JP2011144791A - Control device for cylinder injection type internal combustion engine - Google Patents

Control device for cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2011144791A
JP2011144791A JP2010008610A JP2010008610A JP2011144791A JP 2011144791 A JP2011144791 A JP 2011144791A JP 2010008610 A JP2010008610 A JP 2010008610A JP 2010008610 A JP2010008610 A JP 2010008610A JP 2011144791 A JP2011144791 A JP 2011144791A
Authority
JP
Japan
Prior art keywords
fuel
purge
amount
intake stroke
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010008610A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuda
寛之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010008610A priority Critical patent/JP2011144791A/en
Publication of JP2011144791A publication Critical patent/JP2011144791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation in combustion state, while preventing shift in an air-fuel ratio caused by purge of fuel evaporative gas during weak stratified combustion mode where fuel is injected in cylinders at an intake stroke and at a compression stroke of each cylinder. <P>SOLUTION: An ECU 35 corrects an intake stroke injection amount to be reduced depending on a purge fuel amount (a fuel evaporative gas amount purged into an intake system), during a weak stratified combustion mode. However, when the purge fuel amount gets larger than the intake stroke injection amount before the reduction correction, the ECU determines that a fuel amount increase by the purge of the fuel evaporative gas cannot be canceled out by a fuel amount decrease by a reduction correction of the intake stroke injection amount to restrict the purge fuel amount so that the purge fuel amount does not exceed the intake stroke injection amount before the reduction correction, so as to cancel out the fuel amount increase by the purge of the fuel evaporative gas by the fuel amount decrease by the reduction correction of the intake stroke injection amount. Since it is not necessary to perform the reduction correction of the compression stroke injection amount, the compression stroke injection amount is secured to form good stratified air-fuel mixture at ignition timing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料タンク内で発生した燃料蒸発ガスを吸気系にパージする機能を備えた筒内噴射式内燃機関の制御装置に関する発明である。   The present invention relates to a control device for a direct injection internal combustion engine having a function of purging fuel evaporative gas generated in a fuel tank to an intake system.

従来より、内燃機関を搭載した車両においては、燃料タンク内で発生する燃料蒸発ガス(エバポガス)が大気中に漏れ出すことを防止するために、燃料タンク内で発生した燃料蒸発ガスをキャニスタ内に吸着し、このキャニスタと内燃機関の吸気系とを連通するパージ通路に設けたパージ制御を開弁することで、吸気系の負圧を利用してキャニスタ内に吸着されている燃料蒸発ガスを吸気系にパージ(放出)するようにしている。   Conventionally, in a vehicle equipped with an internal combustion engine, in order to prevent the fuel evaporative gas (evaporative gas) generated in the fuel tank from leaking into the atmosphere, the fuel evaporative gas generated in the fuel tank is stored in the canister. By adsorbing and opening the purge control provided in the purge passage that communicates the canister and the intake system of the internal combustion engine, the fuel evaporative gas adsorbed in the canister is sucked into the canister using the negative pressure of the intake system. The system is purged (released).

この燃料蒸発ガスのパージによる空燃比のリッチずれを防止するために、吸気系にパージされる燃料蒸発ガス量(以下「パージ燃料量」という)に応じて燃料噴射量を減量補正することで、燃料蒸発ガスのパージによる燃料量増加分を燃料噴射量の減量補正による燃料量減少分で相殺するようにしたものがある。例えば、筒内噴射式の内燃機関においては、特許文献1(特開2002−89337号公報)に記載されているように、各気筒の吸気行程で筒内に燃料を噴射して筒内に均一混合気を形成すると共に、各気筒の圧縮行程で筒内に燃料を噴射して筒内の均一混合気中に空燃比の低い成層混合気を形成する弱成層燃焼モード中に、パージ燃料量が吸気行程の燃料噴射量よりも少ない場合には、吸気行程の燃料噴射量のみを減量補正し、パージ燃料量が吸気行程の燃料噴射量よりも多い場合には、吸気行程の燃料噴射を中止する(つまり吸気行程の燃料噴射量を0まで減量補正する)と共に圧縮行程の燃料噴射量を減量補正するようにしたものがある。   In order to prevent the rich deviation of the air-fuel ratio due to the purge of the fuel evaporative gas, the fuel injection amount is corrected to decrease according to the amount of fuel evaporative gas purged into the intake system (hereinafter referred to as “purge fuel amount”), In some cases, an increase in the fuel amount due to purging of the fuel evaporative gas is offset by a decrease in the fuel amount due to the fuel injection amount decrease correction. For example, in a cylinder injection type internal combustion engine, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-89337), fuel is injected into the cylinder in the intake stroke of each cylinder and uniform in the cylinder. During the weak stratified combustion mode in which a mixture is formed and fuel is injected into the cylinder in the compression stroke of each cylinder to form a stratified mixture with a low air-fuel ratio in the uniform mixture in the cylinder, the amount of purge fuel is When the fuel injection amount is smaller than the intake stroke fuel injection amount, only the intake stroke fuel injection amount is corrected to decrease, and when the purge fuel amount is larger than the intake stroke fuel injection amount, the intake stroke fuel injection is stopped. (In other words, the fuel injection amount in the intake stroke is corrected to decrease to 0) and the fuel injection amount in the compression stroke is corrected to decrease.

特開2002−89337号公報(第2頁等)JP 2002-89337 A (the second page etc.)

ところで、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中は、圧縮行程の噴射燃料によって点火時期に点火プラグ近傍に成層混合気を形成することで、良好な燃焼状態を確保することができる。しかし、上記特許文献1の技術では、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中に、パージ燃料量が吸気行程の燃料噴射量よりも多い場合には、吸気行程の燃料噴射量を減量補正すると共に、圧縮行程の燃料噴射量も減量補正するため、圧縮行程の燃料噴射量が不足して、良好な成層混合気を形成することが困難になり、燃焼状態が悪化してしまう可能性がある。   By the way, during the weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder, it is good by forming a stratified mixture near the spark plug at the ignition timing by the injected fuel in the compression stroke A good combustion state. However, in the technique of Patent Document 1 described above, when the purge fuel amount is larger than the fuel injection amount in the intake stroke during the weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder. Since the fuel injection amount in the intake stroke is corrected to decrease and the fuel injection amount in the compression stroke is also corrected to decrease, the fuel injection amount in the compression stroke is insufficient and it becomes difficult to form a good stratified mixture. The combustion state may get worse.

