JP2011157580A - オゾン微細気泡の電解合成方法 - Google Patents

オゾン微細気泡の電解合成方法 Download PDF

Info

Publication number
JP2011157580A
JP2011157580A JP2010019157A JP2010019157A JP2011157580A JP 2011157580 A JP2011157580 A JP 2011157580A JP 2010019157 A JP2010019157 A JP 2010019157A JP 2010019157 A JP2010019157 A JP 2010019157A JP 2011157580 A JP2011157580 A JP 2011157580A
Authority
JP
Japan
Prior art keywords
ozone
water
ion
fine bubbles
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010019157A
Other languages
English (en)
Other versions
JP5544181B2 (ja
Inventor
Kenji Kikuchi
憲次 菊地
Takeo Oku
健夫 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
De Nora Permelec Ltd
University of Shiga Prefecture
Original Assignee
Permelec Electrode Ltd
Panasonic Electric Works Co Ltd
University of Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Panasonic Electric Works Co Ltd, University of Shiga Prefecture filed Critical Permelec Electrode Ltd
Priority to JP2010019157A priority Critical patent/JP5544181B2/ja
Priority to CN2011100339106A priority patent/CN102140648A/zh
Publication of JP2011157580A publication Critical patent/JP2011157580A/ja
Application granted granted Critical
Publication of JP5544181B2 publication Critical patent/JP5544181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract


【課題】平均粒径が10nm〜500nmのオゾン微細気泡を多量に溶解した電解水を、原料水から電解的に合成できる方法を提供する。
【構成】 導電性ダイヤモンド陽極5が設置された電解セル1に、電解質を含有する水溶液を供給して電気分解を行って、オゾン合成を行う際に、電流密度を0.01A/cm2〜0.5A/cm2として電気分解を行うことにより、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を得る。
【選択図】図1

