JP2011178602A - Method for generating crystalline iron arsenate from arsenic-containing solution - Google Patents

Method for generating crystalline iron arsenate from arsenic-containing solution Download PDF

Info

Publication number
JP2011178602A
JP2011178602A JP2010044387A JP2010044387A JP2011178602A JP 2011178602 A JP2011178602 A JP 2011178602A JP 2010044387 A JP2010044387 A JP 2010044387A JP 2010044387 A JP2010044387 A JP 2010044387A JP 2011178602 A JP2011178602 A JP 2011178602A
Authority
JP
Japan
Prior art keywords
solution
iron
arsenic
reaction
arsenate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044387A
Other languages
Japanese (ja)
Other versions
JP5662036B2 (en
Inventor
Mitsuo Abumiya
三雄 鐙屋
Yusuke Sato
祐輔 佐藤
Hironobu Mikami
寛信 見上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2010044387A priority Critical patent/JP5662036B2/en
Priority to PCT/JP2011/054502 priority patent/WO2011108488A1/en
Publication of JP2011178602A publication Critical patent/JP2011178602A/en
Application granted granted Critical
Publication of JP5662036B2 publication Critical patent/JP5662036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/02Arsenates; Arsenites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which achieves easy and rapid generation of crystalline iron arsenate particles with a large particle size from an arsenic-containing solution. <P>SOLUTION: The method for generating crystalline iron arsenate from an arsenic-containing solution comprises adding divalent iron to the solution containing pentavalent arsenic and trivalent iron, adjusting the pH of the solution to ≤1.0, and adding an oxidizing agent to thereby generate crystalline iron arsenate, wherein when the number of mols of pentavalent arsenic, that of trivalent iron and that of divalent iron in the arsenic-containing solution are considered to be A mols, B mols and C mols, respectively, the relationships of B/A<1.0, C>0 and B>0 are satisfied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

溶液中に存在するヒ素(本発明において「As」の意味である。)を、安定なヒ素化合物として当該溶液から分離回収する技術であり、特には、溶液中に存在するヒ素を、安定なヒ素化合物である結晶性ヒ酸鉄(例えば、スコロダイト結晶)として当該溶液から分離回収する方法に関する。   It is a technique for separating and recovering arsenic present in a solution (meaning “As” in the present invention) from the solution as a stable arsenic compound, and in particular, arsenic present in a solution is stable arsenic. The present invention relates to a method for separating and recovering from a solution as crystalline iron arsenate (for example, scorodite crystal) which is a compound.

3価鉄(本発明において「Fe3+」の意味である。)と、5価ヒ素(本発明において「As5+」の意味である。)とを、反応させて結晶性ヒ酸鉄を生成させる場合、従来の技術では反応速度を向上させる為、溶液のpH値を、1を超えた条件下において行っていた。その結果、得られるヒ酸鉄は非常に微細なものとなり、さらに、非晶質のヒ酸鉄も含み易くなることが、ハンドリング上の課題である。 Trivalent iron (meaning “Fe 3+ ” in the present invention) and pentavalent arsenic (meaning “As 5+ ” in the present invention) are reacted to produce crystalline iron arsenate. In this case, in the conventional technique, the pH value of the solution was set under a condition exceeding 1 in order to improve the reaction rate. As a result, the obtained iron arsenate becomes very fine, and further, it is easy to contain amorphous iron arsenate.

ここで、溶液中に存在するヒ素をスコロダイトとして当該溶液から分離回収する方法に関して、特許文献1、2が提案されている。
特許文献1の提案は、5価ヒ素と3価鉄とを含有する酸性水溶液からヒ酸鉄を製造する方法であって、当該酸性水溶液中に含まれる5価ヒ素に対する3価鉄のモル比を0.9以上、1.1以下に調節した後に、スコロダイトの生成を行う方法である。
特許文献2の提案は、5価ヒ素と3価鉄とを含有する酸性水溶液からスコロダイトを製造する方法であって、当該酸性水溶液中のナトリウム濃度が、0g/Lを超え、4g/L以下となるように、塩基性ナトリウム化合物を当該酸性水溶液に添加し、スコロダイトの生成を行う方法である。
Here, Patent Documents 1 and 2 have been proposed regarding a method for separating and recovering arsenic present in a solution from the solution as scorodite.
The proposal of Patent Document 1 is a method for producing iron arsenate from an acidic aqueous solution containing pentavalent arsenic and trivalent iron, wherein the molar ratio of trivalent iron to pentavalent arsenic contained in the acidic aqueous solution is determined. This is a method of generating scorodite after adjusting to 0.9 or more and 1.1 or less.
The proposal of Patent Document 2 is a method for producing scorodite from an acidic aqueous solution containing pentavalent arsenic and trivalent iron, wherein the sodium concentration in the acidic aqueous solution exceeds 0 g / L and is 4 g / L or less. Thus, a basic sodium compound is added to the acidic aqueous solution to generate scorodite.

特開2009−79237号公報JP 2009-79237 A 特開2008−231478号公報JP 2008-231478 A

本発明者らは特許文献1、2に記載された結晶性ヒ酸鉄(スコロダイト)の生成方法を検討した。
特許文献1に記載の提案は、5価ヒ素と3価鉄とを含有する酸性水溶液へ、多量の種結晶(実施例では、50g/L)を添加し、高温での熱処理(実施例では、95℃、24時間)を行うことでスコロダイトの生成を行うものである。つまり、スコロダイト生成の際は、常に種結晶の添加を必要とするものである。
The present inventors examined the production method of crystalline iron arsenate (scorodite) described in Patent Documents 1 and 2.
In the proposal described in Patent Document 1, a large amount of seed crystals (50 g / L in the example) are added to an acidic aqueous solution containing pentavalent arsenic and trivalent iron, and heat treatment at a high temperature (in the example, (95 ° C., 24 hours) to generate scorodite. In other words, it is always necessary to add seed crystals when producing scorodite.

特許文献2に記載の提案は、スコロダイトの生成時間に24時間という非常に長時間を要するものであった。この点は、特許文献1に記載の提案も、スコロダイトの生成時間に24時間という非常に長時間を要するものであった。
さらに、結晶粒の大きなヒ酸鉄の生成については、特許文献1、2を初めとする従来技術に係るいずれの方法にも記載がない。
The proposal described in Patent Document 2 requires a very long time of 24 hours for the generation time of scorodite. In this respect, the proposal described in Patent Document 1 also requires a very long time of 24 hours for the generation time of scorodite.
Furthermore, the production of iron arsenate having large crystal grains is not described in any of the conventional methods including Patent Documents 1 and 2.

本発明は、上述の状況もとでなされたものであり、その解決しようとする課題は、ヒ素を含む溶液から、大きな粒子径を有する結晶性ヒ酸鉄粒子を容易且つ短時間で生成可能とする、結晶性ヒ酸鉄を得る方法を提供することである。   The present invention has been made under the above circumstances, and the problem to be solved is that crystalline iron arsenate particles having a large particle diameter can be easily and quickly produced from a solution containing arsenic. And providing a method for obtaining crystalline iron arsenate.

上述の課題を解決する為、本発明者らは鋭意研究を行ない、以下の知見を得た。
ヒ素と3価鉄とを含有する酸性溶液から結晶性ヒ酸鉄を生成する場合には、当該酸性溶液のpH値を1よりも高く、好ましくは1.5前後とすることで、その生成反応速度が向上し、ヒ素の処理効率は上がる。しかし、当該生成するヒ酸鉄粒子は非常に微細なものになり易い。
一方、当該酸性溶液のpH値が1以下の場合、種結晶が存在しないと、結晶性ヒ酸鉄は殆ど生成しない。さらに、当該pH値が1以下の酸性溶液へ酸化剤として、例えば、酸素や空気を吹き込んでも結晶性ヒ酸鉄は殆ど生成しない。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research and obtained the following knowledge.
When producing crystalline iron arsenate from an acidic solution containing arsenic and trivalent iron, the pH of the acidic solution is higher than 1, preferably about 1.5, so that the production reaction Speed increases and arsenic processing efficiency increases. However, the iron arsenate particles produced tend to be very fine.
On the other hand, when the pH value of the acidic solution is 1 or less, crystalline iron arsenate is hardly produced unless seed crystals are present. Furthermore, even when oxygen or air is blown into the acidic solution having a pH value of 1 or less as an oxidizing agent, for example, crystalline iron arsenate is hardly generated.

本発明者らは、上述したようにpH値1を境界として、いずれの領域においてもヒ素を含む溶液から、大きな粒子径を有する結晶性ヒ酸鉄粒子を容易且つ短時間で生成することが困難な状況を解決すべく、研究を行った。
そして、当該ヒ素を含む酸性溶液において、3価鉄と2価鉄(本発明において「Fe2+」の意味である。)とを存在させ、pH値を1.0以下とした後、さらに酸化剤を添加することで、当該溶液から、大きな粒子径を有する結晶性ヒ酸鉄粒子を容易且つ短時間で生成出来るという、画期的な知見を得て本発明を完成したものである。
As described above, the present inventors have difficulty in easily producing crystalline iron arsenate particles having a large particle diameter in a short time from a solution containing arsenic in any region with a pH value of 1 as a boundary. Research was conducted to solve this situation.
Then, in the acidic solution containing arsenic, trivalent iron and divalent iron (meaning “Fe 2+ ” in the present invention) are present and the pH value is adjusted to 1.0 or less, and then an oxidizing agent. The present invention has been completed by obtaining the epoch-making knowledge that crystalline iron arsenate particles having a large particle diameter can be easily and quickly produced from the solution by adding.

すなわち、本発明に係る第1の発明は、
5価ヒ素と3価鉄とを含有する溶液へ2価鉄を添加し、前記溶液のpH値を1.0以下とし、酸化剤を添加して、結晶性ヒ酸鉄を生成する方法であって、
前記ヒ素を含有する溶液中における、5価ヒ素のモル数をAモル、3価鉄のモル数をBモル、2価鉄のモル数をCモルとするとき、B/A<1.0およびC>0およびB>0とする、ことを特徴とするヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法である。
That is, the first invention according to the present invention is:
In this method, divalent iron is added to a solution containing pentavalent arsenic and trivalent iron, the pH value of the solution is adjusted to 1.0 or less, and an oxidizing agent is added to produce crystalline iron arsenate. And
In the arsenic-containing solution, when the mole number of pentavalent arsenic is A mole, the mole number of trivalent iron is B mole, and the mole number of divalent iron is C mole, B / A <1.0 and A method for producing crystalline iron arsenate from a solution containing arsenic, characterized in that C> 0 and B> 0.

第2の発明は、
さらに、(B+C)≧Aである、ことを特徴とする第1の発明に記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法である。
The second invention is
Furthermore, (B + C) ≧ A is the method for producing crystalline iron arsenate from a solution containing arsenic according to the first aspect of the invention.

第3の発明は、
上記酸化剤が、酸素ガス、空気、酸素を含むガス、空気希釈ガス、過酸化水素水から選択されるいずれか1種以上である、ことを特徴とする第1または第2の発明に記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法である。
The third invention is
The oxidizing agent is at least one selected from oxygen gas, air, oxygen-containing gas, air dilution gas, and hydrogen peroxide solution, according to the first or second invention, A method for producing crystalline iron arsenate from a solution containing arsenic.

第4の発明は、
前記結晶性ヒ酸鉄の生成反応において、溶液中のヒ素濃度が、反応開始時点におけるヒ素濃度の30%以下となる時期以降に、前記溶液のpH値を、1を超え、2以下とする、ことを特徴とする第1から第3のいずれかの発明に記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法である。
The fourth invention is:
In the production reaction of crystalline iron arsenate, the pH value of the solution is more than 1 and 2 or less after the time when the arsenic concentration in the solution becomes 30% or less of the arsenic concentration at the start of the reaction. A method for producing crystalline iron arsenate from a solution containing arsenic according to any one of the first to third inventions.

第5の発明は、
ヒ素を含有する溶液から結晶性ヒ酸鉄を生成させた後の反応後液を、2価鉄源として再度使用する、ことを特徴とする第1から第4のいずれかの発明に記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法である。
The fifth invention is:
The arsenic according to any one of the first to fourth inventions, wherein the post-reaction solution after producing crystalline iron arsenate from a solution containing arsenic is reused as a divalent iron source Is a method for producing crystalline iron arsenate from a solution containing

本発明に係るヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法によれば、結晶粒径の大きい結晶性ヒ酸鉄粒子を短時間で生成させることが可能となった。   According to the method for producing crystalline iron arsenate from a solution containing arsenic according to the present invention, crystalline iron arsenate particles having a large crystal grain size can be produced in a short time.

本発明は、ヒ素を含有する溶液に3価鉄と2価鉄とを共に存在させ、当該溶液のpH値が1以下の下で、当該3価鉄を、2価鉄に優先してヒ素と反応させ、結晶性ヒ酸鉄を生成させるものである。尚、結晶性ヒ酸鉄には、スコロダイト(FeAsO・2HO)を始めとして、kankit(FeAsO・1.5HO),zykaite(Fe(AsO(SO)(OH)・15HO)、bukovskyite(Fe(AsO(SO)(OH)・7HO)、sarmiente(Fe(AsO(SO)(OH)・7HO)等がある。 In the present invention, both trivalent iron and divalent iron are present in a solution containing arsenic, and the trivalent iron is prioritized over divalent iron under a pH value of 1 or less. It reacts to produce crystalline iron arsenate. In addition, crystalline iron arsenate includes scorodite (FeAsO 4 .2H 2 O), kankit (FeAsO 4 .1.5H 2 O), zykaite (Fe 4 (AsO 4 ) 3 (SO 4 ) (OH 4 ) ) · 15H 2 O), bukovskyite (Fe 4 (AsO 4 ) 3 (SO 4 ) (OH) · 7H 2 O), saliente (Fe 4 (AsO 4 ) 3 (SO 4 ) (OH) · 7H 2 O) Etc.

具体的には、本発明は、ヒ素Aモルと、3価鉄Bモルと、2価鉄Cモルとを含むpH値が1以下の溶液において、ヒ素に対する3価鉄のモル比であるB/A<1.0(即ち、A>B)の状態として酸化剤を加え、結晶性ヒ酸鉄粒子を生成させるものである。この結晶性ヒ酸鉄生成反応において、鉄は3価鉄Bモルと2価鉄Cモルとの混在であって、A>Bであり、且つ、A≦(B+C)である。ヒ素量よりも鉄量の方が上回るためヒ素の殆どが反応されつくし、結果として反応後液中におけるヒ素の残存が少なくなる。この結果、後工程である水処理におけるヒ素負荷が軽減される。尤も、3価鉄と2価鉄の殆どを結晶性ヒ酸鉄としたい場合にはA>(B+C)であっても良い。このとき、ヒ素は5価ヒ素であることが好ましい。ヒ酸鉄は、3価鉄と5価ヒ素との化合物である為である。
ここで、3価鉄Bモルと2価鉄Cモルとのモル比は、結晶性ヒ酸鉄の生成目標量、状況に応じて設定すればよいが、モル比(B/Cの値)を0.1〜2の範囲に設定することが、結晶性ヒ酸鉄の生産性の観点から好ましい。当該モル比は、反応前、反応中において変化させても良い。
Specifically, the present invention relates to B /, which is a molar ratio of trivalent iron to arsenic in a solution having a pH value of 1 or less containing arsenic A mole, trivalent iron B mole, and divalent iron C mole. An oxidizing agent is added as A <1.0 (that is, A> B) to produce crystalline iron arsenate particles. In this crystalline iron arsenate production reaction, iron is a mixture of B moles of trivalent iron and C moles of divalent iron, A> B, and A ≦ (B + C). Since the amount of iron exceeds the amount of arsenic, most of the arsenic is completely reacted, and as a result, arsenic remains in the post-reaction solution. As a result, the arsenic load in the water treatment which is a subsequent process is reduced. However, if it is desired that most of trivalent iron and divalent iron be crystalline iron arsenate, A> (B + C) may be satisfied. At this time, the arsenic is preferably pentavalent arsenic. This is because iron arsenate is a compound of trivalent iron and pentavalent arsenic.
Here, the molar ratio of the trivalent iron B mole and the divalent iron C mole may be set according to the target amount of crystalline iron arsenate production and the situation, but the molar ratio (value of B / C) is Setting in the range of 0.1 to 2 is preferable from the viewpoint of productivity of crystalline iron arsenate. The molar ratio may be changed before and during the reaction.

本発明者らは、3価鉄と5価ヒ素とによる結晶性ヒ酸鉄生成反応において、溶液のpH値を1以下とし、上述したようにB/A<1とし、且つ2価鉄Cモルを共存させ、さらに酸化剤を加える構成により、3価鉄と5価ヒ素との結晶化反応が、2価鉄と5価ヒ素との結晶化反応に比較して優先的、且つ迅速に進み、大きな粒径を有する結晶性ヒ酸鉄粒子が短時間で生成されることを知見したものである。
以下、本発明が適用されるヒ素含有物、3価鉄源、2価鉄源、3価および2価鉄源の添加方法、酸化剤、溶液のpH値制御、pH調整剤、反応容器の順で詳細に説明する。
In the crystalline iron arsenate production reaction using trivalent iron and pentavalent arsenic, the present inventors set the pH value of the solution to 1 or less, B / A <1 as described above, and divalent iron C mol. In addition, the crystallization reaction of trivalent iron and pentavalent arsenic proceeds preferentially and quickly compared to the crystallization reaction of divalent iron and pentavalent arsenic, by adding an oxidizing agent. It has been found that crystalline iron arsenate particles having a large particle size are produced in a short time.
Hereinafter, arsenic-containing material to which the present invention is applied, trivalent iron source, divalent iron source, trivalent and divalent iron source addition method, oxidizing agent, solution pH value control, pH adjuster, reaction vessel Will be described in detail.

(本発明が適用されるヒ素含有物)
本発明が適用されるヒ素含有物としては、ヒ酸塩、ヒ酸がある。具体的には、製錬工程から発生する排水、煙灰、殿物である。製錬工程において発生する、これらのヒ素含有物を安全に処理する為、浸出等を行い、ヒ素溶液としたものが本発明の対象溶液となる。尤も、この他、ヒ素を含む廃棄物や、土壌、河川等で天然に含有されるヒ素の浄化に伴って発生するヒ素溶液へ、本発明を適用することも可能である。但し、いずれの場合でも溶液中のヒ素は、予め5価ヒ素に酸化しておくことが好ましい。
(Arsenic-containing material to which the present invention is applied)
Arsenic-containing substances to which the present invention is applied include arsenate and arsenic acid. Specifically, waste water, smoke ash, and shrine generated from the smelting process. In order to safely treat these arsenic-containing materials generated in the smelting process, leaching or the like is performed to obtain an arsenic solution, which is the target solution of the present invention. However, the present invention can also be applied to waste containing arsenic, and arsenic solutions generated with the purification of arsenic naturally contained in soil, rivers, and the like. However, in any case, arsenic in the solution is preferably oxidized beforehand to pentavalent arsenic.

ここで本発明者らは、pH値が1以下の酸性溶液中に、ヒ素と3価鉄と2価鉄(本発明において「Fe2+」の意味である。)とを共存させ、且つ、所定反応条件下で、当該酸性溶液中へ酸化剤として酸素や空気を吹き込むことで、結晶性ヒ酸鉄生成反応が迅速に進み、且つ、粒子径の大きな結晶性ヒ酸鉄粒子が生成することを知見した。
本発明者らは上述した所定反応条件として、溶液中に存在するヒ素1モルに対して、1モル未満(0.1〜1.0モル)の3価鉄と、2価鉄とを共に存在させ、当該溶液へ酸化剤の添加(空気、酸素の吹き込み、等)を行なうという反応条件に想到した。そして、当該所定反応条件下では、粒子径の大きな結晶性ヒ酸鉄粒子の生成反応が迅速に進む現象を知見したものである。
Here, the present inventors coexisted arsenic, trivalent iron, and divalent iron (meaning “Fe 2+ ” in the present invention) in an acidic solution having a pH value of 1 or less, and a predetermined value. By blowing oxygen or air as an oxidant into the acidic solution under the reaction conditions, the crystalline iron arsenate production reaction proceeds rapidly and crystalline iron arsenate particles having a large particle size are produced. I found out.
As the above-mentioned predetermined reaction conditions, the present inventors present both less than 1 mol (0.1 to 1.0 mol) of trivalent iron and divalent iron with respect to 1 mol of arsenic present in the solution. The reaction conditions of adding an oxidizing agent (air, oxygen blowing, etc.) to the solution were conceived. Under the predetermined reaction conditions, the inventors have found a phenomenon in which the formation reaction of crystalline iron arsenate particles having a large particle diameter proceeds rapidly.

さらに、当該溶液中にヒ素と3価鉄と2価鉄とが共に存在した場合、結晶性ヒ酸鉄生成反応の進行開始に伴い、3価鉄イオン濃度は、2価鉄イオン濃度と比べ圧倒的に早く低下
してしまうが、2価鉄イオン濃度は、それ程大きな減少変化がないことが知見された。しかし、当該3価鉄イオンおよび2価鉄イオンの濃度の動向にも拘らず、2価鉄の量が多いことで結晶性ヒ酸鉄生成反応の進行が促進されることも判明した。
Furthermore, when arsenic, trivalent iron, and divalent iron exist together in the solution, the trivalent iron ion concentration is overwhelming with the divalent iron ion concentration as the crystalline iron arsenate formation reaction starts. However, it was found that the divalent iron ion concentration did not change so much. However, it has also been found that the progress of the crystalline iron arsenate formation reaction is promoted by increasing the amount of divalent iron in spite of the trend of the concentration of trivalent iron ions and divalent iron ions.

(3価鉄源)
3価鉄源としては、3価鉄塩がある。具体的には、硫酸第2鉄、塩化第2鉄、硝酸第2鉄等、酸化鉄、水酸化鉄等が挙げられる。ここで、設備への腐食性の観点、汎用的な薬剤としての入手が容易性の観点から、硫酸第2鉄が好ましい。
当該硫酸第2鉄は、温水に溶解し3価鉄イオンの溶液として添加することが好ましいが、液量を抑える観点から、直接、粉状で被処理溶液へ添加しても良い。
(Trivalent iron source)
A trivalent iron source is a trivalent iron salt. Specifically, ferric sulfate, ferric chloride, ferric nitrate, etc., iron oxide, iron hydroxide, etc. are mentioned. Here, ferric sulfate is preferable from the viewpoint of corrosiveness to equipment and easy availability as a general-purpose drug.
The ferric sulfate is preferably dissolved in warm water and added as a solution of trivalent iron ions. However, from the viewpoint of suppressing the amount of liquid, it may be added directly to the solution to be treated in powder form.

(2価鉄源)
2価鉄源としては、2価鉄塩がある。具体的には、硫酸第1鉄、塩化第1鉄、硝酸第1鉄等、酸化鉄、水酸化鉄等が挙げられる。ここで、設備への腐食性の観点、汎用的な薬剤としての入手容易性の観点から、硫酸第1鉄が好ましい。
当該硫酸第1鉄は、温水に溶解し2価鉄イオンの溶液として添加しても良いが、液量を抑える観点から、粉状のまま、直接、対象溶液へ添加することが好ましい。
(Divalent iron source)
As a divalent iron source, there is a divalent iron salt. Specifically, ferrous sulfate, ferrous chloride, ferrous nitrate, etc., iron oxide, iron hydroxide and the like can be mentioned. Here, ferrous sulfate is preferable from the viewpoint of corrosiveness to equipment and easy availability as a general-purpose drug.
The ferrous sulfate may be dissolved in warm water and added as a solution of divalent iron ions. However, it is preferable to add the ferrous sulfate directly to the target solution in a powder form from the viewpoint of suppressing the amount of liquid.

(3価および2価鉄源の添加方法)
上記、3価および2価鉄源の被処理溶液への添加は、全量一括添加も良いし、結晶性ヒ酸鉄生成反応の進行に伴って、複数回に分けて分割添加することも出来る。尤も、全量一括添加によれば、操作が簡便化し、作業コストの低減を行うことが出来る。
また、被処理溶液から結晶性ヒ酸鉄が生成した後に得られる反応後液中には、3価鉄および5価ヒ素が殆ど含有されておらず、一方、2価鉄は残留している。そこで、当該反応後液は、再度2価鉄源として使用可能である。当該構成により、薬剤コストの低減を図ることが出来るので好ましい。
(Method of adding trivalent and divalent iron sources)
The trivalent and divalent iron sources can be added to the solution to be treated at once, or they can be added in a plurality of divided portions as the crystalline iron arsenate formation reaction proceeds. However, according to the total addition all at once, the operation can be simplified and the working cost can be reduced.
Further, the trivalent iron and pentavalent arsenic are scarcely contained in the post-reaction solution obtained after the crystalline iron arsenate is produced from the solution to be treated, while the divalent iron remains. Therefore, the post-reaction solution can be used again as a divalent iron source. This configuration is preferable because the drug cost can be reduced.