そこで、本発明が解決しようとする課題は、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中に燃料蒸発ガスのパージによる空燃比のリッチずれを防止しながら燃焼状態の悪化を防止することができる筒内噴射式内燃機関の制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to prevent the rich deviation of the air-fuel ratio due to the purge of fuel evaporative gas during the weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder. An object of the present invention is to provide a control device for a direct injection internal combustion engine that can prevent deterioration of the combustion state.

上記課題を解決するために、請求項1に係る発明は、燃料タンク内で発生した燃料蒸発ガスを吸気系にパージする機能を備えた筒内噴射式内燃機関の制御装置において、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中に吸気系にパージされる燃料蒸発ガス量(以下「パージ燃料量」という)に応じて吸気行程の燃料噴射量(以下「吸気行程噴射量」という)を減量補正する吸気行程噴射量補正手段と、弱成層燃焼モード中にパージ燃料量が減量補正前の吸気行程噴射量よりも多くなる場合にパージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限するパージ燃料量ガード制御手段とを備えた構成としたものである。   In order to solve the above-mentioned problem, an invention according to claim 1 is directed to a control apparatus for a direct injection internal combustion engine having a function of purging fuel evaporative gas generated in a fuel tank to an intake system. The fuel injection amount of the intake stroke (hereinafter referred to as “purge fuel amount”) according to the amount of fuel evaporative gas purged into the intake system during the weak stratified combustion mode in which fuel is injected into the cylinder in both the stroke and the compression stroke (hereinafter referred to as “purge fuel amount”) Intake stroke injection amount correcting means for reducing the intake stroke injection amount) and when the purge fuel amount becomes larger than the intake stroke injection amount before the decrease correction during the weak stratified combustion mode. A purge fuel amount guard control means for limiting the purge fuel amount so as not to exceed the previous intake stroke injection amount is provided.

この構成では、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中(吸気圧縮行程噴射モード中)に、パージ燃料量に応じて吸気行程噴射量を減量補正するが、パージ燃料量が減量補正前の吸気行程噴射量(パージ燃料量に応じて減量補正される前の吸気行程噴射量)よりも多くなる場合には、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺できなくなると判断して、パージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限することで、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺することが可能となる。これにより、圧縮行程噴射量(圧縮行程の燃料噴射量)を減量補正する必要がなくなり、圧縮行程噴射量を確保して点火時期に良好な成層混合気を形成することができる。その結果、弱成層燃焼モード中に、燃料蒸発ガスのパージによる空燃比のリッチずれを吸気行程噴射量の減量補正によって防止しながら、圧縮行程噴射量を確保して燃焼状態の悪化を防止することができる。   In this configuration, during the weak stratified combustion mode (in the intake compression stroke injection mode) in which fuel is injected into the cylinder during both the intake stroke and the compression stroke of each cylinder, the intake stroke injection amount is corrected to decrease according to the purge fuel amount. However, if the purge fuel amount is larger than the intake stroke injection amount before the decrease correction (the intake stroke injection amount before the decrease correction is performed in accordance with the purge fuel amount), the fuel amount increases by purging the fuel evaporative gas. By determining that the amount of fuel cannot be offset by the fuel amount decrease due to the intake stroke injection amount reduction correction, the purge fuel amount is limited so that the purge fuel amount does not exceed the intake stroke injection amount before the reduction correction. It is possible to offset the increase in the fuel amount due to the purge of the evaporation gas with the decrease in the fuel amount due to the decrease correction of the intake stroke injection amount. As a result, it is not necessary to correct the amount of compression stroke injection (fuel injection amount of the compression stroke) to be reduced, and it is possible to secure a compression stroke injection amount and form a good stratified mixture at the ignition timing. As a result, during the weak stratified combustion mode, the air-fuel ratio rich shift due to the purge of the fuel evaporative gas is prevented by correcting the decrease in the intake stroke injection amount, while ensuring the compression stroke injection amount to prevent the combustion state from deteriorating. Can do.

この場合、請求項2のように、パージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限しても排出ガスの空燃比が目標空燃比よりもリッチになる場合に、パージ燃料量を制限するためのガード値をリーン方向(パージ燃料量の減少方向)に補正するようにしても良い。このようにすれば、燃料蒸発ガスのパージによる空燃比のリッチずれを確実に防止することができる。   In this case, when the purge fuel amount is limited so that the purge fuel amount does not exceed the intake stroke injection amount before the reduction correction, the air-fuel ratio of the exhaust gas becomes richer than the target air-fuel ratio. In addition, the guard value for limiting the purge fuel amount may be corrected in the lean direction (in the decreasing direction of the purge fuel amount). In this way, it is possible to reliably prevent the rich deviation of the air-fuel ratio due to the purge of the fuel evaporative gas.

