JP2011134634A - Winding square battery - Google Patents

Winding square battery Download PDF

Info

Publication number
JP2011134634A
JP2011134634A JP2009294005A JP2009294005A JP2011134634A JP 2011134634 A JP2011134634 A JP 2011134634A JP 2009294005 A JP2009294005 A JP 2009294005A JP 2009294005 A JP2009294005 A JP 2009294005A JP 2011134634 A JP2011134634 A JP 2011134634A
Authority
JP
Japan
Prior art keywords
battery
core material
wound
negative electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009294005A
Other languages
Japanese (ja)
Other versions
JP5409338B2 (en
Inventor
Akira Kojima
亮 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009294005A priority Critical patent/JP5409338B2/en
Publication of JP2011134634A publication Critical patent/JP2011134634A/en
Application granted granted Critical
Publication of JP5409338B2 publication Critical patent/JP5409338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deformation of a battery outer package can due to volume expansion and contraction of an electrode or generation of gas inside the battery, in a winding square battery with a flat-plate core material. <P>SOLUTION: The square battery incorporates an electrode group of a flat-plate shape having a cathode, a separator and an anode laminated and wound around a core material of a flat-plate shape. The core material is divided aslant in free relative sliding movement in a wound-around axis direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、捲回式角形電池に関する。   The present invention relates to a wound rectangular battery.

近年、リチウムイオン二次電池に代表される高エネルギー密度型の電池は、コードレス機器から移動体に至るまで幅広い用途に用いられている。このうち、機器への実装形態の問題から、従来の円筒形型電池だけでなく、角形状の電池(角形電池)が多く使用されるようになってきている。   In recent years, high energy density type batteries typified by lithium ion secondary batteries have been used in a wide range of applications from cordless devices to mobile objects. Among these, not only conventional cylindrical batteries but also square batteries (square batteries) are increasingly used due to the problem of mounting on devices.

これらの角形電池は、その形状設計の自由度の高さから要求の多いものであるが、リチウムイオン二次電池のように充放電に伴って活物質が膨張収縮する電池系においては、繰り返し変形の蓄積による電池外装缶の膨れなどが問題となっている。   These prismatic batteries are highly demanded due to their high degree of freedom in shape design. However, in battery systems where the active material expands and contracts with charge and discharge, such as lithium ion secondary batteries, it is repeatedly deformed. Battering of battery outer cans due to accumulation of battery is a problem.

かかる課題を解決するための技術として次のようなものがある。   There are the following techniques for solving this problem.

特許文献1には、組電池の枠体によって押圧力を確保して膨張を抑制する技術が開示されている。   Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for suppressing expansion by securing a pressing force with a frame of an assembled battery.

特許文献2には、電池容器の封口板によって電極群に対して圧迫力を加えるなどの技術が開示されている。   Patent Document 2 discloses a technique such as applying a pressing force to an electrode group by a sealing plate of a battery container.

特開2003−45385号公報JP 2003-45385 A 特開平6−260155号公報JP-A-6-260155

本発明の目的は、平板状の芯材を有する捲回式角形電池における電極の体積膨張及び収縮並びに電池内部におけるガスの発生による電池外装缶の変形を防止することにある。   An object of the present invention is to prevent deformation of a battery outer can due to volume expansion and contraction of an electrode and generation of gas inside the battery in a wound rectangular battery having a flat core material.

本発明の捲回式角形電池は、平板状の芯材に、正極とセパレータと負極とを積層して捲回した扁平形状の電極群を内蔵する。そして、前記芯材は、互いに捲回軸方向に相対的に滑動可能に斜めに分割されていることを特徴とする。   The wound rectangular battery of the present invention incorporates a flat electrode group obtained by laminating a positive electrode, a separator, and a negative electrode on a flat core material. The core member is divided obliquely so as to be slidable relative to each other in the winding axis direction.

本発明によれば、電極の膨張などによる電池の厚さ方向への変形を抑制することができ、電池の性能の低下を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deformation | transformation to the thickness direction of a battery by the expansion | swelling etc. of an electrode can be suppressed, and the fall of the performance of a battery can be prevented.

実施例の平板状芯材の滑動前後における状態を示す斜視図である。It is a perspective view which shows the state before and behind sliding of the flat core material of an Example. 実施例の電極群の内部構造を示す概略斜視図である。It is a schematic perspective view which shows the internal structure of the electrode group of an Example. 実施例の芯材を示す側面図である。It is a side view which shows the core material of an Example. 実施例の芯材を示す上面図である。It is a top view which shows the core material of an Example. 図4Aの芯材の変形例を示す上面図である。It is a top view which shows the modification of the core material of FIG. 4A. 図4Aの芯材の変形例を示す上面図である。It is a top view which shows the modification of the core material of FIG. 4A. 図4Aの芯材の変形例を示す上面図である。It is a top view which shows the modification of the core material of FIG. 4A. 図4Aの芯材の変形例を示す上面図である。It is a top view which shows the modification of the core material of FIG. 4A. 図4Aの芯材の変形例を示す部分斜視図である。It is a fragmentary perspective view which shows the modification of the core material of FIG. 4A. 実施例の電極群を示す概略斜視図である。It is a schematic perspective view which shows the electrode group of an Example. 実施例の電池を示す概略断面図である。It is a schematic sectional drawing which shows the battery of an Example. 電池の厚さを測定する位置を示す斜視図である。It is a perspective view which shows the position which measures the thickness of a battery. 実施例1と比較例1との比較試験の結果を示すグラフである。6 is a graph showing the results of a comparative test between Example 1 and Comparative Example 1. 実施例の電池を複数個並べて配置した電池モジュールの一部を示す上面図である。It is a top view which shows a part of battery module which arranged the battery of the Example in multiple numbers.