Description

本発明は、オゾン微細気泡を溶解した電解水の電解合成方法に関する。
[オゾン水]
オゾンガスを溶解したオゾン水は、米国FDA(食品医薬品局)では食品添加物リストに登載され、食品貯蔵、製造工程での殺菌剤として認可(2001年)が得られている。既に食品工場内の殺菌、食品そのものの殺菌に多くの実績がある。最近では、皮膚科、眼科、歯科などの医療現場においても、これまでの殺菌水と同等以上に効果を発揮しつつ、生体への負荷を軽減できることが注目されている。殺菌消毒剤としては、塩素系殺菌剤が価格面と効果の点で汎用されているが、塩素系殺菌剤の多量使用により弊害が発生し、例えば大量に食材を取り扱う工場、小売店では100ppmを越える次亜塩素酸ナトリウムによる洗浄を行っており、これが食材の味を損なうのみならず危険性(THMの増加)を付与していることが問題視されている。また、長期にわたる次亜塩素酸塩の使用によりこの薬剤に対する耐性菌が生じており、殺菌効果に疑念が生じている。
これを解決することを主目的として、電気分解により生成される電解水が、農業、食品、医療等の分野において有用であるかが鋭意検討され、日本を中心に代替利用が進んでいる。電解水の優れた殺菌・消毒作用に着目し、医療現場や家庭での利用、例えば患部、切開部、留置カテーテルの経皮開口部等の殺菌、消毒、あるいはキッチン用品、ベビー用品、家具等の家庭用品、トイレ、浴槽等の住居まわりの殺菌、消毒に使用することが検討されている。このような電解水は、溶解によりイオンが生じる溶質、例えば塩化ナトリウム等を添加し、また必要に応じpH調整のための酸を添加した水(被電解水)を、電気分解することによって得られる。
酸性水のメリットは、次の通りである。
(1) THMは酸性では生成しにくいため安全性が優れている。
(2) 耐性菌が発生しにくく、オンサイトで管理が行いやすい。
(3)アルカリ性電解水との併用処理ができる
(4)水道水のような感覚で利用でき、手指に匂いが残らない
(5)直前での使用で十分(殺菌時間が短い)である。
一方、オゾン水のメリットは、次の通りである。
(1) オゾン(OHラジカル)殺菌効果は細胞壁の酸化破壊であり無差別性のため耐性菌が存在しない。
(2) 酸素に分解されるため有害な二次生成物がない
(3) 残留性がない
残留性がないことはメリットでもあり、デメリットでもある。オゾンガスを溶液中に安定に保つことができれば、その応用、効果の拡大が期待できる。
[オゾン水の製法]
オゾン水は従来から放電型のオゾンガス発生器を用いて製造することが一般的であり、数ppmのオゾン水を容易に製造でき、浄水処理、食品洗浄分野で利用されている。しかしながら、以下の理由により使用分野に制限であった。
(1) オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(2) 後述する電解法に比較して濃度が低いため高圧下で水中に注入し、溶解させ、製造する必要がある。
(3) 発生電源が高電圧・高周波のため、小型化しにくい。
(4) 放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまで時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難である。
電解法は、放電法に比較して電力原単位は劣るが、高濃度のオゾンガス及び水が容易に得られる特徴により、電子部品洗浄などの特殊分野で汎用されている。原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。
オゾンガスを効率よく発生させるには、適切な触媒と電解質を選択することが不可欠である。電極材料として、白金などの貴金属、α-二酸化鉛、β-二酸化鉛、フルオロカーボンを含浸させたグラッシーカーボン、ダイヤモンドが知られている。電解質としては、硫酸、リン酸、フッ素基含有などの水溶液が利用されてきたが、取り扱いが不便であり広まってはいない。固体高分子電解質を隔膜として用い、純水を原料とする水電解セルは、その点で管理がしやすく、汎用されている(非特許文献1)。従来からの触媒である二酸化鉛では、12重量%以上の高濃度なオゾンガスが得られる。
特許文献1では、導電性ダイヤモンドが機能水(オゾン含む)用電極として有用であることが開示されている。直接合成方式と呼ばれるシステムでは、電極近傍の溶液に十分な流速を与えることで、ガス化する前にオゾン水として取り出すようにしている(特許文献2)。特許文献3では、オゾンを溶解する電解水の噴霧装置、特に得られた電解水を霧状に噴霧する小型スプレー装置が考案されている。
[ナノバブル・マイクロバブル]
