JP2011167746A - Beam-welded member and differential gear equipped with the same - Google Patents

Beam-welded member and differential gear equipped with the same Download PDF

Info

Publication number
JP2011167746A
JP2011167746A JP2010035877A JP2010035877A JP2011167746A JP 2011167746 A JP2011167746 A JP 2011167746A JP 2010035877 A JP2010035877 A JP 2010035877A JP 2010035877 A JP2010035877 A JP 2010035877A JP 2011167746 A JP2011167746 A JP 2011167746A
Authority
JP
Japan
Prior art keywords
welding
differential
space
ring gear
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010035877A
Other languages
Japanese (ja)
Other versions
JP5509910B2 (en
Inventor
Yoshinori Izawa
佳典 伊澤
一央 ▲高▼木
Kazuchika Takagi
Akira Shimizu
明 清水
Hidenobu Matsuyama
秀信 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010035877A priority Critical patent/JP5509910B2/en
Publication of JP2011167746A publication Critical patent/JP2011167746A/en
Application granted granted Critical
Publication of JP5509910B2 publication Critical patent/JP5509910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a beam-welded member suitable for preventing weld defects and to provide a differential device equipped with the same. <P>SOLUTION: The beam-welded member is formed by joining a first member e.g. a differential ring gear 2 and a second member e.g. a differential case 3 by piercing a filler wire into welding grooves 14, 24 while supplying the filler wire thereto and by performing piercing welding which reaches a piercing space A provided between the first and the second member on the deeper side from the welding grooves, the welding grooves 14, 24 being formed in an end part facing an external space on one side of an annular face where the first member and the second member abut on each other, wherein the first member is supported on the outer periphery of the second member, with the inner periphery 21 of the first member fitted thereto. Then, the piercing space A for the piercing welding of the first and second member is in communication with the outer space through a communicative hole 40 provided in the first member or the second member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば自動車の差動装置等の機械装置における2つの構成部材同士を接合するビーム溶接部材およびこれを備えた差動装置に関する。特に、部材とこの部材を内径部から支持する部材とが互いにビーム溶接されて構成されるビーム溶接部材およびこれを備えた差動装置に関するものである。   The present invention relates to a beam welding member that joins two constituent members in a mechanical device such as a differential device of an automobile, and a differential device including the beam welding member. In particular, the present invention relates to a beam welding member configured by beam welding a member and a member supporting the member from an inner diameter portion to each other, and a differential device including the beam welding member.

自動車等の車両の駆動出力側には、変速装置を介して伝達される動力を、車両の旋回時等の必要時に左右の車輪にそれぞれ対応する左右のドライブシャフトを介して動力を伝達する差動装置が設けられている。この差動装置は、動力が伝達される鋼製のデフリングギヤと、このデフリングギヤを内径部から支持してデフリングギヤと一体に回転する鋳鉄製のデフケースとを備える。   A differential that transmits the power transmitted through the transmission to the drive output side of a vehicle such as an automobile via the left and right drive shafts corresponding to the left and right wheels when the vehicle is turning, for example. A device is provided. The differential device includes a steel diff ring gear to which power is transmitted, and a cast iron diff case that supports the diff ring gear from an inner diameter portion and rotates integrally with the diff ring gear.

従来から、上記両者を、高張力ボルト等により結合することに代えて、高エネルギビームにより溶接結合するビーム溶接部材およびこれを備えた差動装置が提案されている(特許文献1参照)。   Conventionally, a beam welding member that welds and joins both of the above by using a high-energy beam instead of using a high-tensile bolt or the like, and a differential device including the same have been proposed (see Patent Document 1).

これは、鋳造部品であるデフケースと肌焼き鋼から成るデフリングギヤとを溶接により結合する方法である。そして、先ず、加工の完了した両方の部品において、溶接準備のために溶接すべき面を少なくとも部分的に除去して、両者間に狭いU字状溝、Y字状溝又はV字状溝からなる開先が形成されるようにする。次に、両方の部品を互いに継ぎ合わして、オーステナイト系のフィラーワイヤを補給しながら高エネルギビームにより溶接するようにしている。   This is a method of joining a differential case, which is a cast part, and a differential ring gear made of case-hardened steel by welding. First, in both parts that have been processed, the surface to be welded is at least partially removed for preparation for welding, and a narrow U-shaped groove, Y-shaped groove or V-shaped groove is interposed between the two. A groove is formed. Next, both parts are joined together and welded with a high energy beam while replenishing the austenitic filler wire.

特表2002−514511号公報Special Table 2002-514511

上記従来例では、デフケースとデフリングギヤとの開先部を貫通溶接するために、開先の奥側(ビーム先端側)のデフケースとデフリングギヤとが接触した部分に、両者の表面を窪ませて形成した空間を設けている。しかしながら、この空間は、一方ではデフケースとデフリングギヤの開先により閉じられ、他方ではデフケースとデフリングギヤとが互いに中心軸を合わせるために圧入または焼き嵌めで嵌合して閉じられ、密閉された空間となっている。このため、レーザや電子ビーム等の高エネルギビームを開先部に照射して溶接した場合に、溶接時の熱で空間内部の空気が膨張し、膨張した気体は高エネルギビームにより溶融した溶接金属を開先部内へ押出すよう作用する。この結果、溶接金属の内周側が抉られた窪んだ状態となり、所謂アンダーフィルという、溶接欠陥を生じる。また、溶接の終盤では空間内部の気体が溶接ビードを外周側に押し退けて噴出して、溶接金属に気孔の発生や溶接ビードの表面側に不整ビードを生じるという、溶接欠陥を発生する場合があった。   In the above conventional example, in order to weld through the groove portion between the differential case and the differential ring gear, the surface of the differential case and the differential ring gear on the back side (beam tip side) of the groove is recessed. A formed space is provided. However, this space is closed on the one hand by the groove of the diff case and the diff ring gear, and on the other hand, the diff case and the diff ring gear are closed by press fitting or shrink fitting in order to align the central axes of each other. It has become. For this reason, when welding is performed by irradiating a groove with a high energy beam such as a laser or an electron beam, the air inside the space expands due to heat during welding, and the expanded gas is a weld metal melted by the high energy beam. Acts to extrude into the groove. As a result, the inner peripheral side of the weld metal is indented and depressed, resulting in a so-called underfill welding defect. Also, at the end of welding, the gas inside the space pushes the weld bead to the outer peripheral side and blows out, which may cause welding defects such as pores in the weld metal and irregular beads on the surface side of the weld bead. It was.

そこで本発明は、上記問題点に鑑みてなされたもので、溶接欠陥を防止するに好適なビーム溶接部材およびこれを備えた差動装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a beam welding member suitable for preventing welding defects and a differential device including the same.

本発明は、第1部材は第2部材の外周に内周部を嵌合させて支持され、第1部材と第2部材とが互いに当接する環状の面の一方側において外部空間に臨む端部に形成した溶接用開先部に、フィラーワイヤを供給しつつ溶接用開先部を貫通させて、前記溶接用開先部より奥側の第1,2部材間に設けた貫通空間に達する高エネルギビームによる貫通溶接により接合されたビーム溶接部材である。そして、前記第1,2部材の貫通溶接のための貫通空間が、第1部材若しくは第2部材に設けた連通孔を介して外部空間と連通されている。   In the present invention, the first member is supported by fitting the inner periphery to the outer periphery of the second member, and the end facing the external space on one side of the annular surface where the first member and the second member abut each other The welding groove portion formed on the welding groove portion is penetrated through the welding groove portion while supplying the filler wire, and reaches a penetration space provided between the first and second members on the back side from the welding groove portion. It is a beam welding member joined by penetration welding with an energy beam. And the penetration space for penetration welding of said 1st, 2nd member is connected with external space via the communicating hole provided in the 1st member or the 2nd member.

したがって、本発明では、第1,2部材の溶接用開先部の奥側に形成される貫通溶接のための貫通空間が、第1部材若しくは第2部材に設けた連通孔を介して外部空間と連通されている。このため、ビーム溶接時に貫通空間内の気体が膨張しても外部空間へ連通孔を介して排出されて内圧が上昇することがなく、内圧上昇に伴う溶接金属の内周側が抉られた窪んだ状態となる、所謂アンダーフィルという、溶接欠陥を防止できる。また、溶接の終盤では空間内部の気体が溶接ビードを外周側に押し退けて噴出して、溶接金属に気孔の発生や溶接ビードの表面側に不整ビードを生じるという、溶接欠陥の発生も防止できる。   Therefore, in the present invention, the penetration space for penetration welding formed on the back side of the welding groove portion of the first and second members is an external space via the communication hole provided in the first member or the second member. Communicated with. For this reason, even if the gas in the through space expands during beam welding, the internal pressure does not increase by being discharged to the external space through the communication hole, and the inner peripheral side of the weld metal is raised by the increase in the internal pressure. It is possible to prevent welding defects such as so-called underfill. Further, in the final stage of welding, the gas in the space pushes the weld bead to the outer peripheral side and blows out, so that it is possible to prevent the occurrence of welding defects such as generation of pores in the weld metal and irregular beads on the surface side of the weld bead.

本発明の一実施形態を示すビーム溶接部材およびこれを備えた差動装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the beam welding member which shows one Embodiment of this invention, and a differential provided with this. 第1実施例のビーム溶接部材の一例が適用されたデフリングギヤとデフケースとのビーム溶接部の拡大断面図。The expanded sectional view of the beam welding part of the differential ring gear and differential case to which an example of the beam welding member of 1st Example was applied. 第2実施例のビーム溶接部材の一例が適用された差動装置におけるデフリングギヤの拡大断面図。The expanded sectional view of the diff ring gear in the differential which the example of the beam welding member of 2nd Example was applied. 第3実施例のビーム溶接部材の一例が適用された差動装置におけるデフリングギヤの拡大断面図。The expanded sectional view of the diff ring gear in the differential gear to which an example of the beam welding member of the 3rd example was applied. 第4実施例のビーム溶接部材の一例が適用された差動装置におけるデフリングギヤの拡大断面図。The expanded sectional view of the diff ring gear in the differential gear to which an example of the beam welding member of the 4th example was applied. 第5実施例のビーム溶接部材の一例が適用された差動装置におけるデフリングギヤの拡大断面図。The expanded sectional view of the diff ring gear in the differential which the example of the beam welding member of 5th Example was applied. 第6実施例のビーム溶接部材の一例が適用された差動装置におけるデフリングギヤとデフケースとのビーム溶接部の拡大断面図。The expanded sectional view of the beam welding part of the differential ring gear and differential case in the differential gear to which an example of the beam welding member of 6th Example was applied. 本発明の第2実施形態を示すビーム溶接部材およびこれを備えた差動装置における第1実施例のデフリングギヤとデフケースとのビーム溶接部の拡大断面図。The expanded sectional view of the beam welding part of the differential ring gear and differential case of 1st Example in the beam welding member which shows 2nd Embodiment of this invention, and a differential gear provided with the same. 第2実施例のデフリングギヤとデフケースとのビーム溶接部の拡大断面図。The expanded sectional view of the beam welding part of the differential ring gear and differential case of 2nd Example. 第3実施例のデフリングギヤとデフケースとのビーム溶接部の拡大断面図。The expanded sectional view of the beam welding part of the differential ring gear and differential case of 3rd Example. 開先部の内周に設ける貫通溶接のための貫通空間を、開先の内周端に連ねて部分的に閉空間として設けた比較例のビーム溶接後の状態を示す断面図。Sectional drawing which shows the state after the beam welding of the comparative example which provided the penetration space for penetration welding provided in the inner periphery of a groove part as a closed space partially connected to the inner peripheral end of a groove.

