JP2011120967A - Apparatus and method for decomposing organic substance in pure water - Google Patents

Apparatus and method for decomposing organic substance in pure water Download PDF

Info

Publication number
JP2011120967A
JP2011120967A JP2009278401A JP2009278401A JP2011120967A JP 2011120967 A JP2011120967 A JP 2011120967A JP 2009278401 A JP2009278401 A JP 2009278401A JP 2009278401 A JP2009278401 A JP 2009278401A JP 2011120967 A JP2011120967 A JP 2011120967A
Authority
JP
Japan
Prior art keywords
electrode
water
treated
organic matter
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009278401A
Other languages
Japanese (ja)
Other versions
JP5496629B2 (en
Inventor
Kazushige Takahashi
一重 高橋
Hiroshi Sugawara
広 菅原
Akira Nagasawa
明 永澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Saitama University NUC
Original Assignee
Organo Corp
Japan Organo Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd, Saitama University NUC filed Critical Organo Corp
Priority to JP2009278401A priority Critical patent/JP5496629B2/en
Publication of JP2011120967A publication Critical patent/JP2011120967A/en
Application granted granted Critical
Publication of JP5496629B2 publication Critical patent/JP5496629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a processing load at a rear stage with a simple structure and reduce the concentration of TOC (total organic carbon) to a very small amount at a low cost in an organic substance decomposition apparatus for treating low-conductivity pure water and the like as water to be treated and decomposing a small amount of TOC components contained in the water to be treated by combining a photocatalyst and ultraviolet irradiation. <P>SOLUTION: The organic substance decomposition apparatus includes a reaction container, a first electrode which is disposed in the reaction container, has pores penetrated so as to provide water permeability, and carries a photocatalyst, a second electrode which is paired with the first electrode and disposed so as to come into contact with a flow of the water to be treated, a power supply device which applies a voltage between the first electrode and the second electrode so as to make the first electrode positive and make the second electrode negative, and an ultraviolet light source which radiates ultraviolet rays to the first electrode. The water to be treated is supplied to the reaction container so as to permeate and flow through the first electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超純水等の純水を製造する装置および方法に関し、特に、被処理水中の有機物を除去するために有機物を酸化分解する有機物分解装置および有機物分解方法に関する。   The present invention relates to an apparatus and method for producing pure water such as ultrapure water, and more particularly, to an organic substance decomposing apparatus and an organic substance decomposing method for oxidizing and decomposing organic substances in order to remove organic substances in water to be treated.

従来より、半導体装置の製造工程や液晶表示装置の製造工程における洗浄水等の用途として、有機物、イオン成分、微粒子、細菌等が高度に除去された超純水等の純水が使用されている。特に、半導体装置を含む電子部品を製造する際には、その洗浄工程において多量の純水が使用されており、その水質に対する要求も年々高まっている。電子部品製造の洗浄工程等において使用される純水では、純水中に含まれる有機物がその後の熱処理工程において炭化して絶縁不良等を引き起こすことを防止するため、水質管理項目の一つである全有機炭素(TOC;Total Organic Carbon)濃度を極めて低いレベルとすることが求められるようになってきている。   Conventionally, pure water such as ultrapure water from which organic substances, ionic components, fine particles, bacteria, and the like have been highly removed has been used as an application for washing water and the like in the manufacturing process of semiconductor devices and the manufacturing process of liquid crystal display devices. . In particular, when manufacturing an electronic component including a semiconductor device, a large amount of pure water is used in the cleaning process, and the demand for the water quality is increasing year by year. Pure water used in the cleaning process of electronic component manufacturing is one of the water quality management items in order to prevent the organic matter contained in the pure water from carbonizing in the subsequent heat treatment process and causing poor insulation. There is a growing demand for extremely low levels of total organic carbon (TOC).

このような純水水質への高度な要求が顕在化するに伴って、近年、純水中に含まれる微量の有機物を分解し除去する様々な方法の検討がなされている。そのような方法の代表的なものとして、紫外線酸化処理による有機物の分解除去工程が導入されるようになってきている。   As such high demands for pure water quality become apparent, various methods for decomposing and removing trace amounts of organic substances contained in pure water have been studied in recent years. As a representative example of such a method, a process for decomposing and removing organic substances by ultraviolet oxidation treatment has been introduced.

一般的には、紫外線酸化処理によって有機物の分解除去を行う場合には、例えばステンレス製の反応槽とその反応槽内に設置された管状の紫外線ランプとを備える紫外線酸化装置を用い、反応槽内に被処理水を導入して被処理水に紫外線を照射する。紫外線ランプとしては、例えば、254nmと185nmの各波長を有する紫外線を発生する低圧紫外線ランプ、あるいは、254nmと194nmと185nmの各波長を有する紫外線を発生する低圧紫外線ランプが使用される。被処理水としては、例えば、原水に対して濾過、活性炭処理、イオン交換処理などを行って、あらかじめ、イオン濃度と有機物濃度とを低下させた水が用いられる。被処理水に185nmの波長を含む紫外線が照射されると、被処理水内にヒドロキシルラジカル(・OH)等の酸化種が生成し、この酸化種の酸化力により被処理水中の微量有機物が二酸化炭素や有機酸に分解する。被処理水に対してこのように紫外線酸化分解処理を施して得られた処理水は、次に、イオン交換装置に送られ、二酸化炭素や有機酸が除去され、高度に有機物が除去された純水となる。   In general, when organic substances are decomposed and removed by ultraviolet oxidation treatment, for example, an ultraviolet oxidation apparatus including a stainless steel reaction tank and a tubular ultraviolet lamp installed in the reaction tank is used. The water to be treated is introduced into the water and irradiated with ultraviolet rays. As the ultraviolet lamp, for example, a low-pressure ultraviolet lamp that generates ultraviolet rays having wavelengths of 254 nm and 185 nm, or a low-pressure ultraviolet lamp that generates ultraviolet rays having wavelengths of 254 nm, 194 nm, and 185 nm is used. As the water to be treated, for example, water in which the ion concentration and the organic matter concentration are reduced in advance by performing filtration, activated carbon treatment, ion exchange treatment or the like on the raw water is used. When the water to be treated is irradiated with ultraviolet rays having a wavelength of 185 nm, oxidizing species such as hydroxyl radicals (.OH) are generated in the water to be treated, and trace organic substances in the water to be treated are oxidized by the oxidizing power of the oxidizing species. Decomposes into carbon and organic acids. The treated water obtained by subjecting the water to be treated in this manner to the ultraviolet oxidative decomposition treatment is then sent to an ion exchange device, where carbon dioxide and organic acids are removed, and pure water from which organic matter is highly removed is removed. It becomes water.

しかしながら、一般的な紫外線酸化装置による有機物の酸化分解方法では、185nmといった短波長の紫外線を発生する紫外線ランプを必要とするが、このような紫外線ランプは非常に高価であるにもかかわらず、使用期間の経過とともに紫外線強度が低下するために、例えば1年に1回程度の交換が必要である。また、紫外線酸化装置における有機物の分解効率は、被処理水中の有機物濃度が低いほど低下するため、純水や超純水製造のように、TOC濃度がもともと低い被処理水を対象としてその被処理水中の有機物をさらに酸化分解するためには、被処理水におけるTOC濃度あたりの必要電力量が非常に大きくなる。したがって、一般的な紫外線酸化装置による有機物の酸化分解は、装置のランニングコストが極めて大きくなるという問題点を有する。   However, the method for oxidative decomposition of organic substances using a general ultraviolet oxidation apparatus requires an ultraviolet lamp that generates ultraviolet rays having a short wavelength of 185 nm, but such an ultraviolet lamp is used even though it is very expensive. Since the intensity of ultraviolet rays decreases with the passage of time, for example, replacement once a year is necessary. In addition, since the decomposition efficiency of organic matter in the UV oxidation device decreases as the concentration of organic matter in the treated water decreases, the treated water is treated for the treated water whose TOC concentration is originally low, such as in the production of pure water or ultrapure water. In order to further oxidize and decompose organic substances in water, the required power amount per TOC concentration in the water to be treated becomes very large. Therefore, the oxidative decomposition of organic substances using a general ultraviolet oxidation apparatus has a problem that the running cost of the apparatus becomes extremely high.

上述の問題点を解決するために、近年では、被処理水中の有機物を酸化分解する方法として、紫外線と光触媒とを組み合わせた技術も数多く報告されている。光触媒としては、一般的に、酸化チタン(TiO2)光触媒が用いられている。光触媒は、自身のバンドギャップを超えるエネルギーに相当する光が照射されることにより、ホール(h+;正孔)と電子(e-)を生じる。そしてホールと、ホールが有する強力な酸化力により生成したヒドロキシルラジカル(・OH)が、被処理水中の有機物を強力に酸化分解する。光触媒を用いる場合には、光触媒の作用によって、光触媒を用いないで紫外線酸化処理を行う場合よりも、より小さな紫外線照射量で、かつ、より長波長(可視光に近い)紫外線を用いてヒドロキシルラジカルを生成することができ、その分、紫外線照射に要するコストを削減できるという利点が得られる。 In recent years, in order to solve the above-mentioned problems, many techniques combining ultraviolet rays and photocatalysts have been reported as methods for oxidatively decomposing organic substances in water to be treated. In general, a titanium oxide (TiO 2 ) photocatalyst is used as the photocatalyst. The photocatalyst generates holes (h + ; holes) and electrons (e ) when irradiated with light corresponding to energy exceeding its band gap. The holes and hydroxyl radicals (.OH) generated by the strong oxidizing power of the holes strongly oxidize and decompose organic matter in the water to be treated. When photocatalysts are used, hydroxyl radicals are produced by using UV rays with a smaller UV irradiation and longer wavelength (close to visible light) than when performing UV oxidation without using photocatalysts due to the action of photocatalysts. As a result, the cost required for ultraviolet irradiation can be reduced.

特許文献1には、排水や導電率が高い水を被処理水として、被処理水中の有機物を酸化分解するバッチ式の水処理装置であって、チタン板の表面に陽極酸化処理を施すことによって表面に酸化チタン光触媒が担持された第1電極を用い、光触媒に紫外線を照射しつつ第1電極とグラファイトなどからなる第2電極との間に電圧を印加するようにした水処理装置が開示されている。特許文献1の水処理装置では、光触媒に電解を併用することによって、有機物の酸化分解反応を促進させるようにしており、被処理水の電解条件としては、第1電極側が正になるようにして第1電極及び第2電極の間に5V程度の電圧を印加するようにしている。   Patent Document 1 discloses a batch-type water treatment apparatus that uses wastewater or water with high conductivity as water to be treated, and oxidatively decomposes organic matter in the water to be treated, by subjecting the surface of the titanium plate to anodization. A water treatment apparatus is disclosed in which a first electrode having a titanium oxide photocatalyst supported on the surface is used, and a voltage is applied between the first electrode and a second electrode made of graphite or the like while irradiating the photocatalyst with ultraviolet rays. ing. In the water treatment apparatus of Patent Document 1, electrolysis is used in combination with the photocatalyst to promote the oxidative decomposition reaction of the organic matter. The electrolysis conditions of the water to be treated are such that the first electrode side is positive. A voltage of about 5 V is applied between the first electrode and the second electrode.

しかしながら、純水あるいは超純水の製造では、被処理水中の微量の有機物を極限にまで分解・除去する必要があるが、特許文献1に記載のものは、バッチ式・開放式の処理槽を用いて比較的導電率が高い被処理水を処理するので、純水中のような導電率が極めて低い被処理水を対象とするのには適さない。また特許文献1は、被処理水中の電解質濃度がある程度大きいことを前提としているが、半導体装置製造などで洗浄水として用いられる純水、超純水では、微量のイオンの存在さえも大きな問題となるため、電解質濃度が大きいことを前提とすることは好ましくない。   However, in the production of pure water or ultrapure water, it is necessary to decompose and remove a very small amount of organic substances in the water to be treated to the limit. However, the one described in Patent Document 1 uses a batch-type / open-type treatment tank. Since the water to be treated is treated with a relatively high conductivity, it is not suitable for treating water to be treated having a very low conductivity such as pure water. Patent Document 1 is premised on the fact that the electrolyte concentration in the water to be treated is high to some extent. However, in pure water and ultrapure water used as cleaning water in semiconductor device manufacturing and the like, even the presence of a small amount of ions is a serious problem. Therefore, it is not preferable to assume that the electrolyte concentration is large.

特許文献2は、超純水製造装置に組み込まれ紫外線と光触媒とを組み合わせて有機物の分解を行う有機物分解装置において、紫外線光源として、低圧紫外線ランプではなく発光ダイオード(LED)を使用することを開示している。発光ダイオードは、低圧紫外線ランプに比べて高効率であり、かつ、その動作寿命が長い、という特徴を有するので、特許文献2の有機物分解装置は、光源の交換作業の削減や全体としての消費電力の削減を達成することができる。しかしながら、発光ダイオードは、低圧紫外線ランプに比べて、サイズが小さくかつ1個当たりの発光量も小さいので、光触媒の全体にわたって均一に紫外線を照射するためには、多数個の発光ダイオードを分散して設置する必要があり、特許文献2に記載のものでは、イニシャルコストが増大し、かつ、装置自体の構造が複雑なものとなる、という問題点が生じる。   Patent Document 2 discloses that a light emitting diode (LED) is used as an ultraviolet light source instead of a low-pressure ultraviolet lamp in an organic matter decomposing apparatus that is incorporated in an ultrapure water manufacturing apparatus and decomposes organic matter by combining ultraviolet rays and a photocatalyst. is doing. Since the light-emitting diode is characterized by high efficiency and a long operating life compared to the low-pressure ultraviolet lamp, the organic matter decomposition apparatus disclosed in Patent Document 2 reduces the light source replacement work and the overall power consumption. Reduction can be achieved. However, since the light emitting diodes are smaller in size and light emission amount per unit than the low pressure ultraviolet lamp, in order to uniformly irradiate ultraviolet rays over the entire photocatalyst, a large number of light emitting diodes are dispersed. In the case of the device described in Patent Document 2, the initial cost increases and the structure of the device itself becomes complicated.

特許文献3には、紫外線と光触媒とを組み合わせて純水中の有機物の分解除去を行う際に、TOC成分の除去処理時間等を短くすることを目的として、超純水等の被処理水に対し過酸化水素(H22)及びオゾン(O3)を添加するとともに、アナタース型酸化チタン光触媒などの光触媒の存在下において紫外線ランプ等からの紫外線照射によりTOC成分を分解する方法が開示されている。しかしながら、特許文献3に記載のものは、過酸化水素及びオゾンの添加を必要とするためにランニングコストの上昇を伴い、また、紫外線酸化処理を行った後に処理水から残存している過酸化水素及びオゾンを除去する操作を行わなければならず、装置が複雑化するという問題点を有する。 In Patent Document 3, when decomposing and removing organic substances in pure water by combining ultraviolet rays and a photocatalyst, the treatment water such as ultrapure water is used for the purpose of shortening the TOC component removal treatment time and the like. On the other hand, a method is disclosed in which hydrogen peroxide (H 2 O 2 ) and ozone (O 3 ) are added and the TOC component is decomposed by ultraviolet irradiation from an ultraviolet lamp or the like in the presence of a photocatalyst such as anatase-type titanium oxide photocatalyst. ing. However, the one described in Patent Document 3 requires an increase in running cost because it requires addition of hydrogen peroxide and ozone, and hydrogen peroxide remaining from the treated water after the ultraviolet oxidation treatment. In addition, there is a problem that the operation of removing ozone must be performed and the apparatus becomes complicated.

被処理水中の有機物を分解除去する技術として、紫外線を用いないものもある。特許文献4には、水道水や井戸水を被処理水として純水を製造する純水製造装置において、カチオン交換樹脂塔と電解酸化装置とアニオン交換樹脂塔とを直列に配置して、被処理水をカチオン交換樹脂塔にまず供給する構成が開示されている。この構成では、カチオン交換樹脂塔からの、水素イオンを多量に含んだ被処理水が次に電解酸化装置に供給されて被処理水中のTOC成分が電解酸化により分解され、その後、アニオン交換樹脂塔において、被処理水に最初から含まれていたアニオン成分とともに、TOC成分の電解酸化によって生成された二酸化炭素及び有機酸が除去される。電解酸化装置の前段にカチオン交換樹脂塔を配置するのは、カチオン交換によって被処理水中の水素イオン濃度を高め、この水素イオンを電解酸化時の電解キャリアとして用いて数ボルト程度の低電圧でも数アンペア程度の電流で電解酸化を行うことができるようにするためである。しかしながら特許文献4に示したものは、イオン交換樹脂を用いた純水製造装置の中間部に電解酸化装置を設ける構成となっているため、後段のアニオン交換樹脂塔から溶出するTOC成分を分解することができず、純水中のTOCを微量域にまで低減することができない問題点を有する。   As a technique for decomposing and removing organic substances in water to be treated, there is a technique that does not use ultraviolet rays. In Patent Document 4, in a pure water production apparatus that produces pure water using tap water or well water as treated water, a cation exchange resin tower, an electrolytic oxidation apparatus, and an anion exchange resin tower are arranged in series to obtain treated water. Is first disclosed to supply the cation exchange resin tower to the cation exchange resin tower. In this configuration, the treated water containing a large amount of hydrogen ions from the cation exchange resin tower is then supplied to the electrolytic oxidation apparatus, and the TOC component in the treated water is decomposed by electrolytic oxidation, and then the anion exchange resin tower , Carbon dioxide and organic acid generated by electrolytic oxidation of the TOC component are removed together with the anion component originally contained in the water to be treated. The cation exchange resin tower is placed in the front stage of the electrolytic oxidation apparatus because the hydrogen ion concentration in the water to be treated is increased by cation exchange, and this hydrogen ion is used as an electrolytic carrier during electrolytic oxidation even at a low voltage of about several volts. This is because the electrolytic oxidation can be performed with a current of about ampere. However, since the thing shown in patent document 4 is the structure which provides an electrolytic oxidation apparatus in the intermediate part of the pure water manufacturing apparatus using an ion exchange resin, it decomposes | disassembles the TOC component eluted from the latter anion exchange resin tower. In other words, the TOC in pure water cannot be reduced to a very small amount.

特開2008−302328号公報JP 2008-302328 A 特開2007−136372号公報JP 2007-136372 A 特開平10−151450号公報JP-A-10-151450 特開平11−000659号公報JP-A-11-000659

上述したように、被処理水中の有機物を分解除去する場合に、単純に紫外線酸化処理を行った場合には、極微量にまでTOCを削減する場合には多大の電力量を必要とし、また、光源の交換などのランニングコストも大きい、という問題を生じる。光触媒と紫外線照射とを組み合わせることによって被処理水中の有機物を分解除去する従来の方法においても、電解質や過酸化物を加えるなど導電率が低い純水などを被処理水とするのには不適切なものであったり、装置として構造が複雑なものを使用したり、ランニングコストが高いものであったり、さらには、後段における処理負荷が大きいものであったりする、という問題点を有する。   As described above, when the organic matter in the water to be treated is decomposed and removed, when the ultraviolet oxidation treatment is simply performed, a large amount of electric power is required to reduce the TOC to a very small amount, There arises a problem that the running cost such as replacement of the light source is high. Even in the conventional method of decomposing and removing organic matter in water to be treated by combining photocatalyst and ultraviolet irradiation, it is inappropriate to use pure water with low conductivity such as electrolytes or peroxides as water to be treated. Or a device having a complicated structure, a high running cost, and a large processing load in the subsequent stage.

本発明の目的は、導電率が低い純水などを被処理水とし、光触媒と紫外線照射とを組み合わせることによって被処理水に含まれる微量のTOC成分を分解する有機物分解装置および有機物分解方法であって、構造が複雑ではなく、後段における処理負荷が小さく、低コストで、かつ、極微量にまでTOC濃度を低減することができる装置及び方法を提供することにある。   An object of the present invention is an organic substance decomposing apparatus and an organic substance decomposing method for decomposing a small amount of TOC component contained in water to be treated by using pure water having low conductivity as water to be treated and combining a photocatalyst and ultraviolet irradiation. Thus, an object of the present invention is to provide an apparatus and a method that are not complicated in structure, have a small processing load in the subsequent stage, are low in cost, and can reduce the TOC concentration to a very small amount.

本発明の有機物分解装置は、被処理水中に含まれる有機物を酸化分解する有機物分解装置であって、反応容器と、反応容器内に配置され、透水性を有するように貫通する孔部を有し、光触媒が担持された第1電極と、第1電極に対をなし被処理水の流れに接するように配置された第2電極と、第1電極と第2電極との間に電圧を印加する電圧印加手段と、第1電極に対して紫外線を照射する紫外線照射手段と、を備え、被処理水が第1電極を透過するように反応容器内を被処理水が流れるようにしたものである。   The organic matter decomposition apparatus of the present invention is an organic matter decomposition apparatus that oxidizes and decomposes organic substances contained in water to be treated, and has a reaction vessel and a hole that is disposed in the reaction vessel and has water permeability. A voltage is applied between the first electrode on which the photocatalyst is supported, the second electrode disposed in contact with the flow of the water to be treated, which is paired with the first electrode, and the first electrode and the second electrode. A voltage application means and an ultraviolet irradiation means for irradiating the first electrode with ultraviolet light are provided so that the water to be treated flows in the reaction vessel so that the water to be treated passes through the first electrode. .

本発明の有機物分解方法は、被処理水中に含まれる有機物を酸化分解する有機物分解方法であって、反応容器内に配置され透水性を有するように貫通する孔部を有し光触媒が担持された第1電極と、第1電極に対をなし被処理水の流れに接するように配置された第2電極とを使用し、被処理水が第1電極を透過して反応容器内を流れるように反応容器に被処理水を供給しつつ、第1電極に紫外線を照射する。   The organic matter decomposing method of the present invention is an organic matter decomposing method for oxidizing and decomposing organic matters contained in water to be treated. The organic matter decomposing method is disposed in a reaction vessel and has a hole that penetrates so as to have water permeability. Using the first electrode and the second electrode that is paired with the first electrode and is in contact with the flow of the water to be treated, so that the water to be treated flows through the reaction vessel through the first electrode. While supplying the water to be treated to the reaction vessel, the first electrode is irradiated with ultraviolet rays.

本発明によれば、従来技術では非常に困難と考えられていた電気伝導度が極めて低い純水を被処理水とする場合であっても、電解質等の電気伝導体を添加する必要なしに、非常に低い電力量で、連続反応により有機物を分解させることができる。また、透水性を有するように貫通する孔部を有し光触媒が担持された第1電極を用い、被処理水が第1電極を透過するようにしていることにより、被処理水と光触媒との接触面積を大幅に増加させることができる。これらのことから、TOC濃度が極微量にまで低減された高品質な純水を連続して得ることができ、また、TOC成分の分解除去時間を短縮し、消費電力等のランニングコストを低減できる。   According to the present invention, even when pure water with extremely low electrical conductivity, which has been considered very difficult in the prior art, is used as water to be treated, it is not necessary to add an electrical conductor such as an electrolyte. Organic substances can be decomposed by a continuous reaction with a very low electric energy. Further, by using the first electrode having a hole portion penetrating so as to have water permeability and carrying the photocatalyst, the water to be treated passes through the first electrode, so that the water to be treated and the photocatalyst are The contact area can be greatly increased. As a result, high-quality pure water with a TOC concentration reduced to a very small amount can be obtained continuously, and the TOC component decomposition and removal time can be shortened to reduce running costs such as power consumption. .

本発明において通水方向を第2電極から第1電極に向かう方向とした場合には、一旦酸化分解された物質の再還元を防止することができるため、TOC成分の分解除去効率とエネルギーの利用効率とをさらに高めることができる。   In the present invention, when the water flow direction is the direction from the second electrode to the first electrode, it is possible to prevent re-reduction of the material once oxidized and decomposed. Efficiency can be further increased.

本発明の各実施の形態に基づく有機物分解装置を有する水処理装置の構成を示す図である。It is a figure which shows the structure of the water treatment apparatus which has an organic substance decomposition | disassembly apparatus based on each embodiment of this invention. 本発明の第1の実施形態の有機物分解装置の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the organic substance decomposition | disassembly apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の有機物分解装置の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the organic substance decomposition | disassembly apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施形態の有機物分解装置の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the organic substance decomposition | disassembly apparatus of the 3rd Embodiment of this invention. (a)は本発明の第4の実施形態の有機物分解装置の構成を示す模式断面図であり、(b)は図5(a)のB−B’線での模式断面図である。(A) is a schematic cross section which shows the structure of the organic substance decomposition | disassembly apparatus of the 4th Embodiment of this invention, (b) is a schematic cross section in the B-B 'line of Fig.5 (a). (a)は本発明の第5の実施形態の有機物分解装置の構成を示す模式断面図であり、(b)は図6(a)のB−B’線での模式断面図であり、(c)は図6(a)のC−C’線での模式断面図である。(A) is a schematic cross section which shows the structure of the organic substance decomposition | disassembly apparatus of the 5th Embodiment of this invention, (b) is a schematic cross section in the BB 'line | wire of Fig.6 (a), ( FIG. 6C is a schematic cross-sectional view taken along the line CC ′ of FIG.

次に、本発明の好ましい実施の形態について図面を参照して説明する。   Next, a preferred embodiment of the present invention will be described with reference to the drawings.

最初に、後述する本発明の各実施形態の有機物分解装置を備えて構成される水処理装置について説明する。図1に示す水処理装置は、被処理水中の有機物を酸化分解する有機物分解装置1と、有機物分解装置1の後段に配置されたイオン交換装置2とを備えている。被処理水は有機物分解装置1に供給され、被処理水を有機物分解装置1で処理して得られる処理水は次にイオン交換装置2に供給され、イオン交換装置2から、この水処理装置からの最終的な処理水であるイオン交換処理水が得られるようになっている。被処理水としては、原水に対してあらかじめ濾過、活性炭処理、イオン交換処理などを施して得られる、例えば、電気抵抗率が1MΩ・cm以上であってTOC濃度が100ppb未満である水が用いられる。また、被処理水の電気抵抗率は10MΩ・cm以上であってTOC濃度が50ppb未満であることが好ましく、さらに好ましくは15MΩ・cm以上であってTOC濃度が20ppb未満の範囲である。図1に示す水処理装置は、このように導電率が低くかつTOC濃度が小さい被処理水をさらに処理して、TOCを極微量、例えば10ppb未満に減少させるものである。   Initially, the water treatment apparatus comprised with the organic substance decomposition | disassembly apparatus of each embodiment of this invention mentioned later is demonstrated. The water treatment device shown in FIG. 1 includes an organic matter decomposition device 1 that oxidizes and decomposes organic matter in the water to be treated, and an ion exchange device 2 that is disposed at a subsequent stage of the organic matter decomposition device 1. The treated water is supplied to the organic matter decomposing apparatus 1, and the treated water obtained by treating the treated water with the organic matter decomposing apparatus 1 is then supplied to the ion exchange apparatus 2, from the ion exchange apparatus 2, and from this water treatment apparatus. The ion-exchange treated water, which is the final treated water, can be obtained. As the water to be treated, water obtained by subjecting raw water to filtration, activated carbon treatment, ion exchange treatment and the like in advance, for example, water having an electrical resistivity of 1 MΩ · cm or more and a TOC concentration of less than 100 ppb is used. . Further, the electrical resistivity of the water to be treated is preferably 10 MΩ · cm or more and the TOC concentration is preferably less than 50 ppb, more preferably 15 MΩ · cm or more and the TOC concentration is less than 20 ppb. The water treatment apparatus shown in FIG. 1 further treats the water to be treated having a low conductivity and a low TOC concentration to reduce the TOC to a very small amount, for example, less than 10 ppb.

本発明のいずれかの実施形態に基づいて構成された有機物分解装置1は、光触媒と紫外線とを組み合わせた酸化処理により被処理水中の有機物を二酸化炭素と有機酸に分解するものであり、その意味で光触媒装置とも呼ばれる。有機物分解装置1からの処理水には、酸化処理によって生成した二酸化炭素と有機酸とが含まれている。イオン交換装置2は、イオン交換樹脂によって処理水中の二酸化炭素と有機酸とを除去して、導電率が極めて小さく、TOCが極微量にまで低減されたイオン交換処理水を外部に供給する。   The organic matter decomposing apparatus 1 configured according to any embodiment of the present invention is an apparatus that decomposes organic matter in water to be treated into carbon dioxide and an organic acid by an oxidation treatment in which a photocatalyst and ultraviolet rays are combined. It is also called a photocatalytic device. The treated water from the organic matter decomposition apparatus 1 contains carbon dioxide and organic acid generated by the oxidation treatment. The ion exchange device 2 removes carbon dioxide and organic acid in the treated water with an ion exchange resin, and supplies the ion exchange treated water having an extremely low electrical conductivity and a very low TOC to the outside.

図2は、本発明の第1の実施形態の有機物分解装置の構成を示している。有機物分解装置は、光触媒を備え被処理水が供給されるフローセル10と、フローセル10の外部に設けられてフローセル10内の光触媒に紫外線を照射する紫外線光源11と、フローセル10内に設けられた第1電極12及び第2電極13と、フローセル10の外部に設けられ第1電極12と第2電極13に電気的に接続してこれらの電極12,13間に直流電圧を印加する電源装置14と、を備えている。紫外線光源11は紫外線照射手段として設けられており、電源装置14は電圧印加手段として設けられている。第1電極12は、透水性を有するように多数の貫通する微細孔が形成された板状の導電性部材からなり、微細孔の側壁部分も含めて表面に光触媒が担持されているものである。光触媒は例えば酸化チタン光触媒であり、光触媒として酸化チタン光触媒を用いる場合には、多孔性の金属チタン板の表面に例えばCVD(化学気相成長)などの手法によって光触媒層を形成することによって、光触媒が担持された透水性の第1電極12を形成することができる。第2電極13は、導電性部材からなるものであり、例えば、多数の貫通する微細孔が形成された板状の導電性部材やメッシュ状の導電性部材からなる。一例として、多孔性のステンレス鋼板などによって第2電極13を構成することができる。第2電極13は、常に被処理水と接していればよく、被処理水が通過するように透水性を有するものであっても、あるいは、その表面に常に被処理水の流れが形成されるようなものであってもよい。   FIG. 2 shows the configuration of the organic matter decomposition apparatus according to the first embodiment of the present invention. The organic matter decomposition apparatus includes a flow cell 10 provided with a photocatalyst and supplied with water to be treated, an ultraviolet light source 11 provided outside the flow cell 10 to irradiate the photocatalyst in the flow cell 10 with ultraviolet light, and a first provided in the flow cell 10. A first electrode 12 and a second electrode 13; a power supply device 14 provided outside the flow cell 10 and electrically connected to the first electrode 12 and the second electrode 13 to apply a DC voltage between the electrodes 12 and 13; It is equipped with. The ultraviolet light source 11 is provided as ultraviolet irradiation means, and the power supply device 14 is provided as voltage application means. The first electrode 12 is composed of a plate-like conductive member in which a large number of through-holes are formed so as to have water permeability, and a photocatalyst is supported on the surface including the side walls of the micro-holes. . The photocatalyst is, for example, a titanium oxide photocatalyst. When a titanium oxide photocatalyst is used as the photocatalyst, a photocatalyst layer is formed on the surface of the porous metal titanium plate by a technique such as CVD (chemical vapor deposition), thereby producing the photocatalyst. Can be formed. The second electrode 13 is made of a conductive member. For example, the second electrode 13 is made of a plate-like conductive member or a mesh-like conductive member in which a large number of through holes are formed. As an example, the 2nd electrode 13 can be comprised with a porous stainless steel plate. The 2nd electrode 13 should just always be in contact with to-be-processed water, and even if it has water permeability so that to-be-processed water may pass, the flow of to-be-processed water is always formed in the surface. It may be something like this.

フローセル10は、例えば円筒状または直方体状の反応容器として構成されており、ここで示した例ではフローセル10内で一方向に液体が流れるように、その下端部と上端部には、接続口15,16がそれぞれ設けられている。接続口15,16は、被処理水及び処理水のフローセル10への出入口として用いられるものである。第1電極12が紫外線光源11側となって第2電極13が紫外線光源11とは反対側となり、かつ、接続口15,16の一方から他方に流れる水が第1電極12及び第2電極13の両方を通過するように、フローセル10の内部において第1電極12及び第2電極13が配置している。特に第1電極12は、流れる水の全量が透水性の第1電極を透過するように、フローセル10の横断面の全面に設けられている。なお、フローセル10内での流れの向きは、被処理水が第1電極12を通過するのであれば、必ずしも一方向でなくてもよい。   The flow cell 10 is configured as, for example, a cylindrical or rectangular parallelepiped reaction vessel. In the example shown here, the connection port 15 is provided at the lower end and the upper end so that the liquid flows in one direction in the flow cell 10. , 16 are provided. The connection ports 15 and 16 are used as entrances to the flow cell 10 of water to be treated and treated water. The first electrode 12 is on the ultraviolet light source 11 side, the second electrode 13 is on the opposite side of the ultraviolet light source 11, and water flowing from one of the connection ports 15, 16 to the other is the first electrode 12 and the second electrode 13. The first electrode 12 and the second electrode 13 are arranged inside the flow cell 10 so as to pass through both. In particular, the first electrode 12 is provided on the entire cross section of the flow cell 10 so that the entire amount of flowing water passes through the permeable first electrode. The flow direction in the flow cell 10 does not necessarily have to be one direction as long as the water to be treated passes through the first electrode 12.

フローセル10の上面は、紫外線光源11からの紫外線が第1電極12を照射するように、紫外線に対して透明な石英ガラス窓17によって構成されている。しかし、紫外線光源11から照射された紫外線が第一電極12に照射される位置であれば、紫外線光源11の配置位置はこれに限定されるものではない。例えば、後述の実施形態に示されるように、フローセル10あるいは反応容器内に紫外線光源11を配置してもよく、これにより石英ガラス窓17なしでも通水が可能となる(ただし水中で利用する場合には、紫外線光源を保護する目的で紫外線光源の外側に石英管を設ける必要がある)。第1電極12及び第2電極13は、それぞれ、導線18,19によって電源装置14に接続しており、電源装置14は、第1電極12の側が正になるように、第1電極12と第2電極13の間に直流電圧を印加する。なお後述するように、直流電圧の印加は必ずしも必要ない。直流電圧の大きさは、例えば150V程度と従来の電解酸化で用いられる電圧に比べてかなり大きな値とすることもできる。本実施形態の場合、被処理水の導電率が低いので、このように大きな電圧を印加したからといって、第1電極12及び第2電極13を介して被処理水に大きな電流が流れるわけではない。もちろん、直流電圧は、150Vよりも大きな例えば200Vとしてよいし、あるいは150Vよりも小さな例えば50Vや10Vとすることもできる。   The upper surface of the flow cell 10 is constituted by a quartz glass window 17 that is transparent to ultraviolet rays so that ultraviolet rays from the ultraviolet light source 11 irradiate the first electrode 12. However, the arrangement position of the ultraviolet light source 11 is not limited to this as long as the ultraviolet light emitted from the ultraviolet light source 11 is applied to the first electrode 12. For example, as shown in an embodiment described later, an ultraviolet light source 11 may be disposed in the flow cell 10 or the reaction vessel, thereby allowing water to pass without the quartz glass window 17 (however, when used in water). In order to protect the ultraviolet light source, it is necessary to provide a quartz tube outside the ultraviolet light source). The first electrode 12 and the second electrode 13 are connected to the power supply device 14 by conducting wires 18 and 19, respectively. The power supply device 14 is connected to the first electrode 12 and the second electrode 13 so that the first electrode 12 side is positive. A DC voltage is applied between the two electrodes 13. As will be described later, it is not always necessary to apply a DC voltage. The magnitude of the DC voltage can be set to, for example, about 150 V, which is considerably larger than the voltage used in conventional electrolytic oxidation. In this embodiment, since the conductivity of the water to be treated is low, a large current flows through the water to be treated through the first electrode 12 and the second electrode 13 even if such a large voltage is applied. is not. Of course, the DC voltage may be, for example, 200 V, which is greater than 150 V, or may be, for example, 50 V or 10 V, which is less than 150 V.

紫外線光源11は、有機物を分解し、かつ光触媒を活性化するために必要な波長領域の光を放出するランプであれば特に制限はなく、少なくとも100nm〜380nmの紫外線を放出するランプであることが好ましい。例えば、波長254nmの紫外線を発する低圧紫外線ランプ、波長254nmと185nmの紫外線を発する低圧紫外線ランプ、発光ダイオード等を1本または複数本使用することができる。   The ultraviolet light source 11 is not particularly limited as long as it is a lamp that decomposes organic substances and emits light in a wavelength region necessary for activating the photocatalyst, and may be a lamp that emits ultraviolet light of at least 100 nm to 380 nm. preferable. For example, one or a plurality of low-pressure ultraviolet lamps that emit ultraviolet rays having a wavelength of 254 nm, low-pressure ultraviolet lamps that emit ultraviolet rays having wavelengths of 254 nm and 185 nm, light emitting diodes, and the like can be used.

次に、本実施形態の水処理装置の作用について説明する。   Next, the operation of the water treatment apparatus of this embodiment will be described.

有機物分解装置1に被処理水を通水し、紫外線光源11からの紫外線を第1電極12に照射することにより、第1電極12の光触媒の表面にホール(h+)と電子(e-)が生じる。ここで第1電極12側が正になるように第1電極12と第2電極13の間に直流電圧を印加すると、光触媒の表面のホールと電子とが分離し、電子は外部回路(電源装置14)を介して第2電極13に到達する。光触媒で生じたホールは、被処理水中に、強力な酸化力を有するヒドロキシルラジカルを生じさせる。またホール自身も強い酸化力を有するため、これらのホールおよびヒドロキシルラジカルによって被処理水中の有機物が酸化されて二酸化炭素及び有機酸となる。一方、第2電極13に到達した電子は、被処理水中に存在する酸素や過酸化物もしくは水素イオン等の物質を還元することで消費され、これにより、光触媒上でのホールと電子との再結合が防止される。第1電極の光触媒により有機物が酸化されて生成された二酸化炭素及び有機酸は、処理水とともに有機物分解装置1から排出されてイオン交換装置2に供給され、イオン交換によって除去される。 By passing water to be treated through the organic substance decomposition apparatus 1 and irradiating the first electrode 12 with ultraviolet light from the ultraviolet light source 11, holes (h + ) and electrons (e ) are formed on the surface of the photocatalyst of the first electrode 12. Occurs. Here, when a DC voltage is applied between the first electrode 12 and the second electrode 13 so that the first electrode 12 side becomes positive, holes and electrons on the surface of the photocatalyst are separated, and the electrons are connected to an external circuit (power supply device 14). ) To reach the second electrode 13. Holes generated by the photocatalyst generate hydroxyl radicals having a strong oxidizing power in the water to be treated. In addition, since the holes themselves have a strong oxidizing power, organic substances in the water to be treated are oxidized into carbon dioxide and organic acids by these holes and hydroxyl radicals. On the other hand, the electrons that have reached the second electrode 13 are consumed by reducing substances such as oxygen, peroxides, or hydrogen ions that are present in the water to be treated, thereby regenerating holes and electrons on the photocatalyst. Bonding is prevented. Carbon dioxide and organic acid produced by oxidizing the organic substance by the photocatalyst of the first electrode are discharged from the organic substance decomposition apparatus 1 together with the treated water, supplied to the ion exchange apparatus 2, and removed by ion exchange.

本実施形態においては、被処理水は電解質をほとんど含まなくて導電率が非常に小さく、また、TOCも低濃度であるとしている。このような系では、従来技術によれば、導電率が非常に小さいため電圧を印加しても電流は流れず、したがって電解酸化反応を含めて有機物の酸化反応は促進されない、と考えられてきた。しかしながら本発明者が検討したところによれば、電解質濃度が極めて低い純水中の場合であっても、電極表面での酸化還元反応によって電流が流れ、有機物の酸化分解反応が進行するものと考えられる。   In this embodiment, the water to be treated contains almost no electrolyte, has a very low electrical conductivity, and has a low TOC concentration. In such a system, according to the prior art, it has been considered that since the electrical conductivity is very small, no current flows even when a voltage is applied, and thus the oxidation reaction of organic matter including the electrolytic oxidation reaction is not accelerated. . However, according to a study by the present inventor, even in pure water having a very low electrolyte concentration, it is considered that an electric current flows due to an oxidation-reduction reaction on the electrode surface, and an oxidative decomposition reaction of organic matter proceeds. It is done.

本実施形態では、透水性を有するように貫通する孔部を有して光触媒が担持された第1電極12を用い、被処理水の全量が第1電極12を透過するように構成しているので、従来のバッチ式あるいは循環式の酸化処理装置と比べ、被処理水と光触媒との接触面積を大幅に増加させることができ、その結果、TOC成分が極微量にまで低減された高品質な純水を連続して得られるようになる。また以下の実施例から明らかになるように、有機物分解装置1のフローセル10内での通水方向を第2電極13から第1電極12への方向とするにより、一旦は酸化分解された物質の再還元を防止することができるため、TOCの分解除去効率とエネルギーの利用効率とを向上させることができる。   In the present embodiment, the first electrode 12 having a hole penetrating so as to have water permeability and carrying a photocatalyst is used, and the entire amount of water to be treated passes through the first electrode 12. Therefore, compared with the conventional batch type or circulation type oxidation treatment apparatus, the contact area between the water to be treated and the photocatalyst can be greatly increased. As a result, the high-quality TOC component is reduced to a very small amount. Pure water can be obtained continuously. Further, as will become apparent from the following examples, the direction of water flow in the flow cell 10 of the organic matter decomposing apparatus 1 is set to the direction from the second electrode 13 to the first electrode 12, so that the material once oxidized and decomposed Since re-reduction can be prevented, TOC decomposition and removal efficiency and energy utilization efficiency can be improved.

以上、本発明の第1の実施形態の有機物分解装置を説明したが、本発明に基づく有機物分解装置としては、さまざまな形態のものが考えられる。   The organic substance decomposing apparatus according to the first embodiment of the present invention has been described above, but various forms of organic substance decomposing apparatus based on the present invention are conceivable.

図3は、本発明の第2の実施形態の有機物分解装置を示している。図3に示すものは、図2に示す第1の実施形態のものと同様のものであるが、紫外線光源11および紫外線光源11を保護するための石英管30をフローセル10内に設けている点で、図2に示したものと相違する。紫外線光源11および石英管30をフローセル10内に設けたことにより、フローセル10の一部を石英ガラス窓で構成する必要はない。図3に示したものでは、第1電極12を挟んで第2電極13とは反対側になる位置に紫外線光源11を設け、紫外線光源11からの紫外線が第1電極12に担持された光触媒に照射されるようにしている。紫外線光源11の位置はこれに限られるものではなく、例えば、第1電極12と第2電極13とに挟まれた領域内とすることもできる。   FIG. 3 shows an organic matter decomposition apparatus according to the second embodiment of the present invention. 3 is the same as that of the first embodiment shown in FIG. 2 except that the ultraviolet light source 11 and a quartz tube 30 for protecting the ultraviolet light source 11 are provided in the flow cell 10. Thus, it is different from that shown in FIG. Since the ultraviolet light source 11 and the quartz tube 30 are provided in the flow cell 10, it is not necessary to constitute a part of the flow cell 10 with a quartz glass window. 3, an ultraviolet light source 11 is provided at a position opposite to the second electrode 13 across the first electrode 12, and the ultraviolet light from the ultraviolet light source 11 is applied to the photocatalyst carried on the first electrode 12. It is supposed to be irradiated. The position of the ultraviolet light source 11 is not limited to this, and may be, for example, within a region sandwiched between the first electrode 12 and the second electrode 13.

図4は、本発明の第3の実施形態の有機物分解装置を示している。図4に示した有機物分解装置は、図3に示した有機物分解装置において第2電極が配置されている位置に仕切板21が設けられた反応容器20を使用したものである。仕切板21には、接続口15と接続口16との間で被処理水が流通するように、開口部22が設けられている。開口部22は、仕切板21において接続口15から最も遠くなる位置に設けられている。また、開口部22と接続口16との間で被処理水が一様に第1電極12を通過するように、接続口16の位置は、図3に示したものと比べ、開口部22から最も遠くなるように変更されている。接続口15から仕切板21の開口部までの領域は被処理水が流れる流路部となっており、この流路部の側壁に第2電極13が設けられている。この構成では、第2電極13の表面に常に被処理水の流れが生じており、第1乃至第2の実施形態の場合と同様に、被処理水中の有機物を分解する反応が進行する。なお図4に示したものでは、反応容器20内に仕切板21を配置して第1電極12の配置領域と第2電極13の配置領域を分離しているが、第1電極12と第2電極13とを同一の反応容器内に設ける必要はなく、例えば、第1電極12を設ける反応容器と第2電極13を設ける反応容器とを独立して設け、両方の反応容器間を配管で接続するようにしてもよい。   FIG. 4 shows an organic matter decomposing apparatus according to the third embodiment of the present invention. The organic matter decomposing apparatus shown in FIG. 4 uses the reaction vessel 20 provided with the partition plate 21 at the position where the second electrode is arranged in the organic matter decomposing apparatus shown in FIG. The partition plate 21 is provided with an opening 22 so that water to be treated flows between the connection port 15 and the connection port 16. The opening 22 is provided at a position farthest from the connection port 15 in the partition plate 21. Further, the position of the connection port 16 is from the opening 22 so as to allow the water to be treated to pass through the first electrode 12 uniformly between the opening 22 and the connection port 16. It has been changed to be the farthest. A region from the connection port 15 to the opening of the partition plate 21 is a flow channel portion through which the water to be treated flows, and the second electrode 13 is provided on the side wall of the flow channel portion. In this configuration, a flow of water to be treated is always generated on the surface of the second electrode 13, and a reaction for decomposing organic substances in the water to be treated proceeds in the same manner as in the first to second embodiments. In the example shown in FIG. 4, the partition plate 21 is arranged in the reaction container 20 to separate the arrangement area of the first electrode 12 and the arrangement area of the second electrode 13. There is no need to provide the electrode 13 in the same reaction vessel. For example, the reaction vessel provided with the first electrode 12 and the reaction vessel provided with the second electrode 13 are provided independently, and both reaction vessels are connected by piping. You may make it do.

図5(a),(b)は本発明の第4の実施形態の有機物分解装置を示している。第4の実施形態の有機物分解装置は、円筒形状の反応容器23を用いるものである。反応容器23内において、その中心軸に沿って紫外線光源11および紫外線光源11を保護するための石英管30が配置され、紫外線光源11および石英管30を取り囲むように、円筒形に形成された透水性の第1電極12が配置されている。紫外線光源11からの紫外線は、第1電極12に照射される。第2電極13は、反応容器23の内側面に設けられている。この構成では、例えば反応容器23の一端側P1から反応容器23内に入った被処理水は、第2電極13の表面に沿って流れて第1電極12を通過し、他端側P2から排出されることになる。この構成においても第1乃至第3の実施形態の場合と同様に、被処理水中の有機物を分解する反応が進行する。   FIGS. 5A and 5B show an organic matter decomposing apparatus according to a fourth embodiment of the present invention. The organic matter decomposition apparatus according to the fourth embodiment uses a cylindrical reaction vessel 23. In the reaction vessel 23, the ultraviolet light source 11 and the quartz tube 30 for protecting the ultraviolet light source 11 are arranged along the central axis thereof, and the water permeation formed in a cylindrical shape so as to surround the ultraviolet light source 11 and the quartz tube 30. 1st electrode 12 is arranged. Ultraviolet light from the ultraviolet light source 11 is applied to the first electrode 12. The second electrode 13 is provided on the inner surface of the reaction vessel 23. In this configuration, for example, water to be treated that has entered the reaction vessel 23 from one end side P1 of the reaction vessel 23 flows along the surface of the second electrode 13, passes through the first electrode 12, and is discharged from the other end side P2. Will be. In this configuration as well, the reaction for decomposing the organic matter in the water to be treated proceeds as in the first to third embodiments.

図6(a)〜(c)は、本発明の第5の実施形態の有機物分解装置を示している。第4の実施形態では反応容器内で同軸に第1電極12及び第2電極13を配置しているが、この第5の実施形態では、円筒形状の反応容器24内において、その長手方向に沿って第1電極12と第2電極13とを配置している。反応容器24がその長手方向に沿って第1部分Q1及び第2部分Q2からなるとすると、第1部分Q1での断面が図6(b)に示され、第2部分Q2での断面が図6(c)に示されている。第1部分Q1においては、非通水性の材料からなる円筒形状あるいは円柱形状の第2電極13が設けられている。また第2部分Q2においては、その中心軸に沿って紫外線光源11および紫外線光源11を保護するための石英管30が配置され、紫外線光源11および石英管30を取り囲むように、円筒形に形成された透水性の第1電極12が配置されている。紫外線光源11からの紫外線は、第1電極12に照射される。この構成では、例えば反応容器24の第1部分Q1側の端部から反応容器24内に入った被処理水は、第2電極13と反応容器24の内側面との間に形成される流路を経て、第2部分Q2に入り、第1電極12を通過して中心軸側に移行し、第2部分Q2側の端部から排出されることになる。このとき、被処理水は第2電極13の表面を流れることになる。この構成においても第1乃至第4の実施形態の場合と同様に、被処理水中の有機物を分解する反応が進行する。なお図6(a)〜(c)に示したものでは、反応容器24の第1部分Q1と第2部分Q2とが連続して配置されているが、第2電極13を有する第1部分Q1と第1電極12を有する第2部分Q2とが離れて配置されるようにしてもよい。   FIGS. 6A to 6C show an organic matter decomposing apparatus according to a fifth embodiment of the present invention. In the fourth embodiment, the first electrode 12 and the second electrode 13 are arranged coaxially in the reaction vessel, but in the fifth embodiment, in the cylindrical reaction vessel 24, along the longitudinal direction thereof. The first electrode 12 and the second electrode 13 are arranged. Assuming that the reaction vessel 24 includes a first portion Q1 and a second portion Q2 along the longitudinal direction thereof, a cross section at the first portion Q1 is shown in FIG. 6B, and a cross section at the second portion Q2 is shown in FIG. It is shown in (c). In the first portion Q1, a cylindrical or columnar second electrode 13 made of a non-water-permeable material is provided. Further, in the second portion Q2, the ultraviolet light source 11 and the quartz tube 30 for protecting the ultraviolet light source 11 are disposed along the central axis, and the second portion Q2 is formed in a cylindrical shape so as to surround the ultraviolet light source 11 and the quartz tube 30. A water-permeable first electrode 12 is disposed. Ultraviolet light from the ultraviolet light source 11 is applied to the first electrode 12. In this configuration, for example, the water to be treated that has entered the reaction container 24 from the end of the reaction container 24 on the first portion Q1 side is formed between the second electrode 13 and the inner surface of the reaction container 24. Then, it enters the second portion Q2, passes through the first electrode 12, moves to the central axis side, and is discharged from the end portion on the second portion Q2 side. At this time, the water to be treated flows on the surface of the second electrode 13. Also in this configuration, the reaction for decomposing the organic matter in the water to be treated proceeds as in the first to fourth embodiments. 6 (a) to 6 (c), the first portion Q1 and the second portion Q2 of the reaction vessel 24 are continuously arranged, but the first portion Q1 having the second electrode 13 is disposed. And the second portion Q2 having the first electrode 12 may be arranged apart from each other.

次に、実施例及び比較例により、本発明をさらに詳しく説明する。   Next, the present invention will be described in more detail with reference to examples and comparative examples.

〈実施例1〉
図1に示す構成の水処理装置を組み立てた。有機物分解装置1としては、第1の実施形態に示したものであって、上面の石英ガラス窓を除いてPFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体)からなる角型のものを用いた。その内径は35×35mmであり、高さは40mmであった。第1電極12として、板状のチタン多孔質体に、CVD法によって酸化チタン(TiO2)触媒を担持させたものを用い、第2電極13として、透水性のステンレス鋼(SUS316)製フィルタを用いた。有機物分解装置1において、上部から1cmの位置に第1電極12を配置し、上部から2cmの位置に第2電極13を配置した。
<Example 1>
A water treatment apparatus having the configuration shown in FIG. 1 was assembled. The organic matter decomposing apparatus 1 is the one shown in the first embodiment, and is a square type made of PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene) except for the quartz glass window on the upper surface. A thing was used. The inner diameter was 35 × 35 mm and the height was 40 mm. As the first electrode 12, a plate-like porous titanium body carrying a titanium oxide (TiO 2 ) catalyst by a CVD method is used, and as the second electrode 13, a water-permeable stainless steel (SUS316) filter is used. Using. In the organic matter decomposing apparatus 1, the first electrode 12 was disposed at a position 1 cm from the top, and the second electrode 13 was disposed at a position 2 cm from the top.

イオン交換装置2としては、PFA製の円筒容器(内径12mm、高さ100mm)を有し、この容器内に混床のイオン交換樹脂を5ml(層高44mm)充填したものを用いた。紫外線光源11としては、波長254nm、光出力6mW/cm2の低圧紫外線ランプ(消費電力18W)を使用した。 As the ion exchange apparatus 2, a cylindrical container made of PFA (inner diameter: 12 mm, height: 100 mm) was used, and 5 ml of mixed bed ion exchange resin (layer height: 44 mm) was filled in the container. As the ultraviolet light source 11, a low-pressure ultraviolet lamp (power consumption: 18 W) having a wavelength of 254 nm and an optical output of 6 mW / cm 2 was used.

被処理水として、初期TOC濃度が10μg/Lとなるようにメタノールを超純水で希釈したものを用いた。この被処理水の抵抗率は17MΩ・cmであった。ここで使用した超純水の品質は、抵抗率が18MΩ・cm以上、TOCが1μg/L以下、溶存酸素(DO)が10μg/L、過酸化水素(H22)濃度が15μg/Lであった。ここで過酸化水素は、純水を製造する過程で生成したものである。 As the water to be treated, one obtained by diluting methanol with ultrapure water so that the initial TOC concentration becomes 10 μg / L was used. The resistivity of the water to be treated was 17 MΩ · cm. The quality of the ultrapure water used here is a resistivity of 18 MΩ · cm or more, a TOC of 1 μg / L or less, a dissolved oxygen (DO) of 10 μg / L, and a hydrogen peroxide (H 2 O 2 ) concentration of 15 μg / L. Met. Here, hydrogen peroxide is produced in the process of producing pure water.

有機物分解装置1のフローセル10内で被処理水が第2電極13から第1電極12に向かって流れるように(図2において実線の矢印の向き)、有機物分解装置1に被処理水を供給し、紫外線光源11から紫外線を照射した。被処理水の通水量は、イオン交換装置2における処理量がSV35hr-1(SVは、単位時間当たり、体積基準でイオン交換樹脂に対して何倍の水が流れるかを示す)となるようにした。その結果、処理水量は、0.18L/hrとなる。このような条件において、第1電極12と第2電極13との間に印加電圧を0Vと150Vとし、それぞれの場合においてイオン交換装置2の直後のイオン交換処理水のTOC濃度を測定した。あわせて、電源装置14から電極に供給される電流も測定した。結果を表1に示す。表1において、電流と印加電圧との積を消費電力とした。 The treated water is supplied to the organic matter decomposing apparatus 1 so that the treated water flows from the second electrode 13 toward the first electrode 12 in the flow cell 10 of the organic matter decomposing apparatus 1 (in the direction of the solid line arrow in FIG. 2). The ultraviolet light source 11 was irradiated with ultraviolet rays. The amount of water to be treated is such that the treatment amount in the ion exchange device 2 is SV35hr −1 (SV indicates how many times the amount of water flows with respect to the ion exchange resin on a volume basis per unit time). did. As a result, the amount of treated water is 0.18 L / hr. Under such conditions, the applied voltage was set to 0 V and 150 V between the first electrode 12 and the second electrode 13, and in each case, the TOC concentration of the ion exchange treated water immediately after the ion exchange device 2 was measured. In addition, the current supplied from the power supply device 14 to the electrodes was also measured. The results are shown in Table 1. In Table 1, the product of the current and the applied voltage is the power consumption.

表1に示されるように、電圧を印加しない場合においても処理水のTOC濃度の低下が見られたが、電圧を印加することにより、TOC分解がより促進されることが分かった。   As shown in Table 1, a decrease in the TOC concentration of treated water was observed even when no voltage was applied, but it was found that TOC decomposition was further promoted by applying a voltage.

〈実施例2〉
有機物分解装置1のフローセル10における被処理水の通水方向が第1電極12から第2電極13に向かうようにしたことを除いて、実施例1と同様の条件で実験を行った。このときの通水方向は、図2において破線の矢印で示す方向である。結果を表1に示す。
<Example 2>
Experiments were performed under the same conditions as in Example 1 except that the flow direction of water to be treated in the flow cell 10 of the organic matter decomposition apparatus 1 was directed from the first electrode 12 to the second electrode 13. The water flow direction at this time is a direction indicated by a broken-line arrow in FIG. The results are shown in Table 1.

この結果より、通水方向を第1電極12から第2電極13に向かう方向としても、電圧を印加することにより、光触媒を用いたTOCの分解が促進されることが分かった。ただし、実施例1の結果と比較すると、イオン交換処理水に残存するTOC量が多く、TOCの分解率が低下している。また、消費電力も増加しており、加えられたエネルギーが有効に利用されていないことになる。これらは、被処理水の流れが第1電極12から第2電極13に向かっているために、第1電極12で一旦酸化された有機物が第2電極13において再び還元されることで、この再還元に伴う酸化還元電流が流れるとともに、TOCの分解率の低下につながっているためと考えられる。   From this result, it was found that the TOC decomposition using the photocatalyst is promoted by applying the voltage even when the water flow direction is the direction from the first electrode 12 toward the second electrode 13. However, compared with the result of Example 1, the amount of TOC remaining in the ion exchange treated water is large, and the decomposition rate of TOC is reduced. In addition, power consumption is increasing, and the added energy is not effectively used. Since the flow of water to be treated is directed from the first electrode 12 to the second electrode 13, the organic matter once oxidized at the first electrode 12 is reduced again at the second electrode 13. This is probably because the oxidation-reduction current associated with the reduction flows and the TOC decomposition rate is lowered.

〈比較例1〉
実施例1での第1電極12の代わりに表面に光触媒が担持されていないチタン多孔質体を用いることを除いて、実施例1と同様の条件で実験を行った。結果を表1に示す。
<Comparative example 1>
An experiment was performed under the same conditions as in Example 1 except that a porous titanium body having no photocatalyst supported on the surface was used instead of the first electrode 12 in Example 1. The results are shown in Table 1.

この結果より、光触媒を担持していないチタン多孔質体を用いた場合には、TOCの分解反応が進行しないことが分かった。   From this result, it was found that the decomposition reaction of TOC does not proceed when a porous titanium body not supporting a photocatalyst is used.

〈比較例2〉
光触媒を担持した第1電極12に対して紫外線を照射しないことを除いて、実施例1と同様の条件で実験を行った。結果を表1に示す。
<Comparative example 2>
The experiment was performed under the same conditions as in Example 1 except that the first electrode 12 carrying the photocatalyst was not irradiated with ultraviolet rays. The results are shown in Table 1.

この結果より、導電率が低くそもそものTOC濃度も低い純水においては、電圧を印加しても紫外線の照射なしにはTOCの分解反応が進行しないことが分かった。   From this result, it was found that in pure water with low conductivity and low TOC concentration, the decomposition reaction of TOC does not proceed without ultraviolet irradiation even when a voltage is applied.

Figure 2011120967
Figure 2011120967

以上の結果により、本発明に基づく実施例によれば、抵抗率が17MΩ・cmといった非常に導電性の低い純水中であっても、光触媒に紫外線を照射することによって、電解質等を注入することなしにTOC成分の分解除去効率を大幅に向上できることが分かった。従来は、非常に導電性の低い純水では、電流がほとんど流れないために電圧を印加してもTOCの除去が促進されることはない、と考えられていたが、上述の結果からは、紫外線を照射しつつ光触媒を担持した電極が正になるようにして電圧を印加することにより、純水であってもTOC成分の分解除去効率がさらに向上することが分かった。   From the above results, according to the embodiment based on the present invention, even in pure water with a very low resistivity of 17 MΩ · cm, an electrolyte or the like is injected by irradiating the photocatalyst with ultraviolet rays. It has been found that the efficiency of decomposition and removal of the TOC component can be greatly improved. Conventionally, it was thought that pure water with very low conductivity does not promote the removal of TOC even when a voltage is applied because current hardly flows. From the above results, It was found that the decomposition and removal efficiency of the TOC component is further improved by applying a voltage so that the electrode carrying the photocatalyst becomes positive while irradiating ultraviolet rays, even with pure water.

実施例1と実施例2を比較すると、有機物分解装置1のフローセル10内での通水方向を第2電極13から光触媒が担持された第1電極12への方向とするにより、一旦は酸化分解された物質の再還元を防止することができるため、TOCの分解除去効率とエネルギーの利用効率とが向上することが分かる。   Comparing Example 1 and Example 2, once the direction of water flow in the flow cell 10 of the organic matter decomposing apparatus 1 is the direction from the second electrode 13 to the first electrode 12 carrying the photocatalyst, the oxidative decomposition is performed once. It can be seen that the reduction and removal efficiency of TOC and the energy utilization efficiency are improved because the re-reduction of the generated material can be prevented.

1 有機物分解装置
2 イオン交換装置
10 フローセル
11 紫外線光源
12 第1電極
13 第2電極
14 電源装置
15,16 接続口
17 石英ガラス窓
18,19 導線
20,23,24 反応容器
21 仕切板
22 開口部
DESCRIPTION OF SYMBOLS 1 Organic substance decomposition apparatus 2 Ion exchange apparatus 10 Flow cell 11 Ultraviolet light source 12 1st electrode 13 2nd electrode 14 Power supply device 15,16 Connection port 17 Quartz glass window 18,19 Conductor 20,23,24 Reaction vessel 21 Partition plate 22 Opening part

Claims (10)

被処理水中に含まれる有機物を酸化分解する有機物分解装置であって、
反応容器と、
前記反応容器内に配置され、透水性を有するように貫通する孔部を有し、光触媒が担持された第1電極と、
前記第1電極に対をなし前記被処理水の流れに接するように配置された第2電極と、
前記第1電極と前記第2電極との間に電圧を印加する電圧印加手段と、
前記第1電極に対して紫外線を照射する紫外線照射手段と、
を備え、前記被処理水が前記第1電極を透過するように前記反応容器内を前記被処理水が流れるようにした、有機物分解装置。
An organic matter decomposing apparatus that oxidizes and decomposes organic matters contained in water to be treated,
A reaction vessel;
A first electrode disposed in the reaction vessel, having a hole penetrating therethrough so as to have water permeability, and carrying a photocatalyst;
A second electrode disposed in contact with the flow of the water to be treated in a pair with the first electrode;
Voltage applying means for applying a voltage between the first electrode and the second electrode;
Ultraviolet irradiation means for irradiating the first electrode with ultraviolet rays;
An organic matter decomposing apparatus, wherein the water to be treated flows through the reaction vessel so that the water to be treated passes through the first electrode.
前記光触媒は酸化チタン光触媒であり、前記第1電極はチタンによって形成されている、請求項1に記載の有機物分解装置。   The organic matter decomposing apparatus according to claim 1, wherein the photocatalyst is a titanium oxide photocatalyst, and the first electrode is formed of titanium. 電気抵抗率が1MΩ・cm以上でありかつ全有機炭素濃度が100ppb未満である被処理水が前記反応容器に供給される、請求項1または2に記載の有機物分解装置。   The organic matter decomposing apparatus according to claim 1 or 2, wherein water to be treated having an electrical resistivity of 1 MΩ · cm or more and a total organic carbon concentration of less than 100 ppb is supplied to the reaction vessel. 前記反応容器における前記被処理水の流れの方向を前記第2電極が設けられている位置から前記第1電極に向かう方向とする、請求項1乃至3のいずれか1項に記載の有機物分解装置。   The organic matter decomposing apparatus according to any one of claims 1 to 3, wherein a direction of flow of the water to be treated in the reaction vessel is a direction from the position where the second electrode is provided toward the first electrode. . 前記第2電極は前記反応容器内に配置され、
前記電圧印加手段は、前記第1電極が正、前記第2電極が負となるように前記電圧を印加する、請求項1乃至4のいずれか1項に記載の有機物分解装置。
The second electrode is disposed in the reaction vessel;
5. The organic matter decomposing apparatus according to claim 1, wherein the voltage applying unit applies the voltage so that the first electrode is positive and the second electrode is negative. 6.
被処理水中に含まれる有機物を酸化分解する有機物分解方法であって、
反応容器内に配置され透水性を有するように貫通する孔部を有し光触媒が担持された第1電極と、前記第1電極に対をなし前記被処理水の流れに接するように配置された第2電極とを使用することと、
前記被処理水が前記第1電極を透過して前記反応容器内を流れるように前記反応容器に前記被処理水を供給しつつ、前記第1電極に紫外線を照射することと、
を有する有機物分解方法。
An organic matter decomposition method for oxidizing and decomposing organic matter contained in water to be treated,
A first electrode which is disposed in the reaction vessel and has a through-hole so as to have water permeability and which is supported by a photocatalyst, is disposed so as to make a pair with the first electrode and to be in contact with the water to be treated. Using a second electrode;
Irradiating the first electrode with ultraviolet light while supplying the treated water to the reaction vessel so that the treated water passes through the first electrode and flows in the reaction vessel;
A method for decomposing organic matter.
前記第1電極が正、前記第2電極が負となるように、前記第1電極と前記第2電極との間に電圧を印加することを有し、前記第2電極は前記反応容器内配置されている、請求項5に記載の有機物分解方法。   A voltage is applied between the first electrode and the second electrode so that the first electrode is positive and the second electrode is negative, and the second electrode is disposed in the reaction vessel. The method for decomposing organic matter according to claim 5. 前記光触媒は酸化チタン光触媒であり、前記第1電極はチタンによって形成されている、請求項6または7に記載の有機物分解方法。   The organic matter decomposition method according to claim 6 or 7, wherein the photocatalyst is a titanium oxide photocatalyst, and the first electrode is formed of titanium. 電気抵抗率が1MΩ・cm以上でありかつ全有機炭素濃度が100ppb未満である被処理水を前記反応容器に供給する、請求項6乃至8のいずれか1項に記載の有機物分解方法。   The method for decomposing organic matter according to any one of claims 6 to 8, wherein water to be treated having an electrical resistivity of 1 MΩ · cm or more and a total organic carbon concentration of less than 100 ppb is supplied to the reaction vessel. 前記反応容器における前記被処理水の流れの方向を前記第2電極が設けられている位置から前記第1電極に向かう方向とする、請求項6乃至9のいずれか1項に記載の有機物分解方法。   The organic matter decomposition method according to any one of claims 6 to 9, wherein a direction of flow of the water to be treated in the reaction vessel is a direction from the position where the second electrode is provided toward the first electrode. .
JP2009278401A 2009-12-08 2009-12-08 Organic substance decomposition apparatus and organic substance decomposition method in pure water Expired - Fee Related JP5496629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278401A JP5496629B2 (en) 2009-12-08 2009-12-08 Organic substance decomposition apparatus and organic substance decomposition method in pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278401A JP5496629B2 (en) 2009-12-08 2009-12-08 Organic substance decomposition apparatus and organic substance decomposition method in pure water

Publications (2)

Publication Number Publication Date
JP2011120967A true JP2011120967A (en) 2011-06-23
JP5496629B2 JP5496629B2 (en) 2014-05-21

Family

ID=44285440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278401A Expired - Fee Related JP5496629B2 (en) 2009-12-08 2009-12-08 Organic substance decomposition apparatus and organic substance decomposition method in pure water

Country Status (1)

Country Link
JP (1) JP5496629B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205109A (en) * 2013-04-12 2014-10-30 オルガノ株式会社 Apparatus and method for drainage treatment
CN110234987A (en) * 2017-02-15 2019-09-13 优志旺电机株式会社 Measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000828A (en) * 1999-06-22 2001-01-09 Canon Inc Decomposition method and device provided with adsorption electrode
JP2001096276A (en) * 1999-09-29 2001-04-10 Sanyo Electric Co Ltd Electrolytic device of water
JP2006192352A (en) * 2005-01-12 2006-07-27 Kurita Water Ind Ltd Ultrapure water production apparatus and ultrapure water production method
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction
JP2008302328A (en) * 2007-06-08 2008-12-18 National Univ Corp Shizuoka Univ Method for manufacturing titanium oxide film-formed member, photocatalyst, photoelectrode, and water treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000828A (en) * 1999-06-22 2001-01-09 Canon Inc Decomposition method and device provided with adsorption electrode
JP2001096276A (en) * 1999-09-29 2001-04-10 Sanyo Electric Co Ltd Electrolytic device of water
JP2006192352A (en) * 2005-01-12 2006-07-27 Kurita Water Ind Ltd Ultrapure water production apparatus and ultrapure water production method
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction
JP2008302328A (en) * 2007-06-08 2008-12-18 National Univ Corp Shizuoka Univ Method for manufacturing titanium oxide film-formed member, photocatalyst, photoelectrode, and water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205109A (en) * 2013-04-12 2014-10-30 オルガノ株式会社 Apparatus and method for drainage treatment
CN110234987A (en) * 2017-02-15 2019-09-13 优志旺电机株式会社 Measuring device

Also Published As

Publication number Publication date
JP5496629B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4392354B2 (en) High electrolysis cell
JP6008359B2 (en) In-liquid plasma generation apparatus, liquid to be treated purification apparatus, and ion-containing liquid generation apparatus
KR100797027B1 (en) Apparatus for wastewater treatment by using ultraviolet light and oxidative species produced in dielectric barrier discharge tube, and method of wastewater treatment using this
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
JP2012228659A (en) Water purification device
JP4758399B2 (en) Ultraviolet oxidation apparatus and ultraviolet oxidation method
KR101210558B1 (en) Plasma water treatmant processing device
JP5015542B2 (en) Water purification equipment
JP6009254B2 (en) Photocatalyst, method for producing the same, and purification device
Tian et al. Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation
KR20110109111A (en) Apparatus and method for treating water by using plasma gun
JP5093801B2 (en) Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus
CN103130307A (en) Ozone and photo-electrochemical coupled oxidation water-treatment device and method
KR100805378B1 (en) The Combined Process Method and Unit Equipment using Ozone-Electrolysis/Semiconductor Catalysis for Treatment of Non-degradable Waste
JP2004143519A (en) Water treatment method and water treatment device
CN113735337A (en) Method for performing advanced treatment on difficultly-degradable pollutants by using conductive filter membrane-heterogeneous Fenton-like water treatment device
JP2010046611A (en) Ultraviolet oxidation apparatus
JP5496629B2 (en) Organic substance decomposition apparatus and organic substance decomposition method in pure water
JP6649988B2 (en) Method for controlling the generation of halogen-containing by-products in drinking water treatment
WO2022132662A1 (en) &#34;super bubble&#34; electro-photo hybrid catalytic system for advanced treatment of organic wastewater
Huang et al. Removal of polyvinyl alcohol using photoelectrochemical oxidation processes based on hydrogen peroxide electrogeneration
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
KR20060007369A (en) High electric field electrolysis cell
KR101119529B1 (en) Apparatus for treating endocrine disrupting chemicals using nonthermal plasma discharg
JP2010137151A (en) Electrolytic apparatus and water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees