil Co Ltd Fuel oil composition for diesel engine

Also Published As

Publication number Publication date
JP5357088B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4460200B2 (en) Fuel oil base and light oil composition containing the same
JP5520115B2 (en) Light oil composition
JP6242829B2 (en) Use of viscosity improvers
JP5317605B2 (en) Light oil composition
JP5520114B2 (en) Light oil composition
JP5518454B2 (en) Fuel composition for diesel hybrid
JP5317604B2 (en) Light oil composition
JP2010241871A (en) Fuel oil composition for premixing compression ignition engine
JP5357088B2 (en) Light oil composition
JP5317606B2 (en) Light oil composition
JP5317603B2 (en) Light oil composition
JP2013124290A (en) Gas oil fuel composition
JP5357086B2 (en) Light oil composition
JP5357087B2 (en) Light oil composition
JP5518460B2 (en) Light oil composition
JP2010241869A (en) Fuel oil composition for diesel engine with reformer
JP5317652B2 (en) Light oil composition
JP5317653B2 (en) Light oil composition
JP5436041B2 (en) Light oil composition
JP2011063780A (en) Gas oil composition and method for producing the same
JP4119190B2 (en) Light oil composition and method for producing the same
JP5436079B2 (en) Light oil composition
JP5311976B2 (en) Method for producing light oil composition
JP5436078B2 (en) Light oil composition
JP5684184B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5357088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250