また、パージ燃料量を算出(推定)する具体的な方法としては、例えば、請求項3のように、弱成層燃焼モード中に排出ガスの空燃比を目標空燃比に一致させるように吸気行程噴射量をフィードバック補正する空燃比フィードバック制御を実行する空燃比フィードバック制御手段を備えたシステムでは、弱成層燃焼モード中に空燃比フィードバック制御による吸気行程噴射量の補正量に基づいてパージ燃料量を算出するようにしても良い。パージ燃料量に応じて排出ガスの空燃比が変化し、それに応じて空燃比フィードバック制御による吸気行程噴射量の補正量が変化するため、空燃比フィードバック制御による吸気行程噴射量の補正量は、パージ燃料量を精度良く反映した情報となる。従って、空燃比フィードバック制御による吸気行程噴射量の補正量を用いれば、パージ燃料量を精度良く算出することができる。   Further, as a specific method for calculating (estimating) the purge fuel amount, for example, as in claim 3, the intake stroke injection is performed so that the air-fuel ratio of the exhaust gas coincides with the target air-fuel ratio during the weak stratified combustion mode. In a system including air-fuel ratio feedback control means for performing air-fuel ratio feedback control for feedback correction of the amount, the purge fuel amount is calculated based on the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control during the weak stratified combustion mode You may do it. Since the air-fuel ratio of the exhaust gas changes according to the purge fuel amount, and the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control changes accordingly, the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control is the purge amount The information accurately reflects the amount of fuel. Accordingly, the purge fuel amount can be accurately calculated by using the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control.

或は、請求項4のように、燃料蒸発ガスを吸気系にパージするためのパージ通路と、該パージ通路に設けられてパージ流量を調整するためのパージ制御弁とを備えたシステムでは、弱成層燃焼モード中にパージ通路内の圧力と吸気系内の圧力との差圧と、パージ制御弁の開度と、吸気系にパージされるガスの燃料蒸発ガス濃度とに基づいて、パージ燃料量を算出するようにしても良い。このようにすれば、空燃比フィードバック制御の停止中でもパージ燃料量を精度良く算出することができる。   Alternatively, in a system having a purge passage for purging the fuel evaporative gas into the intake system and a purge control valve for adjusting the purge flow rate provided in the purge passage, Based on the differential pressure between the pressure in the purge passage and the pressure in the intake system during the stratified combustion mode, the opening of the purge control valve, and the fuel evaporative gas concentration of the gas purged into the intake system, the purge fuel amount May be calculated. In this way, the purge fuel amount can be accurately calculated even when the air-fuel ratio feedback control is stopped.

尚、パージ燃料量を算出(推定)する方法は、請求項3,4の方法に限定されず、適宜変更しても良い。   The method of calculating (estimating) the purge fuel amount is not limited to the method of claims 3 and 4 and may be changed as appropriate.

図1は本発明の実施例1におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in Embodiment 1 of the present invention. 図2は実施例1の弱成層燃焼モード用パージ制御ルーチンの処理の流れを説明するフローチャートである。FIG. 2 is a flowchart for explaining the flow of processing of the purge control routine for the weak stratified combustion mode of the first embodiment. 図3の(a)は従来の弱成層燃焼モード中のパージ制御及び燃料噴射制御の実行例を示すタイムチャートであり、図3の(b)は実施例1の弱成層燃焼モード中のパージ制御及び燃料噴射制御の実行例を示すタイムチャートである。FIG. 3A is a time chart showing an execution example of the purge control and the fuel injection control in the conventional weak stratified combustion mode, and FIG. 3B is the purge control in the weak stratified combustion mode of the first embodiment. 5 is a time chart showing an execution example of fuel injection control. 図4は実施例2の弱成層燃焼モード用パージ制御ルーチンの処理の流れを説明するフローチャートである。FIG. 4 is a flowchart for explaining the flow of processing of the purge control routine for weakly stratified combustion mode according to the second embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図3に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
筒内噴射式の内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the direct injection engine 11 that is an in-cylinder internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. Is provided. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、エンジン11の各気筒には、それぞれ筒内に燃料を直接噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and each cylinder of the engine 11 is provided with a fuel injection valve 21 that directly injects fuel into the cylinder. Yes. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.

一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas. A catalyst 25 such as a three-way catalyst for purifying gas is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。また、クランク軸28の外周側には、クランク軸28が所定クランク角回転する毎にパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 26 that detects the cooling water temperature and a knock sensor 27 that detects knocking are attached to the cylinder block of the engine 11. A crank angle sensor 29 that outputs a pulse signal every time the crankshaft 28 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 28, and the crank angle and the engine are determined based on the output signal of the crank angle sensor 29. The rotation speed is detected.

また、燃料タンク30内の燃料が蒸発して生じた燃料蒸発ガス(エバポガス)は、エバポ通路31を通してキャニスタ32内の活性炭等の吸着体(図示せず)に吸着される。このキャニスタ32とエンジン吸気系(例えばスロットルバルブ16の下流側の吸気管12又はサージタンク18又は吸気マニホールド20)との間には、キャニスタ32内の吸着体に吸着されている燃料蒸発ガスをエンジン吸気系にパージ(放出)するためのパージ通路33が設けられ、このパージ通路33の途中に、パージ流量を調整するためのパージ制御弁34が設けられている。   Further, fuel evaporative gas (evaporative gas) generated by evaporating the fuel in the fuel tank 30 is adsorbed by an adsorbent (not shown) such as activated carbon in the canister 32 through the evaporation passage 31. Between the canister 32 and the engine intake system (for example, the intake pipe 12 or the surge tank 18 or the intake manifold 20 on the downstream side of the throttle valve 16), the fuel evaporative gas adsorbed by the adsorbent in the canister 32 is supplied to the engine. A purge passage 33 for purging (releasing) the intake system is provided, and a purge control valve 34 for adjusting the purge flow rate is provided in the middle of the purge passage 33.

上述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)35に入力される。このECU35は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   The outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 35. The ECU 35 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 21 according to the engine operating state. The ignition timing of the spark plug 22 is controlled.

その際、ECU35は、エンジン運転状態等に応じて均質燃焼モード(吸気行程噴射モード)と成層燃焼モード(圧縮行程噴射モード)と弱成層燃焼モード(吸気圧縮行程噴射モード)とを切り換える。   At that time, the ECU 35 switches between a homogeneous combustion mode (intake stroke injection mode), a stratified combustion mode (compression stroke injection mode), and a weak stratified combustion mode (intake compression stroke injection mode) according to the engine operating state and the like.