以下、本発明の実施形態である捲回式角形電池について説明する。   Hereinafter, a wound prismatic battery that is an embodiment of the present invention will be described.

本実施形態においては、正極にリチウム含有複合酸化物を用い、負極に黒鉛材料を用いている。そして、平板状の芯材の周りに扁平状に捲回した電極群を有する非水電解液二次電池を例に挙げている。   In this embodiment, a lithium-containing composite oxide is used for the positive electrode, and a graphite material is used for the negative electrode. A non-aqueous electrolyte secondary battery having an electrode group wound in a flat shape around a flat core material is taken as an example.

ただし、この例示によって材料、寸法等について限定されるものではなく、非水電解液二次電池のみならず、電極材料の膨張収縮等によって芯材を変形させる力を受け、芯材の厚さ方向への変形が電池外装を変形させ得る電池において本発明の構成要件が有効であることは言うまでもない。   However, the material, dimensions, and the like are not limited by this illustration, and the thickness direction of the core material is not limited to the non-aqueous electrolyte secondary battery but receives a force that deforms the core material due to expansion and contraction of the electrode material. It goes without saying that the constituent elements of the present invention are effective in a battery in which the deformation of the battery can deform the battery casing.

本実施形態は、基本的に次のように構成する。   This embodiment is basically configured as follows.

前記捲回式角形電池は、平板状の芯材に、正極とセパレータと負極とを積層して捲回した扁平形状の電極群を内蔵する。そして、芯材は、互いに捲回軸方向に相対的に滑動可能に斜めに分割されている。   The wound prismatic battery incorporates a flat electrode group obtained by laminating a positive electrode, a separator, and a negative electrode on a flat core material. The core material is divided obliquely so as to be slidable relative to each other in the winding axis direction.

すなわち、芯材は、2つに分割され、互いに捲回軸方向に相対的に滑動可能な滑動部を有し、この滑動部は、電極群の捲回軸方向の両端部(上端部及び下端部)と交わっている。更に言い換えると、芯材の扁平部(平面部)における切断線(2つに分割された芯材の切れ目)は、捲回軸方向の両端部(上端部及び下端部)と交点(切片)を有している。なお、滑動部と捲回軸とは平行でなく、所定の角度で交差している。   That is, the core material is divided into two parts and has sliding parts that can slide relative to each other in the winding axis direction. The sliding parts are both ends (upper and lower ends) of the electrode group in the winding axis direction. Part). Furthermore, in other words, the cutting line in the flat part (plane part) of the core material (the cut of the core material divided into two) has an intersection (intersection) with both end parts (upper end part and lower end part) in the winding axis direction. Have. Note that the sliding portion and the winding axis are not parallel but intersect at a predetermined angle.

前記捲回式角形電池は、斜めに分割されている二枚の芯材はそれぞれ、凸部と凹部とを有し、これらの凸部と凹部とを嵌め合わせた嵌合部を有する。   In the wound prismatic battery, each of the two core members that are obliquely divided has a convex part and a concave part, and has a fitting part that fits the convex part and the concave part.

前記捲回式角形電池は、正極は、正極リード片及び正極集電板を介して正極外部端子に接続され、負極は、負極リード片及び負極集電板を介して負極外部端子に接続され、正極集電板及び負極集電板は、貫通孔を有し、芯材は、貫通孔に進入可能である。   In the wound prismatic battery, the positive electrode is connected to the positive electrode external terminal via the positive electrode lead piece and the positive electrode current collector plate, the negative electrode is connected to the negative electrode external terminal via the negative electrode lead piece and the negative electrode current collector plate, The positive electrode current collector plate and the negative electrode current collector plate have through holes, and the core material can enter the through holes.

前記捲回式角形電池は、嵌合部は、液(非水電解液)の浸入を可能とする隙間(空間)を有する。   In the wound prismatic battery, the fitting portion has a gap (space) that allows the liquid (non-aqueous electrolyte) to enter.

前記捲回式角形電池を用いて電池モジュールを構成してもよい。   A battery module may be configured using the wound rectangular battery.

以下、図を用いて実施例を説明する。   Embodiments will be described below with reference to the drawings.

図1は、実施例の平板状芯材の滑動前後における状態を示す斜視図である。   FIG. 1 is a perspective view showing a state before and after sliding of the flat core material of the embodiment.

芯材1a、1bはそれぞれ、台形状の面を有する平板であり、それらの斜面が接するように嵌め合わせてある。すなわち、芯材1a、1bは、2つに分割されている。このように芯材1a、1bが接する部分を滑動部101と呼ぶことにする。   Each of the core members 1a and 1b is a flat plate having a trapezoidal surface and is fitted so that the inclined surfaces thereof are in contact with each other. That is, the core materials 1a and 1b are divided into two. A portion where the core materials 1a and 1b are in contact with each other is referred to as a sliding portion 101.