(酸化剤)
酸化剤は、酸素ガス、空気、酸素を含むガス、空気希釈ガス、オゾン、過酸化水素水等、から選択される1種以上を用いることが出来る。これらのガスの分圧をもちいて濃度調整しても良い。
尚、酸素を含むガスとは、酸素含有組成が21%(空気含有酸素量)より多く100%より少ないガスを示し、空気希釈ガスとは、例えば窒素ガス等の不活性ガスを空気に混合し、酸素含有組成が0%より多く21%(空気含有酸素量)より少ないガスを示す。
添加方法は、ガス体ならば被処理溶液へ吹き込めば良いし、液体ならば当該溶液へ投入すれば良い。
(Oxidant)
As the oxidant, one or more selected from oxygen gas, air, oxygen-containing gas, air dilution gas, ozone, hydrogen peroxide solution, and the like can be used. The concentration may be adjusted using the partial pressure of these gases.
The oxygen-containing gas means a gas having an oxygen-containing composition of more than 21% (air-containing oxygen amount) and less than 100%, and the air-diluting gas is an inert gas such as nitrogen gas mixed with air. A gas having an oxygen-containing composition of more than 0% and less than 21% (air-containing oxygen content).
As for the addition method, if it is a gas body, it may be blown into the solution to be treated.

(溶液のpH値制御)
本発明に係る結晶性ヒ酸鉄生成反応は水素イオンを発生する反応である。この為、当該結晶性ヒ酸鉄生成反応の進行と共に、被処理溶液のpH値は低下する。ここで、溶液のpH値低下を成行きに任せ、当該結晶性ヒ酸鉄生成反応進行時のpH値が0.70から0.
79まで低下すれば、反応速度が著しく低下し、且つ反応後液に残留するヒ素濃度が高くなるという知見を得た。
一方、本発明者らは、当該結晶性ヒ酸鉄生成反応において、3価鉄を用い粒径の大きな結晶性ヒ酸鉄を生成させるためには、溶液のpH値が1以下の領域が好ましいという知見を得ている。
(Control of pH value of solution)
The crystalline iron arsenate production reaction according to the present invention is a reaction that generates hydrogen ions. For this reason, as the crystalline iron arsenate production reaction proceeds, the pH value of the solution to be treated decreases. Here, the pH value of the solution was allowed to decrease, and the pH value during the crystalline iron arsenate formation reaction proceeded from 0.70 to 0.00.
It has been found that if it is reduced to 79, the reaction rate is remarkably reduced and the concentration of arsenic remaining in the post-reaction solution increases.
On the other hand, in order to produce crystalline iron arsenate having a large particle size using trivalent iron in the crystalline iron arsenate production reaction, the inventors preferably have a solution having a pH value of 1 or less. I have obtained the knowledge.

以上の知見より、本発明者らは、当該結晶性ヒ酸鉄生成反応の進行中は、発生する水素イオンを中和し、且つ反応終了時のpH値を所定範囲内に収めるのが良いと考えた。
具体的には、例えば、溶液のpH値が0.8以下となる際は、pH値を0.8以上に保
持し、pH1迄上昇させることが出来る。
そして、被処理溶液中のヒ素濃度が、反応開始時点におけるヒ素濃度の30%以下となる反応後期では、結晶性ヒ酸鉄生成反応が緩慢になる。そこで、当該反応後期においては、pH値を1〜2前後迄上昇させて、結晶性ヒ酸鉄生成反応を促進する構成を採ることも好ましい。当該反応後期においては、既に生成した結晶性ヒ酸鉄は安定しており、pH値上昇による結晶性ヒ酸鉄の再溶解は起こらないので問題はない。
Based on the above findings, the present inventors should neutralize the generated hydrogen ions and keep the pH value at the end of the reaction within a predetermined range during the progress of the crystalline iron arsenate production reaction. Thought.
Specifically, for example, when the pH value of the solution is 0.8 or less, the pH value can be maintained at 0.8 or more and raised to pH 1.
Then, the crystalline iron arsenate production reaction becomes slow at the late stage of the reaction when the arsenic concentration in the solution to be treated is 30% or less of the arsenic concentration at the start of the reaction. Therefore, in the latter stage of the reaction, it is also preferable to increase the pH value to about 1 to 2 to promote the crystalline iron arsenate production reaction. In the latter stage of the reaction, the crystalline iron arsenate already produced is stable, and there is no problem because the crystalline iron arsenate does not re-dissolve due to an increase in pH value.

尚、所定pH値でのpH値保持制御幅は、結晶性ヒ酸鉄の粒子成長の観点からは狭い程好ましい。例えば、所定pH値を1.0として保持する場合のpH値制御幅は、pH値が0.9より低下せず1.0を超さない範囲よりも狭い範囲で制御することが好ましい。
当該pH値の制御幅を実現するには、後述するpH調整剤を水に添加して、高スラリー濃度の液状としてから被処理溶液へ添加することで、当該溶液への濡れを確保し、当該溶液中への拡散を容易せしめる方法等が有効である。
In addition, the pH value holding control width at a predetermined pH value is preferably as narrow as possible from the viewpoint of particle growth of crystalline iron arsenate. For example, it is preferable that the pH value control range when the predetermined pH value is held as 1.0 is controlled in a narrower range than the range where the pH value does not fall below 0.9 and does not exceed 1.0.
In order to realize the control range of the pH value, a pH adjusting agent to be described later is added to water, and added to the solution to be treated after forming a liquid with a high slurry concentration, thereby ensuring wetting of the solution. A method of facilitating diffusion into the solution is effective.

(pH調整剤)
pH調整剤には、アルカリ土類金属系のアルカリ、例えば、Mg(OH)2、Ca(OH)2、MgO、CaO、等が好ましく、アルカリ金属系のアルカリ、例えば、NaOH、KOH、等でも良い。これらの単種または複数の混合でも良い。
(PH adjuster)
The pH adjuster is preferably an alkaline earth metal alkali such as Mg (OH) 2, Ca (OH) 2, MgO, CaO, or the like, or an alkali metal alkali such as NaOH or KOH. good. These single species or a mixture of a plurality of species may be used.

(反応容器)
当該結晶性ヒ酸鉄の生成反応に用いる容器は開放型で良い。当該生成反応は大気圧下でおこなう為、容器には特別な耐圧性は不要である。
(Reaction vessel)
The container used for the production reaction of the crystalline iron arsenate may be an open type. Since the production reaction takes place under atmospheric pressure, the container does not require special pressure resistance.

(まとめ)
以上説明した、本発明に係る対象溶液からの結晶性ヒ酸鉄生成方法によれば、結晶粒径の大きいヒ酸鉄粒子を短時間で生成させることが可能となった。さらに、得られた結晶性ヒ酸鉄粒子は、ヒ素の溶出値が低いものであった。この結果、生成した結晶性ヒ酸鉄は、濾過性、ハンドリング性とも優れていた。
一方、結晶性ヒ酸鉄粒子の径を大きく出来たことは、粒子径の調整幅を拡大出来たことである。当該調整幅の拡大手法は、結晶性ヒ酸鉄粒子の様々な用途、保管方法、等に応用可能であり、結晶性ヒ酸鉄粒子の保管、利用範囲が拡大される可能性は高い。
(Summary)
According to the method for producing crystalline iron arsenate from the target solution according to the present invention described above, iron arsenate particles having a large crystal grain size can be produced in a short time. Furthermore, the obtained crystalline iron arsenate particles had low arsenic elution values. As a result, the produced crystalline iron arsenate was excellent in both filterability and handling properties.
On the other hand, the fact that the diameter of the crystalline iron arsenate particles can be increased is that the adjustment range of the particle diameter can be expanded. The method for expanding the adjustment range can be applied to various uses and storage methods of the crystalline iron arsenate particles, and there is a high possibility that the storage and use range of the crystalline iron arsenate particles will be expanded.

以下、実施例を参照しながら本発明に関し詳細に説明する。
(実施例1)
1)試験ユニットおよび試験規模
試験容器としては1Lビーカーを使用した。当該試験容器に設置する撹拌装置は、4枚邪魔板付き、2段タービン羽根、回転数600rpmを使用した。
このとき、1バッチ当たりにおけるヒ素、鉄混合溶液の処理量は総量で650mLとした。なお、いずれの実施例も大気圧(常圧)下である。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
1) Test unit and test scale A 1 L beaker was used as a test container. The stirrer installed in the test vessel was equipped with four baffle plates, a two-stage turbine blade, and a rotation speed of 600 rpm.
At this time, the total amount of arsenic and iron mixed solution processed per batch was 650 mL. All examples are under atmospheric pressure (normal pressure).

2)3価鉄溶液の調製
試薬硫酸鉄(III)水和物(鉄品位として21.6%)1,815gを量り取り、これを5Lビーカーに投入し、純水を加えて液量を1,900mLとした。そして、当該溶液を80℃に加温し、攪拌して硫酸鉄(III)溶液を得た。
当該硫酸鉄(III)溶液を室温まで放冷し、さらに、当該溶液の液量が2,000mLになるように純水を補加し、実施例1および、後述する他実施例に係る3価鉄溶液を得た。
当該3価鉄溶液に対する分析の結果、鉄濃度は196g/Lであることが判明した。
2) Preparation of trivalent iron solution
Reagent iron (III) sulfate hydrate (21.6% as iron grade) 1,815 g was weighed out, put into a 5 L beaker, and pure water was added to make the liquid volume 1,900 mL. Then, the solution was heated to 80 ° C. and stirred to obtain an iron (III) sulfate solution.
The iron (III) sulfate solution is allowed to cool to room temperature, and further, pure water is supplemented so that the liquid volume of the solution becomes 2,000 mL. Example 1 and trivalents according to other examples described later An iron solution was obtained.
Analysis of the trivalent iron solution revealed that the iron concentration was 196 g / L.

3)ヒ素、鉄混合溶液の調製
5価ヒ素として試薬60%砒酸溶液を準備した。
3価鉄として、上述した2)の3価鉄溶液を準備した。
2価鉄として試薬硫酸鉄(II)7水和物を準備した。
ここで、5価ヒ素が25g/Lであって、3価鉄が5価ヒ素総モル量にたいして0.75倍当量(0.75倍モル)、2価鉄が5価ヒ素総モル量にたいして0.5倍当量(0.5倍モル)のヒ素と鉄との混合溶液を製造した。
具体的には、試薬60%砒酸溶液32.5mLと、試薬硫酸鉄(II)7水和物30.1gと、上述した2)の3価鉄溶液46.5mLとを混合し、さらに、水を加えて全量を650mLにした。
こうして得られたヒ素と鉄との混合溶液は、ヒ素濃度25.1g/L、3価鉄濃度14.1g/L、2価鉄濃度9.4g/Lであった。
3) Preparation of Arsenic and Iron Mixed Solution A reagent 60% arsenic acid solution was prepared as pentavalent arsenic.
The trivalent iron solution of 2) described above was prepared as the trivalent iron.
The reagent iron sulfate (II) heptahydrate was prepared as divalent iron.
Here, pentavalent arsenic is 25 g / L, trivalent iron is 0.75 times equivalent to the total molar amount of pentavalent arsenic (0.75 times mol), and divalent iron is 0 to the total molar amount of pentavalent arsenic. A mixed solution of arsenic and iron having a 5-fold equivalent (0.5-fold mole) was produced.
Specifically, 32.5 mL of a reagent 60% arsenic acid solution, 30.1 g of reagent iron (II) sulfate heptahydrate, and 46.5 mL of the trivalent iron solution of 2) described above were mixed, To a total volume of 650 mL.
The mixed solution of arsenic and iron thus obtained had an arsenic concentration of 25.1 g / L, a trivalent iron concentration of 14.1 g / L, and a divalent iron concentration of 9.4 g / L.

4)pH調整剤
本実施例においては、pH調整剤としてキシダ化学株式会社製試薬、水酸化マグネシウムMg(OH)(assay min95%)を準備した。
4) pH adjuster In this example, a reagent manufactured by Kishida Chemical Co., Ltd., magnesium hydroxide Mg (OH) 2 (assay min 95%) was prepared as a pH adjuster.

5)酸化剤
本実施例においては、反応開始から溶液中にヒ酸鉄の核が発生するまでの段階では、酸化剤として空気を用い、これ以降、結晶性ヒ酸鉄の粒子が成長する段階では、酸化剤として酸素ガスを用いた。
5) Oxidizing agent In this example, air is used as the oxidizing agent in the stage from the start of the reaction until iron arsenate nuclei are generated in the solution, and thereafter, the crystalline iron arsenate particles grow. Then, oxygen gas was used as the oxidizing agent.

6)結晶性ヒ酸鉄生成反応
本実施例、および、実施例2〜4、比較例1、2では、結晶性ヒ酸鉄としてスコロダイト結晶を生成させた。そこで、以下の説明においては、「結晶性ヒ酸鉄」に代えて「スコロダイト」と表記した。
上述したヒ素と鉄との混合溶液を95℃へ加温する。このとき、95℃到達時点で混合溶液のpH値が1を超えないようにする為、加温中に混合溶液へ硫酸を添加した。そして、当該混合溶液の液温が95℃到達時点で、混合溶液のpH値が1となるように、添加する硫酸量を調整した。
6) Crystalline iron arsenate production reaction In this example, Examples 2 to 4, and Comparative Examples 1 and 2, scorodite crystals were produced as crystalline iron arsenate. Therefore, in the following description, “scorodite” is used instead of “crystalline iron arsenate”.
The above-mentioned mixed solution of arsenic and iron is heated to 95 ° C. At this time, in order to prevent the pH value of the mixed solution from exceeding 1 when reaching 95 ° C., sulfuric acid was added to the mixed solution during heating. Then, the amount of sulfuric acid to be added was adjusted so that the pH value of the mixed solution became 1 when the liquid temperature of the mixed solution reached 95 ° C.

混合溶液の液温が95℃、pH1であることを確認し、酸化剤の添加を開始してスコロダイト生成反応を開始した。
酸化剤の添加は、反応開始から溶液中にスコロダイトの核が発生するまでの30分間は、空気を1L/minで吹き込み、その後、スコロダイトの粒子が成長する段階では酸素ガスに替え、1L/minで反応終了まで210分間、吹き込みを継続した(結局、スコロダイト生成反応時間は、全体で4時間となった。)。混合溶液のpH値は、開始当初は1.0であったが、pH調整剤としてMg(OH)を粉末のまま添加し、溶液のpH値を0.93〜0.99間にて制御した。次いで、反応開始から120分間後に溶液のpH値を1.5迄上昇させ、pH値を1.46〜1.54間にて制御した。反応終了後は生成物を濾過し、反応後液と生成残さ(スコロダイト)とを得た。なお、本実施例において濾過は極めてスムーズに進行し、10秒とかからない数秒で完了した。
After confirming that the temperature of the mixed solution was 95 ° C. and pH 1, addition of an oxidizing agent was started to start a scorodite production reaction.
Addition of the oxidizing agent is performed by blowing air at 1 L / min for 30 minutes from the start of the reaction until nuclei of scorodite are generated in the solution. After that, when the scorodite particles grow, the oxygen gas is changed to 1 L / min. Then, blowing was continued for 210 minutes until the end of the reaction (eventually, the scorodite production reaction time was 4 hours). The pH value of the mixed solution was 1.0 at the beginning, but Mg (OH) 2 was added as a pH adjuster as a powder, and the pH value of the solution was controlled between 0.93 and 0.99. did. Subsequently, 120 minutes after the start of the reaction, the pH value of the solution was increased to 1.5, and the pH value was controlled between 1.46 and 1.54. After completion of the reaction, the product was filtered to obtain a post-reaction solution and a product residue (scorodite). In this example, the filtration proceeded very smoothly and was completed in a few seconds, not 10 seconds.

7)生成したスコロダイトの評価
得られた反応終了時点での濾過物を純水洗浄した後、X線回折測定を行い、スコロダイト生成状況を評価した。得られたスコロダイトの粒子径測定結果を表4に示す。
X線回折結果より、反応終了時点での濾過物には、スコロダイト(FeAsO・2HO)の結晶を示すシャープなピークが広い回折角の範囲で確認され、スコロダイト結晶であると同定した。
7) Evaluation of generated scorodite After the obtained filtered product was washed with pure water, X-ray diffraction measurement was performed to evaluate the state of scorodite generation. Table 4 shows the particle size measurement results of the obtained scorodite.
From the X-ray diffraction result, a sharp peak indicating a scorodite (FeAsO 4 .2H 2 O) crystal was confirmed in a wide diffraction angle range in the filtrate at the end of the reaction, and the scorodite crystal was identified.

(実施例2)
上述した実施例1の「3)ヒ素、鉄混合溶液の調製」において、5価ヒ素を25g/L
、3価鉄を5価ヒ素総モル量にたいして0.75倍当量(0.75倍モル)、2価鉄を5価ヒ素総モル量にたいして0.75倍当量(0.75倍モル)の、ヒ素と鉄との混合溶液とし、反応初期における空気吹き込み時間を60分間とした以外は、実施例1と同様にして、実施例2に係る生成物を得た。
当該生成物を濾過し、溶液と生成残さ(スコロダイト)とを得た。なお、本実施例においても濾過は極めてスムーズに進行し、10秒とかからない数秒で完了した。
得られた反応終了時点での濾過物を純水洗浄した後、得られたスコロダイトの粒子径測定結果を表4示す。
(Example 2)
In “3) Preparation of Arsenic and Iron Mixed Solution” in Example 1 described above, pentavalent arsenic was added at 25 g / L.
0.75 times equivalent (0.75 times mole) trivalent iron to pentavalent arsenic total mole amount, 0.75 times equivalent (0.75 times mole) divalent iron to pentavalent arsenic total mole amount, A product according to Example 2 was obtained in the same manner as in Example 1 except that a mixed solution of arsenic and iron was used and the air blowing time in the initial reaction was 60 minutes.
The product was filtered to obtain a solution and a product residue (scorodite). In this example as well, the filtration proceeded very smoothly and was completed in a few seconds, not 10 seconds.
Table 4 shows the particle size measurement results of the obtained scorodite after the filtrate at the end of the reaction was washed with pure water.

また、本実施例においては、反応開始時、反応開始60分間後、反応開始120分間後、反応開始240分間後における、被処理溶液中の5価ヒ素濃度、3価鉄濃度、2価鉄濃度を測定した。当該測定結果を表1に記載する。   In this example, the pentavalent arsenic concentration, trivalent iron concentration, divalent iron concentration in the solution to be treated at the start of the reaction, 60 minutes after the start of the reaction, 120 minutes after the start of the reaction, and 240 minutes after the start of the reaction. Was measured. The measurement results are shown in Table 1.

Figure 2011178602
Figure 2011178602

表1の結果より、被処理溶液のpH値が1以下であるところの、反応開始120分間後までに、3価鉄の殆ど全量がスコロダイト生成反応に消費され、一方、2価鉄の消費量は少量であることが確認された。当該結果より、被処理溶液のpH値が1以下の下で、5価ヒ素と3価鉄とが、短時間で、且つ2価鉄に優先してスコロダイトを生成する反応を行っていることが確認出来た。   From the results shown in Table 1, almost all of the trivalent iron was consumed in the scorodite formation reaction until 120 minutes after the start of the reaction where the pH value of the solution to be treated was 1 or less, while the consumption of divalent iron. Was confirmed to be small. From the results, it is found that pentavalent arsenic and trivalent iron are performing a reaction that produces scorodite in a short time and in preference to divalent iron under a pH value of 1 or less. I was able to confirm.

反応開始240分間後における、被処理溶液中の5価ヒ素濃度、3価鉄濃度、2価鉄濃度を見ると、5価ヒ素濃度および3価鉄濃度は非常に低いが、2価鉄濃度は高い。従って、反応後液である当該反応開始240分間後における被処理溶液は、2価鉄源として再度の利用が可能であることが判明した。   Looking at the pentavalent arsenic concentration, trivalent iron concentration, and divalent iron concentration in the solution to be treated 240 minutes after the start of the reaction, the pentavalent arsenic concentration and trivalent iron concentration are very low, but the divalent iron concentration is high. Accordingly, it was found that the solution to be treated, which is a post-reaction solution 240 minutes after the start of the reaction, can be reused as a divalent iron source.

(実施例3)
上述した実施例1の「3)ヒ素、鉄混合溶液の調製」において、5価ヒ素を25g/L、3価鉄を5価ヒ素総モル量にたいして0.9倍当量(0.9倍モル)、2価鉄を5価ヒ素総モル量にたいして0.5倍当量(0.5倍モル)とした以外は、実施例1と同様にして、実施例3に係る生成物を得た。
当該生成物を濾過し、溶液と生成残さ(スコロダイト)とを得た。なお、本実施例においても濾過は極めてスムーズに進行し、10秒とかからない数秒で完了した。
得られた反応終了時点での濾過物を純水洗浄した後、得られたスコロダイトの粒子径測定結果を表4に示す。
(Example 3)
In “3) Preparation of Arsenic and Iron Mixed Solution” in Example 1 described above, pentavalent arsenic is 25 g / L, and trivalent iron is 0.9 times equivalent (0.9 times mole) to the total molar amount of pentavalent arsenic. The product according to Example 3 was obtained in the same manner as in Example 1 except that divalent iron was changed to 0.5 times equivalent (0.5 times mol) with respect to the total molar amount of pentavalent arsenic.
The product was filtered to obtain a solution and a product residue (scorodite). In this example as well, the filtration proceeded very smoothly and was completed in a few seconds, not 10 seconds.
Table 4 shows the particle size measurement results of the obtained scorodite after the filtrate at the end of the reaction was washed with pure water.

(実施例4)
上述した実施例1の「3)ヒ素、鉄混合溶液の調製」において、5価ヒ素を25g/L、3価鉄を5価ヒ素総モル量にたいして0.9倍当量(0.9倍モル)、2価鉄を5価ヒ素総モル量にたいして0.75倍当量(0.75倍モル)とした以外は、実施例1と同様
にして、実施例4に係る生成物を得た。
当該生成物を濾過し、溶液と生成残さ(スコロダイト)とを得た。なお、本実施例においても濾過は極めてスムーズに進行し、10秒とかからない数秒で完了した。
得られた反応終了時点での濾過物を純水洗浄した後、得られたスコロダイトの粒子径測定結果を表4に示す。
Example 4
In “3) Preparation of Arsenic and Iron Mixed Solution” in Example 1 described above, pentavalent arsenic is 25 g / L, and trivalent iron is 0.9 times equivalent (0.9 times mole) to the total molar amount of pentavalent arsenic. A product according to Example 4 was obtained in the same manner as in Example 1 except that divalent iron was changed to 0.75 times equivalent (0.75 times mol) with respect to the total molar amount of pentavalent arsenic.
The product was filtered to obtain a solution and a product residue (scorodite). In this example as well, the filtration proceeded very smoothly and was completed in a few seconds, not 10 seconds.
Table 4 shows the particle size measurement results of the obtained scorodite after the filtrate at the end of the reaction was washed with pure water.

(比較例1)
1)ヒ素、鉄混合溶液の調製
上述した実施例1の「3)ヒ素、鉄混合溶液の調製」において、5価ヒ素を25g/Lとし、3価鉄を5価ヒ素総モル量にたいして1.0倍当量(1.0倍モル)、2価鉄を5価ヒ素総モル量にたいして0.5倍当量(0.5倍モル)とした以外は、実施例1と同様にして比較例1に係る操作を行った。
(Comparative Example 1)
1) Preparation of Arsenic / Iron Mixed Solution In “3) Preparation of Arsenic / Iron Mixed Solution” in Example 1 described above, the pentavalent arsenic was 25 g / L, and the trivalent iron was adjusted to the total molar amount of pentavalent arsenic. Comparative Example 1 was carried out in the same manner as in Example 1 except that 0-fold equivalent (1.0-fold mole) and divalent iron were changed to 0.5-fold equivalent (0.5-fold mole) with respect to the total mole amount of pentavalent arsenic. This operation was performed.

2)スコロダイトの生成反応
調製したヒ素と鉄との混合溶液を95℃へ加温した。このとき、95℃到達時点で混合溶液のpH値が1を超えないようにする為、加温中に混合溶液へ硫酸を添加した。そして、当該混合溶液の液温が95℃到達時点で、混合溶液のpH値が1となるように、添加する硫酸量を調整した。
2) Formation reaction of scorodite The prepared mixed solution of arsenic and iron was heated to 95 ° C. At this time, in order to prevent the pH value of the mixed solution from exceeding 1 when reaching 95 ° C., sulfuric acid was added to the mixed solution during heating. Then, the amount of sulfuric acid to be added was adjusted so that the pH value of the mixed solution became 1 when the liquid temperature of the mixed solution reached 95 ° C.

混合溶液の液温が95℃、pH1であることを確認し、酸化剤(酸素ガス)の添加を開始してスコロダイト生成反応開始とした。尚、酸化剤の量、及び、pHの制御は実施例1と同様に行った。しかし、本比較例1においては、反応開始から120分間経っても反応生成物による溶液の濁りは僅かであった。
この後、当該溶液にpH調整剤を添加してpH値を1.5まで上昇させた。酸化剤は継続して吹き込み、反応開始から240分間後に酸化剤の吹き込みを止めて反応終了とし、本反応に係る生成物を得た。
当該生成物を濾過し、溶液と生成残さ(スコロダイト)とを得た。比較例1に係るスコロダイトの濾過性は、非常に悪いものであった。
After confirming that the liquid temperature of the mixed solution was 95 ° C. and pH 1, addition of an oxidizing agent (oxygen gas) was started to start a scorodite production reaction. The amount of oxidant and pH were controlled in the same manner as in Example 1. However, in Comparative Example 1, the turbidity of the solution due to the reaction product was slight even after 120 minutes from the start of the reaction.
Thereafter, a pH adjuster was added to the solution to raise the pH value to 1.5. The oxidizing agent was continuously blown, and after 240 minutes from the start of the reaction, the blowing of the oxidizing agent was stopped to complete the reaction, and a product according to this reaction was obtained.
The product was filtered to obtain a solution and a product residue (scorodite). The filterability of the scorodite according to Comparative Example 1 was very bad.

3)生成したスコロダイトの評価
得られた反応終了時点での濾過物を純水洗浄した後、得られたスコロダイトの粒子径測定結果を表4に示す。
3) Evaluation of produced scorodite After the obtained filtrate at the end of the reaction was washed with pure water, the particle size measurement result of the obtained scorodite is shown in Table 4.

また、本比較例においては、反応開始時、反応開始60分間後、反応開始120分間後、反応開始240分間後における、被処理溶液中の5価ヒ素濃度、3価鉄濃度、2価鉄濃度を測定した。当該測定結果を表2に記載する。   In this comparative example, the pentavalent arsenic concentration, trivalent iron concentration, and divalent iron concentration in the solution to be treated at the start of the reaction, 60 minutes after the start of the reaction, 120 minutes after the start of the reaction, and 240 minutes after the start of the reaction. Was measured. The measurement results are shown in Table 2.

Figure 2011178602
Figure 2011178602

表2の結果より、3価Fe/5価Asのモル比が1の場合で、溶液のpH値が1以下の
状態では、5価ヒ素はほとんど濃度変化が起きないことが判明した。当該濃度変化が起きないことは、3価鉄、2価鉄も同様であった。つまり、3価鉄e/5価ヒ素のモル比が1以上であって、溶液のpH値が1以下の場合、実施例で説明した様な、迅速なスコロダイト生成反応は進まないことが判明した。
From the results in Table 2, it was found that when the molar ratio of trivalent Fe / 5valent As is 1, and the pH value of the solution is 1 or less, the concentration of pentavalent arsenic hardly changes. The fact that the concentration did not change was the same for trivalent iron and divalent iron. That is, when the molar ratio of trivalent iron e / 5 arsenic was 1 or more and the pH value of the solution was 1 or less, it was found that the rapid scorodite formation reaction did not proceed as described in the examples. .

次に、溶液のpH値を1.5へ上昇させた120分間後においては、ヒ素と3価鉄の濃度が激減し、2価鉄の濃度はほとんど変化しないことが判明した。すなわち、比較例1で得られたスコロダイトは、溶液のpH値が1.5の下で、5価ヒ素と3価鉄との反応により生成したものであること、および、生成したスコロダイトの粒子径は3.3μmと非常
に微細なものであることが判明した。尚、本反応例において、酸化剤に空気を用いた場合においても同様の結果が得られた。
Next, after 120 minutes when the pH value of the solution was raised to 1.5, it was found that the concentrations of arsenic and trivalent iron were drastically reduced, and the concentration of divalent iron was hardly changed. That is, the scorodite obtained in Comparative Example 1 was produced by the reaction of pentavalent arsenic and trivalent iron under a solution pH value of 1.5, and the particle size of the produced scorodite Was found to be as fine as 3.3 μm. In this reaction example, the same result was obtained when air was used as the oxidizing agent.

(比較例2)
1)ヒ素、鉄混合溶液の調製
上述した実施例1の「3)ヒ素、鉄混合溶液の調製」において、5価ヒ素を25g/Lとし、3価鉄を5価ヒ素総モル量にたいして1.0倍当量(1.0倍モル)、2価鉄を5価ヒ素総モル量にたいして1.5倍当量(1.5倍モル)とした以外は、実施例1と同様にして比較例2に係る操作を行った。
(Comparative Example 2)
1) Preparation of Arsenic / Iron Mixed Solution In “3) Preparation of Arsenic / Iron Mixed Solution” in Example 1 described above, the pentavalent arsenic was 25 g / L, and the trivalent iron was adjusted to the total molar amount of pentavalent arsenic. Comparative Example 2 was carried out in the same manner as in Example 1 except that 0-fold equivalent (1.0-fold mole) and divalent iron were changed to 1.5-fold equivalent (1.5-fold mole) with respect to the total mole amount of pentavalent arsenic. This operation was performed.

2)スコロダイトの生成反応
混合溶液の液温が95℃、pH1.0であることを確認し、酸化剤の添加を開始し反応開始とした。
酸化剤(酸素ガス)の添加は、反応開始から240分後まで継続した(pHが1以下で全反応時間は4時間とした。)。圧力は、大気圧下において特段の制御なく行った。
反応終了後は生成物を濾過し、溶液と生成残さ(スコロダイト)とを得た。残さはかなりの少量であった。
2) Formation reaction of scorodite After confirming that the liquid temperature of the mixed solution was 95 ° C. and pH 1.0, the addition of an oxidizing agent was started and the reaction was started.
The addition of the oxidizing agent (oxygen gas) was continued for 240 minutes after the start of the reaction (pH was 1 or less and the total reaction time was 4 hours). The pressure was performed under atmospheric pressure without special control.
After completion of the reaction, the product was filtered to obtain a solution and a product residue (scorodite). The residue was quite small.

また、本比較例においては、反応開始時、 反応開始90分間後、反応開始180分間
後、 反応開始240分間後における、被処理溶液中の5価ヒ素濃度、3価鉄濃度、2価
鉄濃度を測定した。当該測定結果を表3に記載する。
In this comparative example, the pentavalent arsenic concentration, trivalent iron concentration, divalent iron concentration in the solution to be treated at the start of the reaction, 90 minutes after the start of the reaction, 180 minutes after the start of the reaction, and 240 minutes after the start of the reaction. Was measured. The measurement results are shown in Table 3.

Figure 2011178602
Figure 2011178602

表3の結果より、3価Fe/5価Asのモル比が1で、溶液のpH値が1以下であり、さらに2価鉄のモル比を1.5まで上昇させた状態でも、5価ヒ素の濃度低下は緩慢であることが判明した。一方、2価鉄の、3価鉄への酸化反応が認められるものの、3価鉄の殆どはスコロダイト生成反応に寄与せず、3価鉄濃度の上昇が認められた。
このことより、3価鉄/5価ヒ素のモル比が1以上であると、溶液のpH値を1以下とし、2価鉄量を増量し、酸化剤を投入しても、迅速なスコロダイト生成反応は起こらないことが判明した。
From the results of Table 3, even when the molar ratio of trivalent Fe / 5valent As is 1, the pH value of the solution is 1 or less, and the molar ratio of divalent iron is increased to 1.5, pentavalent The decrease in arsenic concentration was found to be slow. On the other hand, although an oxidation reaction of divalent iron to trivalent iron was observed, most of the trivalent iron did not contribute to the scorodite formation reaction, and an increase in the trivalent iron concentration was observed.
From this, when the molar ratio of trivalent iron / 5 arsenic is 1 or more, the pH value of the solution is 1 or less, the amount of divalent iron is increased, and rapid scorodite generation is possible even when an oxidizing agent is added. It was found that no reaction occurred.

3)生成したスコロダイトの評価
得られた反応終了時点での濾過物を純水洗浄した後、得られたスコロダイトの粒子径測定結果を表4に示す。
3) Evaluation of produced scorodite After the obtained filtrate at the end of the reaction was washed with pure water, the particle size measurement result of the obtained scorodite is shown in Table 4.

Figure 2011178602
Figure 2011178602

表4に示す結果より、5価ヒ素と3価鉄と2価鉄とを含有しpH値が1.0以下であるヒ素を含有する溶液において、5価ヒ素のモル数をAモル、3価鉄のモル数をBモル、2価鉄のモル数をCモルとするとき、B/A<1.0およびC>0およびB>0とし酸化剤とを添加することで、短時間に粗大な粒径を有するスコロダイトが得られることが判明した。そして、ヒ素を含有する溶液において、2価鉄の量が多い程、結晶粒径の大きなものが短時間で得られることが判明した。   From the results shown in Table 4, in a solution containing arsenic containing pentavalent arsenic, trivalent iron, and divalent iron and having a pH value of 1.0 or less, the number of moles of pentavalent arsenic is A mole, trivalent. When the number of moles of iron is B mole and the number of moles of divalent iron is C mole, it is coarse in a short time by adding B / A <1.0 and C> 0 and B> 0 and an oxidizing agent. It has been found that scorodite having an appropriate particle size can be obtained. It has been found that in a solution containing arsenic, the larger the amount of divalent iron, the larger the crystal grain size can be obtained in a shorter time.

Claims (5)

5価ヒ素と3価鉄とを含有する溶液へ2価鉄を添加し、前記溶液のpH値を1.0以下とし、酸化剤を添加して、結晶性ヒ酸鉄を生成する方法であって、
前記ヒ素を含有する溶液中における、5価ヒ素のモル数をAモル、3価鉄のモル数をBモル、2価鉄のモル数をCモルとするとき、B/A<1.0およびC>0およびB>0とする、ことを特徴とするヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法。
In this method, divalent iron is added to a solution containing pentavalent arsenic and trivalent iron, the pH value of the solution is adjusted to 1.0 or less, and an oxidizing agent is added to produce crystalline iron arsenate. And
In the arsenic-containing solution, when the mole number of pentavalent arsenic is A mole, the mole number of trivalent iron is B mole, and the mole number of divalent iron is C mole, B / A <1.0 and A method for producing crystalline iron arsenate from a solution containing arsenic, characterized in that C> 0 and B> 0.
さらに、(B+C)≧Aである、ことを特徴とする請求項1に記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法。   The method for producing crystalline iron arsenate from an arsenic-containing solution according to claim 1, wherein (B + C) ≧ A. 上記酸化剤が、酸素ガス、空気、酸素を含むガス、空気希釈ガス、過酸化水素水から選択されるいずれか1種以上である、ことを特徴とする請求項1または2に記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法。   3. The arsenic according to claim 1, wherein the oxidant is at least one selected from oxygen gas, air, oxygen-containing gas, air dilution gas, and hydrogen peroxide solution. 4. A method for producing crystalline iron arsenate from a contained solution. 前記結晶性ヒ酸鉄の生成反応において、溶液中のヒ素濃度が、反応開始時点におけるヒ素濃度の30%以下となる時期以降に、前記溶液のpH値を、1を超え、2以下とする、ことを特徴とする請求項1から3のいずれかに記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法。   In the production reaction of crystalline iron arsenate, the pH value of the solution is more than 1 and 2 or less after the time when the arsenic concentration in the solution becomes 30% or less of the arsenic concentration at the start of the reaction. The method for producing crystalline iron arsenate from a solution containing arsenic according to any one of claims 1 to 3. ヒ素を含有する溶液から結晶性ヒ酸鉄を生成させた後の反応後液を、2価鉄源として再度使用する、ことを特徴とする請求項1から4のいずれかに記載のヒ素を含有する溶液からの結晶性ヒ酸鉄の生成方法。   The arsenic-containing product according to any one of claims 1 to 4, wherein the post-reaction solution after producing crystalline iron arsenate from the solution containing arsenic is reused as a divalent iron source. A method for producing crystalline iron arsenate from a solution.
JP2010044387A 2010-03-01 2010-03-01 Method for producing crystalline iron arsenate from a solution containing arsenic Active JP5662036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010044387A JP5662036B2 (en) 2010-03-01 2010-03-01 Method for producing crystalline iron arsenate from a solution containing arsenic
PCT/JP2011/054502 WO2011108488A1 (en) 2010-03-01 2011-02-28 Method for producing crystalline iron arsenate from solution containing arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044387A JP5662036B2 (en) 2010-03-01 2010-03-01 Method for producing crystalline iron arsenate from a solution containing arsenic

Publications (2)

Publication Number Publication Date
JP2011178602A true JP2011178602A (en) 2011-09-15
JP5662036B2 JP5662036B2 (en) 2015-01-28

Family

ID=44542140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044387A Active JP5662036B2 (en) 2010-03-01 2010-03-01 Method for producing crystalline iron arsenate from a solution containing arsenic

Country Status (2)

Country Link
JP (1) JP5662036B2 (en)
WO (1) WO2011108488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079078A (en) * 2014-10-21 2016-05-16 Dowaメタルマイン株式会社 Producing method of crystalline ferrous arsenate from solution containing pentavalent arsenic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038401A1 (en) * 2006-09-27 2008-04-03 Dowa Metals & Mining Co., Ltd. Process for producing iron arsenide compound with good crystallinity
JP2008126104A (en) * 2006-11-17 2008-06-05 Dowa Metals & Mining Co Ltd Method of treating arsenic-containing liquid
JP2008540824A (en) * 2005-05-03 2008-11-20 オウトテック オサケイティオ ユルキネン Method for recovering valuable metals and arsenic from solution
JP2009018291A (en) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd Method for treating arsenic, where seed crystals are added
JP2009079237A (en) * 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540824A (en) * 2005-05-03 2008-11-20 オウトテック オサケイティオ ユルキネン Method for recovering valuable metals and arsenic from solution
WO2008038401A1 (en) * 2006-09-27 2008-04-03 Dowa Metals & Mining Co., Ltd. Process for producing iron arsenide compound with good crystallinity
JP2008126104A (en) * 2006-11-17 2008-06-05 Dowa Metals & Mining Co Ltd Method of treating arsenic-containing liquid
JP2009018291A (en) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd Method for treating arsenic, where seed crystals are added
JP2009079237A (en) * 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079078A (en) * 2014-10-21 2016-05-16 Dowaメタルマイン株式会社 Producing method of crystalline ferrous arsenate from solution containing pentavalent arsenic

Also Published As

Publication number Publication date
WO2011108488A1 (en) 2011-09-09
JP5662036B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US8110162B2 (en) Method of processing copper arsenic compound
US8092765B2 (en) Method of processing non-ferrous smelting intermediates containing arsenic
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
JP4268196B2 (en) Method for producing scorodite
JP2008105921A (en) Method of producing iron-arsenic compound excellent in crystallinity
JP2009079237A (en) Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
JP2008126104A (en) Method of treating arsenic-containing liquid
JP6286155B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
CN106868320A (en) A kind of preparation method of the solid arsenic mineral of high stability
JP4971933B2 (en) Method for producing iron arsenic compound
JP2011177651A (en) Arsenic-containing solution treatment method
JP5156224B2 (en) Manufacturing method of iron arsenic compounds
JP5662036B2 (en) Method for producing crystalline iron arsenate from a solution containing arsenic
JP4902450B2 (en) Arsenic treatment method
JP5571517B2 (en) Separation of copper and arsenic from non-ferrous smelting intermediates containing copper and arsenic
JP6446229B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
JP2018150186A (en) Method for producing scorodite
JP4913649B2 (en) Method for producing pentavalent arsenic-containing liquid
JP7044082B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
CN106823235B (en) A kind of method that regulation and control growth method prepares the solid arsenic mineral of high stability
JP2012031039A (en) Magnesium hydroxide, and method for manufacturing the same
JP2011168467A (en) Method for producing crystalline scorodite
JP6480237B2 (en) Method of manufacturing scorodite
JP2015017010A (en) Method for producing scorodite
JP6449706B2 (en) Method for producing scorodite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5662036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250