均質燃焼モード(吸気行程噴射モード)では、各気筒の吸気行程で筒内に燃料を噴射して筒内に均質混合気を形成して均質燃焼させる。一方、成層燃焼モード(圧縮行程噴射モード)では、各気筒の圧縮行程で筒内に燃料を噴射して筒内の点火プラグ22の近傍に成層混合気を形成して成層燃焼させる。   In the homogeneous combustion mode (intake stroke injection mode), fuel is injected into the cylinder in the intake stroke of each cylinder to form a homogeneous mixture in the cylinder to perform homogeneous combustion. On the other hand, in the stratified charge combustion mode (compression stroke injection mode), fuel is injected into the cylinder in the compression stroke of each cylinder, and a stratified mixture is formed in the vicinity of the spark plug 22 in the cylinder for stratified combustion.

また、弱成層燃焼モード(吸気圧縮行程噴射モード)では、各気筒の吸気行程で筒内に燃料を噴射して筒内に均質混合気を形成すると共に、各気筒の圧縮行程で筒内に燃料を噴射して筒内の均質混合気中で点火プラグ22の近傍に成層混合気を形成して弱成層燃焼させる。   In the weak stratified combustion mode (intake compression stroke injection mode), fuel is injected into the cylinder in the intake stroke of each cylinder to form a homogeneous mixture in the cylinder, and fuel is injected into the cylinder in the compression stroke of each cylinder. Is injected to form a stratified mixture in the vicinity of the spark plug 22 in the homogeneous mixture in the cylinder to cause weak stratified combustion.

ECU35は、エンジン運転中に所定の空燃比フィードバック制御実行条件が成立したときには、排出ガスセンサ24で検出した排出ガスの空燃比を目標空燃比に一致させるように燃料噴射量をフィードバック補正する空燃比フィードバック制御を実行する。その際、弱成層燃焼モード中に空燃比フィードバック制御実行条件が成立したときには、排出ガスセンサ24で検出した排出ガスの空燃比を目標空燃比に一致させるように吸気行程の燃料噴射量をフィードバック補正する。この機能が特許請求の範囲でいう空燃比フィードバック制御手段としての役割を果たす。   When a predetermined air-fuel ratio feedback control execution condition is satisfied during engine operation, the ECU 35 feedback-corrects the fuel injection amount so that the air-fuel ratio of the exhaust gas detected by the exhaust gas sensor 24 matches the target air-fuel ratio. Execute control. At this time, when the air-fuel ratio feedback control execution condition is satisfied during the weak stratified combustion mode, the fuel injection amount in the intake stroke is feedback-corrected so that the air-fuel ratio of the exhaust gas detected by the exhaust gas sensor 24 matches the target air-fuel ratio. . This function serves as air-fuel ratio feedback control means in the claims.

ところで、燃料蒸発ガスのパージによる空燃比のリッチずれを防止するためには、エンジン吸気系にパージされる燃料蒸発ガス量(以下「パージ燃料量」という)に応じて燃料噴射量を減量補正して、燃料蒸発ガスのパージによる燃料量増加分を燃料噴射量の減量補正による燃料量減少分で相殺する必要がある。   By the way, in order to prevent the rich deviation of the air-fuel ratio due to the purge of fuel evaporative gas, the fuel injection amount is corrected to decrease according to the amount of fuel evaporative gas purged into the engine intake system (hereinafter referred to as “purge fuel amount”). Therefore, it is necessary to offset the increase in the fuel amount due to the purge of the fuel evaporative gas with the decrease in the fuel amount due to the fuel injection amount decrease correction.

しかし、図3(a)に示すように、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中にパージ燃料量に応じて吸気行程噴射量(吸気行程の燃料噴射量)を減量補正すると共に圧縮行程噴射量(圧縮行程の燃料噴射量)も減量補正するようにすると、圧縮行程噴射量が不足して、良好な成層混合気を形成することが困難になり、燃焼状態が悪化してしまう可能性がある。   However, as shown in FIG. 3A, during the weak stratified combustion mode in which fuel is injected into the cylinder during both the intake stroke and the compression stroke of each cylinder, the intake stroke injection amount (intake stroke injection amount) is determined according to the purge fuel amount. If the fuel injection amount) is corrected to decrease and the compression stroke injection amount (fuel injection amount in the compression stroke) is also corrected to decrease, the compression stroke injection amount becomes insufficient, making it difficult to form a good stratified mixture. Therefore, the combustion state may be deteriorated.

そこで、本実施例1では、図3(b)に示すように、ECU35は、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中に、パージ燃料量に応じて吸気行程噴射量のみを減量補正する(圧縮行程噴射量は減量補正しない)。この機能が特許請求の範囲でいう吸気行程噴射量補正手段としての役割を果たす。尚、空燃比フィードバック制御の実行中は、パージ燃料量に応じて排出ガスの空燃比が変化すると、それに応じて吸気行程噴射量が空燃比フィードバック制御により減量補正されるため、この機能を吸気行程噴射量補正手段として利用しても良い。或は、吸気行程噴射量補正手段として、空燃比フィードバック制御とは別に、パージ燃料量に応じた補正量(=パージ燃料量)だけ吸気行程噴射量を減量補正する機能を備えるようにしても良い。   Therefore, in the first embodiment, as shown in FIG. 3B, the ECU 35 sets the purge fuel amount during the weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder. Accordingly, only the intake stroke injection amount is corrected to decrease (the compression stroke injection amount is not corrected to decrease). This function plays a role as intake stroke injection amount correction means in the claims. During the execution of the air-fuel ratio feedback control, if the air-fuel ratio of the exhaust gas changes according to the purge fuel amount, the intake stroke injection amount is corrected to decrease by the air-fuel ratio feedback control accordingly. You may utilize as an injection quantity correction | amendment means. Alternatively, the intake stroke injection amount correction means may be provided with a function of reducing the intake stroke injection amount by a correction amount (= purge fuel amount) corresponding to the purge fuel amount separately from the air-fuel ratio feedback control. .