近年、ナノバブル、マイクロバブルと呼ばれる微細気泡に関する基礎的研究や実用化の検討が行われている。最近の展開については、微細気泡の最新技術NTS(2006)に記載されている。水と空気を急速に混ぜて発生させた直径数〜数十ミクロンの気泡は、水中に安定に浮遊し、長期間に亘ってガス成分を保存することができる。これらの気泡は次第にガス成分が溶液に溶け込むに従い、ナノサイズにまで減少していくが、気泡の収縮過程が進行するに従い、内部は高圧、高温化する。最終的に気泡が消滅する際には周囲の水分子を圧壊し、ラジカルを生成することも報告されている。
当初、酸素などのガスを主体とするナノ、マイクロバブルの効果は報告され、その後マイクロバブル化したオゾン含有気泡は洗浄効果があることは知られている。以下に関連する技術、特許を説明する。
特許文献4には、気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液からなることを特徴とする酸素ナノバブル水についての開示がある。
特許文献5には、気泡の直径が50〜500nmであって、前記気泡内にオゾンを含有するオゾンナノバブルが含まれる水溶液からなることを特徴とするオゾン水について開示がある。
特許文献6では、水中にオゾンが直径200nm以下のオゾンナノバブルとして存在し、前記オゾンの溶解濃度が、0.1〜5mg/Lである長期持続型オゾン水について報告され、オゾンナノバブルとして長期に安定化させるためには、水溶液中に含まれるナトリウム等の電解質イオンが必要であることが開示されている。これは、オゾンナノバブルの周囲に特定の電解質イオンが存在することで、電解質イオン濃度の上昇によりガスに対する水の溶解度が低下する現象(ソルティングアウト現象)により気泡内部のガスの溶解を抑制する。
特許文献7では、液体中にマイクロバブルを発生させるためのマイクロバブル発生装置として、多孔質性を有する導電性材料で形成され、両極間に電圧が印加されることにより液体を電気分解する2つの電極を備えたマイクロバブル発生装置が、開示されているが、オゾンガスについては記載がなく、電極材料も限定されている。
製法に関しても多くの報告が見られる。特許文献8では、マイクロバブルを含む液体を貯留槽に供給し、この供給されたマイクロバブルを含む液体に対し超音波振動を印加することにより、前記液体中のマイクロバブルを圧壊し、前記液体中にナノバブルを生成する方法が開示されている。この他にも、水中放電、超音波による発生、特殊な硝子膜フィルターを用いる方法がある。旋回流式発生器では、オゾン発生装置のガスを循環水と混合させ、マイクロバブルを製造する。マイクロバブル発生装置では高圧水を流し、オリフィスを介してガスを真空圧下で吸収する。バブルジェット(登録商標)、微細液滴噴霧などの方式も開発されている。
応用技術に関しては、特許文献9では、ナノバブル及びマイクロバブルにより汚濁水を浄化するナノバブル利用汚濁水浄化方法が、特許文献10では除菌可能な水耕栽培装置および水耕栽培方法、特許文献11では冷却塔における冷却水にオゾンマイクロナノバブルを含有させる冷却水改質方法が開示されている。その他、船舶運航抵抗の低減、ウィルスの不活性化、食品分野、農業分野、養殖畜産における水質浄化、医療分野においては造影剤、治療(ドラッグデリバリー)などが検討されている。
製造方法に関しては改良すべき点があった。即ち、オゾン、酸素ガスを水に溶解させる方式では、大きい気泡のまま、溶解せずに放出される割合が大きく、オゾンガスについてはこれを除外する装置を付加する必要が生じ、不都合である。したがって、オゾンをナノバブルとして簡便に合成できる方法の開発は有意義である。
上記のように、水電解では水素、酸素のナノ気泡、マイクロ気泡の存在は報告されているが、電解によりオゾンナノ気泡、マイクロ気泡が合成できるかについては知られていない。また、適切な電極材料について、これまでに報告されていない。
特開平9−268395号公報 特開平8−134677号公報 特開2006−346203号公報 特開2005−246294号公報 特開2005−246293号公報 特開2007−275089号公報 特開2007−38149号公報 特開2006−280183号公報 特開2007−10572号公報 特開2008−206448号公報 特開2007−326031号公報
J. Electrochem. Soc., 132, 367(1985)
微細気泡を合成する方法は上述のように各種報告があるが、電気分解によりオゾン微細気泡を合成できることが確認されてはいなかった。ダイヤモンド電極はオゾンガス発生に適しているが、微細気泡を多量に合成できるかについてはこれまで報告がなく、該方法で合成したオゾン水を長期に亘って保存すること、また微細気泡を用いた応用など提案されたことはなかった。
本発明は、水溶液を電気分解し、水溶液にオゾン微細気泡を多量に合成できる電解製造方法を提供することを目的とする。