芯材1a、1bは、滑動部101に平行に移動可能であり、周囲から力を受けた場合に、図中の左の状態から右の状態へと変位するようになっている。すなわち、芯材1b及び芯材1aは、上下方向に飛び出すように移動する。   The core members 1a and 1b are movable in parallel to the sliding portion 101, and are displaced from the left state in the drawing to the right state when receiving a force from the surroundings. That is, the core material 1b and the core material 1a move so as to jump out in the vertical direction.

なお、芯材1a、1bに適用される部材は、電池の使用条件における強度、耐熱性等、所定の耐久性を具備することを要求されるが、材質等に関して特に限定されるものではない。絶縁性の材料は望ましい。また、望ましい材料の例としては、ポリプロピレン(PP)がある。PPは、ガラス繊維等により強化されていることが望ましい。   In addition, although the member applied to core material 1a, 1b is requested | required to have predetermined | prescribed durability, such as the intensity | strength in the use condition of a battery, and heat resistance, it does not specifically limit regarding a material. Insulating materials are desirable. An example of a desirable material is polypropylene (PP). PP is preferably reinforced with glass fiber or the like.

図2は、実施例の電極群の内部構造を示す概略斜視図である。   FIG. 2 is a schematic perspective view showing the internal structure of the electrode group of the embodiment.

セパレータ2a、正極3、セパレータ2b及び負極4が、この順に積層された状態で芯材1a、1bの周りに捲回されている。これらが電極群150を構成している。また、正極3及び負極4は、捲回方向に対して直交する方向にそれぞれ反対向きに正極リード片5及び負極リード片6を設けてある。   The separator 2a, the positive electrode 3, the separator 2b, and the negative electrode 4 are wound around the cores 1a and 1b in a state of being stacked in this order. These constitute the electrode group 150. Further, the positive electrode 3 and the negative electrode 4 are provided with a positive electrode lead piece 5 and a negative electrode lead piece 6 in opposite directions in a direction orthogonal to the winding direction, respectively.

芯材1aは凸部を有し、芯材1bは凹部を有する。凸部と凹部とを嵌め合わせることにより、滑動部101に平行な方向にのみ芯材1a、1bが移動できるようになっている。   The core material 1a has a convex part, and the core material 1b has a concave part. By fitting the convex portion and the concave portion, the core materials 1a and 1b can move only in the direction parallel to the sliding portion 101.

なお、セパレータ2a、正極3、セパレータ2b及び負極4を芯材1a、1bに捲回する際に芯材1a、1bを締め付ける力Fは、芯材1a、1bが滑動を開始するために必要な締め付け力Fより弱くする必要がある。また、電極群150が膨張した場合に芯材1a、1bを締め付ける力Fは、芯材1a、1bが滑動を開始するために必要な締め付け力Fより強くする必要がある。 Incidentally, the force F a to tighten the core 1a, 1b when wound separator 2a, a positive electrode 3, a separator 2b and the negative electrode 4 core 1a, and 1b is necessary in order to core 1a, 1b starts sliding it is necessary to weaker than Do clamping force F b. Further, the core material 1a when the electrode group 150 is inflated, the force F c tightening the 1b, the core 1a, 1b is required to stronger than the clamping force F b required to start sliding.

ここで、Fは、電極群150を電池外装缶に収納する前に行う工程であり、非水電解液が滑動部101に浸透しない状態における力であるため、摩擦係数が大きい。このため、電池群150の作製における不具合が生じにくい。 Here, F a is a step of prior to storing the electrode group 150 to the battery outer can, because the nonaqueous electrolyte is the force in a state that does not penetrate the slider 101, a large coefficient of friction. For this reason, it is hard to produce the malfunction in preparation of the battery group 150. FIG.

これに対して、Fを受ける場合は、非水電解液が滑動部101に浸透した状態であるため、摩擦係数が低下し、Fが小さくなって滑動しやすくなる。 In contrast, when receiving the F c, the nonaqueous electrolyte for a state of being penetrated to the slider 101, the friction coefficient decreases, F b is likely to slide is reduced.

図3は、実施例の芯材を示す側面図であり、図4Aは、実施例の芯材を示す上面図である。   FIG. 3 is a side view showing the core material of the embodiment, and FIG. 4A is a top view showing the core material of the embodiment.

図3において、芯材1a、1bの捲回軸方向(図中、鉛直方向)の中心軸に対する滑動部101の角度θ(deg)は、10°(10度)としている。   In FIG. 3, the angle θ (deg) of the sliding portion 101 with respect to the central axis in the winding axis direction (vertical direction in the drawing) of the core materials 1a and 1b is 10 ° (10 degrees).

図3においては、角度θを10°としたが、これに限定されるものではなく、θは、0度より大きく、芯材の平面部の対角線が捲回軸方向の中心軸に対してなす角よりも小さい範囲で適切な値に設定することができる。滑動部101の摩擦係数や、芯材1a、1bの水平方向への変位を考慮し、望ましい範囲としては、θが5〜40°である。さらに望ましい範囲は、θが10〜35°である。   In FIG. 3, the angle θ is 10 °, but is not limited to this, and θ is greater than 0 degree, and the diagonal line of the flat portion of the core material is formed with respect to the central axis in the winding axis direction. An appropriate value can be set in a range smaller than the angle. Considering the friction coefficient of the sliding portion 101 and the horizontal displacement of the cores 1a and 1b, θ is preferably 5 to 40 °. A more desirable range is 10 to 35 °.

図4Aにおいては、芯材1a、1bがそれぞれ、凸部及び凹部を有し、この凸部及び凹部が嵌め合わされることにより、滑動部101の嵌合部を形成している。   In FIG. 4A, each of the core members 1a and 1b has a convex portion and a concave portion, and the convex portion and the concave portion are fitted together to form a fitting portion of the sliding portion 101.

本図に示す嵌合部は、構造を分かりやすく示すために幅と厚みとの比率が実際とは異なっているが、本発明の概念を表すものである。   The fitting portion shown in this figure represents the concept of the present invention, although the ratio of width to thickness is different from the actual ratio for easy understanding of the structure.

図4Bは、図4Aの芯材の変形例を示す上面図である。   FIG. 4B is a top view showing a modification of the core material of FIG. 4A.

本図においては、芯材1bの凹部の断面形状が矩形状であるのに対し、芯材1aの凸部の先端における断面形状を曲線とすることにより、滑動部101の嵌合部に隙間102を設けてある。この隙間102に電池内部に封入した非水電解液が浸透するため、完成した電池の滑動部101の摩擦係数は低下することになる。   In this figure, the cross-sectional shape of the concave portion of the core material 1b is rectangular, whereas the cross-sectional shape at the tip of the convex portion of the core material 1a is a curve so that a gap 102 is formed in the fitting portion of the sliding portion 101. Is provided. Since the non-aqueous electrolyte sealed inside the battery penetrates into the gap 102, the friction coefficient of the sliding part 101 of the completed battery is lowered.

なお、隙間102の形状は、本図の例に限定されるものではなく、芯材1a、1bの接触面積を小さくして隙間102を設ければよい。芯材1aの凸部の先端形状を三角形状、くびれを有する矢印形状などにしてもよく、芯材1bの凹部の断面形状を曲線としてもよい。また、非水電解液が浸透する構成であれば、滑動部101が移動する方向だけでなく、滑動部101が移動する方向に交差する方向に溝などを設けることにより隙間102を形成してもよい。   The shape of the gap 102 is not limited to the example shown in the figure, and the gap 102 may be provided by reducing the contact area between the core materials 1a and 1b. The tip shape of the convex portion of the core material 1a may be triangular, the shape of an arrow having a constriction, or the like, and the cross-sectional shape of the concave portion of the core material 1b may be a curve. In addition, if the non-aqueous electrolyte is infiltrated, the gap 102 may be formed by providing a groove or the like not only in the direction in which the sliding portion 101 moves but also in the direction intersecting the direction in which the sliding portion 101 moves. Good.

図4Cは、芯材1aの凸部の先端における断面形状が三角形状である。図4Dは、芯材1aの凸部の断面形状がくびれを有する矢印形状である。図4Eは、芯材1bの凹部の断面形状が曲線である。   In FIG. 4C, the cross-sectional shape at the tip of the convex portion of the core material 1a is triangular. FIG. 4D shows an arrow shape in which the cross-sectional shape of the convex portion of the core material 1a has a constriction. In FIG. 4E, the cross-sectional shape of the concave portion of the core material 1b is a curve.

また、図4Fは、芯材1aの変形例を示す部分斜視図である。   FIG. 4F is a partial perspective view showing a modified example of the core material 1a.

凸部111の先端部112は、断面形状が三角形状であり、凸部111の側面部には、水平方向(滑動部が移動する方向に交差する方向)の溝113を複数設けてある。   The tip 112 of the protrusion 111 has a triangular cross-sectional shape, and a plurality of grooves 113 in the horizontal direction (direction intersecting the direction in which the sliding part moves) are provided on the side surface of the protrusion 111.

図5は、実施例の電極群であって、集電ブロックの溶接されたものを示す概略斜視図である。   FIG. 5 is a schematic perspective view showing the electrode group of the embodiment and welding the current collecting block.

本図において、電極群150は、芯材1に捲回された状態であり、正極リード片5及び負極リード片6がそれぞれ、超音波溶接により正極集電板7及び負極集電板8に接続されている。これらの正極集電板7及び負極集電板8を介して、それぞれ正極外部端子9及び負極外部端子10に接続されている。また、正極集電板7及び負極集電板8は、スリット11(貫通孔)を有し、電極群150の膨張に伴って、2つに分割された芯材1が上下方向に飛び出した場合に、芯材1がスリット11に入り込むよう(進入可能)になっている。このため、電極群150の膨張を芯材1の移動によって吸収することができる。   In this figure, the electrode group 150 is wound around the core material 1, and the positive electrode lead piece 5 and the negative electrode lead piece 6 are connected to the positive electrode current collector plate 7 and the negative electrode current collector plate 8 by ultrasonic welding, respectively. Has been. The positive electrode current collector plate 7 and the negative electrode current collector plate 8 are connected to the positive electrode external terminal 9 and the negative electrode external terminal 10, respectively. In addition, the positive electrode current collector plate 7 and the negative electrode current collector plate 8 have slits 11 (through holes), and the core material 1 divided into two protrudes in the vertical direction as the electrode group 150 expands. In addition, the core material 1 enters the slit 11 (can enter). For this reason, the expansion of the electrode group 150 can be absorbed by the movement of the core material 1.

スリット11は、芯材1が通過する際、芯材1が適度の摩擦を受ける寸法に設定してあり、芯材1が電極群150から幅方向の圧力を受けた際、芯材1の上下方向の延伸を抑制する機能をも併せ持つ。具体的には、スリット11の寸法を、芯材1が延伸する方向に向かって若干小さくしてもよい。すなわち、スリット11にテーパを設けてもよい。また、スリット11の内面の粗度又は摩擦係数を、芯材1が延伸する方向に向かって大きくしてもよい。   The slit 11 is set to a size that causes the core material 1 to receive moderate friction when the core material 1 passes, and when the core material 1 receives a pressure in the width direction from the electrode group 150, It also has the function of suppressing direction stretching. Specifically, the dimension of the slit 11 may be slightly reduced in the direction in which the core material 1 extends. That is, the slit 11 may be tapered. Further, the roughness or friction coefficient of the inner surface of the slit 11 may be increased in the direction in which the core material 1 extends.

本実施例においては、スリット11が正極集電板7及び負極集電板8を貫通するように設けてあり、正極外部端子9及び負極外部端子10を構成する突起がスリット11を塞がない位置に設けてある。すなわち、正極外部端子9及び負極外部端子10は、スリット11から突き出した芯材1が衝突しないように配置されている。   In this embodiment, the slit 11 is provided so as to penetrate the positive electrode current collector plate 7 and the negative electrode current collector plate 8, and the projections constituting the positive electrode external terminal 9 and the negative electrode external terminal 10 do not block the slit 11. Is provided. That is, the positive electrode external terminal 9 and the negative electrode external terminal 10 are arranged so that the core material 1 protruding from the slit 11 does not collide.

上記の構成により、芯材1が延伸した際、電極群150と正極集電板7及び負極集電板8との間に強い力が加わって正極リード片5及び負極リード片6が破断することを防止することができる。   With the above configuration, when the core material 1 is stretched, a strong force is applied between the electrode group 150 and the positive electrode current collector plate 7 and the negative electrode current collector plate 8 to break the positive electrode lead piece 5 and the negative electrode lead piece 6. Can be prevented.

図6は、実施例の電池を示す概略断面図である。   FIG. 6 is a schematic cross-sectional view showing the battery of the example.

本図において、電極群150は、電池外装缶32に収納され、非水電解液に浸され、蓋板12で密封されている。正極集電板7及び負極集電板8の外側には、絶縁ストッパー21、22が設置してあり、芯材1a、1bの上下方向への変位を制限することができる。また、絶縁ストッパー21、22にも凹部を設けることにより、芯材1a、1bの変位の許容長さを大きくすることもできる。   In this figure, an electrode group 150 is housed in a battery outer can 32, immersed in a non-aqueous electrolyte, and sealed with a lid plate 12. Insulation stoppers 21 and 22 are installed outside the positive electrode current collector plate 7 and the negative electrode current collector plate 8, and the displacement of the core materials 1 a and 1 b in the vertical direction can be limited. Further, by providing the insulating stoppers 21 and 22 with recesses, the allowable length of displacement of the core materials 1a and 1b can be increased.

また、本図においては、芯材1a、1bの扁平部(芯材1a、1bの最も広い平面部)及び捲回軸方向の両端部(図中の上端部及び下端部)に滑動部101の切片(芯材1a、1b単体において滑動部101が外側に露出した部分。滑動部101は面であり、露出した部分は線である。)を有し、滑動部101と電極群150の捲回軸とが平行でない。   Further, in this figure, the sliding portion 101 is provided at the flat portions of the core materials 1a and 1b (the widest flat portion of the core materials 1a and 1b) and at both ends in the winding axis direction (upper and lower ends in the drawing). It has a section (a portion where the sliding portion 101 is exposed to the outside in the core materials 1a and 1b alone. The sliding portion 101 is a surface, and the exposed portion is a line), and the winding portion 101 and the electrode group 150 are wound. The axis is not parallel.

以下、本実施例で用いた材料について詳細に説明する。   Hereinafter, the materials used in this example will be described in detail.

まず、化学式LiNi0.33Mn0.33Co0.33で表される層状岩塩型の結晶構造を有する正極活物質粉末を85重量部、炭素材料を含む導電材粉末を10重量部、及び、ポリふっ化ビニリデンをノルマルメチルピロリドンに溶解したバインダ溶液を5重量部、それぞれ一様になるまで混合して正極スラリを作製した。この正極スラリをアルミ箔で形成された正極集電基材に均一に塗布して乾燥し、所定の厚さに圧延成型して正極を作製した。 First, 85 parts by weight of a positive electrode active material powder having a layered rock salt type crystal structure represented by the chemical formula LiNi 0.33 Mn 0.33 Co 0.33 O 2 , 10 parts by weight of a conductive material powder containing a carbon material, A positive electrode slurry was prepared by mixing 5 parts by weight of a binder solution prepared by dissolving polyvinylidene fluoride in normal methylpyrrolidone until uniform. This positive electrode slurry was uniformly applied to a positive electrode current collector substrate formed of aluminum foil, dried, and rolled to a predetermined thickness to produce a positive electrode.