更に、ECU35は、後述する図2の弱成層燃焼モード用パージ制御ルーチンを実行することで、図3(b)に示すように、弱成層燃焼モード中にパージ燃料量が減量補正前の吸気行程噴射量(パージ燃料量に応じて減量補正される前の吸気行程噴射量)よりも多くなる場合には、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺できなくなると判断して、パージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限することで、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺できるようにする。   Furthermore, the ECU 35 executes a weak stratified combustion mode purge control routine shown in FIG. 2 to be described later, whereby, as shown in FIG. 3B, the intake stroke before the correction of the decrease in purge fuel amount during the weak stratified combustion mode is performed. If the injection amount (intake stroke injection amount before being corrected to decrease in accordance with the purge fuel amount) becomes larger, the increase in fuel amount due to purging of fuel evaporative gas is reduced by reducing the intake stroke injection amount. The amount of increase in fuel due to purge of fuel evaporative gas is injected into the intake stroke by limiting the purge fuel amount so that the purge fuel amount does not exceed the intake stroke injection amount before correction for reduction. It will be possible to offset the amount of fuel decrease due to the amount reduction correction.

以下、ECU35が実行する図2の弱成層燃焼モード用パージ制御ルーチンの処理内容を説明する。
図2に示す弱成層燃焼モード用パージ制御ルーチンは、ECU35の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいうパージ燃料量ガード制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モードであるか否かを判定し、弱成層燃焼モードではないと判定されれば、ステップ102以降の処理を行うことなく、本ルーチンを終了する。
The processing contents of the purge control routine for the weak stratified combustion mode of FIG. 2 executed by the ECU 35 will be described below.
The purge control routine for weak stratified combustion mode shown in FIG. 2 is repeatedly executed at a predetermined cycle while the ECU 35 is turned on, and serves as a purge fuel amount guard control means in the claims. When this routine is started, first, at step 101, it is determined whether or not it is a weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder. If it is determined that there is not, the routine is terminated without performing the processing from step 102 onward.

一方、上記ステップ102で、弱成層燃焼モードであると判定された場合には、ステップ102以降の処理を次のようにして実行する。まず、ステップ102で、キャニスタ32内に燃料蒸発ガスが吸着されているか否かを、例えば、エバポ系内の圧力(燃料タンク30内の圧力又はエバポ通路31内の圧力又はキャニスタ32内の圧力)、燃料タンク32内の燃料残量、燃料タンク32内の温度(又は外気温)等に基づいて判定する。   On the other hand, if it is determined in step 102 that the mode is the weak stratified combustion mode, the processing after step 102 is executed as follows. First, at step 102, whether or not the fuel evaporative gas is adsorbed in the canister 32 is determined by, for example, the pressure in the evaporation system (pressure in the fuel tank 30, pressure in the evaporation passage 31 or pressure in the canister 32). The determination is made based on the remaining amount of fuel in the fuel tank 32, the temperature (or outside temperature) in the fuel tank 32, and the like.

このステップ102で、キャニスタ32内に燃料蒸発ガスが吸着されていないと判定された場合には、ステップ103に進み、パージ制御弁34を閉弁状態に維持する。この場合、パージ制御は実行されない。   If it is determined in step 102 that the fuel evaporative gas is not adsorbed in the canister 32, the process proceeds to step 103, and the purge control valve 34 is maintained in the closed state. In this case, purge control is not executed.

一方、上記ステップ102で、キャニスタ32内に燃料蒸発ガスが吸着されていると判定された場合には、ステップ104に進み、パージ制御弁34を開弁して、エンジン吸気系の負圧を利用してキャニスタ32内に吸着されている燃料蒸発ガスをエンジン吸気系にパージするパージ制御を実行する。この場合、例えば、キャニスタ内32の燃料蒸発ガス吸着量、エンジン運転状態(例えばエンジン回転速度や吸入空気量)等に基づいて目標パージ流量(又は目標開度)を算出し、この目標パージ流量(又は目標開度)に相当する通電デューティでパージ制御弁34の開度をデューティ制御する。   On the other hand, if it is determined in step 102 that the fuel evaporative gas is adsorbed in the canister 32, the process proceeds to step 104 where the purge control valve 34 is opened and the negative pressure of the engine intake system is used. Then, purge control for purging the fuel evaporative gas adsorbed in the canister 32 to the engine intake system is executed. In this case, for example, a target purge flow rate (or target opening) is calculated based on the amount of fuel evaporative gas adsorbed in the canister 32, the engine operating state (for example, the engine rotational speed and the intake air amount), etc. Alternatively, the opening degree of the purge control valve 34 is duty-controlled with an energization duty corresponding to the target opening degree).

この後、ステップ105に進み、減量補正前の吸気行程噴射量A(パージ燃料量に応じて減量補正される前の吸気行程噴射量)を読み込む。この減量補正前の吸気行程噴射量Aは、例えば、図示しない燃料噴射量算出ルーチンでエンジン運転状態等に応じて算出された吸気行程噴射量である。   Thereafter, the process proceeds to step 105, and the intake stroke injection amount A before the decrease correction (the intake stroke injection amount before the decrease correction according to the purge fuel amount) is read. The intake stroke injection amount A before the decrease correction is, for example, an intake stroke injection amount calculated according to an engine operating state or the like in a fuel injection amount calculation routine (not shown).

この後、ステップ106に進み、現在のパージ燃料量B(エンジン吸気系にパージされる燃料蒸発ガス量)を算出する。この場合、例えば、空燃比フィードバック制御の実行中であれば、空燃比フィードバック制御による吸気行程噴射量の補正量をパージ燃料量Bとして算出する。パージ燃料量Bに応じて排出ガスの空燃比が変化し、それに応じて空燃比フィードバック制御による吸気行程噴射量の補正量が変化するため、空燃比フィードバック制御による吸気行程噴射量の補正量は、パージ燃料量Bを精度良く反映した情報となる。従って、空燃比フィードバック制御による吸気行程噴射量の補正量を用いれば、パージ燃料量Bを精度良く算出することができる。   Thereafter, the routine proceeds to step 106, where the current purge fuel amount B (the amount of fuel evaporative gas purged into the engine intake system) is calculated. In this case, for example, if the air-fuel ratio feedback control is being executed, the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control is calculated as the purge fuel amount B. Since the air-fuel ratio of the exhaust gas changes according to the purge fuel amount B, and the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control changes accordingly, the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control is This information accurately reflects the purge fuel amount B. Therefore, the purge fuel amount B can be accurately calculated by using the correction amount of the intake stroke injection amount by the air-fuel ratio feedback control.

或は、パージ通路34内の圧力(例えばパージ制御弁34よりも燃料タンク30側の圧力)とエンジン吸気系内の圧力(例えば吸気管圧力)との差圧と、パージ制御弁34の開度(例えば通電デューティ)と、エンジン吸気系にパージされるガスの燃料蒸発ガス濃度(例えばキャニスタ32内の燃料蒸発ガス濃度又は燃料タンク30内の燃料蒸発ガス濃度)とに基づいて、パージ燃料量Bをマップ又は数式等により算出するようにしても良い。このようにすれば、空燃比フィードバック制御の停止中でもパージ燃料量Bを精度良く算出することができる。この場合、パージ通路34内の圧力の代用情報として、例えばキャニスタ32内の圧力、エバポ通路31内の圧力、燃料タンク30内の圧力等を用いるようにしても良い。尚、パージ燃料量Bを算出する方法は、上述した方法に限定されず、適宜変更しても良い。   Alternatively, the differential pressure between the pressure in the purge passage 34 (for example, the pressure on the fuel tank 30 side of the purge control valve 34) and the pressure in the engine intake system (for example, intake pipe pressure), and the opening of the purge control valve 34 Based on (for example, energization duty) and the fuel evaporative gas concentration of the gas purged into the engine intake system (for example, the fuel evaporative gas concentration in the canister 32 or the fuel evaporative gas concentration in the fuel tank 30), the purge fuel amount B May be calculated by a map or a mathematical expression. In this way, the purge fuel amount B can be accurately calculated even when the air-fuel ratio feedback control is stopped. In this case, as the substitute information for the pressure in the purge passage 34, for example, the pressure in the canister 32, the pressure in the evaporation passage 31, the pressure in the fuel tank 30, or the like may be used. The method for calculating the purge fuel amount B is not limited to the method described above, and may be changed as appropriate.

この後、ステップ107に進み、パージ燃料量Bが減量補正前の吸気行程噴射量A以上であるか否かによって、パージ燃料量Bが減量補正前の吸気行程噴射量Aよりも多くなるか否かを判定する。   Thereafter, the process proceeds to step 107, and whether or not the purge fuel amount B becomes larger than the intake stroke injection amount A before the decrease correction depending on whether or not the purge fuel amount B is equal to or larger than the intake stroke injection amount A before the decrease correction. Determine whether.

このステップ107で、パージ燃料量Bが減量補正前の吸気行程噴射量A以上である(パージ燃料量Bが減量補正前の吸気行程噴射量Aよりも多くなる)と判定された場合には、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺できなくなると判断して、ステップ108に進み、パージ燃料量Bが減量補正前の吸気行程噴射量Aと同等になるときのパージ制御弁34の通電デューティをガード値として設定し、このガード値でパージ制御弁34の通電デューティをガード処理することで、パージ燃料量Bが減量補正前の吸気行程噴射量Aを越えないようにパージ燃料量を制限する。   If it is determined in step 107 that the purge fuel amount B is equal to or greater than the intake stroke injection amount A before the decrease correction (the purge fuel amount B is greater than the intake stroke injection amount A before the decrease correction), It is determined that the fuel amount increase due to the purge of the fuel evaporative gas cannot be offset by the fuel amount decrease due to the decrease correction of the intake stroke injection amount, and the routine proceeds to step 108, where the purge fuel amount B is the intake stroke injection amount before the decrease correction. The energization duty of the purge control valve 34 when equal to A is set as a guard value, and the energization duty of the purge control valve 34 is guarded with this guard value, whereby the intake fuel stroke before the purge fuel amount B is corrected for reduction. The purge fuel amount is limited so as not to exceed the injection amount A.

以上説明した本実施例1では、各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中に、パージ燃料量に応じて吸気行程噴射量を減量補正するが、パージ燃料量が減量補正前の吸気行程噴射量よりも多くなる場合には、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺できなくなると判断して、パージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限するようにしたので、燃料蒸発ガスのパージによる燃料量増加分を吸気行程噴射量の減量補正による燃料量減少分で相殺することが可能となる。これにより、圧縮行程噴射量を減量補正する必要がなくなり、圧縮行程噴射量を確保して点火時期に良好な成層混合気を形成することができる。その結果、弱成層燃焼モード中に、燃料蒸発ガスのパージによる空燃比のリッチずれを吸気行程噴射量の減量補正によって防止しながら、圧縮行程噴射量を確保して燃焼状態の悪化を防止することができる。   In the first embodiment described above, the intake stroke injection amount is corrected to decrease in accordance with the purge fuel amount during the weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder. If the purge fuel amount is larger than the intake stroke injection amount before the decrease correction, it is determined that the fuel amount increase due to the purge of the fuel evaporative gas cannot be offset by the fuel amount decrease due to the intake stroke injection amount decrease correction. Therefore, the purge fuel amount is limited so that the purge fuel amount does not exceed the intake stroke injection amount before the decrease correction, so the increase in the fuel amount due to the purge of the fuel evaporative gas is the fuel by the decrease correction of the intake stroke injection amount. It is possible to cancel out the amount of decrease. As a result, it is not necessary to correct the reduction in the compression stroke injection amount, and the compression stroke injection amount can be secured and a good stratified mixture can be formed at the ignition timing. As a result, during the weak stratified combustion mode, the air-fuel ratio rich shift due to the purge of the fuel evaporative gas is prevented by correcting the decrease in the intake stroke injection amount, while ensuring the compression stroke injection amount to prevent the combustion state from deteriorating. Can do.