本発明は、導電性ダイヤモンド陽極が設置された電解セルに、電解質を含有する水溶液を供給して電気分解を行って、オゾン微細気泡(ナノバブルと称することもある)が溶解した電解水を製造する方法において、電流密度を0.01A/cm2〜0.5A/cm2として電気分解を行うことにより、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を製造する方法であり、原料である電解液について、炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、塩化物イオン、過塩素酸イオン、水酸イオン、ナトリウムイオン、カリウムイオンのうち、少なくとも1つ以上の電解質を含有し、それらの濃度範囲が0.1〜1000mMであることが好ましい。
更には、陽極室におけるオゾン微細気泡を溶解した電解水の合成と同時に、陰極室で水素微細気泡を含有する電解水を合成することも可能である。
以下本発明方法に使用する各要素に関し説明する、
[電極反応]
電解セルでの陽極反応は、
2H2O = O2 + 4H+ + 4e-
の酸素発生が進行するが、触媒、電解条件によって、
3H2O = O3 + 6H+ + 6e-
のオゾンが生成し、これを溶解したオゾン水が合成できる。
[電流密度]
一般的に電流密度が大きいほど、オゾンの電流効率が増加するが、発熱による分解も促進される。
本発明者らは、生成するオゾン微細気泡への電流密度の影響を鋭意検討し、電流密度が0.01A/cm2〜0.5A/cm2内にあると、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を製造できることを見出した。電流密度が、前記範囲より小さくても大きくてもオゾン微細気泡の生成効率が極端に低下する。
更に電流密度が下限値より小さいと、電流効率が小さくなり、CNBも1ppm以下となり、実用に適さない。上限値より大きいと、温度の増大があり、電流効率の低下、電極原単位の増加を招き、また、電極が短寿命となるため、実用的でない。
[他の電解条件]
電解は常圧で行っても良いが、更に高濃度のオゾン微細気泡を得るために、高圧下で電解を行うことが好ましい。
温度は低いほど電極におけるオゾンの電流効率が増加し、また、溶解度も増加するが、セル電圧の増加要因でもあるため、溶液の温度は5℃〜60℃が好ましい。
[陽極材料]
陽極基材としてはチタン、ニオブなどの弁金属、その合金、シリコンに限定される。ダイヤモンドはドーピングにより電気伝導性の制御も可能であることから、電極材料として有望とされている。ダイヤモンド電極は水の分解反応に対しては不活性であり、酸化反応では酸素以外にオゾン、過酸化水素の生成が報告されている。触媒は陽極の一部に存在すればよく、前記基材の一部が露出していても支障ない。
導電性ダイヤモンド電極を製造するために代表的な熱フィラメントCVD法について説明する。炭素源となるメタンCH4など炭化水素ガス、或いはアルコールなどの有機物を用い、CVDチャンバー内に水素ガスと共に送り込み、還元雰囲気に保ちながら、フィラメントを熱し、炭素ラジカルが生成する温度1800〜2400℃に加熱にする。このときダイヤモンドが析出する温度(750〜950℃)領域に電極基材を設置する。水素に対する炭化水素ガス濃度は0.1〜10vol%、圧力は20hPa〜1013hPa(1気圧)である。
ダイヤモンドが良好な導電性を得るために、原子価の異なる元素を微量添加することは不可欠である。ホウ素BやリンPの好ましい含有率は1〜100000ppmであり、更に好ましくは100〜10000ppmである。原料化合物にはトリメチルボロン(CH3) 3Bを用いるが、毒性の少ない酸化ホウ素B23、5酸化2燐P25などの利用も好ましい。電極基材の形状としては、板のみならず、粒子、繊維、板、穴明き板、棒などが可能である。
電解によりオゾン微細気泡を製造するためには、電解により生じた過飽和なオゾン成分を素早く電極表面から除去することが好ましい。検討の結果、表面の凹凸粗さが小さいほど、平滑であるほど、微細な気泡が合成できることを確認できた。電極表面の粗さとして、1〜100ミクロンの範囲であることが好ましい。
[陰極材料]
陰極反応は主に水素発生であり、水素に対して脆化しない電極触媒を使用することが好ましく、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン、ダイヤモンドなどが好ましい。陰極基材としてはステンレス、ジルコニウム、カーボン、ニッケル、チタンなどに限定される。本発明方法に使用する装置では、いずれもオゾンや過酸化物が溶解した水と接触する配置となるため、酸化耐性に優れたものが好ましい。
[膜材料]
電極反応で生成した活性な物質を安定に保つために中性隔膜やイオン交換膜が利用可能である。膜はフッ素樹脂系、炭化水素樹脂系のいずれでも良いが、オゾンや過酸化物耐食性の面で前者が好ましい。イオン交換膜は、陽極、陰極で生成した物質が反対の電極で消費されるのを防止するとともに、液の電導度の低い場合でも電解を速やかに進行させる機能を有するため、伝導性の乏しい純水などを原料として利用する場合には必須となる。材質としては、フッ素樹脂系、ポリイミド樹脂系が好ましい。