人造黒鉛を主成分とする負極活物質粉末を90重量部、アセチレンブラック等の炭素材料を主成分とする導電材粉末を5重量部、及び、ポリふっ化ビニリデンをノルマルメチルピロリドンに溶解したバインダ溶液を5重量部、それぞれ混合して負極スラリを作製した。この負極スラリを銅箔で形成された負極集電基材に均一に塗布して乾燥し、所定の厚さに圧延成型して負極を作製した。   A binder solution in which 90 parts by weight of a negative electrode active material powder containing artificial graphite as a main component, 5 parts by weight of a conductive material powder containing a carbon material such as acetylene black as a main component, and polyvinylidene fluoride in normal methylpyrrolidone are dissolved. 5 parts by weight of each was mixed to prepare a negative electrode slurry. This negative electrode slurry was uniformly applied to a negative electrode current collector substrate formed of copper foil, dried, and rolled to a predetermined thickness to produce a negative electrode.

図2に示すように、正極3及び負極4は、片側にスラリを塗布しない部分(無地部)を設け、この無地部を山形に切断加工することにより、正極リード片5及び負極リード片6を形成してある。   As shown in FIG. 2, the positive electrode 3 and the negative electrode 4 are provided with a portion (a plain portion) where no slurry is applied on one side, and the positive lead piece 5 and the negative electrode lead piece 6 are formed by cutting the plain portion into a chevron. It is formed.

正極リード片5及び負極リード片6とは反対側の部分をスラリ塗工部の幅が所定の値になるよう切断し、フープ状(らせん状)に巻き取ったものを、ポリエチレンやポリプロピレンで形成された微多孔膜であるセパレータ2を介して分割された平板状の芯材1a、1bの周りに、蛇行を防ぎ、張力を一定に保つことができる捲回機で捲回し、扁平状に捲回された電極群150を得た。   The part opposite to the positive electrode lead piece 5 and the negative electrode lead piece 6 is cut so that the width of the slurry coating portion becomes a predetermined value and wound into a hoop shape (spiral shape), and formed of polyethylene or polypropylene Around the flat cores 1a and 1b divided through the separator 2 which is a microporous membrane, the plate is wound with a winding machine capable of preventing meandering and keeping the tension constant, and is flattened. A rotated electrode group 150 was obtained.

図4に示すように、芯材1a、1bがそれぞれ、凸部及び凹部を有し、この凸部及び凹部が嵌め合わされることにより、滑動部101の嵌合部を形成したものを実施例1とした。また、分割されていない1枚の平板状の芯材を用いたものを比較例1とした。   As shown in FIG. 4, the core members 1a and 1b each have a convex portion and a concave portion, and the convex portion and the concave portion are fitted together to form a fitting portion of the sliding portion 101. It was. Further, a comparative example 1 was made using one flat core material that was not divided.

実施例1及び比較例1の芯材を用いて、図6に示す非水電解液二次電池を作製した。   Using the core materials of Example 1 and Comparative Example 1, a nonaqueous electrolyte secondary battery shown in FIG. 6 was produced.

この電池に用いる非水電解液は、六ふっ化燐酸リチウムをエチルメチルカーボネート及びジメチルカーボネートの混合溶媒に溶解し、溶液の濃度を1mol/L(モル/リットル)としたものである。   The non-aqueous electrolyte used in this battery is prepared by dissolving lithium hexafluorophosphate in a mixed solvent of ethyl methyl carbonate and dimethyl carbonate, and the concentration of the solution is 1 mol / L (mol / liter).

比較例1は、芯材が平板の一体成型である点以外に実施例1と異なる点はない。   Comparative Example 1 is not different from Example 1 except that the core material is a flat plate integrated molding.

実施例1と比較例1とを比較するため、以下の実験を行った。   In order to compare Example 1 and Comparative Example 1, the following experiment was performed.

実施例1及び比較例1の電池を90%SOC(SOC:State of Charge、充電レベル)まで充電し、50℃の環境試験機中に放置して電池の外形寸法の変化及び性能の変化を調べた。   The batteries of Example 1 and Comparative Example 1 were charged to 90% SOC (SOC: State of Charge, charge level) and left in an environmental tester at 50 ° C. to examine changes in the external dimensions and changes in performance of the batteries. It was.

図7は、電池の厚さを測定する位置を示す斜視図である。   FIG. 7 is a perspective view showing a position where the thickness of the battery is measured.

本図に示す電池は、電池外装缶32の上端及び下端に正極外部端子9及び負極外部端子10を設けてある。正極外部端子9及び負極外部端子10の周囲には、絶縁パッキン31が設けてあり、内部の非水電解液が漏出しないようにしてある。   In the battery shown in this figure, the positive electrode external terminal 9 and the negative electrode external terminal 10 are provided at the upper and lower ends of the battery outer can 32. An insulating packing 31 is provided around the positive electrode external terminal 9 and the negative electrode external terminal 10 to prevent leakage of the internal nonaqueous electrolyte.