以下、本発明のビーム溶接部材およびこれを備えた差動装置を各実施形態に基づいて説明する。   Hereinafter, a beam welding member of the present invention and a differential equipped with the same will be described based on each embodiment.

(第1実施形態)
図1〜図7は、本発明を適用したビーム溶接部材およびこれを備えた差動装置の第1実施形態を示し、図1は適用しようとする差動装置の概略断面図を示し、図2〜図7は第1〜6実施例を夫々示す図である。
(First embodiment)
1 to 7 show a first embodiment of a beam welding member to which the present invention is applied and a differential device provided with the same, FIG. 1 shows a schematic sectional view of the differential device to be applied, and FIG. FIG. 7 shows the first to sixth embodiments.

図1において、ビーム溶接部材およびこれを備えた差動装置1は、エンジン等からの動力が伝達される第1部材としての鋼製のデフリングギヤ2と、このデフリングギヤ2を支持してデフリングギヤ2と一体に回転する鋳鉄製のデフケース3とを備えている。デフケース3は、図示しないが、ハウジングに回転可能に支持されている。そして、ベベルギヤからなる一対のピニオンメイトギヤとこのピニオンメイトギヤと噛合いするベベルギヤからなる左右のサイドギヤとからなるディファレンシャルギヤユニットを内蔵している。   In FIG. 1, a beam welding member and a differential device 1 having the beam welding member include a steel diff ring gear 2 as a first member to which power from an engine or the like is transmitted, and a diff ring gear 2 that supports the diff ring gear 2. 2 and a differential case 3 made of cast iron that rotates integrally with the base plate 2. Although not shown, the differential case 3 is rotatably supported by the housing. A differential gear unit comprising a pair of pinion mate gears made of bevel gears and left and right side gears made of bevel gears meshing with the pinion mate gears is incorporated.

そして、変速機等から出力がデフリングギヤ2に伝達されると、このデフリングギヤ2が回転するので、デフケース3も回転する。このデフケース3の回転により、デフケース3内に内蔵されているディファレンシャルギヤユニットのピニオンメイトギヤもデフケース3と一体に回転する。すると、ピニオンメイトギヤに噛合いする左右のサイドギヤが回転する。これにより、図示しない左右のドライブシャフトが回転し、これらのドライブシャフトに連結された左右の車輪(不図示)が回転する。この構成の差動装置1は、一般的に使用されている通常のものであり、車両左右の駆動車輪間に配置されるものの他、車両前後のファイナルドライブ装置間に配置されるセンタデファレンシャル装置にも適用されている。   When the output is transmitted from the transmission or the like to the differential ring gear 2, the differential ring 3 rotates, so that the differential case 3 also rotates. Due to the rotation of the differential case 3, the pinion mate gear of the differential gear unit built in the differential case 3 also rotates integrally with the differential case 3. Then, the left and right side gears that mesh with the pinion mate gear rotate. As a result, left and right drive shafts (not shown) rotate, and left and right wheels (not shown) connected to these drive shafts rotate. The differential device 1 having this configuration is a normal one that is generally used. In addition to the one that is disposed between the left and right drive wheels of the vehicle, the differential device 1 is a center differential device that is disposed between the front and rear final drive devices. Has also been applied.

前記差動装置1におけるデフリングギヤ2とデフケース3との接合は、デフリングギヤ2が繰り返し荷重および衝撃荷重を受けることから、高い接合強度(耐疲労強度、耐衝撃強度)が求められる。しかし、デフリングギヤ2を構成する表面焼入された鋼材とデフケース3を構成する鋳鉄若しくは鋳鋼との高強度接合が困難である。このため、一般的には、デフリングギヤ2とデフケース3との高強度接合として、所定数のボルトによるボルト接合が使用されている。   The differential gear 1 and the differential case 3 in the differential device 1 are required to have high joint strength (fatigue resistance and impact resistance) because the differential ring gear 2 receives repeated loads and impact loads. However, high-strength joining between the surface-hardened steel material constituting the differential ring gear 2 and the cast iron or cast steel constituting the differential case 3 is difficult. For this reason, generally, as a high-strength joint between the differential ring gear 2 and the differential case 3, a bolt joint using a predetermined number of bolts is used.

しかし、差動装置1におけるデフリングギヤ2とデフケース3との接合として、ボルト接合を用いたのでは、差動装置1として8〜12本くらいのボルトが使用される。このため、部品点数が多くコスト高となるばかりでなく、重量が重いものとなっている。特に、これらのボルトには荷重が繰り返しかかることから、その部品機能として耐疲労強度および耐衝撃強度等の高強度が求められるため、更に一層コスト高を招いてしまう。また、デフリングギヤ2とデフケース3とを手作業でボルト仮付けを行った後、ボルト締め付け機でボルトを締めつけているため、作業工数が多くかかっている。更に、ボルトが他の部材との干渉を防止するために、ケースの狭い空間内にこれらのボルトの占有スペースが必要となっている。   However, when bolt connection is used as the connection between the differential ring gear 2 and the differential case 3 in the differential device 1, about 8 to 12 bolts are used as the differential device 1. For this reason, not only the number of parts is increased and the cost is increased, but also the weight is heavy. In particular, since these bolts are repeatedly loaded, high strength such as fatigue resistance and impact resistance is required as a function of the parts, which further increases the cost. Further, since the bolts are manually attached to the differential ring gear 2 and the differential case 3 and then tightened with a bolt tightening machine, a large number of work steps are required. Furthermore, in order to prevent the bolts from interfering with other members, a space occupied by these bolts is required in a narrow space of the case.

そこで、本実施形態においては、デフリングギヤ2とデフケース3との接合にボルト接合を用いずに、高接合強度を得つつ、作業工数および部品点数をともに削減できるビーム溶接部材を提供するものである。更に本実施形態では、高接合強度を得つつ、占有スペースを低減して他の部材との干渉を防止して確実に動力を伝達することのできる差動装置1を提供するものである。   Therefore, in this embodiment, a beam welding member is provided that can reduce both the number of work steps and the number of parts while obtaining high joint strength without using bolt joint for joining the differential ring gear 2 and the differential case 3. . Furthermore, the present embodiment provides a differential device 1 capable of reliably transmitting power while reducing the occupied space and preventing interference with other members while obtaining high joint strength.

このために、前記デフケース3は、外周に前記デフリングギヤ2の内周面を嵌め合い支持する円筒面11を、機械加工により形成する。また、この円筒面11の端部において外周側に突出させてフランジ部12を備える。このフランジ部12の前記円筒面11側の側面は、前記デフリングギヤ2を軸方向に位置決めをすると共にデフリングギヤ2に対して溶接すべき接合部13を構成するよう機械加工している。   For this purpose, the differential case 3 is formed by machining a cylindrical surface 11 that fits and supports the inner peripheral surface of the differential ring gear 2 on the outer periphery. Further, a flange portion 12 is provided so as to protrude to the outer peripheral side at the end portion of the cylindrical surface 11. The side surface of the flange portion 12 on the cylindrical surface 11 side is machined so as to position the differential ring gear 2 in the axial direction and to form a joint portion 13 to be welded to the differential ring gear 2.

前記デフリングギヤ2は、リング状の鋼材により形成され、鋼材の一方の側面に形成されたテーパ状の(傘)歯車部20を備える。前記歯車部20は、車両の平面図より見て、デフケース3の軸心に対して直交する方向の軸(プロペラシャフト)から入力を受ける場合には、上記したように傘歯車となる。また、前記歯車部20は、デフケース3の軸心に対して並行する方向の軸から入力を受ける場合には、デフリングギヤ2に設ける歯車部20は平歯車が使用される。また、機械加工により、この歯車部20の内周側に形成されてデフケース3の外周の円筒面11に圧入嵌合する内周面21と、歯車部20の背面側に形成された接合部23と、を有する。前記接合部23は、デフケース3に設けたフランジ部12に軸方向から当接して軸方向の位置決めすると共にそのフランジ部12の接合部13にビーム溶接される。本実施形態におけるデフケース3とデフリングギヤ2との結合面は、デフケース3の円筒面11とデフリングギヤ2の内周面21との圧入嵌合部と、デフケース3及びデフリングギヤ2の接合部13,23同士のビーム溶接部と、よりなるL字状断面をなす。   The differential ring gear 2 is formed of a ring-shaped steel material and includes a tapered (bevel) gear portion 20 formed on one side surface of the steel material. The gear portion 20 becomes a bevel gear as described above when receiving an input from an axis (propeller shaft) in a direction orthogonal to the axial center of the differential case 3 as seen from a plan view of the vehicle. Further, when the gear portion 20 receives an input from an axis parallel to the axis of the differential case 3, a spur gear is used as the gear portion 20 provided in the differential ring gear 2. Further, by machining, an inner peripheral surface 21 formed on the inner peripheral side of the gear portion 20 and press-fitted into the cylindrical surface 11 on the outer periphery of the differential case 3, and a joint portion 23 formed on the back side of the gear portion 20. And having. The joint 23 abuts on the flange 12 provided on the differential case 3 in the axial direction and is positioned in the axial direction, and is beam-welded to the joint 13 of the flange 12. In the present embodiment, the coupling surface between the differential case 3 and the differential ring gear 2 includes a press-fitting fitting portion between the cylindrical surface 11 of the differential case 3 and the inner peripheral surface 21 of the differential ring gear 2, a joint portion 13 between the differential case 3 and the differential ring gear 2, It has an L-shaped cross section composed of 23 beam welds.

図2は、本実施形態に係る第1実施例のビーム溶接部材の一例が適用された差動装置1におけるデフリングギヤ2とデフケース3との接合部13,23を模式的に示す。即ち、デフケース3の円筒面11にデフリングギヤ2の内周面21を圧入嵌合させ、デフリングギヤ2とデフケース3との接合部13,23同士を接触させてビーム溶接した状態を示す図である。   FIG. 2 schematically shows the joint portions 13 and 23 of the differential ring gear 2 and the differential case 3 in the differential gear 1 to which an example of the beam welding member of the first example according to the present embodiment is applied. In other words, the inner peripheral surface 21 of the differential ring gear 2 is press-fitted into the cylindrical surface 11 of the differential case 3, and the joints 13 and 23 of the differential ring gear 2 and the differential case 3 are brought into contact with each other to perform beam welding. .

図2に示すように、デフリングギヤ2およびデフケース3の接合部13,23は、機械加工により、夫々外周側に形成された開先部14,24を備える。また、開先部14,24よりも内周側において開先部14,24より軸方向に夫々後退させた端面により形成された空間形成部15,25を備える。   As shown in FIG. 2, the joint portions 13 and 23 of the differential ring gear 2 and the differential case 3 include groove portions 14 and 24 formed on the outer peripheral side by machining. In addition, space forming portions 15 and 25 are provided which are formed by end surfaces which are retreated in the axial direction from the groove portions 14 and 24 on the inner peripheral side of the groove portions 14 and 24, respectively.

前記ビーム溶接のための開先部14,24は、内周側において互いに当接される当接部14A,24Aと、この当接部14A,24Aの外周側においてテーパ状に切欠き形成したテーパ部14B,24Bと、を備える。   The groove portions 14 and 24 for beam welding are contact portions 14A and 24A that are in contact with each other on the inner peripheral side, and a taper that is formed by notching in a tapered shape on the outer peripheral side of the contact portions 14A and 24A. Sections 14B and 24B.

また、前記夫々の空間形成部15,25を構成する側面の内周側は、夫々隅Rおよび面取りを介して、デフケース3の円筒面11及びデフリングギヤ2の内周面21に連なっている。また、空間形成部15,25を構成する側面の外周側は、夫々隅Rを介して、夫々前記開先部14,24の当接部14A,24Aの内周端に連なるよう構成している。   Further, the inner peripheral sides of the side surfaces constituting the space forming portions 15 and 25 are connected to the cylindrical surface 11 of the differential case 3 and the inner peripheral surface 21 of the differential ring gear 2 through corners R and chamfers, respectively. Further, the outer peripheral sides of the side surfaces constituting the space forming portions 15 and 25 are configured to be connected to the inner peripheral ends of the contact portions 14A and 24A of the groove portions 14 and 24 through the corners R, respectively. .

従って、デフリングギヤ2とデフケース3との接合部13,23は、両者を接触させたビーム溶接前の状態では、開先部14,24の当接部14A,24A同士が接触される。そして、開先部14,24のテーパ部14B,24B同士は、内周に向けて狭まり、外周に向けて拡がるビーム溶接のための開先を形成する。また、内周側の空間形成部15,25は、溶接ビームを互いの開先部14,24を貫通させて受入れて、貫通溶接とするための貫通空間Aを形成する。この貫通空間Aは、開先部14,24の内周端からデフケース3とデフリングギヤ2との嵌合部分11,21までの範囲において、互いに接触することなく軸方向に離間している。   Therefore, the contact portions 14A and 24A of the groove portions 14 and 24 are brought into contact with each other in the joint portions 13 and 23 between the differential ring gear 2 and the differential case 3 in a state before beam welding in which both are in contact with each other. The tapered portions 14B and 24B of the groove portions 14 and 24 form a groove for beam welding that narrows toward the inner periphery and expands toward the outer periphery. The space forming portions 15 and 25 on the inner peripheral side receive the welding beam through the mutual groove portions 14 and 24 to form a through space A for through welding. The through space A is spaced apart in the axial direction without contacting each other in the range from the inner peripheral ends of the groove portions 14 and 24 to the fitting portions 11 and 21 between the differential case 3 and the differential ring gear 2.

また、デフケース3には、前記貫通空間Aに外端が開口し内端がデフケース3内面に開口して半径方向に貫通する連通孔40を備える。この連通孔40は、例えば、φ3.0の孔で形成され、デフリングギヤ2のデフケース3への組立時にビーム溶接のための貫通空間Aと外部空間とを連通させる。前記連通孔40は、1本で形成しても複数本で形成してもよく、また、配置する円周方向位置はいずれの円周方向位置でもよい。   Further, the differential case 3 is provided with a communication hole 40 having an outer end opened in the through space A and an inner end opened on the inner surface of the differential case 3 so as to penetrate in the radial direction. The communication hole 40 is formed with, for example, a hole of φ3.0, and communicates the through space A for beam welding with the external space when the differential ring gear 2 is assembled to the differential case 3. The communication hole 40 may be formed by one or a plurality, and the circumferential position to be arranged may be any circumferential position.

前記デフリングギヤ2とデフケース3との開先部14,24同士を接触させて、デフケース3とデフリングギヤ2の開先にフィラーワイヤを供給しながら、レーザビーム若しくは電子ビーム等の高エネルギビームを照射してビーム溶接する。このビーム溶接は、順次デフケース3及びデフリングギヤ2を軸心回りに回転させて、開先の全周に渡って実施する。フィラーワイヤとデフケース3とデフリングギヤ2の開先とが高エネルギビームにより溶融されて開先部14,24に溶接金属30が形成され、デフケース3とデフリングギヤ2とが開先部14,24で溶接される。同時に、溶接金属30の軸方向両側のデフケース3とデフリングギヤ2の母材部位に、夫々熱影響層31が生じる。   While the groove portions 14 and 24 of the differential ring gear 2 and the differential case 3 are brought into contact with each other and a filler wire is supplied to the groove of the differential case 3 and the differential ring gear 2, irradiation with a high energy beam such as a laser beam or an electron beam is performed. And beam welding. This beam welding is performed over the entire circumference of the groove by sequentially rotating the differential case 3 and the differential ring gear 2 around the axis. The filler wire, the differential case 3 and the groove of the differential ring gear 2 are melted by a high energy beam to form a weld metal 30 in the groove portions 14 and 24, and the differential case 3 and the differential ring gear 2 are formed at the groove portions 14 and 24. Welded. At the same time, heat-affected layers 31 are generated in the base material portions of the differential case 3 and the differential ring gear 2 on both sides of the weld metal 30 in the axial direction.

そして、半径方向内周側に位置する貫通空間Aは連通孔40を介して外部空間に連通しているため、高エネルギビームの照射及び溶接熱により、半径方向内周側に位置する貫通空間A内の空気は膨張する。膨張した気体は連通孔40を介して流れ出る。また、溶接後の冷却過程においては、貫通空間A内の気体の冷却に伴う収縮に応じて、外部空間から連通孔40を介して外気を導入する。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   Since the through space A located on the radially inner peripheral side communicates with the external space via the communication hole 40, the through space A located on the radially inner peripheral side by irradiation with a high energy beam and welding heat. The air inside expands. The expanded gas flows out through the communication hole 40. Further, in the cooling process after welding, the outside air is introduced from the external space through the communication hole 40 in accordance with the shrinkage accompanying the cooling of the gas in the through space A. For this reason, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

図11は、開先部14,24の内周に設ける貫通溶接のための貫通空間Aを、開先の内周端に連ねて部分的に設けた閉空間に形成した比較例のビーム溶接後の状態を示している。即ち、貫通空間Aは、半径方向外周側において開先部14,24の当接部14A,24A同士の接触により閉じられている。また、半径方向内周側においてデフケース3とデフリングギヤ2との端面同士の接触及びデフケース3とデフリングギヤ2との嵌合部分11,21の嵌り合いにより閉じられている。言い換えれば、貫通空間Aは外部空間から遮断された閉空間となっている。   FIG. 11 shows a comparative example in which a penetration space A for penetration welding provided on the inner circumference of the groove portions 14 and 24 is formed in a closed space partially provided continuously to the inner circumference end of the groove. Shows the state. That is, the penetration space A is closed by contact between the contact portions 14A and 24A of the groove portions 14 and 24 on the outer peripheral side in the radial direction. Further, the inner circumferential side is closed by contact between the end faces of the differential case 3 and the differential ring gear 2 and the fitting portions 11 and 21 between the differential case 3 and the differential ring gear 2. In other words, the through space A is a closed space that is blocked from the external space.

このため、比較例においては、高エネルギビームの照射及び溶接熱により、貫通空間A内の空気は膨張するが、膨張した気体は高エネルギビームにより溶融した溶接金属30を外周側に押出すよう作用する。この作用は、図11に示すように、溶接金属30の内周側が抉られた状態(図中のB参照)の、所謂アンダーフィルという、溶接欠陥を生じる。また、溶接の終盤では貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じるという、溶接欠陥を発生する。   For this reason, in the comparative example, the air in the through space A expands due to the irradiation of the high energy beam and the welding heat, but the expanded gas acts to push the weld metal 30 melted by the high energy beam to the outer peripheral side. To do. As shown in FIG. 11, this action causes a welding defect called so-called underfill in a state where the inner peripheral side of the weld metal 30 is beaten (see B in the figure). Further, in the final stage of welding, the gas inside the through space A pushes the weld bead to the outer peripheral side and blows out to generate a welding defect in which an irregular bead is generated on the surface side of the weld bead.

これに対して、本実施例においては、上記したように、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   On the other hand, in the present embodiment, as described above, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. . For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

また、溶接後の溶接金属30が冷えて固まる際には、溶接金属30の体積が収縮し、周囲の母材(デフケース3及びデフリングギヤ2)との間にある熱影響層31付近に引張応力が発生する。しかし、本実施例においては、貫通空間Aが、その内周側においてデフケース3の円筒面11及びデフリングギヤ2の内周面21に拡大されている。このため、溶接金属30の凝固収縮時に撓める部分の長さは、デフケース3とデフリングギヤ2とが嵌合している部分11,21から開先部14,24外周までの長さLAとなる。また、デフケース3のフランジ部12の撓める角度をδとすると、溶接金属30の周辺の母材の変位量の期待値は積[LA*δ]と見なせる。   Further, when the weld metal 30 after welding cools and hardens, the volume of the weld metal 30 shrinks, and a tensile stress is generated in the vicinity of the heat-affected layer 31 between the surrounding base material (the differential case 3 and the differential ring gear 2). Occurs. However, in the present embodiment, the through space A is expanded on the inner peripheral surface 21 of the differential case 3 and the differential ring gear 2 on the inner peripheral side thereof. For this reason, the length of the portion of the weld metal 30 that is bent during solidification shrinkage is the length LA from the portions 11 and 21 where the differential case 3 and the differential ring gear 2 are fitted to the outer periphery of the groove portions 14 and 24. Become. Further, assuming that the bending angle of the flange portion 12 of the differential case 3 is δ, the expected value of the displacement amount of the base material around the weld metal 30 can be regarded as the product [LA * δ].

一方、比較例においては、溶接金属30の凝固収縮時に撓める部分の長さは、デフケース3とデフリングギヤ2の軸方向端面同士の接触部の外周部分から開先部14,24外周までの長さLBとなる。また、デフケース3のフランジ部12の撓める角度をδとすると、溶接金属30の周辺の母材の変位量の期待値は積[LB*δ]と見なせる。このため、比較例においては、溶融した母材及びフィラーワイヤよりなる溶接金属30の凝固収縮に対応して発生する剥離方向の応力が緩和されず、比較的柔軟性の低い鋳鉄部品側の熱影響層31において剥離等の溶接割れCが生じるものと推定される。   On the other hand, in the comparative example, the length of the portion of the weld metal 30 that bends during solidification shrinkage is from the outer peripheral portion of the contact portion between the axial end surfaces of the differential case 3 and the differential ring gear 2 to the outer periphery of the groove portions 14 and 24. Length LB. Further, assuming that the bending angle of the flange portion 12 of the differential case 3 is δ, the expected value of the displacement amount of the base material around the weld metal 30 can be regarded as the product [LB * δ]. For this reason, in the comparative example, the stress in the peeling direction generated in response to the solidification shrinkage of the weld metal 30 made of the molten base material and filler wire is not relaxed, and the heat effect on the cast iron part side having relatively low flexibility It is presumed that weld cracks C such as peeling occur in the layer 31.

これに対して、本実施例においては、デフケース3とデフリングギヤ2とが嵌合している部分11,21から開先部14,24外周までの長さLAは、比較例の長さLBよりも長くなる。従って、本実施形態の溶接金属30の周辺の母材の変位量の期待値である積[LA*δ]は、比較例の溶接金属30の周辺の母材の変位量の期待値である積[LB*δ]よりも大きくなる。このため、比較例に比べて本実施例の方が、溶接金属30の周辺の母材の変位量の期待値は大きく、つまり、撓みやすいことになる。また、デフケース3の内周側の側面が軸方向に後退されていることによっても、撓みやすいことになる。   On the other hand, in the present embodiment, the length LA from the portions 11 and 21 where the differential case 3 and the differential ring gear 2 are fitted to the outer periphery of the groove portions 14 and 24 is longer than the length LB of the comparative example. Also gets longer. Therefore, the product [LA * δ] that is the expected value of the displacement of the base metal around the weld metal 30 of the present embodiment is the product that is the expected value of the displacement of the base metal around the weld metal 30 of the comparative example. It becomes larger than [LB * δ]. For this reason, the expected value of the amount of displacement of the base material around the weld metal 30 is greater in the present embodiment than in the comparative example, that is, it is easier to bend. Moreover, it is easy to bend also when the side surface of the inner peripheral side of the differential case 3 is retracted in the axial direction.

ここで、凝固収縮の体積変化が、比較例と本実施形態とで同じと仮定すると、溶接金属30の周辺の母材が大きく撓める本実施例の方が、発生する引張応力が低くなる。従って、溶融した母材及びフィラーワイヤよりなる溶接金属30の凝固収縮に対応して発生する剥離方向の応力が緩和され、比較的柔軟性の低い鋳鉄部品側の熱影響層においても、剥離等の溶接割れを生じないものとできる。   Here, assuming that the volume change of solidification shrinkage is the same in the comparative example and this embodiment, the tensile stress generated is lower in this example in which the base metal around the weld metal 30 is greatly bent. . Therefore, the stress in the peeling direction generated in response to the solidification shrinkage of the weld metal 30 made of the molten base material and filler wire is relieved, and even in the heat-affected layer on the cast iron part side having relatively low flexibility, such as peeling It can be assumed that no weld cracking occurs.

図3に示すビーム溶接部材およびこれを備えた差動装置1の第2実施例においては、デフケース3の円筒面11に嵌合するデフリングギヤ2の内周面21に、軸方向に連通溝41を形成する。この連通溝41は、例えば、直線状に半径R1.0の溝で形成され、デフケース3への組立時にビーム溶接のための貫通空間Aと外部空間とを連通させる連通孔40を構成する。前記連通溝41は、1本で形成しても複数本で形成してもよく、また、配置する円周方向位置はいずれの円周方向位置でもよい。また、デフリングギヤ2の内周面21に設けるのでなく、デフケース3の円筒面11に設けるものであってもよい。   In the second embodiment of the beam welding member shown in FIG. 3 and the differential 1 having the same, a communication groove 41 in the axial direction is formed on the inner peripheral surface 21 of the differential ring gear 2 fitted to the cylindrical surface 11 of the differential case 3. Form. The communication groove 41 is formed, for example, as a straight groove having a radius R1.0, and constitutes a communication hole 40 that communicates the through space A for beam welding with the external space when the differential case 3 is assembled. The communication groove 41 may be formed by one or a plurality, and the circumferential position to be arranged may be any circumferential position. Further, instead of being provided on the inner peripheral surface 21 of the differential ring gear 2, it may be provided on the cylindrical surface 11 of the differential case 3.

また、図4に示すビーム溶接部材およびこれを備えた差動装置1の第3実施例のように、デフリングギヤ2の内周面21とデフケース3の円筒面11との両者に夫々軸方向に延びる連通溝41,42を形成する。そして、両連通溝41,42の円周方向位置を一致させることで、断面積の大きい連通孔40とすることもできる。このようにすることで、連通孔40の通路面積を稼ぐことができ、設ける連通溝41,42の本数を少なくすることができる。   Further, as in the beam welding member shown in FIG. 4 and the third embodiment of the differential device 1 having the same, both the inner peripheral surface 21 of the differential ring gear 2 and the cylindrical surface 11 of the differential case 3 are axially arranged. The extending communication grooves 41 and 42 are formed. And it can also be set as the communicating hole 40 with a large cross-sectional area by making the circumferential direction position of both the communicating grooves 41 and 42 correspond. By doing in this way, the passage area of the communication hole 40 can be earned, and the number of the communication grooves 41 and 42 to be provided can be reduced.

また、前記連通溝41,42は、デフケース3の軸心に平行に形成してもよいが、図5に示す第4実施例のように、螺旋状に形成してもよい。螺旋状に形成する場合には、デフリングギヤ2の内周面21(デフケース3の円筒面11)の機械加工時に、内面加工ツールの外周側への追い込みにより、内周面21(円筒面11)加工と同時に形成することができる。   The communication grooves 41 and 42 may be formed parallel to the axis of the differential case 3, but may be formed in a spiral shape as in the fourth embodiment shown in FIG. In the case of forming a spiral shape, the inner peripheral surface 21 (cylindrical surface 11) is driven by driving the inner surface processing tool toward the outer peripheral side during machining of the inner peripheral surface 21 of the differential ring gear 2 (cylindrical surface 11 of the differential case 3). It can be formed simultaneously with processing.

これらの第2〜4実施例においても、半径方向内周側に位置する貫通空間Aは連通溝41,42からなる連通孔40を介して外部空間に連通している。このため、高エネルギビームの照射及び溶接熱により、貫通空間A内の空気が膨張すると、膨張した気体は連通孔40を介して流れ出る。また、溶接後の冷却過程においては、貫通空間A内の気体の冷却に伴う収縮に応じて、外部空間から連通孔40を介して外気を導入する。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   Also in these second to fourth embodiments, the through space A located on the radially inner peripheral side communicates with the external space through the communication hole 40 formed of the communication grooves 41 and 42. For this reason, when the air in the through space A expands due to irradiation with high energy beam and welding heat, the expanded gas flows out through the communication hole 40. Further, in the cooling process after welding, the outside air is introduced from the external space through the communication hole 40 in accordance with the shrinkage accompanying the cooling of the gas in the through space A. For this reason, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

図6に示すビーム溶接部材およびこれを備えた差動装置1の第5実施例においては、デフリングギヤ2の接合部に円周方向に配置されている開先部の一部分を半径方向に切り欠いて半径方向の連通溝43を形成する。この連通溝43は、例えば、円周方向寸法(溝幅)0.5mm、軸方向寸法(溝深さ)0.3mmの溝を半径方向に切り欠いて形成する。   In the beam welding member shown in FIG. 6 and the fifth embodiment of the differential 1 having the same, a part of the groove portion arranged in the circumferential direction at the joint portion of the diff ring gear 2 is cut out in the radial direction. Thus, the communication groove 43 in the radial direction is formed. The communication groove 43 is formed by, for example, cutting a groove having a circumferential dimension (groove width) of 0.5 mm and an axial dimension (groove depth) of 0.3 mm in the radial direction.

前記連通溝43は、デフリングギヤ2とデフケース3との開先部同士を接触させた組立状態において、貫通空間Aを外部空間に連通させる連通孔40となる。また、その状態からデフケース3とデフリングギヤ2の開先にフィラーワイヤを供しながら高エネルギビームを照射してビーム溶接する場合に、前記連通溝43の円周方向における一方の縁がビーム溶接の開始位置となる。次いで、高エネルギビームが前記連通溝43から離れる方向に順次デフケース3及びデフリングギヤ2を軸心回りに回転させて、連通溝43の他方の縁に到るようにする。そして、最後に連通溝43が存在する部分をビーム溶接することによって、開先の全周に渡って実施する。   The communication groove 43 serves as a communication hole 40 that allows the through space A to communicate with the external space when the groove portions of the differential ring gear 2 and the differential case 3 are in contact with each other. In addition, when beam welding is performed by irradiating a high energy beam while supplying a filler wire to the groove of the differential case 3 and the differential ring gear 2 from that state, one edge in the circumferential direction of the communication groove 43 starts beam welding. Position. Next, the differential case 3 and the differential ring gear 2 are sequentially rotated around the axis in the direction away from the communication groove 43 so that the high energy beam reaches the other edge of the communication groove 43. Finally, beam welding is performed on the portion where the communication groove 43 exists, so that the entire circumference of the groove is performed.

従って、ビーム溶接が終了した段階では、前記連通溝43は高エネルギビームにより開先部14,24とフィラーワイヤとが溶融した溶接金属30により埋められることとなる。このため、連通溝43が開先部14,24に存在しても、ビーム溶接された部分の強度を低下させることがない。   Therefore, when the beam welding is completed, the communication groove 43 is filled with the weld metal 30 in which the groove portions 14 and 24 and the filler wire are melted by the high energy beam. For this reason, even if the communication groove 43 exists in the groove parts 14 and 24, the intensity | strength of the beam-welded part is not reduced.

また、この第5実施例においても、貫通空間Aは連通孔40を介して外部空間に連通しているため、高エネルギビームの照射及び溶接熱により、貫通空間A内の空気が膨張し、膨張した気体は連通孔40を介して流れ出る。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがない。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   Also in this fifth embodiment, since the through space A communicates with the external space through the communication hole 40, the air in the through space A expands due to the irradiation of the high energy beam and the welding heat, and the expansion. The discharged gas flows out through the communication hole 40. For this reason, the gas pressure in the penetration space A is not increased during welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

また、前記実施例2〜5においても、第1実施例と同様に、溶接後の溶接金属30が冷えて固まる際には、溶接金属30の体積が収縮し、周囲の母材(デフケース3及びデフリングギヤ2)との間にある熱影響層31付近に引張応力が発生する。しかし、貫通空間Aが、その内周側においてデフケース3の円筒面11及びデフリングギヤ2の内周面21に拡大されているため、溶接金属30の凝固収縮時に撓める部分の長さを、第1実施形態と同様に確保することができる。また、第1実施形態と同様に、デフケース3のフランジ部12の内周側の端面が軸方向に後退されていることによっても、撓みやすいことになる。   Also, in Examples 2 to 5, as in the first example, when the weld metal 30 after welding cools and hardens, the volume of the weld metal 30 shrinks, and the surrounding base material (the differential case 3 and the differential case 3 and A tensile stress is generated near the heat-affected layer 31 between the differential ring gear 2). However, since the through space A is expanded on the inner peripheral side of the cylindrical surface 11 of the differential case 3 and the inner peripheral surface 21 of the differential ring gear 2, the length of the portion that is bent when the weld metal 30 is solidified and contracted is reduced. It can be ensured similarly to the first embodiment. In addition, as in the first embodiment, the end surface on the inner peripheral side of the flange portion 12 of the differential case 3 is also easily bent when the end surface is retracted in the axial direction.

従って、凝固収縮の体積変化が、比較例と本実施例とで同じと仮定すると、溶接金属30の周辺の母材が大きく撓めるため、発生する引張応力を低くできる。このため、溶融した母材及びフィラーワイヤよりなる溶接金属30の凝固収縮に対応して発生する剥離方向の応力が緩和され、比較的柔軟性の低い鋳鉄部品側の熱影響層31においても、剥離等の溶接割れを生じないものとできる。   Therefore, if it is assumed that the volume change of solidification shrinkage is the same in the comparative example and the present embodiment, the base metal around the weld metal 30 is greatly bent, so that the generated tensile stress can be lowered. For this reason, the stress in the peeling direction generated in response to the solidification shrinkage of the weld metal 30 made of the molten base material and filler wire is relieved, and the heat-affected layer 31 on the cast iron part side having relatively low flexibility also peels off. It is possible to prevent the occurrence of weld cracking.

図7に示すビーム溶接部材およびこれを備えた差動装置1の第6実施例においては、高エネルギビームを照射してビーム溶接する開先部14,24を、両者が圧入嵌合するデフケース3の円筒面11およびデフリングギヤ2の内周面21に設けるようにしたものである。即ち、デフケース3の円筒面11及びデフリングギヤ2の内周面21には、互いに嵌合するも、軸方向の一端部分には開先部14,24が形成されると共にその開先部14,24の奥側において、開先部14,24よりデフケース3側で外径を縮小させ且つデフリングギヤ2側で内径を拡大させた空間形成部15,25を備える。なお、前記開先部14,24は、デフケース3側とデフリングギヤ2側とが互いに接触する当接部14A,24Aとそれに連ねてテーパ状に切り欠き形成したテーパ部14B,24Bとより構成されている。また、空間形成部15,25より奥側(開先部14、24とは反対の側)のデフリングギヤ2の内周面21とデフケース3の円筒面11とは互いに圧入嵌合している。この奥側の圧入嵌合を容易にするために、奥側のデフリングギヤ2の内周面21のフランジ部12の側面に到る端部に、テーパ面が形成されることが望ましい。   In the sixth embodiment of the beam welding member shown in FIG. 7 and the differential device 1 having the same, the differential case 3 in which the groove portions 14 and 24 for beam welding by irradiating a high energy beam are press-fitted together. The cylindrical surface 11 and the inner peripheral surface 21 of the differential ring gear 2 are provided. That is, the cylindrical surface 11 of the differential case 3 and the inner peripheral surface 21 of the differential ring gear 2 are fitted to each other, but groove portions 14 and 24 are formed at one end portion in the axial direction and the groove portions 14 and 24 are formed. On the back side of 24, space forming portions 15 and 25 having outer diameters smaller on the differential case 3 side than the groove portions 14 and 24 and larger inner diameters on the differential ring gear 2 side are provided. The groove portions 14 and 24 are constituted by contact portions 14A and 24A where the differential case 3 side and the differential ring gear 2 side are in contact with each other, and tapered portions 14B and 24B which are formed in a tapered shape continuously therewith. ing. Further, the inner peripheral surface 21 of the differential ring gear 2 and the cylindrical surface 11 of the differential case 3 on the back side (the side opposite to the groove portions 14 and 24) from the space forming portions 15 and 25 are press-fitted together. In order to facilitate the press-fitting on the back side, it is desirable that a tapered surface be formed at the end of the inner peripheral surface 21 of the back side differential ring gear 2 that reaches the side surface of the flange portion 12.

そして、デフリングギヤ2の空間形成部25から奥側の内周面21と、デフケース3のフランジ部12の側面に当接しているデフリングギヤ2の端面26とに、軸方向に延びる連通溝44及び半径方向に延びる連通溝45を夫々形成している。   A communication groove 44 extending in the axial direction from the space forming portion 25 of the differential ring gear 2 to the inner peripheral surface 21 on the back side and the end surface 26 of the differential ring gear 2 that is in contact with the side surface of the flange portion 12 of the differential case 3 and A communication groove 45 extending in the radial direction is formed.

従って、デフリングギヤ2とデフケース3とを嵌合させて組立てたビーム溶接前の状態では、開先部14,24の当接部14A,24A同士が接触される。そして、開先部14,24のテーパ部14B,24B同士は、奥側で狭まり、外側に向けて拡がるビーム溶接のための開先を形成する。また、奥側の空間形成部15,25は、溶接ビームを互いの開先部14,24を貫通させて受入れて、貫通溶接とするための貫通空間Aを形成する。この貫通空間Aは、連通溝44,45で形成した連通孔40により外部空間に連通している。   Therefore, in the state before beam welding in which the differential ring gear 2 and the differential case 3 are assembled and assembled, the contact portions 14A and 24A of the groove portions 14 and 24 are brought into contact with each other. And the taper parts 14B and 24B of the groove parts 14 and 24 form the groove | channel for beam welding which narrows in the back | inner side and expands toward the outer side. Further, the space forming portions 15 and 25 on the back side receive the welding beam through the groove portions 14 and 24 and form a through space A for through welding. The through space A communicates with the external space through a communication hole 40 formed by the communication grooves 44 and 45.

前記デフケース3とデフリングギヤ2の開先にフィラーワイヤを供給しながら、高エネルギビームを照射し、デフケース3及びデフリングギヤ2を軸心回りに回転させつつ、順次開先の全周に渡ってビーム溶接を実施する。フィラーワイヤとデフケース3とデフリングギヤ2の開先とが高エネルギビームにより溶融されて開先部14,24に溶接金属30が形成され、デフケース3とデフリングギヤ2とが開先部14,24で溶接される。   While supplying a filler wire to the groove of the differential case 3 and the differential ring gear 2, a high energy beam is applied, and the differential case 3 and the differential ring gear 2 are rotated around the axis, and the beam is sequentially applied over the entire circumference of the groove. Perform welding. The filler wire, the differential case 3 and the groove of the differential ring gear 2 are melted by a high energy beam to form a weld metal 30 in the groove portions 14 and 24, and the differential case 3 and the differential ring gear 2 are formed at the groove portions 14 and 24. Welded.

そして、高エネルギビームの照射及び溶接熱により、軸方向奥側に位置する貫通空間A内の空気は膨張するが、貫通空間Aは連通溝44,45を介して外部空間に連通しているため、膨張した気体は連通孔40を介して流れ出る。また、溶接後の冷却過程においては、貫通空間A内の気体の冷却に伴う収縮に応じて、外部空間から連通溝44,45を介して外気を導入する。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   The air in the through space A located on the back side in the axial direction expands due to irradiation with high energy beam and welding heat, but the through space A communicates with the external space via the communication grooves 44 and 45. The expanded gas flows out through the communication hole 40. Further, in the cooling process after welding, outside air is introduced from the external space through the communication grooves 44 and 45 in accordance with the shrinkage accompanying the cooling of the gas in the through space A. For this reason, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)第1部材としての例えばデフリングギヤ2は第2部材としての例えばデフケース3の外周に内周部21を嵌合させて支持され、第1部材と第2部材とが互いに当接する環状の面の一方側において外部空間に臨む端部に形成した溶接用開先部14,24に、フィラーワイヤを供給しつつ溶接用開先部14,24を貫通させて、前記溶接用開先部14,24より奥側の第1,2部材間に設けた貫通空間Aに達する貫通溶接により接合されたビーム溶接部材である。そして、前記第1,2部材の貫通溶接のための貫通空間Aが、第1部材若しくは第2部材に設けた連通孔40を介して外部空間と連通されている。   (A) For example, the differential ring gear 2 as the first member is supported by fitting the inner peripheral portion 21 to the outer periphery of the differential case 3 as the second member, and the first member and the second member are in contact with each other. The welding groove portions 14 and 24 formed at the end facing the external space on one side of the surface are penetrated through the welding groove portions 14 and 24 while supplying the filler wire. , 24 is a beam welding member joined by penetration welding reaching the penetration space A provided between the first and second members on the back side. A through space A for through welding of the first and second members is communicated with an external space through a communication hole 40 provided in the first member or the second member.

したがって、ビーム溶接時に貫通空間A内の気体が膨張しても外部空間へ連通孔40を介して排出されて内圧が上昇することがなく、内圧上昇に伴う溶接金属30の内周側が抉られた窪んだ状態となる、所謂アンダーフィルという、溶接欠陥を防止できる。また、溶接の終盤では空間A内部の気体が溶接ビードを外周側に押し退けて噴出して、溶接金属に気孔の発生や溶接ビードの表面側に不整ビードを生じるという、溶接欠陥の発生も防止できる。   Therefore, even if the gas in the through space A expands during beam welding, the gas is not discharged to the external space through the communication hole 40 and the internal pressure does not increase, and the inner peripheral side of the weld metal 30 is beaten as the internal pressure increases. It is possible to prevent a so-called underfill welding defect that becomes a depressed state. Further, in the final stage of welding, the gas inside the space A pushes the weld bead to the outer peripheral side and blows out, thereby preventing the occurrence of welding defects such as generation of pores in the weld metal and irregular beads on the surface side of the weld bead. .

(イ)図3〜図5,図7に示す連通孔40は、前記第1,2部材間に設けた貫通空間Aから溶接用開先部とは反対側に延びて、他方側の外部空間に達するように、第1部材と第2部材とが当接する互いの面の少なくともいずれか一方に設けた溝41,42,44,45により形成されている。このため、第1、2部材が互いに当接する環状の面を機械加工する際、同時に溝加工により連通孔40を形成することができ、形成が容易である。   (A) The communication hole 40 shown in FIGS. 3 to 5 and 7 extends from the through space A provided between the first and second members to the side opposite to the welding groove portion, and the outer space on the other side. Is formed by grooves 41, 42, 44, 45 provided on at least one of the surfaces of the first member and the second member that contact each other. For this reason, when machining the annular surfaces on which the first and second members abut each other, the communication hole 40 can be formed simultaneously by grooving, and the formation is easy.

(ウ)図4に示す連通孔40は、前記第1部材と第2部材とが当接する互いの面に円周方向位置を合わせて夫々設けられた溝41,42により形成されている。このため、断面積の大きい連通孔40とする、即ち、連通孔40の通路面積を稼ぐことができ、設ける連通溝41,42の本数を少なくすることができる。   (C) The communication hole 40 shown in FIG. 4 is formed by grooves 41 and 42 which are provided on the surfaces where the first member and the second member are in contact with each other in the circumferential direction. For this reason, it is set as the communicating hole 40 with a big cross-sectional area, ie, the passage area of the communicating hole 40 can be earned, and the number of the communicating grooves 41 and 42 to provide can be decreased.

(エ)図5に示す連通孔40は、ビーム溶接部材の軸心回りに螺旋状に形成されている。このため、第1部材の内周面21(若しくは第2部材の円筒面11)の旋盤等による機械加工時に加工ツールを追い込みすることで、面加工と同時に形成することができる。   (D) The communication hole 40 shown in FIG. 5 is formed in a spiral shape around the axis of the beam welding member. For this reason, it can be formed simultaneously with the surface processing by driving the processing tool during the machining of the inner peripheral surface 21 of the first member (or the cylindrical surface 11 of the second member) with a lathe or the like.

(オ)図6に示す連通孔40は、第1部材または第2部材の少なくとも一方の開先部14,24の一部分を半径方向に切り欠いて形成された溝43で構成され、環状の形成された開先部14,24の全周に対するビーム溶接の終了段階において、溶接金属30により閉じられる。このため、ビーム溶接が終了した段階では、前記溝43は高エネルギビームにより開先部14,24とフィラーワイヤとが溶融した溶接金属30により埋められることとなる。従って、溝43が開先部14,24に存在しても、ビーム溶接された部分の強度を低下させることがない。   (E) The communication hole 40 shown in FIG. 6 is composed of a groove 43 formed by cutting out a part of at least one of the groove portions 14 and 24 of the first member or the second member in the radial direction. At the end stage of beam welding for the entire circumference of the groove portions 14, 24, the weld metal 30 is closed. For this reason, when the beam welding is completed, the groove 43 is filled with the weld metal 30 in which the groove portions 14 and 24 and the filler wire are melted by the high energy beam. Therefore, even if the groove 43 exists in the groove portions 14 and 24, the strength of the beam welded portion is not lowered.

(カ)図2に示す連通孔40は、第1部材若しくは第2部材を貫通させて形成した貫通孔により形成されている。このため、孔加工を追加するのみでよく、他の部位の孔加工と同時に加工してもよい。   (F) The communication hole 40 shown in FIG. 2 is formed by a through hole formed by penetrating the first member or the second member. For this reason, it is only necessary to add a hole processing, and it may be performed simultaneously with the hole processing of other parts.

(キ)少なくともデフリングギヤ2と、このデフリングギヤ2を支持しかつデフリングギヤ2と一体回転するデフケース3とを備えている差動装置1である。そして、第1部材がデフリングギヤ2であり、前記第2部材がデフケース3であるように構成して、貫通空間Aを前記効果(ア)〜(カ)のいずれかの連通孔40により外部空間に連通させた状態で前記両者をビーム溶接する。このことにより、デフリングギヤ2とデフケース3との接合部の占有スペースを小型化できる。したがって、差動装置1のハウジング内の他の構成部材に干渉するおそれがなく、動力伝達を確実に行うことができるようになる。しかも、ボルトのための占有スペースが不要となるので、ハウジング内の比較的狭い空間を効率よく使用することが可能となる。しかも、アンダーフィルや内部気孔・不整ビードのないビーム溶接により、デフリングギヤ2とデフケース3との接合強度(耐疲労強度および耐衝撃強度)を高めることができるので、デフリングギヤ2とデフケース3との接合部に繰り返しかかる荷重を確実に対応することができる。これによっても、差動装置1は動力伝達を確実に行うことができるようになる。   (G) A differential device 1 including at least a differential ring gear 2 and a differential case 3 that supports the differential ring gear 2 and rotates integrally with the differential ring gear 2. The first member is the differential ring gear 2 and the second member is the differential case 3, and the through space A is formed in the external space by the communication hole 40 of any one of the effects (A) to (F). The two are beam welded in a state where they are communicated with each other. As a result, the space occupied by the joint between the differential ring gear 2 and the differential case 3 can be reduced. Therefore, there is no possibility of interfering with other components in the housing of the differential device 1, and power transmission can be performed reliably. In addition, since an occupied space for the bolt is not required, a relatively narrow space in the housing can be used efficiently. Moreover, since the welding strength (fatigue resistance and impact resistance) between the differential ring gear 2 and the differential case 3 can be increased by beam welding without underfill, internal pores, and irregular beads, the difference between the differential ring gear 2 and the differential case 3 A load repeatedly applied to the joint can be reliably handled. This also enables the differential device 1 to reliably transmit power.

(第2実施形態)
図8〜図10は、本発明を適用したビーム溶接部材およびこれを備えた差動装置の第2実施形態の第1〜3実施例を夫々示すデフリングギヤとデフケースとのビーム溶接部の拡大断面図である。本実施形態においては、デフリングギヤとデフケースとの接合面が、一方と他方とで径方向に段差を持った2つの面を持つ場合及び同一径の一つの面を持つ場合の構成を第1実施形態に追加したものである。なお、第1実施形態と同一装置には同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
FIGS. 8 to 10 are enlarged cross-sectional views of a beam welded portion between a differential ring gear and a differential case, showing a beam welding member to which the present invention is applied and a first to third examples of a second embodiment of a differential having the same, respectively. FIG. In the present embodiment, the first embodiment has a configuration in which the joint surface between the differential ring gear and the differential case has two surfaces having a step in the radial direction between one and the other and one surface having the same diameter. In addition to the form. The same devices as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.

図8に示す第1実施例のビーム溶接部材の一例が適用された差動装置1は、デフリングギヤ2とデフケース3との接合面が、一方と他方とで径方向に段差を持った2つの面を持つ場合を示す。即ち、デフケース3においては、一方の面は円筒面11であり、他方の面はフランジ部12の外周面17となる。また、デフリングギヤ2においては、一方の面は内周面21であり、他方の面はフランジ部12の外周面に嵌合する第2の内周面27となる。そして、一方と他方との2つの面間に形成されるデフリングギヤ2の内端面28とデフケース3のフランジ部12の側面18とは互いに当接して、デフリングギヤ2のデフケース3に対する軸方向の位置決めを行うようにしている。   The differential device 1 to which the example of the beam welding member of the first embodiment shown in FIG. 8 is applied has two joint surfaces between the differential ring gear 2 and the differential case 3 having a radial step between one and the other. Indicates the case with a face. That is, in the differential case 3, one surface is the cylindrical surface 11 and the other surface is the outer peripheral surface 17 of the flange portion 12. Further, in the diff ring gear 2, one surface is an inner peripheral surface 21, and the other surface is a second inner peripheral surface 27 fitted to the outer peripheral surface of the flange portion 12. Then, the inner end surface 28 of the differential ring gear 2 formed between the two surfaces of one and the other and the side surface 18 of the flange portion 12 of the differential case 3 are in contact with each other so that the differential ring gear 2 is positioned in the axial direction with respect to the differential case 3. Like to do.

そして、小径に形成された一方の面(円筒面11及び内周面21)には、高エネルギビームを照射してビーム溶接する開先部14,24とその奥側において空間形成部15,25とが設けられている。また、大径に形成された他方の面を構成するフランジ部12の外周面17と第2内周面27とは互いに圧入嵌合するよう形成している。なお、前記開先部14,24は、デフケース3側とデフリングギヤ2側とが互いに接触する当接部14A,24Aとそれに連ねてテーパ状に切り欠き形成したテーパ部14B,24Bとより構成されている。また、大径に形成された他方の面を構成するデフリングギヤ2の第2内周面27の軸方向端には圧入嵌合を容易にするテーパ面を設けている。   Then, on one surface (cylindrical surface 11 and inner peripheral surface 21) formed to have a small diameter, groove portions 14 and 24 that perform beam welding by irradiating a high energy beam and space forming portions 15 and 25 on the back side thereof. And are provided. Further, the outer peripheral surface 17 and the second inner peripheral surface 27 of the flange portion 12 constituting the other surface having a large diameter are formed so as to be press-fitted to each other. The groove portions 14 and 24 are constituted by contact portions 14A and 24A where the differential case 3 side and the differential ring gear 2 side are in contact with each other, and tapered portions 14B and 24B which are formed in a tapered shape continuously therewith. ing. Moreover, the taper surface which makes a press fit fit easy is provided in the axial direction end of the 2nd internal peripheral surface 27 of the diff ring gear 2 which comprises the other surface formed in the large diameter.

そして、デフリングギヤ2の前記内端面28及び第2内周面27には、半径方向及び軸方向の連通溝45,46が夫々形成され、空間形成部15,25はこれら連通溝45,46により外部空間と連通可能としている。   The inner end surface 28 and the second inner peripheral surface 27 of the differential ring gear 2 are formed with radial and axial communication grooves 45 and 46, respectively. The space forming portions 15 and 25 are formed by the communication grooves 45 and 46, respectively. Communication with external space is possible.

従って、デフリングギヤ2とデフケース3とを径方向に段差を持った2つの面同士を嵌合させて組立てたビーム溶接前の状態では、開先部14,24の当接部14A,24A同士が接触される。そして、開先部14,24のテーパ部14B,24B同士は、奥側で狭まり、外側に向けて拡がるビーム溶接のための開先を形成する。また、奥側の空間形成部15,25は、溶接ビームを互いの開先部14,24を貫通させて受入れて、貫通溶接とするための貫通空間Aを形成する。この貫通空間Aは、デフリングギヤ2の前記内端面28及び第2内周面27に形成した半径方向及び軸方向の連通溝45,46により形成した連通孔40を介して外部空間に連通している。   Therefore, in the state before beam welding in which the differential ring gear 2 and the differential case 3 are assembled by fitting two surfaces having a step difference in the radial direction, the contact portions 14A and 24A of the groove portions 14 and 24 are in contact with each other. Touched. And the taper parts 14B and 24B of the groove parts 14 and 24 form the groove | channel for beam welding which narrows in the back | inner side and expands toward the outer side. Further, the space forming portions 15 and 25 on the back side receive the welding beam through the groove portions 14 and 24 and form a through space A for through welding. The through space A communicates with the external space via a communication hole 40 formed by the radial and axial communication grooves 45 and 46 formed in the inner end surface 28 and the second inner peripheral surface 27 of the differential ring gear 2. Yes.

このため、前記デフケース3とデフリングギヤ2の開先にフィラーワイヤを供給しながら、高エネルギビームを照射して、デフケース3及びデフリングギヤ2を軸心回りに回転させて、開先の全周に渡って順次ビーム溶接する。フィラーワイヤとデフケース3とデフリングギヤ2の開先とが高エネルギビームにより溶融されて開先部14,24に溶接金属30が形成され、デフケース3とデフリングギヤ2とが開先部14,24で溶接される。   For this reason, while supplying a filler wire to the groove of the differential case 3 and the differential ring gear 2, the high energy beam is irradiated to rotate the differential case 3 and the differential ring gear 2 around the center of the shaft, Beam welding is performed sequentially. The filler wire, the differential case 3 and the groove of the differential ring gear 2 are melted by a high energy beam to form a weld metal 30 in the groove portions 14 and 24, and the differential case 3 and the differential ring gear 2 are formed at the groove portions 14 and 24. Welded.

そして、高エネルギビームの照射及び溶接熱により、貫通空間A内の空気は膨張するが、貫通空間Aは前記連通溝45,46を介して外部空間に連通しているため、膨張した気体は連通孔40を介して流れ出る。また、溶接後の冷却過程においては、貫通空間A内の気体の冷却に伴う収縮に応じて、外部空間から連通溝45,46を介して外気を導入する。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   The air in the through space A expands due to the irradiation of the high energy beam and the welding heat. However, since the through space A communicates with the external space through the communication grooves 45 and 46, the expanded gas communicates. It flows out through the hole 40. Further, in the cooling process after welding, outside air is introduced from the external space through the communication grooves 45 and 46 in accordance with the shrinkage accompanying the cooling of the gas in the through space A. For this reason, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

図9に示すビーム溶接部材およびこれを備えた差動装置1の第2実施例においては、第1実施例とは逆に、小径の一方の面は互いに圧入嵌合する円筒面11及び内周面21により形成する。また、大径の他方の面は、互いに嵌合するフランジ部12の外周面17とデフリングギヤ2の第2内周面27とにより形成している。そして、大径の他方の面に、高エネルギビームを照射してビーム溶接する開先部14,24とその奥側において空間形成部15,25とを設けたものである。   In the second embodiment of the beam welding member shown in FIG. 9 and the differential device 1 including the beam welding member, on the contrary to the first embodiment, one surface having a small diameter is a cylindrical surface 11 and an inner circumference that are press-fitted to each other. The surface 21 is formed. The other large-diameter surface is formed by the outer peripheral surface 17 of the flange portion 12 and the second inner peripheral surface 27 of the differential ring gear 2 that are fitted to each other. And the groove | channel parts 14 and 24 which irradiate a high energy beam and beam welding are provided in the other surface of a large diameter, and the space formation parts 15 and 25 are provided in the back | inner side.

そして、デフリングギヤ2の前記内端面28及び一方の面を構成する内周面21には、夫々半径方向及び軸方向の連通溝45,47が夫々形成され、空間形成部15,25はこれら連通溝45,47により外部空間と連通可能としている。その他の構成は、第1実施例と同様に形成している。   The inner end surface 28 of the differential ring gear 2 and the inner peripheral surface 21 constituting one surface are respectively formed with communication grooves 45 and 47 in the radial direction and the axial direction, respectively, and the space forming portions 15 and 25 communicate with each other. The grooves 45 and 47 can communicate with the external space. Other configurations are the same as in the first embodiment.

この構成においても、デフリングギヤ2とデフケース3とを径方向に段差を持った2つの面同士を嵌合させて組立てたビーム溶接前の状態では、開先部14,24の当接部14A,24A同士が接触される。そして、開先部14,24のテーパ部14B,24B同士は、奥側で狭まり、外側に向けて拡がるビーム溶接のための開先を形成する。また、奥側の空間形成部15,25は、溶接ビームを互いの開先部14,24を貫通させて受入れて、貫通溶接とするための貫通空間Aを形成する。この貫通空間Aは、デフリングギヤ2の前記内端面28及び内周面21に形成した半径方向及び軸方向の連通溝45,47により外部空間に連通している。   Also in this configuration, in the state before beam welding in which the differential ring gear 2 and the differential case 3 are assembled by fitting two surfaces having steps in the radial direction to each other, the contact portions 14A of the groove portions 14 and 24, 24A is contacted. And the taper parts 14B and 24B of the groove parts 14 and 24 form the groove | channel for beam welding which narrows in the back | inner side and expands toward the outer side. Further, the space forming portions 15 and 25 on the back side receive the welding beam through the groove portions 14 and 24 and form a through space A for through welding. The through space A communicates with the external space through radial and axial communication grooves 45 and 47 formed in the inner end surface 28 and the inner peripheral surface 21 of the differential ring gear 2.

そして、前記デフケース3とデフリングギヤ2の開先にフィラーワイヤを供給しながら、高エネルギビームを照射し、デフケース3及びデフリングギヤ2を軸心回りに回転させて、開先の全周に渡って順次ビーム溶接する。フィラーワイヤとデフケース3とデフリングギヤ2の開先とが高エネルギビームにより溶融されて開先部14,24に溶接金属30が形成され、デフケース3とデフリングギヤ2とが開先部14,24で溶接される。   Then, while supplying a filler wire to the groove of the differential case 3 and the differential ring gear 2, a high energy beam is irradiated, and the differential case 3 and the differential ring gear 2 are rotated around the axis, so that the entire circumference of the groove is provided. Sequential beam welding. The filler wire, the differential case 3 and the groove of the differential ring gear 2 are melted by a high energy beam to form a weld metal 30 in the groove portions 14 and 24, and the differential case 3 and the differential ring gear 2 are formed at the groove portions 14 and 24. Welded.

そして、高エネルギビームの照射及び溶接熱により、貫通空間A内の空気は膨張するが、貫通空間Aは前記連通溝45,47を介して外部空間に連通しているため、膨張した気体は連通孔40を介して流れ出る。また、溶接後の冷却過程においては、貫通空間A内の気体の冷却に伴う収縮に応じて、外部空間から連通溝45,47を介して外気を導入する。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   The air in the through space A expands due to the irradiation of the high energy beam and the welding heat. However, since the through space A communicates with the external space through the communication grooves 45 and 47, the expanded gas communicates. It flows out through the hole 40. Further, in the cooling process after welding, outside air is introduced from the external space through the communication grooves 45 and 47 in accordance with the shrinkage accompanying the cooling of the gas in the through space A. For this reason, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

図10に示すビーム溶接部材およびこれを備えた差動装置1の第3実施例においては、デフリングギヤ2とデフケース3との接合面が、同一径の一つの面(円筒面及び内周面)を持つ場合を示す。そして、接合面の軸方向の一方側(第1円筒面11及び第1内周面21)には、高エネルギビームを照射してビーム溶接する開先部14,24とその奥側において空間形成部15,25とを設け、接合面の軸方向の他方側(第2円筒面19及び第2内周面29)は互いに圧入嵌合させて形成している。なお、前記開先部14,24は、デフケース3側とデフリング側とが互いに接触する当接部14A,24Aとそれに連ねてテーパ状に切り欠き形成したテーパ部14B,24Bとより構成されている。なお、デフリングギヤ2の第2内周面29の開先部24とは反対側の端面には、デフケース3の円筒面19への圧入嵌合を容易にするテーパ面を形成してもよい。   In the third embodiment of the beam welding member shown in FIG. 10 and the differential 1 having the same, the joint surface of the differential ring gear 2 and the differential case 3 is one surface (cylindrical surface and inner peripheral surface) having the same diameter. Indicates the case with Then, on one side (the first cylindrical surface 11 and the first inner peripheral surface 21) in the axial direction of the joint surface, a space is formed on the groove portions 14 and 24 where the high energy beam is irradiated and beam welding is performed, and on the back side. The other side (second cylindrical surface 19 and second inner peripheral surface 29) in the axial direction of the joint surface is formed by press fitting with each other. The groove portions 14 and 24 are configured by contact portions 14A and 24A where the differential case 3 side and the differential ring side are in contact with each other, and tapered portions 14B and 24B which are continuously cut out in a tapered shape. . A tapered surface that facilitates press-fitting to the cylindrical surface 19 of the differential case 3 may be formed on the end surface of the second inner peripheral surface 29 of the differential ring gear 2 opposite to the groove portion 24.

そして、軸方向の他方の接合面を構成するデフリングギヤ2の第2内周面29には、軸方向に延びる連通溝48を形成している。軸方向の他方の接合面を構成するデフケース3の第2円筒面19にも、軸方向に延びる連通溝を形成してもよい。   A communication groove 48 extending in the axial direction is formed on the second inner peripheral surface 29 of the differential ring gear 2 constituting the other joining surface in the axial direction. A communication groove extending in the axial direction may also be formed in the second cylindrical surface 19 of the differential case 3 constituting the other joining surface in the axial direction.

従って、デフリングギヤ2とデフケース3とを圧入嵌合させて組立てたビーム溶接前の状態では、開先部14,24の当接部14A,24A同士が接触される。そして、開先部14,24のテーパ部14B,24B同士は、奥側で狭まり、外側に向けて拡がるビーム溶接のための開先を形成する。また、奥側の空間形成部15,25は、溶接ビームを互いの開先部14,24を貫通させて受入れて、貫通溶接とするための貫通空間Aを形成する。この貫通空間Aは、前記連通溝48で形成した連通孔40により外部空間に連通している。   Therefore, in the state before beam welding in which the differential ring gear 2 and the differential case 3 are press-fitted and assembled, the contact portions 14A and 24A of the groove portions 14 and 24 are brought into contact with each other. And the taper parts 14B and 24B of the groove parts 14 and 24 form the groove | channel for beam welding which narrows in the back | inner side and expands toward the outer side. Further, the space forming portions 15 and 25 on the back side receive the welding beam through the groove portions 14 and 24 and form a through space A for through welding. The through space A communicates with an external space through a communication hole 40 formed by the communication groove 48.

このため、前記デフケース3とデフリングギヤ2の開先にフィラーワイヤを供給しながら、高エネルギビームを照射し、デフケース3及びデフリングギヤ2を軸心回りに回転させて、開先の全周に渡って順次ビーム溶接する。フィラーワイヤとデフケース3とデフリングギヤ2の開先とが高エネルギビームにより溶融されて開先部14,24に溶接金属30が形成され、デフケース3とデフリングギヤ2とが開先部14,24で溶接される。   For this reason, while supplying a filler wire to the groove of the differential case 3 and the differential ring gear 2, the high energy beam is irradiated to rotate the differential case 3 and the differential ring gear 2 around the axis, and over the entire circumference of the groove. Sequentially beam welding. The filler wire, the differential case 3 and the groove of the differential ring gear 2 are melted by a high energy beam to form a weld metal 30 in the groove portions 14 and 24, and the differential case 3 and the differential ring gear 2 are formed at the groove portions 14 and 24. Welded.

そして、高エネルギビームの照射及び溶接熱により、貫通空間A内の空気は膨張するが、貫通空間Aは連通溝48を介して外部空間に連通しているため、膨張した気体は連通孔40を介して流れ出る。また、溶接後の冷却過程においては、貫通空間A内の気体の冷却に伴う収縮に応じて、外部空間から連通溝48を介して外気を導入する。このため、貫通空間A内の気体圧力は、溶接中は上昇されることがなく、また、溶接後においても、外気圧と同じに保持される。従って、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退けることを防止できる。   The air in the through space A expands due to the irradiation of the high energy beam and the welding heat. However, since the through space A communicates with the external space via the communication groove 48, the expanded gas passes through the communication hole 40. Flows out through. Further, in the cooling process after welding, external air is introduced from the external space through the communication groove 48 in accordance with the shrinkage accompanying the cooling of the gas in the through space A. For this reason, the gas pressure in the through space A is not increased during welding, and is maintained the same as the external pressure even after welding. Accordingly, it is possible to prevent the molten weld metal 30 from being pushed away due to an increase in the pressure of the air inside the through space A.

このため、貫通空間Aの内部の空気の圧力が上昇して溶融した溶接金属30を押し退ける、アンダーフィルや溶接の終盤において貫通空間A内部の気体が溶接ビードを外周側に押し退けて噴出して溶接ビードの表面側に不整ビードを生じることがない。即ち、溶接欠陥を発生することが防止できる。   For this reason, the pressure of the air inside the penetration space A rises and pushes away the molten weld metal 30. At the end of the underfill or welding, the gas inside the penetration space A pushes the weld bead to the outer peripheral side and jets out. No irregular beads are generated on the surface side of the bead. That is, it is possible to prevent the occurrence of welding defects.

本実施形態においては、第1実施形態における効果(ア)〜(エ)、(キ)に加えて以下に記載した効果を奏することができる。   In the present embodiment, in addition to the effects (a) to (d) and (g) in the first embodiment, the effects described below can be achieved.

(ク)ビーム溶接部材は、貫通空間Aの開先部14,24とは反対側において、第1部材としての例えばデフリングギヤ2は第2部材としての例えばデフケース3の外周面11,17,19に、第2内周面21,27,29を介して圧入嵌合させて支持されている。このため、両者の結合強度を向上させることができる。   (H) The beam welding member is on the side opposite to the groove portions 14 and 24 of the through space A. For example, the differential ring gear 2 as the first member is the outer peripheral surface 11, 17, 19 of the differential case 3 as the second member. The second inner peripheral surfaces 21, 27, and 29 are press-fitted and supported. For this reason, both joint strength can be improved.

(ケ)図10に示すビーム溶接部材は、貫通空間Aを挟んで第1,2円筒面11,19及び第1,2内周面21,29が同一径に構成されているため、構造が簡単であり、低コストで提供することができる。   (K) The beam welding member shown in FIG. 10 has the same diameter because the first and second cylindrical surfaces 11 and 19 and the first and second inner peripheral surfaces 21 and 29 are formed with the same diameter across the through space A. It is simple and can be provided at low cost.

本発明のビーム溶接部材は、例えば自動車の差動装置等の種々の装置に用いられ、金属からなる2つの構成部材を接合して構成される接合部材、特に、繰り返し荷重を受ける部材とこの部材を支持する部材とが互いに接合されて構成される接合部材に好適に利用することが可能である。また、本発明の差動装置は、例えば自動車の差動装置等の種々の機械装置の差動装置に好適に利用することが可能である。   The beam welding member of the present invention is used in various devices such as a differential of an automobile, for example, and is a joining member formed by joining two constituent members made of metal, in particular, a member that receives a repeated load and this member. It is possible to use suitably for the joining member comprised by mutually joining with the member which supports. Further, the differential device of the present invention can be suitably used for a differential device of various mechanical devices such as an automobile differential device.

A 貫通空間
1 差動装置
2 デフリングギヤ
3 デフケース
11 円筒面
12 フランジ部
13、23 接合部
14,24 開先部
15,25 空間形成部
17,27 窪み
21 内周面
30 溶接金属
31 熱影響層
40 連通孔
A Through space 1 Differential device 2 Differential ring gear 3 Differential case 11 Cylindrical surface 12 Flange part 13, 23 Joint part 14, 24 Groove part 15, 25 Space forming part 17, 27 Depression 21 Inner peripheral surface 30 Weld metal 31 Heat-affected layer 40 communication hole

Claims (7)

第1部材は第2部材の外周に内周部を嵌合させて支持され、第1部材と第2部材とが互いに当接する環状の面の一方側において外部空間に臨む端部に形成した溶接用開先部に、フィラーワイヤを供給しつつ溶接用開先部を貫通させて、前記溶接用開先部より奥側の第1,2部材間に設けた貫通空間に達する貫通溶接により接合されたビーム溶接部材であり、
前記第1,2部材の貫通溶接のための貫通空間が、第1部材若しくは第2部材に設けた連通孔を介して外部空間と連通されていることを特徴とするビーム溶接部材。
The first member is supported by fitting the inner periphery to the outer periphery of the second member, and is formed at the end facing the external space on one side of the annular surface where the first member and the second member abut each other. The welding groove part is penetrated through the welding groove part while supplying the filler wire, and is joined by penetration welding reaching the penetration space provided between the first and second members on the back side from the welding groove part. Beam welding members,
A beam welding member, wherein a through space for through welding of the first and second members is communicated with an external space through a communication hole provided in the first member or the second member.
前記連通孔は、前記第1,2部材間に設けた貫通空間から溶接用開先部とは反対側に延びて、他方側の外部空間に達するように、第1部材と第2部材とが当接する互いの面の少なくともいずれか一方に設けた溝により形成されていることを特徴とする請求項1に記載のビーム溶接部材。   The communication hole extends from the through space provided between the first and second members to the side opposite to the welding groove, and reaches the outer space on the other side so that the first member and the second member are The beam welding member according to claim 1, wherein the beam welding member is formed by a groove provided on at least one of the mutually contacting surfaces. 前記連通孔は、前記第1部材と第2部材とが当接する互いの面に円周方向位置を合わせて夫々設けられた溝により形成されていることを特徴とする請求項2に記載のビーム溶接部材。   3. The beam according to claim 2, wherein the communication hole is formed by a groove provided on each surface where the first member and the second member come into contact with each other in a circumferential position. Welding member. 前記連通孔は、ビーム溶接部材の軸心回りに螺旋状に形成されていることを特徴とする請求項2または請求項3に記載のビーム溶接部材。   4. The beam welding member according to claim 2, wherein the communication hole is formed in a spiral shape around the axis of the beam welding member. 前記連通孔は、前記第1部材または第2部材の少なくとも一方の溶接用開先部の一部分を半径方向に切り欠いて形成され、環状の形成された溶接用開先部の全周に対するビーム溶接の終了段階において、溶接金属により閉じられることを特徴とする請求項1に記載のビーム溶接部材   The communication hole is formed by notching a part of at least one welding groove of the first member or the second member in a radial direction, and beam welding is performed on the entire circumference of the annular welding groove. The beam welding member according to claim 1, wherein the beam welding member is closed by a weld metal at the end of the step. 前記連通孔は、第1部材若しくは第2部材を貫通させて形成した貫通孔により形成されていることを特徴とする請求項1に記載のビーム溶接部材。   2. The beam welding member according to claim 1, wherein the communication hole is formed by a through hole formed by penetrating the first member or the second member. 少なくともデフリングギヤと、このデフリングギヤを支持しかつデフリングギヤと一体回転するデフケースとを備えている差動装置において、
請求項1ないし6のいずれか1のビーム溶接部材を用い、
前記第1部材がデフリングギヤであり、前記第2部材がデフケースであることを特徴とする差動装置。
In a differential device including at least a differential ring gear and a differential case that supports the differential ring gear and rotates integrally with the differential ring gear,
Using the beam welding member according to any one of claims 1 to 6,
The differential device according to claim 1, wherein the first member is a differential ring gear, and the second member is a differential case.
JP2010035877A 2010-02-22 2010-02-22 Beam welding member and differential device provided with the same Active JP5509910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035877A JP5509910B2 (en) 2010-02-22 2010-02-22 Beam welding member and differential device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035877A JP5509910B2 (en) 2010-02-22 2010-02-22 Beam welding member and differential device provided with the same

Publications (2)

Publication Number Publication Date
JP2011167746A true JP2011167746A (en) 2011-09-01
JP5509910B2 JP5509910B2 (en) 2014-06-04

Family

ID=44682403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035877A Active JP5509910B2 (en) 2010-02-22 2010-02-22 Beam welding member and differential device provided with the same

Country Status (1)

Country Link
JP (1) JP5509910B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120094798A1 (en) * 2010-01-22 2012-04-19 Keisuke Uchida Welded structure and welding method
JP2014105760A (en) * 2012-11-27 2014-06-09 Toyota Motor Corp Attachment structure of ring gear
WO2015194304A1 (en) * 2014-06-17 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
US9239104B2 (en) 2010-01-22 2016-01-19 Toyota Jidosha Kabushiki Kaisha Welded structure and welding method
US9458919B2 (en) 2013-12-27 2016-10-04 Musashi Seimitsu Industry Co., Ltd. Method of manufacturing differential device
US9476493B2 (en) 2013-12-27 2016-10-25 Musashi Seimitsu Industry Co., Ltd. Differential device and method of manufacturing the same
JP2016188657A (en) * 2015-03-30 2016-11-04 武蔵精密工業株式会社 Transmission device
WO2017170666A1 (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Structure for joining members in differential device
JP2017203554A (en) * 2017-08-02 2017-11-16 武蔵精密工業株式会社 Differential device
DE102018218181A1 (en) 2017-10-30 2019-05-02 Musashi Seimitsu Industry Co., Ltd. DIFFERENTIAL DEVICE
JP2019086156A (en) * 2019-03-14 2019-06-06 武蔵精密工業株式会社 Transmission device
JP2020085141A (en) * 2018-11-27 2020-06-04 武蔵精密工業株式会社 Differential device
US10781908B2 (en) 2017-12-11 2020-09-22 Gkn Automotive Limited Driveline components with weld vent
JPWO2020255524A1 (en) * 2019-06-21 2020-12-24
JP2021030236A (en) * 2019-08-14 2021-03-01 日本製鉄株式会社 Welded structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160169360A1 (en) 2014-12-03 2016-06-16 Musashi Seimitsu Industry Co., Ltd. Differential device
US9897188B2 (en) 2014-12-03 2018-02-20 Musashi Seimitsu Industry Co., Ltd. Differential device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195796A (en) * 1984-10-16 1986-05-14 ボルジヒ ゲーエムベーハー Welded joint
JPS6414066U (en) * 1987-07-15 1989-01-24
JP2000237893A (en) * 1999-02-18 2000-09-05 Nissan Motor Co Ltd Weld joint and its production method
JP2002514511A (en) * 1998-05-12 2002-05-21 シユタイル−ダイムレル−プーフ・フアールツオイクテヒニク・アクチエンゲゼルシヤフト・ウント・コンパニー・コマンデイトゲゼルシヤフト Method for joining a cast part and a part made of case-hardened steel and a part produced by this method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195796A (en) * 1984-10-16 1986-05-14 ボルジヒ ゲーエムベーハー Welded joint
JPS6414066U (en) * 1987-07-15 1989-01-24
JP2002514511A (en) * 1998-05-12 2002-05-21 シユタイル−ダイムレル−プーフ・フアールツオイクテヒニク・アクチエンゲゼルシヤフト・ウント・コンパニー・コマンデイトゲゼルシヤフト Method for joining a cast part and a part made of case-hardened steel and a part produced by this method
JP2000237893A (en) * 1999-02-18 2000-09-05 Nissan Motor Co Ltd Weld joint and its production method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814742B2 (en) * 2010-01-22 2014-08-26 Toyota Jidosha Kabushiki Kaisha Welded structure and welding method
US20120094798A1 (en) * 2010-01-22 2012-04-19 Keisuke Uchida Welded structure and welding method
US9239104B2 (en) 2010-01-22 2016-01-19 Toyota Jidosha Kabushiki Kaisha Welded structure and welding method
JP2014105760A (en) * 2012-11-27 2014-06-09 Toyota Motor Corp Attachment structure of ring gear
CN104813076A (en) * 2012-11-27 2015-07-29 丰田自动车株式会社 Ring gear mounting structure
EP2926035A1 (en) * 2012-11-27 2015-10-07 Toyota Jidosha Kabushiki Kaisha Ring gear mounting structure
US9458919B2 (en) 2013-12-27 2016-10-04 Musashi Seimitsu Industry Co., Ltd. Method of manufacturing differential device
US9476493B2 (en) 2013-12-27 2016-10-25 Musashi Seimitsu Industry Co., Ltd. Differential device and method of manufacturing the same
US10213868B2 (en) 2014-06-17 2019-02-26 Ntn Corporation Manufacturing method for constant velocity universal joint outer joint member and outer joint member
WO2015194304A1 (en) * 2014-06-17 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP2016003711A (en) * 2014-06-17 2016-01-12 Ntn株式会社 Method of manufacturing outer joint member of constant velocity universal joint, and outer joint member
CN106460945A (en) * 2014-06-17 2017-02-22 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
EP3159564A4 (en) * 2014-06-17 2017-11-29 NTN Corporation Manufacturing method for constant velocity universal joint outer joint member and outer joint member
US10125855B2 (en) 2015-03-30 2018-11-13 Musashi Seimitsu Industry Co., Ltd. Transmission device
CN111059247A (en) * 2015-03-30 2020-04-24 武藏精密工业株式会社 Transmission device
CN111059247B (en) * 2015-03-30 2023-03-17 武藏精密工业株式会社 Transmission device
JP2016188657A (en) * 2015-03-30 2016-11-04 武蔵精密工業株式会社 Transmission device
JP2017180729A (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Member joining structure of differential device
WO2017170666A1 (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Structure for joining members in differential device
CN108884922A (en) * 2016-03-31 2018-11-23 爱信艾达株式会社 The component joint construction of differential gear
US10995841B2 (en) 2016-03-31 2021-05-04 Aisin Aw Co., Ltd. Member joining structure for differential device
JP2017203554A (en) * 2017-08-02 2017-11-16 武蔵精密工業株式会社 Differential device
DE102018218181A1 (en) 2017-10-30 2019-05-02 Musashi Seimitsu Industry Co., Ltd. DIFFERENTIAL DEVICE
US10591040B2 (en) 2017-10-30 2020-03-17 Musashi Seimitsu Industry Co., Ltd. Differential device
JP2019082204A (en) * 2017-10-30 2019-05-30 武蔵精密工業株式会社 Differential device
US10781908B2 (en) 2017-12-11 2020-09-22 Gkn Automotive Limited Driveline components with weld vent
JP2020085141A (en) * 2018-11-27 2020-06-04 武蔵精密工業株式会社 Differential device
CN111237425A (en) * 2018-11-27 2020-06-05 武藏精密工业株式会社 Differential gear
CN111237425B (en) * 2018-11-27 2024-05-24 武藏精密工业株式会社 Differential device
JP7082035B2 (en) 2018-11-27 2022-06-07 武蔵精密工業株式会社 Differential device
JP2019086156A (en) * 2019-03-14 2019-06-06 武蔵精密工業株式会社 Transmission device
WO2020255524A1 (en) * 2019-06-21 2020-12-24 日立オートモティブシステムズ株式会社 Joint structure and high-pressure fuel supply pump using same
JP7249411B2 (en) 2019-06-21 2023-03-30 日立Astemo株式会社 JOINT STRUCTURE AND HIGH PRESSURE FUEL SUPPLY PUMP USING THE SAME
JPWO2020255524A1 (en) * 2019-06-21 2020-12-24
JP2021030236A (en) * 2019-08-14 2021-03-01 日本製鉄株式会社 Welded structure
JP7328525B2 (en) 2019-08-14 2023-08-17 日本製鉄株式会社 Welded structure

Also Published As

Publication number Publication date
JP5509910B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509910B2 (en) Beam welding member and differential device provided with the same
JP5614054B2 (en) Beam welding member and differential device provided with the same
JP6196271B2 (en) Welded structure and manufacturing method of welded structure
JP5206656B2 (en) Differential gear device for vehicle
JP5333459B2 (en) Welded structure and welding method
EP2716400B1 (en) Welded joint structure and weld quality detection method
JP6119795B2 (en) Metal member joining method and metal member joining structure
WO2013018223A1 (en) Welding structure and method for manufacturing welding structure
WO2011089704A1 (en) Welded structure and welding method
WO2015080133A1 (en) Production method for fluid coupling and fluid coupling
JP6335983B2 (en) Method for manufacturing differential device and differential device
US8920279B2 (en) Differential case assembly with drive ring gear
JP6412383B2 (en) Welding structure of differential for vehicles
CN108603580B (en) Differential assembly with two-piece carrier and welded ring gear
CN113994125B (en) Transmission device
WO2020262627A1 (en) Power transmission device
KR102103700B1 (en) Vehicular differential device and welding method for the same
JP5381501B2 (en) Welded joint parts and welded joint method
JP2021008899A (en) Transmission device
JP2008151153A (en) Propeller shaft structure
JP2007283348A (en) Welding method and ring gear member welded thereby
JP5124232B2 (en) Power transmission component and manufacturing method thereof
JP2022165158A (en) Vehicle differential device
RU171000U1 (en) CYLINDER TRANSFER BOX DIFFERENTIAL
JP2024053571A (en) Gear shafts and transmissions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5509910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151