[電解セル]
陽極、陰極及び電解質溶液からなる1室セルや、更に隔膜を含む2室セルを、電解セルとして使用でき、図1には2室セルを示した。電極間距離は0.1mm〜50mmが好ましく、0.1mmから2mm程度がより好適である。これより近いと接触により短絡が発生しやすく、これより遠いとセル電圧の増加を招く。各室には、電解液の供給口と排出口、生成ガスの排出口が設けられている。製造された電解水は、セル室内に保存することも可能であるが、別途の容器に保存することが好ましい。タンク材質は電解水により侵されない材料を選択する。特に問題がなければPE樹脂などでよい。隔膜により陽極室と陰極室が区画された2室セルでは、陽極室よりオゾン微細気泡を含有する電解水を、陰極室より水素微細気泡を含有する電解水を同時に合成することができ、用途によっては優れた電解装置と云える。
[原料水]
溶解によりイオンが生じる溶質、例えば塩化ナトリウム等を添加し、また必要に応じpH調整のための酸を添加した水(原料水)を、電気分解することによってオゾン微細気泡を溶解した電解水が得られる。
前記原料水は、炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、塩化物イオン、水酸イオン、ナトリウムイオン、カリウムイオン、のうち、少なくとも1つ以上の電解質を含有し、それらの濃度範囲が0.1〜1000mMであることが好ましい。これらのイオンは気泡の合一を抑制する効果が知られており、微細気泡の合成濃度の程度に含まれていることが好ましい。この範囲より小さいと、抑制効果が期待できず、また、これより大きい範囲は、単に無駄な添加物となり、合成した溶液の実用性が劣ることになる。
水道水、井戸水なども利用可能な原料水である。しかしながら伝導度が小さく、セル電圧に占める抵抗損失が無視できないため、上記の電解質を添加することが好ましい。また、水道水、井戸水、海水などの金属イオンを多く含む処理対象では、陰極表面に水酸化物或いは、炭酸化物が沈殿し反応が阻害される恐れがある。また陽極表面にはシリカなどの酸化物が析出する。これを防ぐために、逆電流を適当な時間(1分から1時間)ごとに与えることにより、陰極では酸性化し、陽極ではアルカリ化するため、発生ガス及び供給水の流動により加速され、析出物の脱離反応が容易に進行する。
濃度が上記より大きい場合、ナノバブル濃度の増加が期待できるが、生成した電解水を実用する場合に、希釈、あるいは、加えた電解質の除去などの工程が必要となり、かえって不便となる。
[生成電解水]
従来から報告されているように、気泡の合一を抑制する電解質として、カチオンとしてカリウム、ナトリウム、リチウムイオンが、アニオンとして、水酸イオン、塩化物イオン、硝酸イオン、臭化物イオン、硫酸イオンなどが知られている。これらの電解質を選択し、合成される電解水中に残存することにより長寿命のナノ、マイクロバブル(オゾン微細気泡)が合成できる。微細気泡はこれらの気泡の合一を抑制する電解質の選択をしない場合でも合成できる。但し、塩化物イオンなどの電解により容易に酸化し、次亜塩素酸などを生成するイオンは、オゾン生成効率の低下を招くため、避けることが好ましい。一方で、微細気泡であるオゾン成分と次亜塩素酸を共存させた溶液を合成する場合には、塩化物イオンを低濃度溶解した原料水を用いることが可能である。これらの塩は電解により過酸化物が生成し、殺菌効果の残留性を担う機能も有している。
合成した電解液は保存でき、用途に応じて利用可能である。微細気泡は溶液中で帯電しゼータ電位がpH依存性を有するため、pHを制御してオゾン殺菌力を制御することも可能である。即ち、対象とする物質、生物が正に帯電している場合、微細気泡を負に帯電させ、対象が負に帯電している場合、微細気泡を正に帯電させる。
[電解水中のナノ・マイクロバブルの定量]
陽極室から取り出される電解液にヨウ化カリウムを入れ、チオ硫酸ナトリウムによる酸化還元滴定を行い、溶解するオゾンの濃度および電流効率を算出する。このときのオゾン濃度をC1(mM)とする。また、採取した電解液を純水で5倍希釈した後、同様の測定方法にて濃度および電流効率を算出する。後者の濃度をC5(mM)とすると、ナノバブルの濃度CNBは下式にて見積もりが可能である。
5×5 − C1 = CNB
オゾン濃度はKI法で測定した。UV法、インジゴ法などでも定量できる。本発明方法におけるオゾン微細気泡を含むオゾン水全体の濃度CNBは0.02mM (1ppm)以上とする。これ以下の濃度では、実用的な効果が期待できない。
本発明方法は、殺菌、消毒、脱色などの分野において、電解水装置の利用の拡大に寄与することが期待される。オゾン発生とナノバブル発生を1つの工程によって行うことで、装置の小型化、軽量化、低価格化が達成でき、実用化に大いに貢献できる。
本発明方法に使用できる2室セルを示す概略縦断面図。
以下、本発明を添付図面及び実施例に基づいてより詳細に説明する。
図1は、本発明方法に使用できる2室セルを示す概略縦断面図である。
2室セル1は、パーフルオロスルホン酸系の陽イオン交換膜2により、陽極室3と陰極室4と区画されている。陽イオン交換膜2の陽極室3側には、弁金属製等の板状基体上に不純物をドープさせた導電性ダイヤモンド層を被覆したダイヤモンド陽極5が間隔を空けて設置され、前記陽イオン交換膜2の陰極室側には間隔を空けて、板状陰極6が設置されている。
陽極室3の下部及び上部には側方に向けて、それぞれ原料陽極水供給口7及び合成されたオゾン微細気泡溶解水取出口8が形成され、かつ陰極室4の下部及び上部には側方に向けて、それぞれ原料陰極水供給口9及び合成された水素ガス取出口10が形成されている。
このセル1の陽極室3及び陰極室4に、原料陽極水供給口7及び原料陰極水供給口9から、電解質を溶解した原料水を供給しながら、電流密度が0.01A/cm2〜0.5A/cm2となるように通電する。これにより陽極室では、平均粒径が10nm〜500nmのオゾン微細気泡が0.02mM以上の濃度で合成され、同時に陰極室では、通常の水電解により水素ガスが発生する。得られたオゾン微細気泡を溶解する電解水は、オゾン微細気泡溶解水取出口8から取出され、所定用途に使用される。
[実施例及び比較例]
「実施例1」
陽極として、表面に導電性ダイヤモンド触媒(ホウ素ドープ濃度1300ppm)層を形成したニオブ製の板状電極(5cm×5cm)を用いた。隔膜としてイオン交換膜(デュポン製Nafion117、厚さ0.2mm)を用い、陰極として、白金0.2ミクロンをめっきにより形成させた板状電極(5cm×5cm)を用い、陽極室、陰極室の2室を有する電解セルを構築した。電解セルの各室には気体、液体の流路を設けた。NaOHでpH12に調整した0.5Mの硝酸ナトリウム水溶液を原料として、陽極室、陰極室の下部から毎分35mLにて供給した。電流密度を0.1A/cm2とし、温度を出口にて25℃に制御した。オゾンガスの水和した溶解分濃度C1は0.25mMであり5倍希釈方法での濃度C5 が1.8mMであった。この差からナノバブルとしてのオゾン水濃度は1.55mMであった。ナノバブルに関する電流効率は21%であった。
[実施例2]
電流密度を0.4A/cm2としたこと以外実施例1と同様に電解を行ったところ、オゾンガス溶解分濃度C1は0.2mMであり、5倍希釈方法での濃度C5 が1.9mMであり、この差からナノバブルとしてのオゾン水濃度は1.7mMであった。ナノバブルに関する電流効率は5.5%であった。
[実施例3]
電流密度を0.08A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 が0.8mMであり、ナノバブルに関する電流効率は1.4%であった。
[実施例4]
電流密度を0.01A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 が0.02mMであり、ナノバブルに関する電流効率は2.7%であった。
[比較例1]
電流密度を0.005A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 は測定限界以下であった。
[比較例2]
電流密度を0.55A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 は0.01mMであった。
[実施例5]
NaOHでpH12に調製した0.5Mの過塩素酸ナトリウムを用いたこと以外は実施例1と同様な電解を行ったところ、オゾンガス溶解分濃度C1は0.1mMであり、5倍希釈方法での濃度C5 が0.3mMであり、この差からナノバブルとしてのオゾン水濃度は0.2mMであった。ナノバブルに関する電流効率は3.5%であった。
また、陰極室からは、水素水が得られ、水素のナノバブルとして、水素ガス溶解濃度1mM、5倍希釈方法での濃度3mMが得られた。
「実施例6」
陽極として導電性ダイヤモンド触媒(ホウ素ドープ濃度1300ppm)を形成したシリコン製の板状電極(3.5cm×3.5cm)を用いた。0.01Mの炭酸ナトリウムを用い実施例1と同様な測定を行ったところ、電流密度0.1A/cm2で溶存オゾン濃度C1は0.3mMMであり、5倍希釈方法での濃度C5 が0.9mMであり、ナノバブルに関する電流効率は8%であった。
[比較例3]
陽極として、白金板を用いたこと以外は実施例1と同様のセルを組み立て試験したところ、オゾンガスの水和した溶解分濃度C1は0.01mMであり、5倍希釈方法での濃度C5 は計測できない程度の量であった。これより微細気泡の存在は確認できないほど少ないと推察された。
1 2室セル
2 陽イオン交換膜
3 陽極室
4 陰極室
5 ダイヤモンド陽極
6 板状陰極

Claims (3)

  1. 導電性ダイヤモンド陽極が設置された電解セルに、電解質を含有する水溶液を供給して電気分解を行って、オゾン微細気泡が溶解した電解水を製造する方法において、電流密度を0.01A/cm2〜0.5A/cm2として電気分解を行うことにより、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を製造することを特徴とする方法。
  2. 電解質が、炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、塩化物イオン、過塩素酸イオン、水酸イオン、ナトリウムイオン及びカリウムイオンから成る郡から選択される少なくとも1種であり、その濃度範囲が0.1mM〜1000mMである請求項1記載の方法。
  3. 陽極室でのオゾン微細気泡を含有する電解水の合成と同時に、陰極室で水素微細気泡を含有する電解水を合成する請求項1記載の方法。
JP2010019157A 2010-01-29 2010-01-29 オゾン微細気泡の電解合成方法 Active JP5544181B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010019157A JP5544181B2 (ja) 2010-01-29 2010-01-29 オゾン微細気泡の電解合成方法
CN2011100339106A CN102140648A (zh) 2010-01-29 2011-01-28 臭氧微小气泡的电解合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019157A JP5544181B2 (ja) 2010-01-29 2010-01-29 オゾン微細気泡の電解合成方法

Publications (2)

Publication Number Publication Date
JP2011157580A true JP2011157580A (ja) 2011-08-18
JP5544181B2 JP5544181B2 (ja) 2014-07-09

Family

ID=44408436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019157A Active JP5544181B2 (ja) 2010-01-29 2010-01-29 オゾン微細気泡の電解合成方法

Country Status (2)

Country Link
JP (1) JP5544181B2 (ja)
CN (1) CN102140648A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198310A (ja) * 2013-03-29 2014-10-23 国立大学法人福井大学 小型電解水生成装置
JP2014531300A (ja) * 2011-08-25 2014-11-27 ターサノ・インコーポレーテッド オゾンの半減期を延長するための水の処理
JP5691023B1 (ja) * 2014-02-15 2015-04-01 株式会社勝電技研 水素水製造装置
JP2017039981A (ja) * 2015-08-20 2017-02-23 国立研究開発法人産業技術総合研究所 過酸化水素の製造方法および製造装置
JP2018068153A (ja) * 2016-10-26 2018-05-10 三菱電機株式会社 食品処理装置
JP2018184655A (ja) * 2017-04-27 2018-11-22 学校法人慶應義塾 排ガスを電解還元して有価物を回収する装置及び方法
US10852253B2 (en) 2016-03-18 2020-12-01 Hitachi High-Tech Corporation Specimen observation method
JP2021531951A (ja) * 2019-07-03 2021-11-25 ヂェァジァン ユニバーシティZhejiang University 超音波−電極−ナノ多孔膜カップリングによる水素製造滅菌システム
JP7152824B1 (ja) 2022-08-26 2022-10-13 株式会社ナノバブル研究所 陽イオン含有微細気泡発生装置、及び陽イオン発生装置
JP7446099B2 (ja) 2019-12-06 2024-03-08 エア・ウォーター株式会社 歯の根管内および根管象牙細管内の感染治療用組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668952A (zh) * 2012-04-26 2012-09-19 中国农业大学 一种无土栽培基质的消毒方法
DE102014203372A1 (de) 2014-02-25 2015-08-27 Condias Gmbh Elektrodenanordnung für eine elektrochemische Behandlung einer Flüssigkeit
CN105112937A (zh) * 2015-09-30 2015-12-02 广州市德百顺电气科技有限公司 一种直接连接镀膜电极的电解臭氧水装置
CN108611655B (zh) * 2018-03-18 2020-11-06 广州市德百顺电气科技有限公司 一种电极单元及其组成的电极
CN110499518B (zh) * 2018-05-18 2021-08-06 苏州庚泽新材料科技有限公司 电解装置
US20230112608A1 (en) 2021-10-13 2023-04-13 Disruptive Oil And Gas Technologies Corp Nanobubble dispersions generated in electrochemically activated solutions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060011A (ja) * 2002-07-30 2004-02-26 Neo Ozone Kk 電解式オゾン水製造装置
JP2007075674A (ja) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd 微細気泡発生装置とそれを備えた衛生洗浄装置
JP2008192630A (ja) * 2006-03-20 2008-08-21 Eiji Matsumura 電子・機械部品洗浄方法及び電子・機械部品洗浄装置
JP2009052105A (ja) * 2007-08-28 2009-03-12 Nikka Micron Kk オゾン水生成装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819860B2 (ja) * 2003-03-12 2006-09-13 三洋電機株式会社 オゾン生成装置
JP4723627B2 (ja) * 2007-11-15 2011-07-13 ペルメレック電極株式会社 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060011A (ja) * 2002-07-30 2004-02-26 Neo Ozone Kk 電解式オゾン水製造装置
JP2007075674A (ja) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd 微細気泡発生装置とそれを備えた衛生洗浄装置
JP2008192630A (ja) * 2006-03-20 2008-08-21 Eiji Matsumura 電子・機械部品洗浄方法及び電子・機械部品洗浄装置
JP2009052105A (ja) * 2007-08-28 2009-03-12 Nikka Micron Kk オゾン水生成装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013040112; 青山敬 他: 'HBF4水溶液およびH2SO4水溶液中におけるダイヤモンド電極上でのオゾン発生' ソーダ工業技術討論会講演要旨集 Vol.26th, 20021128, Page.9-12 *
JPN6013054469; 吉原佐知雄 他: 'ボロンドープダイヤモンド電極を利用したオゾン水製造システムの検討' 電気化学会大会講演要旨集 72nd, 20050401, Page.61 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783443B2 (en) 2011-08-25 2017-10-10 Tersano Inc. Treatment of water to extend half-life of ozone
JP2014531300A (ja) * 2011-08-25 2014-11-27 ターサノ・インコーポレーテッド オゾンの半減期を延長するための水の処理
US10017409B2 (en) 2011-08-25 2018-07-10 Tersano Inc. Treatment of water to extend half-life of ozone
JP2015142915A (ja) * 2011-08-25 2015-08-06 ターサノ・インコーポレーテッド オゾンの半減期を延長するための水の処理
JP2014198310A (ja) * 2013-03-29 2014-10-23 国立大学法人福井大学 小型電解水生成装置
JP2015150512A (ja) * 2014-02-15 2015-08-24 株式会社勝電技研 水素水製造装置
JP5691023B1 (ja) * 2014-02-15 2015-04-01 株式会社勝電技研 水素水製造装置
JP2017039981A (ja) * 2015-08-20 2017-02-23 国立研究開発法人産業技術総合研究所 過酸化水素の製造方法および製造装置
US10852253B2 (en) 2016-03-18 2020-12-01 Hitachi High-Tech Corporation Specimen observation method
JP2018068153A (ja) * 2016-10-26 2018-05-10 三菱電機株式会社 食品処理装置
JP2018184655A (ja) * 2017-04-27 2018-11-22 学校法人慶應義塾 排ガスを電解還元して有価物を回収する装置及び方法
JP2021531951A (ja) * 2019-07-03 2021-11-25 ヂェァジァン ユニバーシティZhejiang University 超音波−電極−ナノ多孔膜カップリングによる水素製造滅菌システム
JP7072928B2 (ja) 2019-07-03 2022-05-23 ヂェァジァン ユニバーシティ 超音波-電極-ナノ多孔膜カップリングによる水素製造滅菌システム
JP7446099B2 (ja) 2019-12-06 2024-03-08 エア・ウォーター株式会社 歯の根管内および根管象牙細管内の感染治療用組成物
JP7152824B1 (ja) 2022-08-26 2022-10-13 株式会社ナノバブル研究所 陽イオン含有微細気泡発生装置、及び陽イオン発生装置
JP2024031264A (ja) * 2022-08-26 2024-03-07 株式会社ナノバブル研究所 陽イオン含有微細気泡発生装置、及び陽イオン発生装置

Also Published As

Publication number Publication date
CN102140648A (zh) 2011-08-03
JP5544181B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5544181B2 (ja) オゾン微細気泡の電解合成方法
JP4410155B2 (ja) 電解水噴出装置
JP4980016B2 (ja) 電解水噴出装置及び殺菌方法
TWI608129B (zh) Electrolysis device and electrolytic ozone water production device
JP3913923B2 (ja) 水処理方法及び水処理用装置
US6767447B2 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP4723627B2 (ja) 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法
JP5113892B2 (ja) 膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法
EP2078701B1 (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP5764474B2 (ja) 電解合成装置、電解処理装置、電解合成方法及び電解処理方法
TW201208182A (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP5098050B2 (ja) 膜−電極接合体、これを用いた電解ユニット、電解水噴出装置及び殺菌方法
JP2010527337A (ja) 水性の次亜塩素酸(HOCl)含有溶液をベースとする消毒薬、それを製造するための方法、及びその使用
JP2009125628A (ja) 膜−電極接合体、これを用いる電解セル、オゾン水生成装置及び殺菌方法
JP2004267956A (ja) 混合電解水の製造方法
KR100958677B1 (ko) 고성능 무격막 전해셀 및 이를 포함하는 이산화염소 발생장치
JP5876431B2 (ja) 小型電解水生成装置
JP2004313780A (ja) 過酢酸の電解合成方法及び殺菌洗浄方法及び装置
JP2021120140A (ja) オゾン水の生成方法、生成噴霧器及び生成噴霧装置
KR101847924B1 (ko) 고농도 복합 살균수의 제조장치
GB2556947B (en) Electrochemical cell and method for operation of the same
KR20090091479A (ko) 이온교환막을 이용한 전해오존발생기 및 이를 이용한살균수제조장치

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250