JP5334156B2 - Method for producing non-aqueous electrolyte secondary battery - Google Patents

Method for producing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5334156B2
JP5334156B2 JP2008149159A JP2008149159A JP5334156B2 JP 5334156 B2 JP5334156 B2 JP 5334156B2 JP 2008149159 A JP2008149159 A JP 2008149159A JP 2008149159 A JP2008149159 A JP 2008149159A JP 5334156 B2 JP5334156 B2 JP 5334156B2
Authority
JP
Japan
Prior art keywords
current collector
binder
active material
secondary battery
binder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008149159A
Other languages
Japanese (ja)
Other versions
JP2009295474A (en
Inventor
邦彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2008149159A priority Critical patent/JP5334156B2/en
Publication of JP2009295474A publication Critical patent/JP2009295474A/en
Application granted granted Critical
Publication of JP5334156B2 publication Critical patent/JP5334156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte liquid secondary battery superior in charge and discharge cycle characteristics and low-temperature characteristics in which adhesion strength is increased without increasing the contact resistance between an active material layer and a current collector and, even when charge and discharge are repeated, separation of the active material layer from the current collector is suppressed. <P>SOLUTION: In the nonaqueous electrolyte liquid secondary battery, the surface of a binder layer formed beforehand on the positive electrode current collector 1 is roughening treated, and the surface of the current collector is partially exposed. and then the binder layer 3 is kept on a part of the positive electrode current collector 1. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、非水電解液二次電池に関し、詳しくは充放電サイクル特性に優れた非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.

一般に、活物質やバインダー等を有機溶剤や水等の溶媒に分散させた活物質スラリーを集電体としての金属箔に塗布し、乾燥させて、活物質層を形成したシート状の正極および負極(以下総称してシート状電極ともいう)を、セパレータと共に渦巻状に巻回して作製した渦巻状電極体を電池ケース内に収納し、有機溶媒系の電解液を注液し、封止して作製したリチウム二次電池等の非水電解液二次電池は、単位容量当たりのエネルギー密度や単位重量当たりのエネルギー密度が高いという特徴を有している。   In general, an active material slurry in which an active material or a binder is dispersed in a solvent such as an organic solvent or water is applied to a metal foil as a current collector and dried to form a sheet-like positive electrode and negative electrode on which an active material layer is formed (Hereinafter collectively referred to as a sheet-like electrode), a spiral electrode body produced by spirally winding together with a separator is housed in a battery case, and an organic solvent electrolyte is injected and sealed. The produced non-aqueous electrolyte secondary battery such as a lithium secondary battery has a feature of high energy density per unit capacity and energy density per unit weight.

上記シート状電極を有するリチウム二次電池は、上記の活物質層が充電、放電によって膨張、収縮を繰り返すことによって、活物質層と集電体としての金属箔との密着性が次第に低下し、それによって電池の容量が低下するという問題があった。   In the lithium secondary battery having the sheet-like electrode, the active material layer is repeatedly expanded and contracted by charging and discharging, whereby the adhesion between the active material layer and the metal foil as the current collector gradually decreases. As a result, the capacity of the battery is reduced.

一般に、活物質層中のバインダー含有率が大きいほど密着強度が大きい傾向が見られるが、密着強度を高く保つためにバインダー含有率度を高くすることは電池全体の活物質含有量の低下につながり、電池容量を低下させる結果となるため好ましくない。   In general, the greater the binder content in the active material layer, the greater the adhesion strength, but increasing the binder content rate to keep the adhesion strength high leads to a decrease in the active material content of the entire battery. This is not preferable because the battery capacity is reduced.

そこで、活物質層と集電体との密着性を高めるため、特許文献1には、電極の集電体の表面を粗面化することが提案されている。これは、集電体の表面を粗面化して活物質層と集電体との接触面積を増加させることによって、活物質が集電体から脱落したり、剥離したりするのを防止しようとするものである。   Therefore, in order to improve the adhesion between the active material layer and the current collector, Patent Document 1 proposes to roughen the surface of the current collector of the electrode. This is intended to prevent the active material from falling off or peeling off the current collector by roughening the surface of the current collector and increasing the contact area between the active material layer and the current collector. To do.

しかしながら、この方法では、例えば集電体の厚さが薄く且つ表面の粗さが大きい場合、金属箔全厚に対する表面凹凸の深さの割合が大きくなり、電池を数百回以上充放電させると、導電性基体としての金属箔に機械的疲労が蓄積して、亀裂や破断が発生し、それによって、電池の容量が低下するという問題があった。   However, in this method, for example, when the thickness of the current collector is thin and the surface roughness is large, the ratio of the depth of the surface unevenness to the total thickness of the metal foil increases, and the battery is charged and discharged several hundred times or more. However, there is a problem that mechanical fatigue accumulates in the metal foil as the conductive substrate and cracks and breaks occur, thereby reducing the capacity of the battery.

活物質層と集電体との密着性を高めるため、特許文献2には、シート状電極の導電性基体と合剤膜との間に、ベースポリマーにカルボキシル基やヒドロキシル基のような極性基を導入した、変性ポリオレフィン樹脂、変性フッ素樹脂、変性ゴム、変性アセタール樹脂などの接着樹脂を介在させることで集電体との密着強度を高めて、充放電サイクル特性を向上させる方法が提案されている。   In order to improve the adhesion between the active material layer and the current collector, Patent Document 2 discloses that a polar group such as a carboxyl group or a hydroxyl group is present in the base polymer between the conductive substrate of the sheet-like electrode and the mixture film. A method has been proposed in which the adhesion strength with the current collector is increased by interposing an adhesive resin such as a modified polyolefin resin, a modified fluororesin, a modified rubber, or a modified acetal resin, and charge / discharge cycle characteristics are improved. Yes.

しかしながら、上記の方法では、導電性基体と合剤膜の間にバインダーと物性の異なる接着樹脂の層が介在するため、導電性基体と合剤膜の間の電気的抵抗が高くなり、低温特性やレート特性が悪化することが懸念される。さらに、上記のような接着樹脂を用いることによる製造コストの増加が否めない。   However, in the above method, since an adhesive resin layer having different physical properties is interposed between the conductive substrate and the mixture film, the electrical resistance between the conductive substrate and the mixture film is increased, and the low temperature characteristics There is concern that the rate characteristics will deteriorate. Furthermore, an increase in manufacturing cost due to the use of the adhesive resin as described above cannot be denied.

また、特許文献3には、電極合剤層内のバインダー濃度を集電体近くにおいて濃くなるようにすることによって、電極合剤層と集電体間の密着強度を高める方法が提案されている。   Patent Document 3 proposes a method for increasing the adhesion strength between the electrode mixture layer and the current collector by increasing the binder concentration in the electrode mixture layer near the current collector. .

しかしながら、上記の方法では、バインダー濃度の濃いスラリーと薄いスラリーを二種類作製し、更に二段階に分けて塗布する必要があり、製造コストの増加が否めない。さらに、集電体付近のバインダー濃度が濃いことによって、活物質と集電体との接触面積が小さくなり、電気的な接触抵抗が増加し低温特性やレート特性などが悪化することが懸念される。   However, in the above method, it is necessary to prepare two types of slurry having a high binder concentration and a thin slurry, and to apply them in two stages, which inevitably increases the manufacturing cost. Further, there is a concern that the contact area between the active material and the current collector is reduced due to the high binder concentration in the vicinity of the current collector, the electrical contact resistance is increased, and the low temperature characteristics and rate characteristics are deteriorated. .

特開平5−6766号公報JP-A-5-6766 特開平9−306473号公報JP-A-9-306473 特開平10−270013号公報JP-A-10-270013

本発明の技術的課題は、活物質層と集電体間の接触抵抗を増加させることなく密着強度を高くすることができ、充放電を繰り返した場合でも、活物質層の集電体からの剥離を抑制し、充放電サイクル特性や低温特性の優れた非水電解液二次電池を提供することにある。   The technical problem of the present invention is that the adhesion strength can be increased without increasing the contact resistance between the active material layer and the current collector, and even when charging and discharging are repeated, An object of the present invention is to provide a non-aqueous electrolyte secondary battery that suppresses peeling and has excellent charge / discharge cycle characteristics and low-temperature characteristics.

本発明の非水電解液二次電池の製造方法は、集電体上に、リチウムイオンを脱離挿入する活物質とバインダーを含有した活物質層を有するシート状の正極および負極を、セパレータを介して積層もしくは巻回し外装体に収納する非水電解液二次電池の製造方法であって、前記正極及び前記負極の少なくとも一方が、集電体上の全面にバインダー層を塗布し乾燥させた後、表面を粗化処理して集電体表面を部分的に露出させ、該粗化処理されたバインダー層上に、リチウムイオンを脱離挿入する活物質と、該バインダー層に含まれるバインダーと同じバインダーと、を含有した活物質層を形成することで作製され、前記集電体上のバインダー層の集電体単位面積当りの被覆率が5%以上、80%以下である。 The method for producing a non-aqueous electrolyte secondary battery according to the present invention includes a sheet-like positive electrode and a negative electrode having an active material layer containing an active material and a binder containing lithium ions on a current collector. A non-aqueous electrolyte secondary battery that is stacked or wound through and is housed in an exterior body , wherein at least one of the positive electrode and the negative electrode is coated with a binder layer on the entire surface of the current collector and dried. Thereafter, the surface of the current collector is partially exposed by roughening the surface, and an active material for desorbing and inserting lithium ions on the roughened binder layer, and a binder contained in the binder layer, It is produced by forming an active material layer containing the same binder, and the coverage of the binder layer on the current collector per unit area of the current collector is 5% or more and 80% or less.

本発明によれば、予め集電体上に形成したバインダー層の表面を粗化処理して集電体表面を部分的に露出させることで、集電体と活物質層間の電気的接触抵抗を増加させることなく密着強度を向上させることができ、充放電の繰り返しによる容量劣化が少なく、集電体と活物質層間の電気的接触抵抗の小さい非水電解液二次電池が得られる。   According to the present invention, the electrical contact resistance between the current collector and the active material layer is reduced by roughening the surface of the binder layer previously formed on the current collector to partially expose the current collector surface. Adhesive strength can be improved without increasing, and a non-aqueous electrolyte secondary battery with little capacity deterioration due to repeated charge and discharge and low electrical contact resistance between the current collector and the active material layer can be obtained.

本発明の非水電解液二次電池は、負極活物質、バインダーを含む負極活物質層を負極集電体上に形成した負極と、正極活物質、バインダーを含む正極活物質層を正極集電体上に形成した正極とを、セパレータを介して巻回した渦巻状電極体またはセパレータを介して積層した積層電極体を電池ケース内に収納して電解液を注液したのち封止して作製する。   The non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode in which a negative electrode active material and a negative electrode active material layer containing a binder are formed on a negative electrode current collector, and a positive electrode active material and a positive electrode active material layer containing a binder. A spiral electrode body wound with a separator formed between a positive electrode formed on the body or a laminated electrode body laminated via a separator is housed in a battery case, injected with an electrolyte, and then sealed. To do.