次に、図4を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU35により後述する図4の弱成層燃焼モード用パージ制御ルーチンを実行することで、弱成層燃焼モード中にパージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限しても、排出ガスの空燃比が目標空燃比(例えば理論空燃比)よりもリッチになる場合に、パージ燃料量を制限するためのガード値をリーン方向(パージ燃料量の減少方向)に補正するようにしている。図4のルーチンは、前記実施例1で説明した図2のルーチンのステップ108の後に、ステップ109、110の処理を追加したものであり、それ以外の各ステップの処理は図2と同じである。   In the second embodiment, the ECU 35 executes a purge control routine for the weak stratified combustion mode shown in FIG. 4 to be described later so that the purge fuel amount does not exceed the intake stroke injection amount before the reduction correction during the weak stratified combustion mode. Even if the purge fuel amount is limited, if the air-fuel ratio of the exhaust gas becomes richer than the target air-fuel ratio (for example, the theoretical air-fuel ratio), the guard value for limiting the purge fuel amount is set in the lean direction (the purge fuel amount (Decreasing direction). The routine of FIG. 4 is obtained by adding processes of steps 109 and 110 after step 108 of the routine of FIG. 2 described in the first embodiment, and the processes of other steps are the same as those of FIG. .

図4のルーチンでは、ステップ108で、パージ燃料量Bが減量補正前の吸気行程噴射量Aと同等になるときのパージ制御弁34の通電デューティをガード値として設定し、このガード値でパージ制御弁34の通電デューティをガード処理することで、パージ燃料量Bが減量補正前の吸気行程噴射量Aを越えないようにパージ燃料量を制限した後、ステップ109に進み、排出ガスセンサ24で検出した排出ガスの実空燃比が目標空燃比(例えば理論空燃比)よりもリッチであるか否かを判定する。   In the routine of FIG. 4, in step 108, the energization duty of the purge control valve 34 when the purge fuel amount B becomes equal to the intake stroke injection amount A before the decrease correction is set as a guard value, and the purge control is performed with this guard value. By performing a guard process on the energization duty of the valve 34, the purge fuel amount is limited so that the purge fuel amount B does not exceed the intake stroke injection amount A before the decrease correction, and then the routine proceeds to step 109 where the exhaust gas sensor 24 detects the purge fuel amount. It is determined whether or not the actual air-fuel ratio of the exhaust gas is richer than the target air-fuel ratio (for example, the theoretical air-fuel ratio).

このステップ109で、排出ガスの実空燃比が目標空燃比よりもリッチであると判定された場合には、ステップ110に進み、パージ制御弁34の通電デューティのガード値を所定量だけリーン方向(パージ燃料量の減少方向)に補正する。これにより、排出ガスの実空燃比が目標空燃比になるまでパージ制御弁34の通電デューティのガード値がリーン方向に補正される。   If it is determined in step 109 that the actual air-fuel ratio of the exhaust gas is richer than the target air-fuel ratio, the routine proceeds to step 110, where the energization duty guard value of the purge control valve 34 is set in the lean direction (by a predetermined amount). The amount of purge fuel is reduced). Thereby, the energization duty guard value of the purge control valve 34 is corrected in the lean direction until the actual air-fuel ratio of the exhaust gas reaches the target air-fuel ratio.

以上説明した本実施例2では、弱成層燃焼モード中にパージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限しても排出ガスの空燃比が目標空燃比よりもリッチになる場合に、パージ燃料量を制限するためのガード値をリーン方向(パージ燃料量の減少方向)に補正するようにしたので、燃料蒸発ガスのパージによる空燃比のリッチずれを確実に防止することができる。   In the second embodiment described above, even if the purge fuel amount is limited so that the purge fuel amount does not exceed the intake stroke injection amount before the reduction correction during the weak stratified combustion mode, the air-fuel ratio of the exhaust gas is higher than the target air-fuel ratio. Since the guard value for limiting the purge fuel amount is corrected in the lean direction (in the decreasing direction of the purge fuel amount) when the fuel gas becomes rich, the air-fuel ratio rich shift due to the purge of the fuel evaporative gas can be ensured. Can be prevented.

尚、上記各実施例1,2では、弱成層燃焼モード中にパージ燃料量が減量補正前の吸気行程噴射量を越えないようにパージ燃料量を制限する際に、パージ制御弁34の通電デューティをガード処理するようにしたが、これに限定されず、例えば、通電デューティを設定する際に用いる制御量(例えば目標パージ流量や目標開度等)をガード処理するようにしても良い。   In the first and second embodiments, when the purge fuel amount is limited so that the purge fuel amount does not exceed the intake stroke injection amount before the reduction correction during the weak stratified combustion mode, the duty ratio of the purge control valve 34 is set. However, the present invention is not limited to this. For example, a control amount (for example, a target purge flow rate or a target opening degree) used when setting the energization duty may be subjected to the guard processing.

その他、本発明は、エンジンのみを動力源とする車両に限定されず、エンジンとモータの両方を動力源とするハイブリッド車に適用しても良い。   In addition, the present invention is not limited to a vehicle using only an engine as a power source, and may be applied to a hybrid vehicle using both an engine and a motor as power sources.

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管、24…排出ガスセンサ、30…燃料タンク、31…エバポ通路、32…キャニスタ、33…パージ通路、34…パージ制御弁、35…ECU(吸気行程噴射量補正手段,パージ燃料量ガード制御手段,空燃比フィードバック制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe, 24 ... Exhaust gas sensor, 30 ... Fuel tank, 31 ... Evaporative passage, 32 ... Canister, 33 ... Purge passage, 34 ... Purge control valve, 35 ... ECU (intake stroke injection amount correction means, purge fuel amount guard control means, air-fuel ratio feedback control means)

Claims (4)

燃料タンク内で発生した燃料蒸発ガスを吸気系にパージする機能を備えた筒内噴射式内燃機関の制御装置において、
各気筒の吸気行程と圧縮行程の両方で筒内に燃料を噴射する弱成層燃焼モード中に前記吸気系にパージされる燃料蒸発ガス量(以下「パージ燃料量」という)に応じて前記吸気行程の燃料噴射量(以下「吸気行程噴射量」という)を減量補正する吸気行程噴射量補正手段と、
前記弱成層燃焼モード中に前記パージ燃料量が前記減量補正前の吸気行程噴射量よりも多くなる場合に前記パージ燃料量が前記減量補正前の吸気行程噴射量を越えないように前記パージ燃料量を制限するパージ燃料量ガード制御手段と
を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
In a control device for a direct injection internal combustion engine having a function of purging the fuel evaporative gas generated in the fuel tank to the intake system,
The intake stroke according to the amount of fuel evaporative gas (hereinafter referred to as “purge fuel amount”) purged to the intake system during the weak stratified combustion mode in which fuel is injected into the cylinder in both the intake stroke and the compression stroke of each cylinder. An intake stroke injection amount correcting means for correcting a decrease in the fuel injection amount (hereinafter referred to as “intake stroke injection amount”);
The purge fuel amount is set so that the purge fuel amount does not exceed the intake stroke injection amount before the decrease correction when the purge fuel amount becomes larger than the intake stroke injection amount before the decrease correction during the weak stratified combustion mode. A control apparatus for a cylinder injection internal combustion engine, comprising: a purge fuel amount guard control means for limiting
前記パージ燃料量ガード制御手段は、前記パージ燃料量が前記減量補正前の吸気行程噴射量を越えないように前記パージ燃料量を制限しても排出ガスの空燃比が目標空燃比よりもリッチになる場合に、前記パージ燃料量を制限するためのガード値をリーン方向に補正する手段を有することを特徴とする請求項1に記載の筒内噴射式内燃機関の制御装置。   The purge fuel amount guard control means makes the air-fuel ratio of the exhaust gas richer than the target air-fuel ratio even if the purge fuel amount is limited so that the purge fuel amount does not exceed the intake stroke injection amount before the decrease correction. 2. The control apparatus for a direct injection internal combustion engine according to claim 1, further comprising means for correcting a guard value for limiting the purge fuel amount in a lean direction. 前記弱成層燃焼モード中に排出ガスの空燃比を目標空燃比に一致させるように前記吸気行程噴射量をフィードバック補正する空燃比フィードバック制御を実行する空燃比フィードバック制御手段を備え、
前記パージ燃料量ガード制御手段は、前記弱成層燃焼モード中に前記空燃比フィードバック制御による前記吸気行程噴射量の補正量に基づいて前記パージ燃料量を算出する手段を有することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。
Air-fuel ratio feedback control means for performing air-fuel ratio feedback control for feedback correction of the intake stroke injection amount so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio during the weak stratified combustion mode,
The purge fuel amount guard control means includes means for calculating the purge fuel amount based on a correction amount of the intake stroke injection amount by the air-fuel ratio feedback control during the weak stratified combustion mode. The control apparatus for a direct injection internal combustion engine according to 1 or 2.
前記燃料蒸発ガスを前記吸気系にパージするためのパージ通路と、該パージ通路に設けられてパージ流量を調整するためのパージ制御弁とを備え、
前記パージ燃料量ガード制御手段は、前記弱成層燃焼モード中に前記パージ通路内の圧力と前記吸気系内の圧力との差圧と、前記パージ制御弁の開度と、前記吸気系にパージされるガスの燃料蒸発ガス濃度とに基づいて、前記パージ燃料量を算出する手段を有することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。
A purge passage for purging the fuel evaporative gas into the intake system, and a purge control valve provided in the purge passage for adjusting the purge flow rate,
The purge fuel amount guard control means is purged by the differential pressure between the pressure in the purge passage and the pressure in the intake system, the opening of the purge control valve, and the intake system during the weak stratified combustion mode. The control apparatus for a direct injection internal combustion engine according to claim 1 or 2, further comprising means for calculating the purge fuel amount based on a fuel evaporative gas concentration of the gas to be discharged.
JP2010008610A 2010-01-18 2010-01-18 Control device for cylinder injection type internal combustion engine Pending JP2011144791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008610A JP2011144791A (en) 2010-01-18 2010-01-18 Control device for cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008610A JP2011144791A (en) 2010-01-18 2010-01-18 Control device for cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011144791A true JP2011144791A (en) 2011-07-28

Family

ID=44459840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008610A Pending JP2011144791A (en) 2010-01-18 2010-01-18 Control device for cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011144791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519882B2 (en) 2017-04-21 2019-12-31 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519882B2 (en) 2017-04-21 2019-12-31 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Similar Documents

Publication Publication Date Title
US8267076B2 (en) Engine control apparatus
US7171960B1 (en) Control apparatus for an internal combustion engine
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
JP2007278223A (en) Control device for cylinder-injection spark-ignition internal combustion engine
JP2012026332A (en) Control device for internal combustion engine
US9109524B2 (en) Controller for internal combustion engine
JP4868173B2 (en) Abnormality diagnosis device for internal combustion engine
US20130184972A1 (en) Air-fuel ratio control apparatus for internal combustion engine and control method
JP2009270523A (en) Control device for internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JP2010013958A (en) Control device for internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP5187537B2 (en) Fuel injection control device for internal combustion engine
JP2009167991A (en) Idling operation control device for internal combustion engine
JP2011144791A (en) Control device for cylinder injection type internal combustion engine
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JP2007092645A (en) Control device for internal combustion engine
JP2007298002A (en) Fuel injection control method for dual injection type internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP6361534B2 (en) Control device for internal combustion engine
JPH08200166A (en) Air-fuel ratio control device
JP2020190214A (en) Evaporated fuel treatment device
JPH08291739A (en) Air-fuel ratio control device
JP2005351120A (en) Control device of internal combustion engine