JP2011126718A - Method and apparatus for producing carbon nanotube - Google Patents

Method and apparatus for producing carbon nanotube Download PDF

Info

Publication number
JP2011126718A
JP2011126718A JP2009283521A JP2009283521A JP2011126718A JP 2011126718 A JP2011126718 A JP 2011126718A JP 2009283521 A JP2009283521 A JP 2009283521A JP 2009283521 A JP2009283521 A JP 2009283521A JP 2011126718 A JP2011126718 A JP 2011126718A
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
container
metal catalyst
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009283521A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hiraoka
和志 平岡
Itsuo Sugimoto
巖生 杉本
Toshio Takitani
俊夫 滝谷
浩二 ▲高▼鍋
Koji Takanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009283521A priority Critical patent/JP2011126718A/en
Publication of JP2011126718A publication Critical patent/JP2011126718A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon nanotubes, which can improve material yield. <P>SOLUTION: In the method for producing carbon nanotubes, when a carbon material gas is introduced into a vessel 1 and thermally decomposed and carbon nanotubes are generated on a substrate K disposed in the vessel 1 with metal catalyst particles C supported on the substrate K as nuclei by the reaction of carbon atoms generated by the thermal decomposition with the metal catalyst particles, the substrate K is guided between a pair of electrode plates 4, 5 disposed in the vessel 1 and a DC voltage is applied to the electrode plates 4, 5 to thereby apply an electric field to the substrate K. An alternating magnetic field is further applied to the substrate K in the vessel 1 by an electromagnet 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、カーボンナノチューブの製造方法および製造装置に関するものである。   The present invention relates to a carbon nanotube manufacturing method and manufacturing apparatus.

カーボンナノチューブの製造方法としては、炭素でできた陰極と陽極との間に、アーク放電を発生させてカーボンナノチューブを生成するアーク放電法(例えば、特許文献1参照)、触媒を混ぜた炭素の固まりにレーザ光線を照射して炭素を蒸発させて触媒と反応させることによりカーボンナノチューブを生成するレーザ蒸発法(例えば、特許文献2参照)および炭化水素を高温で分解して基板に付着させた触媒によってカーボンナノチューブを生成する化学気相蒸着法(例えば、特許文献3参照)などがある。   As a method for producing carbon nanotubes, an arc discharge method in which an arc discharge is generated between a cathode and an anode made of carbon to generate carbon nanotubes (see, for example, Patent Document 1), a mass of carbon mixed with a catalyst. A laser evaporation method in which carbon nanotubes are produced by irradiating a laser beam to evaporate carbon to react with a catalyst (see, for example, Patent Document 2) and a catalyst in which hydrocarbons are decomposed at high temperature and adhered to a substrate There is a chemical vapor deposition method (for example, see Patent Document 3) for producing carbon nanotubes.

特開2009−203143号公報JP 2009-203143 A WO2005/019103号公報WO2005 / 019103 特開2007−51058号公報JP 2007-51058 A

上述した従来の製造方法によると、使用した材料のカーボンナノチューブへの変換率すなわち収率が非常に低いため、カーボンナノチューブの生産量を上げることができず、したがってカーボンナノチューブの製造コストが高くなるという問題があった。   According to the above-described conventional manufacturing method, the conversion rate of the used material into carbon nanotubes, that is, the yield is very low, so the production amount of carbon nanotubes cannot be increased, and therefore the production cost of carbon nanotubes increases. There was a problem.

そこで、本発明は、材料の収率を向上させ得るカーボンナノチューブの製造方法および製造装置を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method and manufacturing apparatus of a carbon nanotube which can improve the yield of material.

上記課題を解決するため、本発明のカーボンナノチューブの製造方法は、炭素原料ガスを容器内に導いて熱分解させるとともに、当該容器内に配置され且つ金属触媒粒子が担持された基板に、上記熱分解により生成した炭素原子と金属触媒粒子との反応により当該金属触媒粒子を核としてカーボンナノチューブを生成させるに際し、
上記容器内の基板に電界を付与して炭素原子を電極側に導くことを特徴とするカーボンナノチューブの製造方法であり、
また上記製造方法において、電界をカーボンナノチューブの成長に応じて強くさせる方法であり、
さらに上記製造方法において、容器内の基板に、磁界を断続的にまたは交番磁界を付与させる方法である。
In order to solve the above problems, the carbon nanotube production method of the present invention introduces the carbon source gas into the container and thermally decomposes it, and the substrate disposed on the container and carrying the metal catalyst particles supports the above heat. When carbon nanotubes are produced using the metal catalyst particles as nuclei by the reaction between the carbon atoms generated by the decomposition and the metal catalyst particles,
A method for producing a carbon nanotube, characterized in that an electric field is applied to the substrate in the container to guide carbon atoms to the electrode side,
In the above manufacturing method, the electric field is strengthened according to the growth of the carbon nanotube,
Further, in the above manufacturing method, the magnetic field is intermittently or alternately applied to the substrate in the container.

また、本発明のカーボンナノチューブの製造装置は、炭素原料ガスの熱分解により生成した炭素原子を金属触媒粒子が担持された基板上に導くとともに炭素原子と金属触媒粒子との反応により当該金属触媒粒子を核としてカーボンナノチューブを基板上に生成させる製造装置であって、
炭素原料ガスを供給し得るガス供給管が接続されるとともに内部の気体を排出し得る気体排出管が接続された容器と、この容器内に所定間隔を有して上下に配置された一対の電極板と、これら両電極板に直流電圧を印加し得る直流電源と、上記容器内を加熱する加熱手段とを具備し、
さらにカーボンナノチューブの生成時に、金属触媒粒子が担持された基板を上記両電極板間に案内させ且つ上記両電極板間に直流電圧を印加して当該基板に電界を付与させるようにしたものであり、
また上記製造装置において、電界をカーボンナノチューブの成長に応じて強くさせるようにしたものであり、
さらに上記製造装置において、容器内の基板に、磁界を断続的にまたは交番磁界を付与する磁界付与手段を具備させたものである。
In addition, the carbon nanotube production apparatus of the present invention guides carbon atoms generated by pyrolysis of a carbon source gas onto a substrate on which metal catalyst particles are supported, and reacts with the metal atoms by the reaction of carbon atoms and metal catalyst particles. Is a manufacturing apparatus for generating carbon nanotubes on a substrate with a core as a core,
A container to which a gas supply pipe capable of supplying a carbon source gas is connected and a gas discharge pipe capable of discharging an internal gas is connected, and a pair of electrodes arranged vertically with a predetermined interval in the container A plate, a DC power source capable of applying a DC voltage to both electrode plates, and a heating means for heating the inside of the container,
Further, when the carbon nanotubes are generated, the substrate carrying the metal catalyst particles is guided between the two electrode plates, and a DC voltage is applied between the two electrode plates to apply an electric field to the substrate. ,
Further, in the above manufacturing apparatus, the electric field is strengthened according to the growth of the carbon nanotube,
Furthermore, in the manufacturing apparatus, a magnetic field applying means for applying a magnetic field intermittently or an alternating magnetic field is provided on the substrate in the container.

上記カーボンナノチューブの製造方法および製造装置によると、熱化学気相成長法により熱分解された炭素原子に電界を付与するようにしているので、炭素原子を電極板側に、すなわち基板に担持された金属触媒粒子側に積極的に導くことができ、したがってカーボンナノチューブの成長を促進することができる。   According to the above carbon nanotube production method and production apparatus, since an electric field is applied to carbon atoms thermally decomposed by thermal chemical vapor deposition, the carbon atoms are supported on the electrode plate side, that is, on the substrate. It can be actively guided to the metal catalyst particle side, and therefore the growth of carbon nanotubes can be promoted.

またカーボンナノチューブの生成途中において、電界を強くさせるようにしたので、カーボンナノチューブが成長している場合でも、炭素原子をより多く正極板側に導くことができる。   Further, since the electric field is strengthened during the generation of the carbon nanotubes, more carbon atoms can be led to the positive electrode plate side even when the carbon nanotubes are growing.

さらに、磁界付与手段により、磁界を断続的にまたは交番磁界を付与してカーボンナノチューブを揺らすようにしているので、炭素原子がカーボンナノチューブの間を通過し易くなり、したがってカーボンナノチューブの成長をより促進することができる。   In addition, the magnetic field application means makes the carbon nanotubes shake by applying a magnetic field intermittently or by applying an alternating magnetic field, making it easier for carbon atoms to pass between the carbon nanotubes, thus further promoting the growth of the carbon nanotubes. can do.

本発明の実施例に係るカーボンナノチューブの製造装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the manufacturing apparatus of the carbon nanotube which concerns on the Example of this invention. カーボンナノチューブの生成時における炭素原子の移動状態を説明する模式図である。It is a schematic diagram explaining the movement state of the carbon atom at the time of the production | generation of a carbon nanotube. カーボンナノチューブの生成時における炭素原子の移動状態を説明する模式図である。It is a schematic diagram explaining the movement state of the carbon atom at the time of the production | generation of a carbon nanotube. カーボンナノチューブの生成時における炭素原子の移動状態を説明する模式図である。It is a schematic diagram explaining the movement state of the carbon atom at the time of the production | generation of a carbon nanotube.

以下、本発明の実施の形態に係るカーボンナノチューブの製造方法および製造装置を具体的に示した実施例に基づき説明する。
まず、カーボンナノチューブの製造装置について説明する。
Hereinafter, the carbon nanotube manufacturing method and manufacturing apparatus according to the embodiment of the present invention will be described based on specific examples.
First, a carbon nanotube production apparatus will be described.

なお、本製造装置においては、カーボンナノチューブを基板上に成長させるために熱CVD法(熱化学気相成長法)を用いたものであり、より具体的には、炭素原料ガスを加熱して熱分解させるとともに、この熱分解により生成した炭素原子を基板の表面に担持(付着)された金属触媒粒子と反応させて当該金属触媒粒子を核としてカーボンナノチューブを生成させるようにしたものである。   In this manufacturing apparatus, a thermal CVD method (thermal chemical vapor deposition method) is used to grow carbon nanotubes on a substrate. More specifically, a carbon source gas is heated and heated. In addition to decomposition, carbon atoms generated by this thermal decomposition are reacted with metal catalyst particles supported (attached) on the surface of the substrate to generate carbon nanotubes using the metal catalyst particles as nuclei.

図1に示すように、このカーボンナノチューブの製造装置には、例えばガスボンベに充填されている炭素原子ガスである炭化水素ガス(例えば、アセチレン、メタンなど)を供給し得るガス供給管2が一端側に接続されるとともに他端側に真空ポンプ(図示せず)に接続されて気体(排気ガス)を排出し得る気体排出管3が接続されてなる例えば横型円筒形状の容器(CVD容器または真空容器と呼ぶこともできる)1と、この容器1内の上下位置で所定間隔を有して且つそれぞれ水平方向で配置された平板状の正極板(以下、電極板ともいう)4および負極板(以下、電極板ともいう)5と、これら両電極板4,5に電気配線6を介して接続されて所定の直流電圧を印加するための直流電源7と、上記容器1の外部に配置されて当該容器1を加熱して少なくともその内部を加熱するための加熱手段としての電気ヒータ8と、同じく当該容器1の外側に配置されて磁界を発生することにより少なくとも当該容器1内に磁界を付与するための磁界付与手段としての電磁石体9とが具備されており、また両電極板4,5の炭素原料ガスの供給側すなわちガス流における上流側には当該ガスを予熱するためのサセプタ10が配置されている。また、上記電磁石体9は、円柱状の鉄心11と、この鉄心11の外周に巻回されたコイル12と、このコイル12に交流電気を供給して交番磁界を発生させる交流電源13とから構成されている。   As shown in FIG. 1, this carbon nanotube production apparatus has a gas supply pipe 2 that can supply a hydrocarbon gas (for example, acetylene, methane, etc.) that is a carbon atom gas filled in a gas cylinder, for example. For example, a horizontal cylindrical container (a CVD container or a vacuum container) is connected to the other end side and connected to a vacuum pump (not shown) on the other end side and connected to a gas discharge pipe 3 capable of discharging gas (exhaust gas). 1), a flat positive electrode plate (hereinafter also referred to as an electrode plate) 4 and a negative electrode plate (hereinafter referred to as an electrode plate) which are arranged in the horizontal direction at a predetermined interval in the upper and lower positions in the container 1 respectively. , Also referred to as an electrode plate), a DC power source 7 connected to both the electrode plates 4 and 5 via an electrical wiring 6 for applying a predetermined DC voltage, and disposed outside the container 1 Container 1 Electric heater 8 as a heating means for heating and heating at least the inside thereof, and magnetic field application for applying a magnetic field in at least the container 1 by being arranged outside the container 1 and generating a magnetic field An electromagnet body 9 as a means is provided, and a susceptor 10 for preheating the gas is disposed on the supply side of the carbon raw material gas of both the electrode plates 4 and 5, that is, on the upstream side in the gas flow. The electromagnet body 9 includes a cylindrical iron core 11, a coil 12 wound around the outer periphery of the iron core 11, and an AC power source 13 that supplies AC electricity to the coil 12 to generate an alternating magnetic field. Has been.

なお、上記正極板4は容器1内の下方に配置されるとともに負極板5はその上方に配置され、また炭素原子が導かれる基板Kは両電極板4,5同士間で且つ正極板4側寄りに配置される。   The positive electrode plate 4 is disposed below the container 1 and the negative electrode plate 5 is disposed above it. The substrate K to which carbon atoms are introduced is between the electrode plates 4 and 5 and on the positive electrode plate 4 side. Arranged closer.

次に、上記製造装置によりカーボンナノチューブを製造する方法について説明する。
まず、両電極板4,5間に基板Kが配置(案内)され、また電気ヒータ8により容器1内が所定温度に加熱されるとともに、直流電源7により両電極板4,5には所定電圧の直流電気すなわち直流電圧が供給されて、両電極板4,5間には所定強さの電界が発生されている。なお、容器1内に配置されたサセプタ10については必要に応じて、例えば容器1内が常圧下である場合には用いられるが、減圧下の場合には必要としない。
Next, a method for producing carbon nanotubes using the production apparatus will be described.
First, the substrate K is disposed (guided) between the electrode plates 4 and 5, the interior of the container 1 is heated to a predetermined temperature by the electric heater 8, and a predetermined voltage is applied to the electrode plates 4 and 5 by the DC power source 7. DC electric power, that is, DC voltage is supplied, and an electric field having a predetermined strength is generated between the electrode plates 4 and 5. The susceptor 10 disposed in the container 1 is used when necessary, for example, when the inside of the container 1 is under normal pressure, but is not necessary when under reduced pressure.

この状態で、ガス供給管2より炭素原料ガスとして炭化水素ガス(例えば、アセチレンガスなどが用いられる。また、キャリアガスとしてはヘリウムガスなどが用いられる。)が容器1内に供給されると、当該炭化水素ガスは炭素と水素とに熱分解される。なお、炭素の電気陰性度は2.5で、水素のそれは2.1であるため、炭素が負に、水素が正に帯電する。したがって、両電極板4,5間の電界中においては、図2および図3に示すように、炭素原子が正極板4に引き付けられて基板Kの表面に担持された金属触媒粒子(例えば、鉄、ニッケル、白金、コバルトなど)Cと反応し、この金属触媒粒子Cを核としてカーボンナノチューブNが成長する。   In this state, when a hydrocarbon gas (for example, acetylene gas or the like is used as the carbon source gas, and helium gas or the like is used as the carrier gas) is supplied into the container 1 from the gas supply pipe 2. The hydrocarbon gas is pyrolyzed into carbon and hydrogen. Since the electronegativity of carbon is 2.5 and that of hydrogen is 2.1, carbon is negatively charged and hydrogen is positively charged. Therefore, in the electric field between the electrode plates 4 and 5, as shown in FIGS. 2 and 3, metal catalyst particles (for example, iron) in which carbon atoms are attracted to the positive electrode plate 4 and are supported on the surface of the substrate K. , Nickel, platinum, cobalt, etc.) and carbon nanotubes N grow with this metal catalyst particle C as a nucleus.

このとき、交流電源13によりコイル12に数Hz周期の交流電圧が印加されて鉄心11には交番磁界が発生し、容器1に交番磁界が付与される。この交番磁界は当然ながら容器1内にも及ぶことになる。すなわち、図4に示すように、電極板4,5間で水平方向に移動する炭素原子に、その移動方向とは直交する方向、具体的には、下方の正極板4側にその向きを変える力が加えられる。したがって、水平方向に移動する炭素原子を基板K側に、つまり金属触媒粒子C側に向かわせることになり、カーボンナノチューブNの成長が促進されて、炭素原料の収率の向上が図られる。   At this time, an AC voltage having a frequency of several Hz is applied to the coil 12 by the AC power source 13, an alternating magnetic field is generated in the iron core 11, and the alternating magnetic field is applied to the container 1. This alternating magnetic field naturally extends into the container 1 as well. That is, as shown in FIG. 4, the direction of the carbon atoms moving in the horizontal direction between the electrode plates 4 and 5 is changed to the direction perpendicular to the moving direction, specifically, to the lower positive electrode plate 4 side. Power is applied. Accordingly, the carbon atoms moving in the horizontal direction are directed toward the substrate K, that is, toward the metal catalyst particles C, and the growth of the carbon nanotubes N is promoted, thereby improving the yield of the carbon raw material.

さらに、カーボンナノチューブの生成途中において、カーボンナノチューブの成長に応じて直流電源7の電圧を上げて電界強度を強くすることにより、炭素原子をより強く正極板4側に導くことができる。この直流電圧の上昇により、カーボンナノチューブが成長して炭素原子が基板の表面に到達しにくくなった場合(図4の二点鎖線で示すように、炭素原子のカーボンナノチューブへの衝突により到達しにくくなる)でも、炭素原子を基板K表面の金属触媒粒子Cに継続して導くことができる。   Further, during the generation of the carbon nanotubes, the carbon atoms can be more strongly guided to the positive electrode plate 4 side by increasing the voltage of the DC power supply 7 in accordance with the growth of the carbon nanotubes to increase the electric field strength. When the carbon nanotube grows due to this increase in DC voltage and carbon atoms are difficult to reach the surface of the substrate (as indicated by the two-dot chain line in FIG. 4), it is difficult for carbon atoms to reach the carbon nanotube due to collision. However, carbon atoms can be continuously guided to the metal catalyst particles C on the surface of the substrate K.

すなわち、電界が付与されていない状態でカーボンナノチューブが成長すると、カーボンナノチューブ自身が炭素原子を正極板側に引き寄せるのを邪魔することになるが、電界を強くして炭素原子をより強い力で正極板側に導くようにすれば、カーボンナノチューブの成長の促進が維持される。   In other words, when carbon nanotubes grow without an electric field applied, the carbon nanotubes themselves interfere with drawing the carbon atoms toward the positive electrode plate. If guided to the plate side, the promotion of carbon nanotube growth is maintained.

なお、カーボンナノチューブが成長する前から電界を付与すると、炭素濃度が触媒反応に適した濃度を越えてしまうので、印加すべき直流電圧は触媒反応に適した炭素濃度となるように制御される。   If an electric field is applied before the carbon nanotubes grow, the carbon concentration exceeds the concentration suitable for the catalytic reaction, so that the DC voltage to be applied is controlled so as to be the carbon concentration suitable for the catalytic reaction.

したがって、印加する直流電圧は、最初は低くされているが、カーボンナノチューブの成長に応じて、高くされる。
ここで、上記カーボンナノチューブの製造方法での具体的な条件について説明しておく。
(1)電界を発生させる直流電圧については、両電極板4,5同士間で放電が発生しない範囲で印加され、電極板4,5同士間の距離は100mm程度とされる。また、容器1内のガス圧力は2Paにされるとともに、この場合の直流電圧は300Vにされる。
(2)磁界については、平均速度(容器内の温度により決まる炭素原子ガスが持っている速度分布の平均値である)で運動している帯電炭素原子の曲率半径が電極板4,5同士間の距離の半分、例えば約50mm程度となるような数Hzの周期でもって交番磁界が付与される。例えば、上記(1)項にて示した条件によると、磁束密度が0.00326(Wb/m)[磁界の強さが2497(A/m)]となる。
Therefore, the DC voltage to be applied is initially lowered, but is increased according to the growth of the carbon nanotubes.
Here, specific conditions in the carbon nanotube production method will be described.
(1) A DC voltage that generates an electric field is applied within a range in which no discharge occurs between the electrode plates 4 and 5, and the distance between the electrode plates 4 and 5 is about 100 mm. Further, the gas pressure in the container 1 is set to 2 Pa, and the DC voltage in this case is set to 300V.
(2) For the magnetic field, the radius of curvature of the charged carbon atoms moving at an average velocity (the average value of the velocity distribution of the carbon atom gas determined by the temperature in the container) is between the electrode plates 4 and 5. An alternating magnetic field is applied with a period of several Hz such that the distance is half of the distance, for example, about 50 mm. For example, the magnetic flux density is 0.00326 (Wb / m 2 ) [magnetic field strength is 2497 (A / m)] according to the condition shown in the above item (1).

また、磁界の強さとしては、ゼロから順次大きくしていき、CVD時間が10分程度で、上述した磁束密度[0.00326(w/m)]となるようにされる。
上述したカーボンナノチューブの製造装置および製造方法によると、熱CVD法により熱分解された炭素原子に電界を付与するようにしているので、炭素原子を正極板側にすなわち基板表面に担持された金属触媒粒子側に導くことができ、したがってカーボンナノチューブの成長を促進することができ、またカーボンナノチューブの生成途中において、電界の強さを上げるようにしているので、カーボンナノチューブが成長している場合でも、炭素原子をより多く正極板側に導くことができる。
The strength of the magnetic field is gradually increased from zero, and the above-described magnetic flux density [0.00326 (w / m 2 )] is obtained with a CVD time of about 10 minutes.
According to the above-described carbon nanotube production apparatus and production method, an electric field is applied to the carbon atoms thermally decomposed by the thermal CVD method, so that the metal catalyst is supported on the positive electrode plate side, that is, on the substrate surface. The carbon nanotube can be guided to the particle side, and hence the growth of the carbon nanotube can be promoted. In addition, since the strength of the electric field is increased during the generation of the carbon nanotube, even when the carbon nanotube is growing, More carbon atoms can be led to the positive electrode plate side.

さらに、電磁石体により交番磁界を付与してカーボンナノチューブを揺らすようにしているので、炭素原子が成長したカーボンナノチューブの間を通過し易くなり、したがってカーボンナノチューブの成長をより促進させることができる。   Furthermore, since the carbon nanotubes are shaken by applying an alternating magnetic field by the electromagnet body, the carbon atoms can easily pass between the grown carbon nanotubes, and thus the growth of the carbon nanotubes can be further promoted.

ところで、上記実施例においては、鉄心に巻回されたコイルに交流電源を接続して交番磁界を発生させるように説明したが、直流電源を接続するとともにこの直流電源を所定間隔でオン・オフすることにより、磁界を変化させるようにしてもよい。この場合も、交番磁界と同様の作用効果が得られる。   By the way, in the said Example, although AC power supply was connected to the coil wound around the iron core and the alternating magnetic field was generate | occur | produced, while connecting DC power supply, this DC power supply is turned on and off at predetermined intervals. Thus, the magnetic field may be changed. In this case, the same effect as the alternating magnetic field can be obtained.

1 容器
2 ガス供給管
3 気体排出管
4 正極板
5 負極板
7 直流電源
8 電気ヒータ
9 電磁石体
13 交流電源
DESCRIPTION OF SYMBOLS 1 Container 2 Gas supply pipe 3 Gas exhaust pipe 4 Positive electrode plate 5 Negative electrode plate 7 DC power supply 8 Electric heater 9 Electromagnet body 13 AC power supply

Claims (6)

炭素原料ガスを容器内に導いて熱分解させるとともに、当該容器内に配置され且つ金属触媒粒子が担持された基板に、上記熱分解により生成した炭素原子と金属触媒粒子との反応により当該金属触媒粒子を核としてカーボンナノチューブを生成させるに際し、
上記容器内の基板に電界を付与して炭素原子を基板側に導くことを特徴とするカーボンナノチューブの製造方法。
The carbon source gas is introduced into the container and thermally decomposed, and the metal catalyst is formed by a reaction between the carbon atoms generated by the thermal decomposition and the metal catalyst particles on the substrate disposed in the container and carrying the metal catalyst particles. When producing carbon nanotubes with particles as nuclei,
A method for producing carbon nanotubes, wherein an electric field is applied to a substrate in the container to guide carbon atoms to the substrate side.
電界をカーボンナノチューブの成長に応じて強くさせることを特徴とする請求項1に記載のカーボンナノチューブの製造方法。   2. The method for producing carbon nanotubes according to claim 1, wherein the electric field is strengthened according to the growth of the carbon nanotubes. 容器内の基板に、磁界を断続的にまたは交番磁界を付与させることを特徴とする請求項1または2に記載のカーボンナノチューブの製造方法。   The method for producing carbon nanotubes according to claim 1 or 2, wherein a magnetic field is applied intermittently or an alternating magnetic field to the substrate in the container. 炭素原料ガスの熱分解により生成した炭素原子を金属触媒粒子が担持された基板上に導くとともに炭素原子と金属触媒粒子との反応により当該金属触媒粒子を核としてカーボンナノチューブを基板上に生成させる製造装置であって、
炭素原料ガスを供給し得るガス供給管が接続されるとともに内部の気体を排出し得る気体排出管が接続された容器と、この容器内に所定間隔を有して上下に配置された一対の電極板と、これら両電極板に直流電圧を印加し得る直流電源と、上記容器内を加熱する加熱手段とを具備し、
さらにカーボンナノチューブの生成時に、金属触媒粒子が担持された基板を上記両電極板間に案内させ且つ上記両電極板間に直流電圧を印加して当該基板に電界を付与させるようにしたことを特徴とするカーボンナノチューブの製造装置。
Manufacture of carbon atoms produced by pyrolysis of carbon source gas onto a substrate on which metal catalyst particles are supported, and carbon nanotubes are produced on the substrate using the metal catalyst particles as a nucleus by reaction of carbon atoms and metal catalyst particles. A device,
A container to which a gas supply pipe capable of supplying a carbon source gas is connected and a gas discharge pipe capable of discharging an internal gas is connected, and a pair of electrodes arranged vertically with a predetermined interval in the container A plate, a DC power source capable of applying a DC voltage to both electrode plates, and a heating means for heating the inside of the container,
Furthermore, when the carbon nanotube is generated, the substrate carrying the metal catalyst particles is guided between the electrode plates, and an electric field is applied to the substrate by applying a DC voltage between the electrode plates. An apparatus for producing carbon nanotubes.
電界をカーボンナノチューブの成長に応じて強くさせるようにしたことを特徴とする請求項4に記載のカーボンナノチューブの製造装置。   The apparatus for producing carbon nanotubes according to claim 4, wherein the electric field is increased in accordance with the growth of the carbon nanotubes. 容器内の基板に、磁界を断続的にまたは交番磁界を付与する磁界付与手段を具備させたことを特徴とする請求項4または5に記載のカーボンナノチューブの製造装置。   6. The apparatus for producing carbon nanotubes according to claim 4, wherein a magnetic field applying means for applying a magnetic field intermittently or an alternating magnetic field is provided on the substrate in the container.
JP2009283521A 2009-12-15 2009-12-15 Method and apparatus for producing carbon nanotube Pending JP2011126718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283521A JP2011126718A (en) 2009-12-15 2009-12-15 Method and apparatus for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283521A JP2011126718A (en) 2009-12-15 2009-12-15 Method and apparatus for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2011126718A true JP2011126718A (en) 2011-06-30

Family

ID=44289744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283521A Pending JP2011126718A (en) 2009-12-15 2009-12-15 Method and apparatus for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2011126718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032248A (en) * 2011-08-03 2013-02-14 Hitachi Zosen Corp Cvd apparatus for carbon nanotube formation
CN115101762A (en) * 2022-07-05 2022-09-23 青岛科技大学 Preparation method of carbon nano tube/metal selenide material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141056A (en) * 1998-09-21 2000-05-23 Lucent Technol Inc Device having adhesive carbon nano-tube film
JP2002206169A (en) * 2000-12-28 2002-07-26 Toshiba Corp Carbon nano tube joining body and method of manufacturing for the same
JP2006306704A (en) * 2005-03-30 2006-11-09 Sonac Kk Method of forming carbon film and carbon film
JP2007523822A (en) * 2004-01-15 2007-08-23 ナノコンプ テクノロジーズ インコーポレイテッド Systems and methods for the synthesis of elongated length nanostructures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141056A (en) * 1998-09-21 2000-05-23 Lucent Technol Inc Device having adhesive carbon nano-tube film
JP2002206169A (en) * 2000-12-28 2002-07-26 Toshiba Corp Carbon nano tube joining body and method of manufacturing for the same
JP2007523822A (en) * 2004-01-15 2007-08-23 ナノコンプ テクノロジーズ インコーポレイテッド Systems and methods for the synthesis of elongated length nanostructures
JP2006306704A (en) * 2005-03-30 2006-11-09 Sonac Kk Method of forming carbon film and carbon film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032248A (en) * 2011-08-03 2013-02-14 Hitachi Zosen Corp Cvd apparatus for carbon nanotube formation
CN115101762A (en) * 2022-07-05 2022-09-23 青岛科技大学 Preparation method of carbon nano tube/metal selenide material

Similar Documents

Publication Publication Date Title
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
US7473873B2 (en) Apparatus and methods for synthesis of large size batches of carbon nanostructures
JP4718742B2 (en) Method for producing a nanotube layer on a substrate
JP6008962B2 (en) Method for producing nanoparticles
US20080264330A1 (en) Production of nanostructure by curie point induction heating
US20080182027A1 (en) Synthesis of Carbon Nanotubes by Selectively Heating Catalyst
JP4934316B2 (en) Method for producing fibrous carbon material
US20050287297A1 (en) Apparatus and methods of making nanostructures by inductive heating
CN110950329A (en) Vertical graphene and growth method thereof
US20070144887A1 (en) Apparatus and method for manufacturing carbon nanotubes
KR20110138898A (en) Manufacturing method for carbon nanotube
Sun et al. Strategies for scalable gas-phase preparation of free-standing graphene
JP2011126718A (en) Method and apparatus for producing carbon nanotube
JP2002069643A (en) Method for producing carbon nanotube
JP2006306704A (en) Method of forming carbon film and carbon film
JP4779621B2 (en) Method for producing carbon nanotube
KR100938230B1 (en) A producing device of carbon nano-tube using magnetic field
Yardimci et al. Synthesis methods of carbon nanotubes
JP4665113B2 (en) Fine particle production method and fine particle production apparatus
WO2010089860A1 (en) Process for producing carbon nanotube
KR20100028895A (en) Co-feeding chemical reactor for carbon nano tube
KR20230137037A (en) Apparatus and method for manufacturing carbon nanotube
JP2005097015A (en) Method for manufacturing carbon nanotube
JP2009046325A (en) Carbon nanotube and manufacturing method thereof
Lugod et al. Effect of magnetic field on the synthesis of carbon nanotubes using MPECVD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128