本発明におけるシート状電極を作製する方法としては次のような方法がある。例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレン−プロピレン−ジエンゴム、スチレン−ブタジエンゴム、ポリビニルブチラール、メチルセルロース、ヒドロキシプロピルセルロースなどのバインダーを集電体に塗布して高温で乾燥させることにより予めバインダー層を形成し、前記バインダー層の表面をドライエッチング、例えば、アルゴンスパッタエッチングやCF4、O2、Cl2などのガスを用いた反応性イオンエッチングなどによって粗化処理し、集電体表面を部分的に露出させる。その後、バインダー層上に、バインダーと同一種類のバインダーを含有する活物質スラリーを塗布し、高温で乾燥して活物質層を形成し、さらに、ロールプレスなどで圧縮する。 As a method for producing the sheet-like electrode in the present invention, there are the following methods. For example, a binder layer is previously formed by applying a binder such as polyethylene, polypropylene, polyvinylidene fluoride, ethylene-propylene-diene rubber, styrene-butadiene rubber, polyvinyl butyral, methylcellulose, and hydroxypropylcellulose to a current collector and drying at a high temperature. The surface of the current collector is partially roughened by dry etching such as argon sputter etching or reactive ion etching using a gas such as CF 4 , O 2 , or Cl 2. To expose. Thereafter, an active material slurry containing the same type of binder as the binder is applied onto the binder layer, dried at a high temperature to form an active material layer, and further compressed by a roll press or the like.

予め集電体に塗布、乾燥して形成されたバインダー層を、上記のように表面を粗化処理し集電体表面が部分的に露出するようにすることで、活物質スラリーを前記集電体上に塗布する際、活物質スラリーがバインダー層に入り込み、集電体と活物質との接触面積が増加するため、電気的な接触抵抗を増加させることなく、集電体と活物質層間のバインダー含有率が活物質層内のバインダー含有率より大きく、密着強度の優れるシート状電極を作製することができる。   The surface of the binder layer formed by applying and drying the current collector in advance is roughened as described above so that the surface of the current collector is partially exposed. When applying on the body, the active material slurry enters the binder layer, increasing the contact area between the current collector and the active material, so that the electrical contact resistance between the current collector and the active material layer is not increased. A sheet-like electrode having a binder content larger than the binder content in the active material layer and excellent adhesion strength can be produced.

粗化処理したバインダー層の、集電体単位面積当り被覆率は、5%以上、80%以下とするのが好ましい。すなわち、バインダー層表面をエッチングする際、エッチング量が少ない、つまり集電体表面のバインダー被覆率が80%より大きいと、集電体と活物質層間の密着強度は改善されるものの、集電体と活物質層間の電気的接触抵抗が増大し電池の容量低下を招くことが懸念され、エッチング量が多い、つまり集電体表面のバインダー被覆率が5%より小さいと、集電体と活物質層間の密着強度が改善されにくいためである。また、本発明の集電体上の一部にバインダー層を形成する方法としては、集電体上の一部に予めマスキング処理した後、バインダー層を形成し、集電体上に部分的にバインダー層を形成する方法や、集電体上にバインダーを散布して部分的にバインダー層を形成する方法などがある。   The covering rate per unit area of the current collector of the roughened binder layer is preferably 5% or more and 80% or less. That is, when the surface of the binder layer is etched, if the etching amount is small, that is, if the binder coverage on the surface of the current collector is greater than 80%, the adhesion strength between the current collector and the active material layer is improved. There is a concern that the electrical contact resistance between the active material layer and the active material layer may increase, leading to a decrease in battery capacity. If the etching amount is large, that is, the binder coverage on the current collector surface is less than 5%, the current collector and the active material This is because the adhesion strength between layers is hardly improved. Further, as a method of forming a binder layer on a part of the current collector of the present invention, a part of the current collector is masked in advance, and then a binder layer is formed and partially formed on the current collector. There are a method of forming a binder layer, a method of partially forming a binder layer by dispersing a binder on a current collector, and the like.

本発明のシート状電極は、正極、負極のいずれの電極にも適用することができるが、これらの電極においてバインダーは、正極、負極共に同一種類のものを用いてもよく、また、正極、負極のそれぞれの組成などに合わせて両者異なった種類のものを用いてもよい。   The sheet-like electrode of the present invention can be applied to both positive and negative electrodes. In these electrodes, the same type of binder may be used for both the positive and negative electrodes, and the positive and negative electrodes may be used. Different types may be used in accordance with the respective compositions.

本発明において、正極活物質としては、例えば、リチウムニッケル酸化物やリチウムコバルト酸化物、リチウムマンガン酸化物などのリチウム含有複合金属酸化物を単独でまたは2種以上の混合物として用いることができる。また、必要に応じて、前記正極活物質に、鱗片状黒鉛、カーボンブラックなどの電子導電助剤を添加することができる。   In the present invention, as the positive electrode active material, for example, lithium-containing composite metal oxides such as lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide can be used alone or as a mixture of two or more. Further, if necessary, an electronic conduction aid such as flaky graphite or carbon black can be added to the positive electrode active material.

本発明のシート状電極の活物質層を形成するにあたり、バインダーとしては、できるだけ電気化学的に安定であり、かつ有機溶媒系の電解液に対して溶解せず膨潤が少ない樹脂が好ましく、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレン−プロピレン−ジエンゴム、スチレン−ブタジエンゴム、ポリビニルブチラール、メチルセルロース、ヒドロキシプロピルセルロースなどを単独でまたは2種以上の混合物として使用することができる。   In forming the active material layer of the sheet-like electrode of the present invention, the binder is preferably a resin that is electrochemically stable as much as possible and does not dissolve in an organic solvent-based electrolyte and has little swelling. Polyethylene, polypropylene, polyvinylidene fluoride, ethylene-propylene-diene rubber, styrene-butadiene rubber, polyvinyl butyral, methylcellulose, hydroxypropylcellulose and the like can be used alone or as a mixture of two or more.