外形寸法は、電池厚さ測定位置33においてマイクロメーターを用いて電池の厚さを計測して代表値とした。   The external dimensions are representative values obtained by measuring the thickness of the battery using a micrometer at the battery thickness measurement position 33.

性能に関しては、電池容量及び内部抵抗を計測して指標とした。   Regarding performance, battery capacity and internal resistance were measured and used as indicators.

測定は、2週間ごとに行った。   Measurements were taken every 2 weeks.

電池容量及び内部抵抗の計測条件は、下記の通りである。   The measurement conditions for battery capacity and internal resistance are as follows.

(電池容量の計測条件)
充電:1時間率、4.2V定電流定電圧充電、1.5h終止
放電:1時間率、定電流放電、3.0V終止
(内部抵抗の計測条件)
SOC調整:1時間率、3.7V定電流定電圧充電、1h終止
抵抗計測:1時間率、1/3時間率、1/5時間率、1/10時間率
上記の条件においてそれぞれ11秒間放電し、放電電流値に対して電圧をプロットし、その傾きを内部抵抗値とした。
(Battery capacity measurement conditions)
Charging: 1 hour rate, 4.2V constant current constant voltage charging, 1.5h termination Discharging: 1 hour rate, constant current discharging, 3.0V termination (Internal resistance measurement conditions)
SOC adjustment: 1 hour rate, 3.7V constant current constant voltage charge, 1h termination Resistance measurement: 1 hour rate, 1/3 hour rate, 1/5 hour rate, 1/10 hour rate The voltage was plotted against the discharge current value, and the slope was taken as the internal resistance value.

図8は、上述の比較試験の結果を示すグラフである。   FIG. 8 is a graph showing the results of the comparative test described above.

横軸に放置期間、左の縦軸に電池容量、右の縦軸に放電時直流内部抵抗(DCR)及び電池厚さをとっている。   The horizontal axis represents the standing period, the left vertical axis represents the battery capacity, and the right vertical axis represents the direct current internal resistance (DCR) during discharge and the battery thickness.

本図から、実施例1は、比較例1に対して同一の放置期間に電池容量が低下しにくく、放電時直流内部抵抗(DCR)が上昇しにくく、電池厚さの増大も抑制されることがわかる。   From this figure, Example 1 shows that the battery capacity is less likely to decrease during the same standing period as in Comparative Example 1, the direct current internal resistance (DCR) during discharge is less likely to increase, and the increase in battery thickness is also suppressed. I understand.

図9は、実施例の電池を複数個並べて配置した電池モジュールの一部を示す上面図である。   FIG. 9 is a top view showing a part of a battery module in which a plurality of batteries according to the embodiment are arranged.

本図における電池モジュールは、電池201の発熱及び体積膨張への対策の観点から、隣り合う電池201の間に所定の間隔dを設けてある。この間隔dを有する隙間は、電池の強制対流冷却のための通風路でもある。   The battery module in this figure is provided with a predetermined interval d between adjacent batteries 201 from the viewpoint of measures against heat generation and volume expansion of the battery 201. The gap having the interval d is also a ventilation path for forced convection cooling of the battery.

上述の実施例の電池を本図における電池モジュールに適用した場合、電池の厚さ方向の膨張が抑制されるため、間隔dを小さくすることができ、電池モジュール全体の寸法をコンパクトにすることができる。   When the battery of the above-described embodiment is applied to the battery module in this figure, since the expansion in the thickness direction of the battery is suppressed, the interval d can be reduced, and the overall size of the battery module can be made compact. it can.

1a、1b:芯材、2:セパレータ、3:正極、4:負極、5:正極リード片、6:負極リード片、7:正極集電板、8:負極集電板、9:正極外部端子、10:負極外部端子、11:スリット、12:蓋板、21、22:絶縁ストッパー、31:絶縁パッキン、32:電池外装缶、33:電池厚さ測定位置、101:滑動部、102:隙間、150:電極群、201:電池。   1a, 1b: core material, 2: separator, 3: positive electrode, 4: negative electrode, 5: positive electrode lead piece, 6: negative electrode lead piece, 7: positive electrode current collector plate, 8: negative electrode current collector plate, 9: positive electrode external terminal 10: negative electrode external terminal, 11: slit, 12: lid plate, 21, 22: insulation stopper, 31: insulation packing, 32: battery outer can, 33: battery thickness measurement position, 101: sliding part, 102: gap , 150: electrode group, 201: battery.

Claims (5)

平板状の芯材に、正極とセパレータと負極とを積層して捲回した扁平形状の電極群を内蔵する捲回式角形電池であって、前記芯材は、互いに捲回軸方向に相対的に滑動可能に斜めに分割されていることを特徴とする捲回式角形電池。   A wound rectangular battery having a flat electrode group in which a positive electrode, a separator, and a negative electrode are stacked and wound on a flat core material, wherein the core materials are relative to each other in the winding axis direction. A winding-type prismatic battery characterized in that the battery is slidably and obliquely divided. 斜めに分割されている二枚の前記芯材はそれぞれ、凸部と凹部とを有し、これらの凸部と凹部とを嵌め合わせた嵌合部を有することを特徴とする請求項1記載の捲回式角形電池。   2. The core material according to claim 1, wherein each of the two core members divided obliquely has a convex portion and a concave portion, and has a fitting portion that fits the convex portion and the concave portion. Winding square battery. 前記正極は、正極リード片及び正極集電板を介して正極外部端子に接続され、前記負極は、負極リード片及び負極集電板を介して負極外部端子に接続され、前記正極集電板及び前記負極集電板は、貫通孔を有し、前記芯材は、前記貫通孔に進入可能であることを特徴とする請求項1又は2に記載の捲回式角形電池。   The positive electrode is connected to a positive external terminal via a positive lead piece and a positive current collector, and the negative electrode is connected to a negative external terminal via a negative lead piece and a negative current collector, and the positive current collector and The wound rectangular battery according to claim 1 or 2, wherein the negative electrode current collector plate has a through hole, and the core material can enter the through hole. 前記嵌合部は、液の浸入を可能とする隙間を有することを特徴とする請求項1〜3のいずれか一項に記載の捲回式角形電池。   The wound prismatic battery according to any one of claims 1 to 3, wherein the fitting portion has a gap that allows liquid to enter. 請求項1〜4のいずれか一項に記載の捲回式角形電池を用いたことを特徴とする電池モジュール。   A battery module using the wound prismatic battery according to any one of claims 1 to 4.
JP2009294005A 2009-12-25 2009-12-25 Winding type square battery Expired - Fee Related JP5409338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294005A JP5409338B2 (en) 2009-12-25 2009-12-25 Winding type square battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294005A JP5409338B2 (en) 2009-12-25 2009-12-25 Winding type square battery

Publications (2)

Publication Number Publication Date
JP2011134634A true JP2011134634A (en) 2011-07-07
JP5409338B2 JP5409338B2 (en) 2014-02-05

Family

ID=44347131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294005A Expired - Fee Related JP5409338B2 (en) 2009-12-25 2009-12-25 Winding type square battery

Country Status (1)

Country Link
JP (1) JP5409338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510043A (en) * 2015-02-13 2017-04-06 エルジー・ケム・リミテッド Secondary battery
JP2017525112A (en) * 2014-07-25 2017-08-31 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing prismatic battery cell
JP2020109732A (en) * 2019-01-07 2020-07-16 株式会社Soken Secondary battery
WO2022163616A1 (en) * 2021-01-29 2022-08-04 株式会社Gsユアサ Electricity storage element and electricity storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922856A (en) * 1995-07-05 1997-01-21 Kaidou Seisakusho:Kk Flat type core
JP2002042854A (en) * 2000-07-24 2002-02-08 Japan Storage Battery Co Ltd Cell
JP2002280055A (en) * 2001-03-21 2002-09-27 Shin Kobe Electric Mach Co Ltd Flat wound group manufacturing method and winding device
JP2006286492A (en) * 2005-04-04 2006-10-19 Hitachi Maxell Ltd Winding core and manufacturing method of electrode body using winding core
JP2008047304A (en) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922856A (en) * 1995-07-05 1997-01-21 Kaidou Seisakusho:Kk Flat type core
JP2002042854A (en) * 2000-07-24 2002-02-08 Japan Storage Battery Co Ltd Cell
JP2002280055A (en) * 2001-03-21 2002-09-27 Shin Kobe Electric Mach Co Ltd Flat wound group manufacturing method and winding device
JP2006286492A (en) * 2005-04-04 2006-10-19 Hitachi Maxell Ltd Winding core and manufacturing method of electrode body using winding core
JP2008047304A (en) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525112A (en) * 2014-07-25 2017-08-31 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing prismatic battery cell
JP2017510043A (en) * 2015-02-13 2017-04-06 エルジー・ケム・リミテッド Secondary battery
US10693195B2 (en) 2015-02-13 2020-06-23 Lg Chem, Ltd. Rechargeable battery
JP2020109732A (en) * 2019-01-07 2020-07-16 株式会社Soken Secondary battery
JP7189027B2 (en) 2019-01-07 2022-12-13 株式会社Soken secondary battery
WO2022163616A1 (en) * 2021-01-29 2022-08-04 株式会社Gsユアサ Electricity storage element and electricity storage device

Also Published As

Publication number Publication date
JP5409338B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
US8652668B2 (en) Secondary battery; solar power generation system, wind power generation system, and vehicle provided therewith; and method for fabrication of a secondary battery
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
US9490462B2 (en) Separator and nonaqueous electrolytic secondary battery including the same
US20090202901A1 (en) Battery
CN102646844A (en) Rechargeable battery
US10756342B2 (en) Lithium ion secondary battery
JP2005108477A (en) Battery pack and electric automobile
WO2015068680A1 (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP5409338B2 (en) Winding type square battery
KR102282880B1 (en) Lithium secondary battery
JP2011054334A (en) Lithium secondary battery
JP2005294150A (en) Lithium-ion secondary battery
JP2009266706A (en) Lithium-ion secondary battery
JP2013137943A (en) Lithium ion secondary battery and manufacturing method thereof
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2006012703A (en) Secondary battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP2021182478A (en) Non-aqueous electrolyte secondary battery
US20200313241A1 (en) Cylindrical secondary battery
WO2019098023A1 (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees