JP2011174378A - Pressure wave supercharger apparatus - Google Patents

Pressure wave supercharger apparatus Download PDF

Info

Publication number
JP2011174378A
JP2011174378A JP2010037202A JP2010037202A JP2011174378A JP 2011174378 A JP2011174378 A JP 2011174378A JP 2010037202 A JP2010037202 A JP 2010037202A JP 2010037202 A JP2010037202 A JP 2010037202A JP 2011174378 A JP2011174378 A JP 2011174378A
Authority
JP
Japan
Prior art keywords
rotor
reference temperature
pressure wave
wave supercharger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010037202A
Other languages
Japanese (ja)
Inventor
Keiji Yotsueda
啓二 四重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010037202A priority Critical patent/JP2011174378A/en
Publication of JP2011174378A publication Critical patent/JP2011174378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure wave supercharger apparatus that prevents a size of a clearance between a rotor and housing from changing, even if the rotor and housing are expanded by heat. <P>SOLUTION: The pressure wave supercharger 10 includes: the rotor 12; the housing 11; and a shaft 21 whose end is projected into a storing chamber 13 provided in the housing 11 so as to be inserted into the rotor 12, while connected to the rotor 12 at a connection location P. When the supercharger 10 is operated in a prescribed operation condition, a length LRi of a projection 21a of the shaft 21 when the temperature of the shaft 21 is equal to the reference temperature and a length LS of an intake side part 12i of the rotor 12 when the temperature of the rotor 12 is equal to the reference temperature, are configured such that a thermal elongation amount &epsi;S of the projection 21a and a thermal elongation amount &epsi;Ri of the intake side part 12i, become equal to each other. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ハウジング内に設けたロータのセル内に空気と排気とを交互に導入し、セル内に導入した排気の圧力波でそのセル内の空気の圧力を高めて過給を行う圧力波過給機に関する。   The present invention introduces a pressure wave in which air and exhaust are alternately introduced into a rotor cell provided in a housing, and the pressure of the air introduced into the cell increases the pressure of the air in the cell to perform supercharging. Regarding turbochargers.

複数のセルを有するロータがハウジング内に回転自在に設けられ、各セル内に空気と排気とを交互に導入して過給を行う圧力波過給機が知られている。この圧力波過給機ではハウジング内に排気を導入するので、排気の熱でハウジングやロータが伸びる。そこで、熱膨張係数が小さいセラミック製のロータを備えた圧力波過給機が知られている(例えば、特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2、3が存在する。   There is known a pressure wave supercharger in which a rotor having a plurality of cells is rotatably provided in a housing and performs supercharging by alternately introducing air and exhaust into each cell. In this pressure wave supercharger, exhaust is introduced into the housing, so that the housing and the rotor are extended by the heat of the exhaust. Then, the pressure wave supercharger provided with the ceramic rotor with a small thermal expansion coefficient is known (for example, refer patent document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開平01−159418号公報Japanese Patent Laid-Open No. 01-159418 特開平04−019327号公報Japanese Patent Laid-open No. 04-01327 特開2001−515170号公報JP 2001-515170 A

特許文献1の過給機においてもロータを支持しているロータ軸が熱により伸びるため、これによりロータとハウジングとの間のクリアランスの大きさが変化するおそれがある。このクリアランスが大きくなった場合は空気や排気がロータとハウジングとの間に漏れるので、過給機の性能が低下するおそれがある。一方、クリアランスが小さくなった場合はロータとハウジングとが接触するおそれがある。   Even in the supercharger of Patent Document 1, the rotor shaft supporting the rotor extends due to heat, and this may change the size of the clearance between the rotor and the housing. When this clearance becomes large, air or exhaust gas leaks between the rotor and the housing, which may reduce the performance of the supercharger. On the other hand, when the clearance becomes small, the rotor and the housing may come into contact with each other.

そこで、本発明は、ロータ及びハウジングが熱によって伸びてもロータとハウジングとの間のクリアランスの大きさが変化することを抑制可能な圧力波過給機を提供することを目的とする。   Then, an object of this invention is to provide the pressure wave supercharger which can suppress that the magnitude | size of the clearance between a rotor and a housing changes even if a rotor and a housing extend with heat.

本発明の第1の圧力波過給機は、軸線方向に貫通する複数のセルを有する円柱状のロータと、前記ロータが前記軸線回りに回転可能に収容された収容室と、前記ロータの一方の端面と対向する吸気側端部と、前記ロータの他方の端面と対向する排気側端部と、を有するハウジングと、前記軸線上に配置されるとともに前記吸気側端部に回転可能に支持され、一方の端部が前記吸気側端部から前記収容室内に突出して前記ロータ内に挿入され、かつ前記ロータの前記一方の端面よりも前記他方の端面寄りの連結位置にて前記ロータと連結されているシャフト部材と、を備え、前記吸気側端部に内燃機関の吸気通路が接続され、前記排気側端部に前記内燃機関の排気通路が接続される圧力波過給機において、前記シャフト部材が所定の基準温度のときの前記シャフト部材のうち前記吸気側端部から前記収容室内に突出する突出部分の長さ及び前記ロータが前記基準温度のときの前記ロータのうち前記一方の端面から前記連結位置までの部分である吸気側部分の前記軸線方向の長さは、前記圧力波過給機が所定の運転状態で運転されている場合に前記突出部分が熱にて前記軸線方向に伸びる熱伸び量と前記吸気側部分が熱にて前記軸線方向に伸びる熱伸び量とが同じになるように設定されている(請求項1)。   A first pressure wave supercharger according to the present invention includes a cylindrical rotor having a plurality of cells penetrating in an axial direction, a storage chamber in which the rotor is rotatably stored around the axis, and one of the rotors A housing having an intake side end facing the other end surface of the rotor and an exhaust side end facing the other end surface of the rotor, and disposed on the axis and rotatably supported by the intake side end. The one end projects from the intake side end into the housing chamber and is inserted into the rotor, and is coupled to the rotor at a coupling position closer to the other end surface than the one end surface of the rotor. A pressure wave supercharger in which an intake passage of the internal combustion engine is connected to the intake side end portion, and an exhaust passage of the internal combustion engine is connected to the exhaust side end portion of the shaft member. Of a given reference temperature The length of the protruding portion of the shaft member protruding from the intake side end portion into the housing chamber and the portion of the rotor from the one end surface to the coupling position when the rotor is at the reference temperature. The length in the axial direction of a certain intake side portion is the amount of thermal extension that the protruding portion extends in the axial direction due to heat when the pressure wave supercharger is operated in a predetermined operation state, and the intake side portion. The portion is set to have the same thermal elongation amount that extends in the axial direction due to heat (Claim 1).

本発明の第1の圧力波過給機では、ロータの一方の端面とハウジングの吸気側端部との間のクリアランス(以下、吸気側クリアランスと称することがある。)の大きさは、突出部分の軸線方向の長さから吸気側部分の軸線方向の長さを引いた値になる。本発明の第1の圧力波過給機においては、これら突出部分の熱伸び量と吸気側部分の熱伸び量とが同じになる。そのため、これらの部分がそれぞれ熱で伸びても吸気側クリアランスの大きさが変化することを抑制できる。   In the first pressure wave supercharger according to the present invention, the size of the clearance between the one end face of the rotor and the intake side end of the housing (hereinafter sometimes referred to as intake side clearance) is a protruding portion. This is a value obtained by subtracting the length in the axial direction of the intake side portion from the length in the axial direction. In the first pressure wave supercharger of the present invention, the amount of thermal expansion of these protruding portions and the amount of thermal expansion of the intake side portion are the same. Therefore, even if these portions are each extended by heat, it is possible to suppress the change in the magnitude of the intake side clearance.

周知のように熱伸び量は、線膨張係数、所定の基準温度のときの長さ、及び所定の基準温度との温度差を掛けることにより求めることができる。突出部分の熱伸び量と吸気側部分の熱伸び量とを同じにするためには、このように算出される熱伸び量が同じになればよい。そこで、本発明の第1の圧力波過給機の一形態においては、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さをLS0、前記ロータが前記基準温度のときの前記吸気側部分の前記軸線方向の長さをLRi0、前記シャフト部材の線膨張係数をαS、前記ロータの線膨張係数をαR、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記シャフト部材の温度と前記基準温度との温度差をΔTS、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記ロータの前記吸気側部分の温度と前記基準温度との温度差をΔTRiとした場合、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さ及び前記ロータが前記基準温度のときの前記吸気側部分の前記軸線方向の長さは、次式を満たすように設定されていてもよい(請求項2)。   As is well known, the amount of thermal expansion can be obtained by multiplying the linear expansion coefficient, the length at a predetermined reference temperature, and the temperature difference from the predetermined reference temperature. In order to make the thermal elongation amount of the protruding portion and the thermal elongation amount of the intake side portion the same, it is only necessary that the calculated thermal elongation amount is the same. Therefore, in one embodiment of the first pressure wave supercharger of the present invention, when the shaft member is at the reference temperature, the length in the axial direction of the protruding portion is LS0, and the rotor is at the reference temperature. The length in the axial direction of the intake side portion is LRi0, the linear expansion coefficient of the shaft member is αS, the linear expansion coefficient of the rotor is αR, and the pressure wave supercharger is operated in the predetermined operation state. ΔTS is a temperature difference between the temperature of the shaft member and the reference temperature when the pressure wave supercharger is operating in the predetermined operation state, and the reference temperature and the reference temperature of the rotor When the temperature difference from the temperature is ΔTRi, the axial length of the protruding portion when the shaft member is at the reference temperature and the axial direction of the intake side portion when the rotor is at the reference temperature length , Which it may be set so as to satisfy the following equation (claim 2).

Figure 2011174378
Figure 2011174378

本発明の第1の圧力波過給機の一形態においては、前記シャフト部材が前記基準温度のときの前記突出部分の長さ、前記ロータが前記基準温度のときの前記ロータのうち前記連結位置から前記ロータの前記他方の端面までの部分である排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ハウジングのうち前記吸気側端部と前記排気側端部との間の部分であるロータ外周部の前記軸線方向の長さは、前記圧力波過給機が前記所定の運転状態で運転されている場合に前記突出部分が熱にて前記軸線方向に伸びる熱伸び量と前記排気側部分が熱にて前記軸線方向に伸びる熱伸び量との合計が、前記ロータ外周部が熱にて前記軸線方向に伸びる熱伸び量と同じになるように設定されていてもよい(請求項3)。本発明の第1の圧力波過給機では、ロータ外周部の長さから突出部分の長さ及び排気部分の長さを引いた値がハウジングの排気側端部とロータの他方の端面との間のクリアランス(以下、排気側クリアランスと称することがある。)の大きさになる。この形態では、突出部分の熱伸び量と排気側部分の熱伸び量との合計が、ロータ外周部の熱伸び量と同じになる。そのため、ハウジング、ロータ、及びシャフトが熱で伸びても排気側クリアランスの大きさが変化することを抑制できる。   In one form of the first pressure wave supercharger of the present invention, the length of the protruding portion when the shaft member is at the reference temperature, and the connection position of the rotor when the rotor is at the reference temperature The length in the axial direction of the exhaust side portion that is a portion from the rotor to the other end surface of the rotor, and the intake side end portion and the exhaust side end portion of the housing when the housing is at the reference temperature, The length in the axial direction of the outer periphery of the rotor, which is a portion between the two, is the heat that the protruding portion extends in the axial direction due to heat when the pressure wave supercharger is operated in the predetermined operating state. The sum of the amount of elongation and the amount of thermal elongation at which the exhaust side portion extends in the axial direction due to heat is set to be the same as the amount of thermal elongation at which the outer peripheral portion of the rotor extends in the axial direction due to heat. (Claim 3). In the first pressure wave supercharger of the present invention, the value obtained by subtracting the length of the protruding portion and the length of the exhaust portion from the length of the outer peripheral portion of the rotor is the value between the exhaust side end portion of the housing and the other end surface of the rotor. The clearance between them (hereinafter sometimes referred to as the exhaust side clearance). In this embodiment, the sum of the thermal elongation amount of the protruding portion and the thermal elongation amount of the exhaust side portion is the same as the thermal elongation amount of the rotor outer peripheral portion. Therefore, even if the housing, the rotor, and the shaft are extended by heat, it is possible to suppress the change in the size of the exhaust side clearance.

この形態においては、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さをLS0、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さをLRe0、前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さをLH0、前記シャフト部材の線膨張係数をαS、前記ロータの線膨張係数をαR、前記ロータ外周部の線膨張係数をαH、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記シャフト部材の温度と前記基準温度との温度差をΔTS、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記排気側部分の温度と前記基準温度との温度差をΔTRe、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記ロータ外周部の温度と前記基準温度との温度差をΔTHとした場合、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さ、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さは、次の2つの式をいずれも満たすように設定されていてもよい(請求項4)。   In this embodiment, the length in the axial direction of the protruding portion when the shaft member is at the reference temperature is LS0, and the length in the axial direction of the exhaust side portion when the rotor is at the reference temperature is LRe0. When the housing is at the reference temperature, the axial length of the outer periphery of the rotor is LH0, the linear expansion coefficient of the shaft member is αS, the linear expansion coefficient of the rotor is αR, and the linear expansion of the outer periphery of the rotor is The coefficient is αH, the temperature difference between the shaft member temperature and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state is ΔTS, and the pressure wave supercharger is in the predetermined operation. ΔTRe is the temperature difference between the temperature of the exhaust side portion and the reference temperature when operating in the state, and the temperature of the outer periphery of the rotor when the pressure wave supercharger is operating in the predetermined operating state And the reference temperature, ΔTH, the axial length of the protruding portion when the shaft member is at the reference temperature, the exhaust side portion when the rotor is at the reference temperature The length in the axial direction and the length in the axial direction of the outer periphery of the rotor when the housing is at the reference temperature may be set so as to satisfy both of the following two expressions. ).

Figure 2011174378
Figure 2011174378

このように突出部分の長さ、排気側部分の長さ、及びロータ外周部の長さを設定することにより、突出部分の熱伸び量と排気側部分の熱伸び量との合計を、ロータ外周部の熱伸び量と同じにすることができる。   Thus, by setting the length of the protruding portion, the length of the exhaust side portion, and the length of the outer periphery of the rotor, the sum of the thermal elongation amount of the protruding portion and the thermal extension amount of the exhaust side portion is It can be the same as the amount of thermal elongation of the part.

本発明の第2の圧力波過給機は、軸線方向に貫通する複数のセルを有する円柱状のロータと、前記ロータが前記軸線回りに回転可能に収容された収容室と、前記ロータの一方の端面と対向する吸気側端部と、前記ロータの他方の端面と対向する排気側端部と、を有するハウジングと、前記軸線上に配置されるとともに前記吸気側端部に回転可能に支持され、一方の端部が前記吸気側端部から前記収容室内に突出して前記ロータ内に挿入され、かつ前記ロータの前記一方の端面よりも前記他方の端面寄りの連結位置にて前記ロータと連結されているシャフト部材と、を備え、前記吸気側端部に内燃機関の吸気通路が接続され、前記排気側端部に前記内燃機関の排気通路が接続される圧力波過給機において、前記シャフト部材が所定の基準温度のときの前記シャフト部材のうち前記吸気側端部から前記収容室内に突出する突出部分の長さ、前記ロータが前記基準温度のときの前記ロータのうち前記連結位置から前記ロータの前記他方の端面までの部分である排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ハウジングのうち前記吸気側端部と前記排気側端部との間の部分であるロータ外周部の前記軸線方向の長さは、前記圧力波過給機が所定の運転状態で運転されている場合に前記突出部分が熱にて前記軸線方向に伸びる熱伸び量と前記排気側部分が熱にて前記軸線方向に伸びる熱伸び量との合計が、前記ロータ外周部が熱にて前記軸線方向に伸びる熱伸び量と同じになるように設定されている(請求項5)。   A second pressure wave supercharger according to the present invention includes a cylindrical rotor having a plurality of cells penetrating in the axial direction, a storage chamber in which the rotor is rotatably accommodated around the axis, and one of the rotors A housing having an intake side end facing the other end surface of the rotor and an exhaust side end facing the other end surface of the rotor, and disposed on the axis and rotatably supported by the intake side end. The one end projects from the intake side end into the housing chamber and is inserted into the rotor, and is coupled to the rotor at a coupling position closer to the other end surface than the one end surface of the rotor. A pressure wave supercharger in which an intake passage of the internal combustion engine is connected to the intake side end portion, and an exhaust passage of the internal combustion engine is connected to the exhaust side end portion of the shaft member. Of a given reference temperature The length of the protruding portion of the shaft member that protrudes from the intake-side end portion into the accommodation chamber, from the coupling position of the rotor when the rotor is at the reference temperature to the other end surface of the rotor The length in the axial direction of the exhaust side portion which is a portion of the rotor, and the rotor outer peripheral portion which is a portion between the intake side end portion and the exhaust side end portion of the housing when the housing is at the reference temperature The length in the axial direction is that when the pressure wave supercharger is operated in a predetermined operation state, the protruding portion is heated and the exhaust side portion is heated. Thus, the total of the amount of thermal elongation extending in the axial direction is set to be the same as the amount of thermal elongation of the rotor outer peripheral portion extending in the axial direction due to heat (Claim 5).

本発明の第2の圧力波過給機においても排気側クリアランスの大きさは、ロータ外周部の長さから突出部分の長さ及び排気部分の長さを引いた値となる。そして、本発明の第2の圧力波過給機では、突出部分の熱伸び量と排気側部分の熱伸び量との合計がロータ外周部の熱伸び量と同じになるので、ハウジング、ロータ、及びシャフトが熱で伸びても排気側クリアランスの大きさが変化することを抑制できる。   Also in the second pressure wave supercharger of the present invention, the size of the exhaust side clearance is a value obtained by subtracting the length of the protruding portion and the length of the exhaust portion from the length of the outer peripheral portion of the rotor. And in the 2nd pressure wave supercharger of the present invention, since the sum of the thermal elongation amount of the protruding portion and the thermal elongation amount of the exhaust side portion becomes the same as the thermal elongation amount of the rotor outer peripheral portion, the housing, the rotor, And even if a shaft extends with heat, it can control that the size of the exhaust side clearance changes.

本発明の第2の圧力波過給機の一形態においては、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さをLS0、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さをLRe0、前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さをLH0、前記シャフト部材の線膨張係数をαS、前記ロータの線膨張係数をαR、前記ロータ外周部の線膨張係数をαH、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記シャフト部材の温度と前記基準温度との温度差をΔTS、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記排気側部分の温度と前記基準温度との温度差をΔTRe、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記ロータ外周部の温度と前記基準温度との温度差をΔTHとした場合、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さ、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さは、次の2つの式をいずれも満たすように設定されていてもよい(請求項6)。   In one form of the second pressure wave supercharger of the present invention, the length in the axial direction of the protruding portion when the shaft member is at the reference temperature is LS0, and the length when the rotor is at the reference temperature is The axial length of the exhaust side portion is LRe0, the axial length of the outer periphery of the rotor when the housing is at the reference temperature is LH0, the linear expansion coefficient of the shaft member is αS, and the rotor line An expansion coefficient is αR, a linear expansion coefficient of the outer periphery of the rotor is αH, and a temperature difference between the temperature of the shaft member and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state is ΔTS. ΔTRe is a temperature difference between the temperature of the exhaust side portion and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state, and the pressure wave supercharger is in the predetermined operation state. When driving When the temperature difference between the outer peripheral portion of the rotor and the reference temperature is ΔTH, the axial length of the protruding portion when the shaft member is at the reference temperature, and the rotor is at the reference temperature The length in the axial direction of the exhaust side portion and the length in the axial direction of the outer peripheral portion of the rotor when the housing is at the reference temperature are set so as to satisfy both of the following two expressions: (Claim 6).

Figure 2011174378
Figure 2011174378

このように突出部分の長さ、排気側部分の長さ、及びロータ外周部の長さを設定することにより、突出部分の熱伸び量と排気側部分の熱伸び量との合計を、ロータ外周部の熱伸び量と同じにすることができる。   Thus, by setting the length of the protruding portion, the length of the exhaust side portion, and the length of the outer periphery of the rotor, the sum of the thermal elongation amount of the protruding portion and the thermal extension amount of the exhaust side portion is It can be the same as the amount of thermal elongation of the part.

以上に説明したように、本発明の第1の圧力波過給機によれば、突出部分の熱伸び量と吸気側部分の熱伸び量とが同じになるので、これらの部分が熱で伸びても吸気側クリアランスの大きさが変化することを抑制できる。また、本発明の第2の圧力波過給機によれば、突出部分の熱伸び量と排気側部分の熱伸び量との合計がロータ外周部の熱伸び量と同じになるので、これらの部分が熱で伸びても排気側クリアランスの大きさが変化することを抑制できる。   As described above, according to the first pressure wave supercharger of the present invention, since the amount of thermal expansion of the protruding portion and the amount of thermal expansion of the intake side portion are the same, these portions are expanded by heat. However, it is possible to suppress the change in the size of the intake side clearance. Further, according to the second pressure wave supercharger of the present invention, the sum of the thermal elongation amount of the protruding portion and the thermal elongation amount of the exhaust side portion becomes the same as the thermal elongation amount of the rotor outer peripheral portion. Even if the portion is extended by heat, it is possible to suppress the change in the size of the exhaust side clearance.

本発明の第1の形態に係る圧力波過給機が組み込まれた内燃機関の概略を示す図。The figure which shows the outline of the internal combustion engine in which the pressure wave supercharger which concerns on the 1st form of this invention was integrated. 第1の形態に係る圧力波過給機を示す図。The figure which shows the pressure wave supercharger which concerns on a 1st form. 第1の形態に係る圧力波過給機の各部が熱で伸びたときのそれら各部の長さの変化を説明するための図。The figure for demonstrating the change of the length of each part when each part of the pressure wave supercharger which concerns on a 1st form is extended with heat. 本発明の第2の形態に係る圧力波過給機を示す図。The figure which shows the pressure wave supercharger which concerns on the 2nd form of this invention. 第2の形態に係る圧力波過給機の各部が熱で伸びたときのそれら各部の長さの変化を説明するための図。The figure for demonstrating the change of the length of each part when each part of the pressure wave supercharger which concerns on a 2nd form is extended with heat.

(第1の形態)
図1は、本発明の第1の形態に係る圧力波過給機が組み込まれた内燃機関を示している。この内燃機関(以下、エンジンと称することがある。)1は、車両に走行用動力源として搭載されるものであり、複数(図1では4つ)の気筒2aを有する機関本体2を備えている。各気筒2aには、それぞれ吸気通路3及び排気通路4が接続されている。この図に示したように吸気通路3には、吸気流れの上流側から順に吸気を濾過するためのエアクリーナ5と、圧力波過給機10の吸気側端部10aと、吸気を冷却するためのインタークーラ6と、吸気量を調整するためのスロットルバルブ7とが設けられている。また、排気通路4には、排気流れの上流側から順に圧力波過給機10の排気側端部10bと、排気を浄化するための排気浄化装置8が設けられている。
(First form)
FIG. 1 shows an internal combustion engine incorporating a pressure wave supercharger according to the first embodiment of the present invention. This internal combustion engine (hereinafter sometimes referred to as an engine) 1 is mounted on a vehicle as a driving power source, and includes an engine body 2 having a plurality (four in FIG. 1) of cylinders 2a. Yes. An intake passage 3 and an exhaust passage 4 are connected to each cylinder 2a. As shown in this figure, in the intake passage 3, an air cleaner 5 for filtering the intake air in order from the upstream side of the intake air flow, an intake side end portion 10a of the pressure wave supercharger 10, and an intake air for cooling the intake air. An intercooler 6 and a throttle valve 7 for adjusting the intake air amount are provided. Further, the exhaust passage 4 is provided with an exhaust side end portion 10b of the pressure wave supercharger 10 and an exhaust purification device 8 for purifying the exhaust in order from the upstream side of the exhaust flow.

図2は、圧力波過給機10を拡大して示している。圧力波過給機10は、ハウジング11と、円柱状のロータ12とを備えている。ハウジング11の内部には軸線Ax方向に延びる円柱状の収容室13が設けられており、ロータ12はその収容室13内に軸線Ax回りに回転可能に収容されている。ハウジング11は、内部に円柱状の空間を有するロータ外周部としてのロータハウジング14と、ロータハウジング14の一端に取り付けられて吸気側端部10aとなる吸気側ハウジング15と、ロータハウジング14の他端に取り付けられて排気側端部10bとなる排気側ハウジング16とを備えている。収容室13は、これらハウジング14、15、16にて形成されている。吸気側ハウジング15には、吸気導入口17及び吸気吐出口18が設けられている。吸気導入口17は収容室13内と吸気通路3のうち圧力波過給機10よりも吸気流れの上流側の区間とを接続し、吸気吐出口18は収容室13内と吸気通路3のうち圧力波過給機10よりも吸気流れの下流側の区間とを接続している。排気側ハウジング16には、排気導入口19及び排気吐出口20が設けられている。排気導入口19は収容室13内と排気通路4のうち圧力波過給機10よりも排気流れの上流側の区間とを接続し、排気吐出口20は収容室13内と排気通路4のうち圧力波過給機10よりも排気流れの下流側の区間とを接続している。   FIG. 2 shows the pressure wave supercharger 10 in an enlarged manner. The pressure wave supercharger 10 includes a housing 11 and a cylindrical rotor 12. A cylindrical storage chamber 13 extending in the direction of the axis Ax is provided inside the housing 11, and the rotor 12 is stored in the storage chamber 13 so as to be rotatable around the axis Ax. The housing 11 includes a rotor housing 14 as a rotor outer peripheral portion having a cylindrical space inside, an intake side housing 15 which is attached to one end of the rotor housing 14 and serves as an intake side end 10a, and the other end of the rotor housing 14 And an exhaust side housing 16 which becomes the exhaust side end portion 10b. The storage chamber 13 is formed by these housings 14, 15, and 16. The intake side housing 15 is provided with an intake introduction port 17 and an intake discharge port 18. The intake inlet 17 connects the interior of the storage chamber 13 and the section of the intake passage 3 upstream of the pressure wave supercharger 10, and the intake discharge port 18 connects the interior of the storage chamber 13 and the intake passage 3. A section downstream of the intake air flow is connected to the pressure wave supercharger 10. The exhaust-side housing 16 is provided with an exhaust introduction port 19 and an exhaust discharge port 20. The exhaust introduction port 19 connects the inside of the storage chamber 13 and the section of the exhaust passage 4 upstream of the pressure wave supercharger 10, and the exhaust discharge port 20 connects the inside of the storage chamber 13 and the exhaust passage 4. A section downstream of the exhaust flow from the pressure wave supercharger 10 is connected.

ロータ12は、軸線Ax方向に貫通する複数のセル12a(図1参照)を備えている。図2に示したようにロータ12は、その一方の端面が吸気側端部10aと対向し、他方の端面が排気側端部10bと対向するように収容室13内に収容されている。圧力波過給機10は、軸線Ax回りに回転可能なシャフト部材としてのシャフト21を備えている。ロータ12は、そのシャフト21に軸線Ax回りに回転可能に支持されている。また、この図に示したようにロータ12はシャフト21にて片持ち支持されている。シャフト21は、軸線Ax上に配置されている。また、シャフト21は、吸気側端部10aに設けられたベアリング22に回転可能に支持されている。ベアリング22は、シャフト21の略中央を支持している。シャフト21は、その一端が吸気側端部10aから収容室13内に突出するように設けられている。そのシャフト21の一端は、ロータ12の中心に設けられた挿入孔12b内に挿入されている。この図に示したようにシャフト21の一端とロータ12とは、締結部材23にてシャフト21とロータ12とが一体回転するように連結されている。シャフト21の他端は、電動モータ24の出力軸と連結されている。ベアリング22は、その収容室13側の側面が収容室13の壁面の一部となるように吸気側端部10aに設けられている。   The rotor 12 includes a plurality of cells 12a (see FIG. 1) penetrating in the direction of the axis Ax. As shown in FIG. 2, the rotor 12 is housed in the housing chamber 13 so that one end surface thereof faces the intake side end portion 10 a and the other end surface faces the exhaust side end portion 10 b. The pressure wave supercharger 10 includes a shaft 21 as a shaft member that can rotate around an axis Ax. The rotor 12 is supported by the shaft 21 so as to be rotatable about the axis Ax. Further, as shown in this figure, the rotor 12 is cantilevered by a shaft 21. The shaft 21 is disposed on the axis Ax. The shaft 21 is rotatably supported by a bearing 22 provided at the intake side end 10a. The bearing 22 supports the approximate center of the shaft 21. The shaft 21 is provided so that one end of the shaft 21 protrudes from the intake side end 10 a into the accommodation chamber 13. One end of the shaft 21 is inserted into an insertion hole 12 b provided in the center of the rotor 12. As shown in this figure, one end of the shaft 21 and the rotor 12 are connected by a fastening member 23 so that the shaft 21 and the rotor 12 rotate integrally. The other end of the shaft 21 is connected to the output shaft of the electric motor 24. The bearing 22 is provided at the intake side end portion 10 a so that the side surface on the storage chamber 13 side becomes a part of the wall surface of the storage chamber 13.

周知のように圧力波過給機10は、ロータ12を回転させ、各セル12a内に導入した空気を排気の圧力波で加圧し、その加圧された空気を気筒2aに吐出することによりエンジン1の過給を行う。このように圧力波過給機10ではハウジング11内に排気が導入されるので、動作時はその排気の熱によってハウジング11、ロータ12、及びシャフト21が伸びる。また、圧力波過給機10は、ロータ12を回転させてエンジン1を過給するので、ハウジング11とロータ12との間にはクリアランスを確保する必要がある。圧力波過給機10では、圧力波過給機10の温度が変化しても圧力波過給機10の吸気側端部10aとロータ12との間の吸気側クリアランスCiの大きさが略一定になるように圧力波過給機10の各部の寸法が設定されている。以下、具体的に説明する。   As is well known, the pressure wave supercharger 10 rotates the rotor 12, pressurizes the air introduced into each cell 12a with an exhaust pressure wave, and discharges the pressurized air to the cylinder 2a. Supercharge 1 Thus, since the exhaust is introduced into the housing 11 in the pressure wave supercharger 10, the housing 11, the rotor 12, and the shaft 21 are extended by the heat of the exhaust during operation. Further, since the pressure wave supercharger 10 rotates the rotor 12 to supercharge the engine 1, it is necessary to secure a clearance between the housing 11 and the rotor 12. In the pressure wave supercharger 10, the magnitude of the intake side clearance Ci between the intake side end portion 10 a of the pressure wave supercharger 10 and the rotor 12 is substantially constant even if the temperature of the pressure wave supercharger 10 changes. The dimensions of each part of the pressure wave supercharger 10 are set so that This will be specifically described below.

吸気側クリアランスCiは、ロータ12のうちロータ12とシャフト21の一端とが連結されている連結位置Pよりも吸気側端部10a側の部分(以下、吸気側部分と称することがある。)12iの長さLRi、及びシャフト21のうち吸気側端部10aから収容室13内に突出している部分(以下、突出部分と称することがある。)21aの長さLSにて決まる。そのため、この吸気側クリアランスCiを略一定にするためには、以下の式(1)に示すように吸気側部分12iが排気の熱によって軸線Ax方向に伸びる熱伸び量εRiと突出部分21aが排気の熱によって軸線Ax方向に伸びる熱伸び量εSとが同じなればよい。   The intake-side clearance Ci is a portion on the intake-side end portion 10a side of the connection position P where the rotor 12 and one end of the shaft 21 of the rotor 12 are connected (hereinafter may be referred to as an intake-side portion) 12i. Of the shaft 21 and a length LS of a portion of the shaft 21 that protrudes from the intake side end portion 10a into the accommodation chamber 13 (hereinafter may be referred to as a protruding portion) 21a. Therefore, in order to make the intake-side clearance Ci substantially constant, as shown in the following equation (1), the heat-extraction amount εRi that the intake-side portion 12i extends in the axis Ax direction by the heat of the exhaust and the protruding portion 21a are exhaust The amount of thermal elongation εS that extends in the direction of the axis Ax due to the heat of is sufficient.

Figure 2011174378
Figure 2011174378

吸気側部分12iの熱伸び量εRi及び突出部分21aの熱伸び量εSは、それぞれ以下の式(2)、(3)にて示される。   The thermal elongation amount εRi of the intake side portion 12i and the thermal elongation amount εS of the protruding portion 21a are expressed by the following equations (2) and (3), respectively.

Figure 2011174378
Figure 2011174378

なお、式(2)のLRi0は吸気側部分12iが所定の基準温度のときの吸気側部分12iの長さを示し、式(3)のLS0は突出部分21aが所定の基準温度のときの突出部分21aの長さを示している。また、式(2)のαRはロータ12の線膨張係数を示し、式(3)のαSはシャフト21の線膨張係数を示している。そして、式(2)のΔTRiは、圧力波過給機10が所定の運転状態で運転されているときの吸気側部分12iの温度と所定の基準温度との温度差を示し、式(3)のΔTSは、圧力波過給機10が所定の運転状態で運転されているときのシャフト21の温度と所定の基準温度との温度差を示している。なお、所定の基準温度には、停止時における圧力波過給機10の温度、例えば20°C等が設定される。所定の運転状態としては、圧力波過給機10の温度が最も高くなる運転状態が設定される。圧力波過給機10の温度は排気の温度にて決まるため、圧力波過給機10の温度が最も高くなる運転状態には例えばエンジン1が高負荷、高回転で運転されているときの運転状態が相当する。そのため、温度差ΔTRiは吸気側部分12iの温度の変動幅に相当し、温度差ΔTSはシャフト21の温度の変動幅に相当する。   LRi0 in equation (2) indicates the length of the intake side portion 12i when the intake side portion 12i is at a predetermined reference temperature, and LS0 in equation (3) is a protrusion when the protruding portion 21a is at a predetermined reference temperature. The length of the portion 21a is shown. In addition, αR in equation (2) indicates the linear expansion coefficient of the rotor 12, and αS in equation (3) indicates the linear expansion coefficient of the shaft 21. ΔTRi in the equation (2) indicates a temperature difference between the temperature of the intake side portion 12i and the predetermined reference temperature when the pressure wave supercharger 10 is operated in a predetermined operation state, and the equation (3) ΔTS indicates a temperature difference between the temperature of the shaft 21 and the predetermined reference temperature when the pressure wave supercharger 10 is operated in a predetermined operation state. In addition, the temperature of the pressure wave supercharger 10 at the time of stop, for example, 20 ° C. is set as the predetermined reference temperature. As the predetermined operation state, an operation state in which the temperature of the pressure wave supercharger 10 is highest is set. Since the temperature of the pressure wave supercharger 10 is determined by the temperature of the exhaust gas, the operation state in which the temperature of the pressure wave supercharger 10 is the highest is, for example, the operation when the engine 1 is operated at a high load and high rotation. The state corresponds. Therefore, the temperature difference ΔTRi corresponds to the temperature fluctuation range of the intake side portion 12 i, and the temperature difference ΔTS corresponds to the temperature fluctuation range of the shaft 21.

これらの式(2)、(3)を式(1)に代入して変形すると以下の式(4)が導出される。   Substituting these equations (2) and (3) into equation (1) for transformation yields the following equation (4).

Figure 2011174378
Figure 2011174378

そして、本発明の圧力波過給機10では、この式(4)が満たされるように所定の基準温度のときの吸気側部分12iの長さLRi0及び突出部分21aの長さLS0がそれぞれ設定されている。このように吸気側部分12iの長さLRi0及び突出部分21aの長さLS0を設定することにより、図3に示すように圧力波過給機10の温度が上昇してロータ12及びシャフト21が熱で伸びても吸気側クリアランスCiの大きさが略一定に維持される。   In the pressure wave supercharger 10 of the present invention, the length LRi0 of the intake side portion 12i and the length LS0 of the projecting portion 21a at the predetermined reference temperature are set so that the expression (4) is satisfied. ing. By setting the length LRi0 of the intake side portion 12i and the length LS0 of the protruding portion 21a in this way, the temperature of the pressure wave supercharger 10 rises and the rotor 12 and the shaft 21 are heated as shown in FIG. However, the size of the intake side clearance Ci is maintained substantially constant.

以上に説明したように第1の形態に係る圧力波過給機10では、ロータ12及びシャフト21が排気熱によって伸びても吸気側クリアランスCiの大きさを略一定に維持することができる。そのため、吸気側クリアランスCiが拡大して空気がハウジング11とロータ12との隙間に漏れたり、吸気側クリアランスCiが0になってハウジング11とロータ12とが接触したりすることを防止できる。また、このようにロータ12及びシャフト21に熱伸びが生じても吸気側クリアランスCiの大きさを略一定に維持することができるので、これらの熱伸びを考慮して吸気側クリアランスCiを大きめに設ける必要がない。そのため、吸気側クリアランスCiを従来よりも小さくすることができる。従って、圧力波過給機10の過給効率を高い状態に維持することができる。   As described above, in the pressure wave supercharger 10 according to the first embodiment, the magnitude of the intake side clearance Ci can be maintained substantially constant even when the rotor 12 and the shaft 21 are extended by exhaust heat. Therefore, it is possible to prevent the intake side clearance Ci from expanding and air leaking into the gap between the housing 11 and the rotor 12, or the intake side clearance Ci becoming 0 and the housing 11 and the rotor 12 contacting each other. In addition, since the magnitude of the intake side clearance Ci can be maintained substantially constant even if thermal expansion occurs in the rotor 12 and the shaft 21 in this way, the intake side clearance Ci is increased in consideration of these thermal elongations. There is no need to provide it. Therefore, the intake side clearance Ci can be made smaller than before. Therefore, the supercharging efficiency of the pressure wave supercharger 10 can be maintained in a high state.

(第2の形態)
図4及び図5を参照して本発明の第2の形態に係る圧力波過給機10について説明する。この形態では、圧力波過給機10の各部の寸法の設定方法が第1の形態と異なる。それ以外は第1の形態と同じであるため、第1の形態と共通の部分については同一の符号を付して説明を省略する。なお、この形態においてもエンジン1については図1が参照される。図4は、この形態の圧力波過給機10を拡大して示している。この形態では、圧力波過給機10の温度が変化してもロータ12と排気側端部10bとの間の排気側クリアランスCeの大きさが略一定になるように圧力波過給機10の各部の寸法が設定されている。以下、具体的に説明する。
(Second form)
With reference to FIG.4 and FIG.5, the pressure wave supercharger 10 which concerns on the 2nd form of this invention is demonstrated. In this form, the setting method of the dimension of each part of the pressure wave supercharger 10 is different from the first form. The rest is the same as the first embodiment, and therefore, the same reference numerals are given to the portions common to the first embodiment, and the description is omitted. In this embodiment as well, FIG. 1 is referred to for the engine 1. FIG. 4 shows an enlarged view of the pressure wave supercharger 10 of this embodiment. In this embodiment, even if the temperature of the pressure wave supercharger 10 changes, the size of the exhaust side clearance Ce between the rotor 12 and the exhaust side end portion 10b becomes substantially constant so that the pressure wave supercharger 10 The dimensions of each part are set. This will be specifically described below.

図4に示したように排気側クリアランスCeの大きさは、ロータハウジング14の長さLHからロータ12のうち連結位置Pよりも排気側端部10b側の部分(以下、排気側部分と称することがある。)12eの長さLRe及び突出部分21aの長さLSを引くことにより算出される。そのため、排気側クリアランスCeを一定にするためには、以下の式(5)に示すように排気側部分12eの軸線Ax方向への熱伸び量εReと突出部分21aの軸線Ax方向への熱伸び量εSとの合計が、ロータハウジング14の軸線Ax方向への熱伸び量εHと同じになればよい。   As shown in FIG. 4, the size of the exhaust side clearance Ce is determined from the length LH of the rotor housing 14 to a portion of the rotor 12 on the exhaust side end portion 10b side of the coupling position P (hereinafter referred to as an exhaust side portion). It is calculated by subtracting the length LRe of 12e and the length LS of the protruding portion 21a. Therefore, in order to make the exhaust side clearance Ce constant, the thermal elongation amount εRe of the exhaust side portion 12e in the axis Ax direction and the thermal extension of the protruding portion 21a in the axis Ax direction as shown in the following formula (5). The total amount with the amount εS only needs to be the same as the amount of thermal elongation εH in the axis Ax direction of the rotor housing 14.

Figure 2011174378
Figure 2011174378

排気側部分12eの熱伸び量εRe、ロータハウジング14の熱伸び量εHは、以下の式(6)、(7)にて示される。   The thermal elongation amount εRe of the exhaust side portion 12e and the thermal elongation amount εH of the rotor housing 14 are expressed by the following equations (6) and (7).

Figure 2011174378
Figure 2011174378

なお、式(6)のLRe0は排気側部分12eが所定の基準温度のときの排気側部分12eの長さを示し、式(7)のLH0はロータハウジング14が所定の基準温度のときのロータハウジング14の長さを示している。式(6)のΔTReは圧力波過給機10が所定の運転状態で運転されているときの排気側部分12eの温度と所定の基準温度との温度差を示し、式(7)のΔTHは、圧力波過給機10が所定の運転状態で運転されているときのロータハウジング14の温度と所定の基準温度との温度差を示している。式(7)のαHは、ロータハウジング14の線膨張係数を示している。なお、所定の基準温度及び所定の運転状態については、第1の形態と同じである。そのため、温度差ΔTHは、ロータハウジング14の温度の変動幅に相当し、温度差ΔTReは、排気側部分12eの温度の変動幅に相当する。   Note that LRe0 in equation (6) indicates the length of the exhaust side portion 12e when the exhaust side portion 12e is at a predetermined reference temperature, and LH0 in equation (7) is the rotor when the rotor housing 14 is at a predetermined reference temperature. The length of the housing 14 is shown. ΔTRe in the equation (6) indicates a temperature difference between the temperature of the exhaust side portion 12e and the predetermined reference temperature when the pressure wave supercharger 10 is operated in a predetermined operation state, and ΔTH in the equation (7) is The temperature difference between the temperature of the rotor housing 14 and the predetermined reference temperature when the pressure wave supercharger 10 is operated in a predetermined operation state is shown. ΑH in the equation (7) indicates a linear expansion coefficient of the rotor housing 14. The predetermined reference temperature and the predetermined operation state are the same as in the first embodiment. Therefore, the temperature difference ΔTH corresponds to the fluctuation range of the temperature of the rotor housing 14, and the temperature difference ΔTRe corresponds to the fluctuation range of the temperature of the exhaust side portion 12e.

上述した式(5)〜(7)及び式(3)を突出部分21aの長さLS0及びロータハウジング14の長さLH0についてまとめると以下の式(8)、(9)が導出される。   The following formulas (8) and (9) are derived by combining the above formulas (5) to (7) and formula (3) with respect to the length LS0 of the protruding portion 21a and the length LH0 of the rotor housing 14.

Figure 2011174378
Figure 2011174378

第2の形態においては、以上の式(8)、(9)がそれぞれ満たされるように所定の基準温度のときの排気側部分12eの長さLRe0、突出部分21aの長さLS0、及びロータハウジング14の長さLH0がそれぞれ設定されている。このようにこれらの部分の長さを設定することにより、図5に示すように圧力波過給機10の温度が上昇してハウジング11、ロータ12及びシャフト21が熱で伸びても排気側クリアランスCeの大きさが略一定に維持される。   In the second embodiment, the length LRe0 of the exhaust side portion 12e, the length LS0 of the protruding portion 21a, and the rotor housing at a predetermined reference temperature so that the above equations (8) and (9) are satisfied, respectively. A length LH0 of 14 is set. By setting the lengths of these portions in this way, even if the temperature of the pressure wave supercharger 10 rises and the housing 11, the rotor 12 and the shaft 21 are extended by heat as shown in FIG. The magnitude | size of Ce is maintained substantially constant.

以上に説明したように第2の形態においては、ハウジング11、ロータ12及びシャフト21が熱で伸びても排気側クリアランスCeの大きさが略一定に維持される。そのため、この排気側クリアランスCeが拡大して排気がハウジング11とロータ12との間に漏れたり、排気側クリアランスCeが0になってハウジング11とロータ12とが接触したりすることを防止できる。また、ハウジング11、ロータ12及びシャフト21に熱伸びが生じても排気側クリアランスCeの大きさが略一定に維持されるので、排気側クリアランスCeを大きめに設ける必要がない。そのため、排気側クリアランスCeを従来よりも小さくすることができる。そのため、圧力波過給機10の過給効率を高い状態に維持することができる。   As described above, in the second embodiment, even when the housing 11, the rotor 12, and the shaft 21 are extended by heat, the size of the exhaust side clearance Ce is maintained substantially constant. Therefore, it is possible to prevent the exhaust side clearance Ce from expanding and exhaust from leaking between the housing 11 and the rotor 12, or the exhaust side clearance Ce from becoming zero and the housing 11 and the rotor 12 from contacting each other. Further, even if thermal expansion occurs in the housing 11, the rotor 12, and the shaft 21, the size of the exhaust side clearance Ce is maintained substantially constant, so that it is not necessary to provide a large exhaust side clearance Ce. Therefore, the exhaust side clearance Ce can be made smaller than before. Therefore, the supercharging efficiency of the pressure wave supercharger 10 can be maintained in a high state.

圧力波過給機10においては、排気に曝されるため吸気側よりも排気側の方が温度が高くなる。そのため、ハウジング11やロータ12は、シャフト21よりも温度が高くなる。この形態では、動作時のこれらの部分の温度を考慮してシャフト21の熱伸びの度合いが設定され、ハウジング11やロータ12の熱伸びの度合よりもシャフト21の熱伸びの度合いを大きくする。これにより、排気側クリアランスCeの大きさをより一定に維持することができる。   Since the pressure wave supercharger 10 is exposed to exhaust gas, the temperature on the exhaust side is higher than that on the intake side. Therefore, the temperature of the housing 11 and the rotor 12 is higher than that of the shaft 21. In this embodiment, the degree of thermal expansion of the shaft 21 is set in consideration of the temperature of these portions during operation, and the degree of thermal expansion of the shaft 21 is made larger than the degree of thermal expansion of the housing 11 and the rotor 12. Thereby, the magnitude | size of the exhaust side clearance Ce can be kept more constant.

本発明は、上述した各形態に限定されることなく、種々の形態にて実施することができる。例えば、上述した各形態は別々に実施しなくてもよい。すなわち、所定の基準温度のときのロータの吸気側部分、排気側部分、シャフトの突出部分、及びロータハウジングの長さを上述した式(4)、(8)、(9)がそれぞれ満たされるように設定してもよい。この場合、圧力波過給機の各部に熱伸びが発生してもロータの両側のクリアランスをそれぞれ略一定に維持することができる。   This invention is not limited to each form mentioned above, It can implement with a various form. For example, it is not necessary to implement each form mentioned above separately. That is, the above-described equations (4), (8), and (9) are satisfied with respect to the lengths of the intake side portion, the exhaust side portion, the protruding portion of the shaft, and the rotor housing of the rotor at a predetermined reference temperature. May be set. In this case, the clearances on both sides of the rotor can be maintained substantially constant even if thermal expansion occurs in each part of the pressure wave supercharger.

本発明における圧力波過給機の所定の運転状態は、圧力波過給機の温度が最も高くなる運転状態に限定されない。例えば、圧力波過給機の運転状態のうちエンジンを運転しているときに最もなる頻度が多い運転状態を所定の運転状態に設定してもよい。このような運転状態を所定の運転状態とすることにより、圧力波過給機の運転状態のうちなる頻度の多い運転状態においてハウジングとロータとの間にクリアランスを確実に設けることができる。この他、所定の運転状態には、圧力波過給機の適宜の運転状態を設定してよい。   The predetermined operation state of the pressure wave supercharger in the present invention is not limited to the operation state in which the temperature of the pressure wave supercharger is highest. For example, the operating state that is most frequently occurring when the engine is operating among the operating states of the pressure wave supercharger may be set as a predetermined operating state. By setting such an operating state as a predetermined operating state, a clearance can be reliably provided between the housing and the rotor in an operating state having a high frequency among the operating states of the pressure wave supercharger. In addition, an appropriate operation state of the pressure wave supercharger may be set as the predetermined operation state.

圧力波過給機のロータを回転駆動する駆動源は電動モータに限定されない。例えば、エンジンのクランク軸の回転をシャフトに伝達させてシャフトを回転させてもよい。この場合、クランク軸からシャフトまでの動力伝達経路中に変速機構を設けてシャフトの回転数を変速させてもよい。   The drive source for rotationally driving the rotor of the pressure wave supercharger is not limited to the electric motor. For example, the rotation of the crankshaft of the engine may be transmitted to the shaft to rotate the shaft. In this case, a speed change mechanism may be provided in the power transmission path from the crankshaft to the shaft to change the rotational speed of the shaft.

1 内燃機関
3 吸気通路
4 排気通路
10 圧力波過給機
10a 吸気側端部
10b 排気側端部
11 ハウジング
12 ロータ
12a セル
12i 吸気側部分
12e 排気側部分
13 収容室
14 ロータハウジング
21 シャフト(シャフト部材)
21a 突出部分
Ax 軸線
P 連結位置
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 Intake passage 4 Exhaust passage 10 Pressure wave supercharger 10a Intake side end 10b Exhaust side end 11 Housing 12 Rotor 12a Cell 12i Intake side portion 12e Exhaust side portion 13 Housing chamber 14 Rotor housing 21 Shaft (shaft member) )
21a Protruding part Ax Axis line P Connection position

Claims (6)

軸線方向に貫通する複数のセルを有する円柱状のロータと、
前記ロータが前記軸線回りに回転可能に収容された収容室と、前記ロータの一方の端面と対向する吸気側端部と、前記ロータの他方の端面と対向する排気側端部と、を有するハウジングと、
前記軸線上に配置されるとともに前記吸気側端部に回転可能に支持され、一方の端部が前記吸気側端部から前記収容室内に突出して前記ロータ内に挿入され、かつ前記ロータの前記一方の端面よりも前記他方の端面寄りの連結位置にて前記ロータと連結されているシャフト部材と、を備え、
前記吸気側端部に内燃機関の吸気通路が接続され、前記排気側端部に前記内燃機関の排気通路が接続される圧力波過給機において、
前記シャフト部材が所定の基準温度のときの前記シャフト部材のうち前記吸気側端部から前記収容室内に突出する突出部分の長さ及び前記ロータが前記基準温度のときの前記ロータのうち前記一方の端面から前記連結位置までの部分である吸気側部分の前記軸線方向の長さは、前記圧力波過給機が所定の運転状態で運転されている場合に前記突出部分が熱にて前記軸線方向に伸びる熱伸び量と前記吸気側部分が熱にて前記軸線方向に伸びる熱伸び量とが同じになるように設定されている圧力波過給機。
A cylindrical rotor having a plurality of cells penetrating in the axial direction;
A housing having a housing chamber in which the rotor is rotatably accommodated about the axis, an intake side end facing one end surface of the rotor, and an exhaust side end facing the other end surface of the rotor When,
It is disposed on the axis and is rotatably supported by the intake side end, and one end projects from the intake side end into the housing chamber and is inserted into the rotor, and the one of the rotors A shaft member connected to the rotor at a connection position closer to the other end surface than the end surface of
In a pressure wave supercharger in which an intake passage of an internal combustion engine is connected to the intake side end, and an exhaust passage of the internal combustion engine is connected to the exhaust side end,
Of the shaft member when the shaft member is at a predetermined reference temperature, the length of the protruding portion protruding from the intake side end portion into the accommodating chamber and the one of the rotors when the rotor is at the reference temperature The length in the axial direction of the intake side portion that is a portion from the end surface to the connecting position is the axial direction when the pressure wave supercharger is operated in a predetermined operation state. The pressure wave supercharger is set such that the amount of heat extension extending in the axial direction is the same as the amount of heat extension of the intake side portion due to heat extending in the axial direction.
前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さをLS0、前記ロータが前記基準温度のときの前記吸気側部分の前記軸線方向の長さをLRi0、前記シャフト部材の線膨張係数をαS、前記ロータの線膨張係数をαR、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記シャフト部材の温度と前記基準温度との温度差をΔTS、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記ロータの前記吸気側部分の温度と前記基準温度との温度差をΔTRiとした場合、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さ及び前記ロータが前記基準温度のときの前記吸気側部分の前記軸線方向の長さは、次式
Figure 2011174378
を満たすように設定されている請求項1に記載の圧力波過給機。
The axial length of the protruding portion when the shaft member is at the reference temperature is LS0, the axial length of the intake portion when the rotor is at the reference temperature is LRi0, A linear expansion coefficient is αS, a linear expansion coefficient of the rotor is αR, and a temperature difference between the temperature of the shaft member and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state is ΔTS, When the temperature difference between the intake side temperature of the rotor and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state is ΔTRi, the shaft member is The length in the axial direction of the projecting portion and the length in the axial direction of the intake side portion when the rotor is at the reference temperature are as follows:
Figure 2011174378
The pressure wave supercharger according to claim 1, which is set to satisfy
前記シャフト部材が前記基準温度のときの前記突出部分の長さ、前記ロータが前記基準温度のときの前記ロータのうち前記連結位置から前記ロータの前記他方の端面までの部分である排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ハウジングのうち前記吸気側端部と前記排気側端部との間の部分であるロータ外周部の前記軸線方向の長さは、前記圧力波過給機が前記所定の運転状態で運転されている場合に前記突出部分が熱にて前記軸線方向に伸びる熱伸び量と前記排気側部分が熱にて前記軸線方向に伸びる熱伸び量との合計が、前記ロータ外周部が熱にて前記軸線方向に伸びる熱伸び量と同じになるように設定されている請求項1又は2に記載の圧力波過給機。   The length of the protruding portion when the shaft member is at the reference temperature, and the exhaust side portion that is the portion from the coupling position to the other end surface of the rotor of the rotor when the rotor is at the reference temperature. The length in the axial direction, and the length in the axial direction of the outer peripheral portion of the rotor, which is the portion between the intake side end and the exhaust side end of the housing when the housing is at the reference temperature, When the pressure wave supercharger is operated in the predetermined operation state, the protruding portion extends in the axial direction due to heat, and the exhaust side portion expands in the axial direction due to heat. The pressure wave supercharger according to claim 1 or 2, wherein the total amount of elongation is set so that the outer circumferential portion of the rotor is the same as the amount of thermal elongation that extends in the axial direction due to heat. 前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さをLS0、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さをLRe0、前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さをLH0、前記シャフト部材の線膨張係数をαS、前記ロータの線膨張係数をαR、前記ロータ外周部の線膨張係数をαH、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記シャフト部材の温度と前記基準温度との温度差をΔTS、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記排気側部分の温度と前記基準温度との温度差をΔTRe、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記ロータ外周部の温度と前記基準温度との温度差をΔTHとした場合、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さ、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さは、次の2つの式
Figure 2011174378
をいずれも満たすように設定されている請求項3に記載の圧力波過給機。
The axial length of the protruding portion when the shaft member is at the reference temperature is LS0, the axial length of the exhaust side portion when the rotor is at the reference temperature is LRe0, and the housing is the The axial length of the outer periphery of the rotor at the reference temperature is LH0, the linear expansion coefficient of the shaft member is αS, the linear expansion coefficient of the rotor is αR, the linear expansion coefficient of the outer periphery of the rotor is αH, ΔTS is the temperature difference between the temperature of the shaft member and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state, and the pressure wave supercharger is operated in the predetermined operation state. ΔTRe is the temperature difference between the temperature of the exhaust side portion and the reference temperature when the pressure wave supercharger is operating, and the temperature of the outer periphery of the rotor and the reference temperature when the pressure wave supercharger is operating in the predetermined operating state. Temperature When the degree difference is ΔTH, the axial length of the protruding portion when the shaft member is at the reference temperature, the axial length of the exhaust side portion when the rotor is at the reference temperature, And the length in the axial direction of the outer periphery of the rotor when the housing is at the reference temperature is expressed by the following two formulas:
Figure 2011174378
The pressure wave supercharger according to claim 3, wherein the pressure wave supercharger is set so as to satisfy both of the following conditions.
軸線方向に貫通する複数のセルを有する円柱状のロータと、
前記ロータが前記軸線回りに回転可能に収容された収容室と、前記ロータの一方の端面と対向する吸気側端部と、前記ロータの他方の端面と対向する排気側端部と、を有するハウジングと、
前記軸線上に配置されるとともに前記吸気側端部に回転可能に支持され、一方の端部が前記吸気側端部から前記収容室内に突出して前記ロータ内に挿入され、かつ前記ロータの前記一方の端面よりも前記他方の端面寄りの連結位置にて前記ロータと連結されているシャフト部材と、を備え、
前記吸気側端部に内燃機関の吸気通路が接続され、前記排気側端部に前記内燃機関の排気通路が接続される圧力波過給機において、
前記シャフト部材が所定の基準温度のときの前記シャフト部材のうち前記吸気側端部から前記収容室内に突出する突出部分の長さ、前記ロータが前記基準温度のときの前記ロータのうち前記連結位置から前記ロータの前記他方の端面までの部分である排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ハウジングのうち前記吸気側端部と前記排気側端部との間の部分であるロータ外周部の前記軸線方向の長さは、前記圧力波過給機が所定の運転状態で運転されている場合に前記突出部分が熱にて前記軸線方向に伸びる熱伸び量と前記排気側部分が熱にて前記軸線方向に伸びる熱伸び量との合計が、前記ロータ外周部が熱にて前記軸線方向に伸びる熱伸び量と同じになるように設定されている圧力波過給機。
A cylindrical rotor having a plurality of cells penetrating in the axial direction;
A housing having a housing chamber in which the rotor is rotatably accommodated about the axis, an intake side end facing one end surface of the rotor, and an exhaust side end facing the other end surface of the rotor When,
It is disposed on the axis and is rotatably supported by the intake side end, and one end projects from the intake side end into the housing chamber and is inserted into the rotor, and the one of the rotors A shaft member connected to the rotor at a connection position closer to the other end surface than the end surface of
In a pressure wave supercharger in which an intake passage of an internal combustion engine is connected to the intake side end, and an exhaust passage of the internal combustion engine is connected to the exhaust side end,
The length of the protruding portion of the shaft member that protrudes from the intake side end portion into the accommodating chamber when the shaft member is at a predetermined reference temperature, and the connection position of the rotor when the rotor is at the reference temperature The length in the axial direction of the exhaust side portion that is a portion from the rotor to the other end surface of the rotor, and the intake side end portion and the exhaust side end portion of the housing when the housing is at the reference temperature, The length in the axial direction of the outer periphery of the rotor, which is a portion between the two, is the thermal elongation at which the protruding portion extends in the axial direction due to heat when the pressure wave supercharger is operated in a predetermined operating state. The pressure is set such that the sum of the amount of heat and the amount of thermal elongation at which the exhaust side portion extends in the axial direction due to heat is the same as the amount of thermal elongation at which the outer peripheral portion of the rotor extends in the axial direction due to heat Wave supercharger.
前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さをLS0、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さをLRe0、前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さをLH0、前記シャフト部材の線膨張係数をαS、前記ロータの線膨張係数をαR、前記ロータ外周部の線膨張係数をαH、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記シャフト部材の温度と前記基準温度との温度差をΔTS、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記排気側部分の温度と前記基準温度との温度差をΔTRe、前記圧力波過給機が前記所定の運転状態で運転されている場合の前記ロータ外周部の温度と前記基準温度との温度差をΔTHとした場合、前記シャフト部材が前記基準温度のときの前記突出部分の前記軸線方向の長さ、前記ロータが前記基準温度のときの前記排気側部分の前記軸線方向の長さ、及び前記ハウジングが前記基準温度のときの前記ロータ外周部の前記軸線方向の長さは、次の2つの式
Figure 2011174378
をいずれも満たすように設定されている請求項5に記載の圧力波過給機。
The axial length of the protruding portion when the shaft member is at the reference temperature is LS0, the axial length of the exhaust side portion when the rotor is at the reference temperature is LRe0, and the housing is the The axial length of the outer periphery of the rotor at the reference temperature is LH0, the linear expansion coefficient of the shaft member is αS, the linear expansion coefficient of the rotor is αR, the linear expansion coefficient of the outer periphery of the rotor is αH, ΔTS is the temperature difference between the temperature of the shaft member and the reference temperature when the pressure wave supercharger is operated in the predetermined operation state, and the pressure wave supercharger is operated in the predetermined operation state. ΔTRe is the temperature difference between the temperature of the exhaust side portion and the reference temperature when the pressure wave supercharger is operating, and the temperature of the outer periphery of the rotor and the reference temperature when the pressure wave supercharger is operating in the predetermined operating state. Temperature When the degree difference is ΔTH, the axial length of the protruding portion when the shaft member is at the reference temperature, the axial length of the exhaust side portion when the rotor is at the reference temperature, And the length in the axial direction of the outer periphery of the rotor when the housing is at the reference temperature is expressed by the following two formulas:
Figure 2011174378
The pressure wave supercharger according to claim 5, wherein the pressure wave supercharger is set so as to satisfy both of the following conditions.
JP2010037202A 2010-02-23 2010-02-23 Pressure wave supercharger apparatus Pending JP2011174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037202A JP2011174378A (en) 2010-02-23 2010-02-23 Pressure wave supercharger apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037202A JP2011174378A (en) 2010-02-23 2010-02-23 Pressure wave supercharger apparatus

Publications (1)

Publication Number Publication Date
JP2011174378A true JP2011174378A (en) 2011-09-08

Family

ID=44687462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037202A Pending JP2011174378A (en) 2010-02-23 2010-02-23 Pressure wave supercharger apparatus

Country Status (1)

Country Link
JP (1) JP2011174378A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170726A (en) * 1986-01-23 1987-07-27 Mazda Motor Corp Pressure wave supercharger
JPH02204629A (en) * 1989-01-31 1990-08-14 Mazda Motor Corp Engine with pressure wave supercharger
JPH10103070A (en) * 1996-09-27 1998-04-21 Toyota Motor Corp Variable displacement turbocharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170726A (en) * 1986-01-23 1987-07-27 Mazda Motor Corp Pressure wave supercharger
JPH02204629A (en) * 1989-01-31 1990-08-14 Mazda Motor Corp Engine with pressure wave supercharger
JPH10103070A (en) * 1996-09-27 1998-04-21 Toyota Motor Corp Variable displacement turbocharger

Similar Documents

Publication Publication Date Title
JP5062334B2 (en) Pressure wave supercharger
EP1785613B1 (en) Exhaust turbo-supercharger
JP4947007B2 (en) Internal combustion engine with a supercharger
EP2472122B1 (en) Turbocharger with integrated actuator
JP2007336737A (en) Motor rotor and its rotational balance correcting method
JP2009250232A (en) Integrated type engine of exhaust manifold and cylinder head
EP3740680B1 (en) Egr pump system and control method of egr pump
JP2007046642A (en) Supercharger and fully floating bearing
JP2007120383A (en) Turbocharger
JP5935677B2 (en) Turbine housing
WO2015073358A1 (en) Liquid-cooled turbine housing with intermediate chamber
JP2010169066A (en) Control device for vehicle
KR20130047310A (en) Turbine housing of turbo charger for vehicle
JP2011174378A (en) Pressure wave supercharger apparatus
JP2010163996A (en) Low pressure egr device
JP2008014250A (en) Exhaust gas recirculation system of internal combustion engine
JP5760386B2 (en) Electric assist turbocharger cooling device
JP6863017B2 (en) Turbine housing and turbocharger
KR101404278B1 (en) Actuator for turbochager
JP4645526B2 (en) Variable compression ratio internal combustion engine
JP2010059870A (en) Supercharging device for internal combustion engine
JP7191466B2 (en) internal combustion engine silencer
JP2011094550A (en) Supercharging device for internal combustion engine
KR100774336B1 (en) Turbo charger system for diesel engine
JP2007071128A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318