正極のシート状電極は、上記正極活物質に、バインダーと、必要に応じて鱗片状黒鉛、カーボンブラックなどの電子導電助剤を加え、さらにN−メチルピロリドン、トルエン、キシレン、シクロヘキサノンなどの溶剤を加え、混合してスラリーを調製し、そのスラリーを、表面粗化処理を施したバインダー層上に塗布し、乾燥して活物質層を形成し、さらに必要に応じて、所望の厚みになるようにロールプレスなどで圧縮することによって作製される。   In the positive electrode sheet electrode, a binder and, if necessary, an electronic conductivity assistant such as flaky graphite and carbon black are added to the positive electrode active material, and a solvent such as N-methylpyrrolidone, toluene, xylene, and cyclohexanone is added. In addition, a slurry is prepared by mixing, and the slurry is applied onto a surface-roughened binder layer and dried to form an active material layer. Further, if necessary, a desired thickness is obtained. It is produced by compressing with a roll press or the like.

本発明において、負極活物質としてはリチウムを脱挿入し得る物質が用いられ、そのような負極活物質の代表的なものとしては、天然黒鉛や人造黒鉛などの炭素材料が挙げられる。その他にもリチウム金属やリチウム合金などがあり、リチウム合金としては、例えばリチウム−アルミニウム、リチウム−鉛、リチウム−ビスマス、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウムなどのリチウムと他の金属との合金が挙げられる。   In the present invention, a material capable of removing and inserting lithium is used as the negative electrode active material, and typical examples of such a negative electrode active material include carbon materials such as natural graphite and artificial graphite. There are other lithium metals and lithium alloys, and examples of lithium alloys include lithium and other metals such as lithium-aluminum, lithium-lead, lithium-bismuth, lithium-indium, lithium-gallium, and lithium-indium-gallium. And alloys thereof.

負極のシート状電極は、上記負極活物質に、正極の場合と同様にバインダーを加え、さらにN−メチルピロリドン、トルエン、キシレン、シクロヘキサンなどの溶剤を加えて混合してスラリーを調製し、そのスラリーを、表面粗化処理を施したバインダー層上に塗布し、乾燥して活物質層を形成し、さらに必要に応じて、所望の厚みになるようにロールプレスなどで圧縮することによって作製される。負極の作製にあたって、そのスラリー中に鱗片状黒鉛、カーボンブラックなどの電子導電助剤を添加してもよい。   The negative electrode sheet-like electrode is prepared by adding a binder to the negative electrode active material as in the case of the positive electrode, and further adding and mixing a solvent such as N-methylpyrrolidone, toluene, xylene, cyclohexane, etc. Is coated on a surface-roughened binder layer, dried to form an active material layer, and further compressed by a roll press or the like to a desired thickness as necessary. . In preparation of the negative electrode, an electronic conduction aid such as flake graphite or carbon black may be added to the slurry.

本発明のシート状電極の作製にあたって、バインダー層、活物質層などの形成のための塗布方法としては、押出しコーター、リバースローラー、ドクターブレードなどをはじめ、各種の塗布方法を採用することができる。   In producing the sheet-like electrode of the present invention, various coating methods such as an extrusion coater, a reverse roller, a doctor blade and the like can be employed as a coating method for forming a binder layer, an active material layer, and the like.

本発明において、シート状電極の集電体としては、例えば、アルミニウムや銅などの金属製導電材料を板状に加工成形した箔などが用いられる。   In the present invention, as the current collector of the sheet-like electrode, for example, a foil obtained by processing a metal conductive material such as aluminum or copper into a plate shape is used.

本発明において、集電体と活物質層との間に予めバインダー層を形成させ、表面粗化処理を施したシート状電極は、正極、負極のいずれにも適用することができる。   In the present invention, a sheet-like electrode in which a binder layer is formed in advance between a current collector and an active material layer and subjected to a surface roughening treatment can be applied to both a positive electrode and a negative electrode.

電解液としては、例えば1、2−ジメトキシエタン、1、2−ジエトキシエタン、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1、3−ジオキソラン、ジエチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの単独または2種以上の混合溶媒に、例えばLiClO4、LiPF6、LiBF4などの電解質を単独でまたは2種以上溶解させて調製した有機溶媒系の電解液が用いられる。 Examples of the electrolyte include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. For example, an organic solvent-based electrolyte prepared by dissolving an electrolyte such as LiClO 4 , LiPF 6 , or LiBF 4 singly or in two or more types in a single or two or more mixed solvents is used.

セパレータとしては、例えば、厚みが10〜50μmで、開孔率が30〜70%の微多孔性ポリプロピレンフィルムまたは微多孔性ポリエチレンフィルムなどが好適なものとして用いられる。   As the separator, for example, a microporous polypropylene film or a microporous polyethylene film having a thickness of 10 to 50 μm and a porosity of 30 to 70% is preferably used.

電池は、例えば、上記のようにして作製されたシート状の正極とシート状の負極との間にセパレータを介在させて渦巻状に巻回して作製した渦巻状電極体を、アルミニウムやニッケルメッキを施した鉄、あるいはステンレス鋼製の電池ケース内に収納し、電解液を注液し、封止する工程を経て作製される。   For example, the battery is formed by winding a spiral electrode body produced by winding a separator between a sheet-like positive electrode and a sheet-like negative electrode produced as described above, with aluminum or nickel plating. It is housed in an applied iron or stainless steel battery case, and is manufactured through a process of pouring and sealing an electrolyte.

以下に、本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例1)
まず、シート状の正極の作製方法について説明する。図2は、本発明の非水電解液二次電池に用いる正極集電体上にバインダー層を形成した模式図である。正極集電体1として厚さ15μmのアルミニウム箔上の両面に、コーターを用いて、ポリフッ化ビニリデンをN−メチルピロリドンに混合したバインダー溶液を、厚さが5.0μmとなるように塗布した後、温度150℃で乾燥させ、正極集電体上のバインダー層2を形成した。
Example 1
First, a method for producing a sheet-like positive electrode will be described. FIG. 2 is a schematic view in which a binder layer is formed on the positive electrode current collector used in the nonaqueous electrolyte secondary battery of the present invention. After applying a binder solution in which polyvinylidene fluoride is mixed with N-methylpyrrolidone using a coater on both sides of an aluminum foil having a thickness of 15 μm as the positive electrode current collector 1 so as to have a thickness of 5.0 μm. And dried at a temperature of 150 ° C. to form the binder layer 2 on the positive electrode current collector.

図3は、本発明の非水電解液二次電池に用いる正極集電体上にバインダー層を形成した後に、粗化処理を施した模式図である。上記正極集電体上のバインダー層2の表面をアルゴンスパッタエッチングによって粗化処理することで、集電体へのバインダー被覆率が5%となるように粗化処理した正極のバインダー層3を形成した。   FIG. 3 is a schematic view in which a roughening treatment is performed after forming a binder layer on the positive electrode current collector used in the non-aqueous electrolyte secondary battery of the present invention. By roughening the surface of the binder layer 2 on the positive electrode current collector by argon sputter etching, the positive electrode binder layer 3 roughened so that the binder coverage on the current collector is 5% is formed. did.

図4は、本発明の非水電解液二次電池に用いる正極集電体上の粗化処理を施したバインダー層上に正極活物質層を塗布した模式図である。コバルト酸リチウム、電子導電助剤およびポリフッ化ビニリデンを90:5:5の重量比でN−メチルピロリドンに混合分散、調製した正極スラリーを、アルミニウム箔上に形成された粗化処理した正極のバインダー層3に塗布し、乾燥して正極活物質層4を形成した。   FIG. 4 is a schematic view in which a positive electrode active material layer is applied onto a roughened binder layer on a positive electrode current collector used in the nonaqueous electrolyte secondary battery of the present invention. A positive electrode binder prepared by mixing and dispersing lithium cobaltate, an electronic conduction aid and polyvinylidene fluoride in N-methylpyrrolidone at a weight ratio of 90: 5: 5, and roughening the positive electrode slurry formed on the aluminum foil. It apply | coated to the layer 3 and dried, and the positive electrode active material layer 4 was formed.

図1は、本発明の非水電解液二次電池に用いる正極集電体上の正極活物質層を圧縮した模式図である。正極活物質層4を形成後、ロールプレスで圧縮することによってシート状の正極5を作製した。   FIG. 1 is a schematic diagram in which a positive electrode active material layer on a positive electrode current collector used in the nonaqueous electrolyte secondary battery of the present invention is compressed. After forming the positive electrode active material layer 4, the sheet-like positive electrode 5 was produced by compressing with a roll press.

次に、シート状の負極の作製方法について説明する。図5は、本発明の非水電解液二次電池に用いる負極集電体上にバインダー層を形成した模式図である。負極集電体6として厚さ10μmの銅箔上に、コーターを用いて、ポリフッ化ビニリデンをN−メチルピロリドンに混合したバインダー溶液を、厚さが5.0μmとなるように塗布して負極集電体上のバインダー層7を形成した。   Next, a method for producing a sheet-like negative electrode will be described. FIG. 5 is a schematic view in which a binder layer is formed on the negative electrode current collector used in the non-aqueous electrolyte secondary battery of the present invention. Using a coater, a binder solution in which polyvinylidene fluoride is mixed with N-methylpyrrolidone is applied on a copper foil having a thickness of 10 μm as a negative electrode current collector 6 so as to have a thickness of 5.0 μm. A binder layer 7 on the electric body was formed.

図6は、本発明の非水電解液二次電池に用いる負極集電体上にバインダー層を形成した後に、粗化処理を施した模式図である。負極集電体上のバインダー層7の表面をアルゴンスパッタエッチングによって粗化処理することで、集電体へのバインダー被覆率が5%となるように粗化処理した負極のバインダー層8を形成した。   FIG. 6 is a schematic view in which a roughening treatment is performed after forming a binder layer on the negative electrode current collector used in the nonaqueous electrolyte secondary battery of the present invention. By roughening the surface of the binder layer 7 on the negative electrode current collector by argon sputter etching, the negative electrode binder layer 8 roughened so as to have a binder coverage of 5% on the current collector was formed. .

図7は、本発明の非水電解液二次電池に用いる負極集電体上の粗化処理を施したバインダー層上に負極活物質層を塗布した模式図である。人造黒鉛、電子導電助剤およびポリフッ化ビニリデンを90:5:5の重量比でN−メチルピロリドンに混合分散、調製した負極スラリーを、銅箔上に形成された粗化処理した負極のバインダー層8に塗布し、乾燥して、負極活物質層9を形成した。   FIG. 7 is a schematic view in which a negative electrode active material layer is applied onto a roughened binder layer on a negative electrode current collector used in the non-aqueous electrolyte secondary battery of the present invention. Artificial graphite, electronic conductive aid and polyvinylidene fluoride are mixed and dispersed in N-methylpyrrolidone at a weight ratio of 90: 5: 5, and a negative electrode binder layer prepared by roughening a negative electrode slurry formed on a copper foil. 8 and dried to form a negative electrode active material layer 9.

図8は、本発明の非水電解液二次電池に用いる負極集電体上の負極活物質層を圧縮した模式図である。負極活物質層9を形成後、ロールプレスで圧縮することによってシート状の負極10を作製した。   FIG. 8 is a schematic view of a compressed negative electrode active material layer on a negative electrode current collector used in the non-aqueous electrolyte secondary battery of the present invention. After forming the negative electrode active material layer 9, the sheet-like negative electrode 10 was produced by compressing with a roll press.

シート状の正極を幅30mm×長さ500mmとなるように帯状に切断した。シート状の負極は幅31mm×長さ510mmとなるように帯状に切断した。そして、シート状の正極およびシート状の負極に、それぞれアルミニウム製およびニッケル製のタブを抵抗溶接し、厚さ20μmで開孔率50%の微多孔性ポリプロピレンフィルムからなる帯状セパレータをシート状の正極とシート状の負極との間に介在させて渦巻状に巻回して渦巻状電極体を作製した。   The sheet-like positive electrode was cut into a strip shape so as to have a width of 30 mm and a length of 500 mm. The sheet-like negative electrode was cut into a strip shape so that the width was 31 mm and the length was 510 mm. Then, aluminum and nickel tabs are resistance-welded to the sheet-like positive electrode and the sheet-like negative electrode, respectively, and a strip separator made of a microporous polypropylene film having a thickness of 20 μm and a porosity of 50% is used as the sheet-like positive electrode. And a sheet-like negative electrode, and spirally wound to produce a spiral electrode body.

図9は、本発明の非水電解液二次電池の外観図である。渦巻状電極体をアルミニウム製の缶ケース11に挿入し、電解液2.0mlを注入した後、封止部12をレーザー溶接にて封止して、缶ケース11の上部に負極端子13および安全弁14を有する非水電解液二次電池15を作製した。   FIG. 9 is an external view of the nonaqueous electrolyte secondary battery of the present invention. After inserting the spiral electrode body into the aluminum can case 11 and injecting 2.0 ml of the electrolytic solution, the sealing portion 12 is sealed by laser welding, and the negative electrode terminal 13 and the safety valve are placed on the upper portion of the can case 11. A non-aqueous electrolyte secondary battery 15 having 14 was produced.

電解液として、エチレンカーボネート、ジエチルカーボネートおよびメチルエチルカーボネートの混合溶媒(混合比は体積比で3:5:2)にLiPF6を1.0mol/l溶解して有機溶媒系の電解液を調製した。 As an electrolytic solution, 1.0 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, diethyl carbonate and methyl ethyl carbonate (mixing ratio was 3: 5: 2 by volume) to prepare an organic solvent based electrolytic solution. .

(実施例2)
正極および負極の集電体上に予め塗布するバインダー層を、集電体へのバインダー被覆率が10%となるように粗化処理を施したこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Example 2)
A non-aqueous solution was prepared in the same manner as in Example 1 except that the binder layer previously applied on the positive electrode and negative electrode current collectors was subjected to a roughening treatment so that the binder coverage on the current collectors was 10%. An electrolyte secondary battery was produced.

(実施例3)
正極および負極の集電体上に予め塗布するバインダー層を、集電体へのバインダー被覆率が40%となるように粗化処理を施したこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Example 3)
The nonaqueous layer was applied in the same manner as in Example 1 except that the binder layer previously applied on the positive electrode and negative electrode current collectors was subjected to a roughening treatment so that the binder coverage on the current collectors was 40%. An electrolyte secondary battery was produced.

(実施例4)
正極および負極の集電体上に予め塗布するバインダー層を、集電体へのバインダー被覆率が80%となるように粗化処理を施したこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
Example 4
The nonaqueous layer was applied in the same manner as in Example 1 except that the binder layer previously applied on the positive and negative electrode current collectors was roughened so that the binder coverage on the current collectors was 80%. An electrolyte secondary battery was produced.

参考例1
正極および負極の集電体上に予め塗布するバインダー層を、集電体へのバインダー被覆率が90%となるように粗化処理を施したこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
( Reference Example 1 )
The nonaqueous layer was applied in the same manner as in Example 1 except that the binder layer previously applied on the positive and negative electrode current collectors was subjected to a roughening treatment so that the binder coverage on the current collector was 90%. An electrolyte secondary battery was produced.

(比較例1)
正極および負極の集電体上に形成したバインダー層の表面に粗化処理を施さなかったこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the surface of the binder layer formed on the positive and negative electrode current collectors was not roughened.

(比較例2)
正極および負極の集電体上にバインダー層を形成しないこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the binder layer was not formed on the positive electrode and negative electrode current collectors.

上記実施例1〜4、参考例1および比較例1、2で得られた非水電解液二次電池について、剥離試験を行い、集電体と活物質層の密着強度を評価した。 For the nonaqueous electrolyte secondary batteries obtained in Examples 1 to 4, Reference Example 1 and Comparative Examples 1 and 2, a peel test was performed to evaluate the adhesion strength between the current collector and the active material layer.

更に、充放電サイクル試験を行って、充放電サイクルにおける容量維持率の変化を調べた。充放電サイクル試験は次のような方法で行った。1Cの電流で充電を4.2Vの定電流定電圧で行い、放電を3.0Vになるまで行った。この充放電サイクルを繰り返し行い、1サイクル目の放電容量を100%とした場合に対し、それぞれ500サイクル後の容量維持率を求めた。   Furthermore, a charge / discharge cycle test was conducted to examine changes in capacity retention rate during the charge / discharge cycle. The charge / discharge cycle test was conducted by the following method. Charging was performed at a constant current and a constant voltage of 4.2 V at a current of 1 C, and discharging was performed until 3.0 V was reached. This charge / discharge cycle was repeated, and the capacity retention rate after 500 cycles was determined for each case where the discharge capacity at the first cycle was 100%.

上記試験に加えて、低温特性の評価を実施した。評価方法として、20℃で1Cのときの放電容量に対する、−20℃で1Cのときの放電容量の比率を求めた。   In addition to the above tests, the low temperature characteristics were evaluated. As an evaluation method, the ratio of the discharge capacity at 1C at -20 ° C to the discharge capacity at 1C at 20 ° C was determined.

Figure 0005334156
Figure 0005334156

これらの試験結果を表1に示す。上記表1に示す結果から明らかなように、集電体上にバインダー層を形成した実施例1〜参考例1および比較例1の電池は、集電体上にバインダー層を形成しない比較例2の電池に比べて密着強度が高く、密着強度はバインダー層が厚くなるほど大きくなる傾向であることがわかった。 The test results are shown in Table 1. As is clear from the results shown in Table 1 above, the batteries of Examples 1 to 4 , Reference Example 1 and Comparative Example 1 in which the binder layer was formed on the current collector were compared without forming the binder layer on the current collector. It was found that the adhesion strength was higher than that of the battery of Example 2, and the adhesion strength tended to increase as the binder layer became thicker.

実施例1〜4および参考例1の電池は、比較例2の電池に比べて500サイクル後の容量維持率が高く、バインダー層を形成することで容量維持率が向上することがわかった。 The batteries of Examples 1 to 4 and Reference Example 1 were found to have a higher capacity retention rate after 500 cycles than the battery of Comparative Example 2, and it was found that the capacity retention ratio was improved by forming a binder layer.

実施例1〜4の電池は、比較例2の電池に比べて低温での放電容量が同等以上であることがわかった。これは実施例1〜4のようにバインダー層表面に適度な粗化処理を施した電池は、粗化処理の少ない、すなわち、バインダー被覆率が大きい参考例1や、粗化処理を施していない比較例1や、バインダー層を形成しない比較例2の電池に比べて、集電体と活物質層間の電気的な接触抵抗が小さいことを示唆している。 The batteries of Examples 1 to 4 were found to have equivalent or higher discharge capacities at low temperatures than the battery of Comparative Example 2. As for this, the battery which performed the roughening process on the binder layer surface like Examples 1-4 has little roughening process, ie, the reference example 1 with a large binder coverage, and the roughening process is not performed. This suggests that the electrical contact resistance between the current collector and the active material layer is small as compared with Comparative Example 1 and the battery of Comparative Example 2 in which no binder layer is formed.

実施例1〜4の電池は、比較例の電池に比べて密着強度、500サイクル後の容量維持率および低温での放電容量が共に高いことから、バインダー層を粗化処理することによる単位面積当りのバインダー被覆率は5%〜80%の範囲が特に好ましいことがわかる。   The batteries of Examples 1 to 4 have higher adhesion strength, capacity retention after 500 cycles, and discharge capacity at low temperatures than the batteries of the comparative examples, so that the binder layer is roughened per unit area. It can be seen that the binder coverage is particularly preferably in the range of 5% to 80%.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の非水電解液二次電池に用いる正極集電体上の正極活物質層を圧縮した模式図。The schematic diagram which compressed the positive electrode active material layer on the positive electrode electrical power collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる正極集電体上にバインダー層を形成した模式図。The schematic diagram which formed the binder layer on the positive electrode electrical power collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる正極集電体上にバインダー層を形成した後に、粗化処理を施した模式図。The schematic diagram which performed the roughening process after forming the binder layer on the positive electrode electrical power collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる正極集電体上の粗化処理を施したバインダー層上に正極活物質層を塗布した模式図。The schematic diagram which apply | coated the positive electrode active material layer on the binder layer which gave the roughening process on the positive electrode electrical power collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる負極集電体上にバインダー層を形成した模式図。The schematic diagram which formed the binder layer on the negative electrode electrical power collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる負極集電体上にバインダー層を形成した後に、粗化処理を施した模式図。The schematic diagram which gave the roughening process after forming the binder layer on the negative electrode collector used for the non-aqueous-electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる負極集電体上の粗化処理を施したバインダー層上に負極活物質層を塗布した模式図。The schematic diagram which apply | coated the negative electrode active material layer on the binder layer which performed the roughening process on the negative electrode collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池に用いる負極集電体上の負極活物質層を圧縮した模式図。The schematic diagram which compressed the negative electrode active material layer on the negative electrode electrical power collector used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解液二次電池の外観図。The external view of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 正極集電体
2 (正極集電体上の)バインダー層
3 (粗化処理した正極の)バインダー層
4 正極活物質層
5 (シート状の)正極
6 負極集電体
7 (負極集電体上の)バインダー層
8 (粗化処理した負極の)バインダー層
9 負極活物質層
10 (シート状の)負極
11 缶ケース
12 封止部
13 負極端子
14 安全弁
15 非水電解液二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Binder layer 3 (on positive electrode collector) Binder layer 4 (of roughened positive electrode) Positive electrode active material layer 5 Positive electrode 6 (in sheet form) Negative electrode current collector 7 (Negative electrode current collector) Upper) Binder layer 8 (Roughened negative electrode) Binder layer 9 Negative electrode active material layer 10 (Sheet-like) negative electrode 11 Can case 12 Sealing portion 13 Negative electrode terminal 14 Safety valve 15 Nonaqueous electrolyte secondary battery

Claims (2)

集電体上に、リチウムイオンを脱離挿入する活物質とバインダーを含有した活物質層を有するシート状の正極および負極を、セパレータを介して積層もしくは巻回し外装体に収納する非水電解液二次電池の製造方法であって、
前記正極及び前記負極の少なくとも一方が、集電体上の全面にバインダー層を塗布し乾燥させた後、表面を粗化処理して集電体表面を部分的に露出させ、該粗化処理されたバインダー層上に、リチウムイオンを脱離挿入する活物質と、該バインダー層に含まれるバインダーと同じバインダーと、を含有した活物質層を形成することで作製され、
前記集電体上のバインダー層の集電体単位面積当りの被覆率が5%以上、80%以下である非水電解液二次電池の製造方法。
A nonaqueous electrolytic solution in which a sheet-like positive electrode and a negative electrode having an active material layer containing an active material and a binder containing lithium ions are inserted on a current collector and stacked or wound via a separator and housed in an exterior body A method for manufacturing a secondary battery , comprising:
After at least one of the positive electrode and the negative electrode is coated with a binder layer on the entire surface of the current collector and dried, the surface is roughened to partially expose the surface of the current collector, and the surface is roughened. Formed on the binder layer by forming an active material layer containing an active material from which lithium ions are desorbed and inserted, and the same binder as the binder contained in the binder layer,
A method for producing a non-aqueous electrolyte secondary battery, wherein the coverage of the binder layer on the current collector per unit area of the current collector is 5% or more and 80% or less.
前記バインダー層の表面の粗化処理が、前記バインダー層の表面をドライエッチングによって粗化処理する請求項1に記載の非水電解液二次電池の製造方法。The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the roughening treatment of the surface of the binder layer roughens the surface of the binder layer by dry etching.
JP2008149159A 2008-06-06 2008-06-06 Method for producing non-aqueous electrolyte secondary battery Active JP5334156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149159A JP5334156B2 (en) 2008-06-06 2008-06-06 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149159A JP5334156B2 (en) 2008-06-06 2008-06-06 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009295474A JP2009295474A (en) 2009-12-17
JP5334156B2 true JP5334156B2 (en) 2013-11-06

Family

ID=41543473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149159A Active JP5334156B2 (en) 2008-06-06 2008-06-06 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5334156B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445871B2 (en) * 2009-07-31 2014-03-19 トヨタ自動車株式会社 Method for manufacturing battery electrode
US9209464B2 (en) 2009-09-24 2015-12-08 Corning Incorporated Current collectors having textured coating
JP2011192539A (en) * 2010-03-15 2011-09-29 Panasonic Corp Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP5534370B2 (en) * 2010-03-17 2014-06-25 トヨタ自動車株式会社 Method for manufacturing battery electrode
CN102292850B (en) * 2010-04-12 2013-11-06 丰田自动车株式会社 Method for producing battery electrode
KR101326623B1 (en) 2010-08-09 2013-11-07 주식회사 엘지화학 Positive Current Collector Coated with Primer and Magnesium Secondary Battery Comprising the Same
TWI569502B (en) * 2011-07-29 2017-02-01 Uacj Corp A current collector, and an electrode structure using the current collector, and a nonaqueous electrolyte A battery, an electric double layer capacitor, a lithium ion capacitor, or a storage member
JP5609839B2 (en) * 2011-10-04 2014-10-22 トヨタ自動車株式会社 Method for producing electrode plate for lithium ion secondary battery
KR101506284B1 (en) 2012-04-19 2015-03-26 주식회사 엘지화학 Multilayer-Structured Electrode and Lithium Secondary Battery Comprising The Same
WO2014010707A1 (en) * 2012-07-13 2014-01-16 古河電気工業株式会社 Current collector foil, electrode structure, lithium secondary cell, or electric double-layer capacitor
CN103928300B (en) * 2014-04-14 2016-06-01 河南省科学院应用物理研究所有限公司 A kind of bonding method based on multi-scenarios method
JP2015128076A (en) * 2015-03-03 2015-07-09 株式会社東芝 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP7108843B2 (en) * 2017-07-27 2022-07-29 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery, and secondary battery
WO2022124160A1 (en) * 2020-12-11 2022-06-16 株式会社豊田自動織機 Electrode for power storage device and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260164A (en) * 1993-02-26 1994-09-16 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH07302586A (en) * 1994-05-09 1995-11-14 Ricoh Co Ltd Battery electrode and its manufacture
JPH1173947A (en) * 1997-08-29 1999-03-16 Ricoh Co Ltd Electrode for battery and its manufacture
JP2002246013A (en) * 2001-02-20 2002-08-30 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery and its producing method, as well as lithium secondary battery using the same
JP2003297701A (en) * 2002-03-29 2003-10-17 Tdk Corp Electrochemical device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2009295474A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JP2008097879A (en) Lithium ion secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
WO2015015548A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2019175657A (en) Lithium ion secondary battery
US9048491B2 (en) Lithium-ion secondary battery
JP2010118216A (en) Electrode body for power storage element, and non-aqueous lithium type power storage element including the same
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP2013110049A (en) Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2006228544A (en) Lithium ion secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2003223899A (en) Manufacturing method of negative electrode plate and lithium secondary battery using the negative electrode plate
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP2004039443A (en) Battery and its manufacturing method
JP2007242575A (en) Nonaqueous electrolyte solution secondary battery
JP2006164883A (en) Winding electrode and its manufacturing method, and method of manufacturing battery
JP2005050679A (en) Nonaqueous solvent-based secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5334156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250