JP4758399B2 - Ultraviolet oxidation apparatus and ultraviolet oxidation method - Google Patents

Ultraviolet oxidation apparatus and ultraviolet oxidation method Download PDF

Info

Publication number
JP4758399B2
JP4758399B2 JP2007184384A JP2007184384A JP4758399B2 JP 4758399 B2 JP4758399 B2 JP 4758399B2 JP 2007184384 A JP2007184384 A JP 2007184384A JP 2007184384 A JP2007184384 A JP 2007184384A JP 4758399 B2 JP4758399 B2 JP 4758399B2
Authority
JP
Japan
Prior art keywords
ultraviolet
water
photocatalyst
treated
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007184384A
Other languages
Japanese (ja)
Other versions
JP2009018282A (en
Inventor
俊朗 國東
友明 宮ノ下
大作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2007184384A priority Critical patent/JP4758399B2/en
Publication of JP2009018282A publication Critical patent/JP2009018282A/en
Application granted granted Critical
Publication of JP4758399B2 publication Critical patent/JP4758399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

本発明は、純水製造等における有機物除去のための紫外線酸化装置及び紫外線酸化方法に関する。   The present invention relates to an ultraviolet oxidation apparatus and an ultraviolet oxidation method for removing organic substances in pure water production or the like.

半導体製造工業等において、洗浄水等の用途に有機物、各種イオン等の不純物を極めて低いレベルにまで低下させた純水の利用が盛んになってきており、純水を更に高純度化した超純水も利用されるに至っている。   In the semiconductor manufacturing industry, etc., the use of pure water in which impurities such as organic substances and various ions have been reduced to a very low level for uses such as washing water has become active. Water has also been used.

超純水の製造工程においては、ppbレベルの全有機炭素(TOC)での有機物の混入までも問題視されるようになってきており、近年、微量有機分の除去方法についての種々の検討がなされ、その結果として、紫外線酸化処理を利用した有機物の分解除去工程が盛んに導入されている。   In the manufacturing process of ultrapure water, even the organic matter mixed in ppb level of total organic carbon (TOC) has come to be regarded as a problem. As a result, organic substance decomposition and removal processes using ultraviolet oxidation have been actively introduced.

純水の製造装置は一般的にはイオン交換装置を主体として構成されており、ppbレベルでの有機物の除去効果は期待できない。そこで、イオン交換装置での各種イオンを除去して得られる純水中に含まれる有機物に、紫外線を照射してこれを酸化分解し、R−COO、HCO 等の陰イオンに変化させる工程を紫外線酸化装置によって行い、この紫外線酸化処理によって生じたイオンを後段に設けたイオン交換装置で除去することでTOCのppbレベルまでの低下を実現する方法が注目されている。 The pure water production apparatus is generally composed mainly of an ion exchange device, and an organic matter removal effect at the ppb level cannot be expected. Therefore, an organic substance contained in pure water obtained by removing various ions in the ion exchange apparatus is irradiated with ultraviolet rays to oxidatively decompose it and change it into anions such as R-COO and HCO 3 . Attention has been focused on a method for reducing the TOC to the ppb level by performing the process using an ultraviolet oxidation apparatus and removing ions generated by the ultraviolet oxidation process using an ion exchange apparatus provided at a later stage.

紫外線酸化装置自体の一般的な構造は、図6に示すとおりで、紫外線酸化装置5のステンレス製等の反応槽52中に管状の紫外線ランプ50(例えば、254nmと185nmの各波長を持つ低圧紫外線ランプ、254nmと194nmと185nmの各波長を持つ低圧紫外線ランプ等)が設置されており、被処理水中の微量有機物が紫外線照射により分解される。   The general structure of the ultraviolet oxidizer itself is as shown in FIG. 6, and a tubular ultraviolet lamp 50 (for example, low-pressure ultraviolet rays having respective wavelengths of 254 nm and 185 nm) is provided in a reaction vessel 52 made of stainless steel or the like of the ultraviolet oxidizer 5. Lamp, low-pressure ultraviolet lamps having wavelengths of 254 nm, 194 nm, and 185 nm) are installed, and trace organic substances in the water to be treated are decomposed by ultraviolet irradiation.

紫外線酸化装置5で処理された処理水は、紫外線酸化装置5の後段に設置されたイオン交換装置に送り込まれ、有機物の酸化分解で生じた陰イオンがイオン交換樹脂によって除去される。   The treated water treated by the ultraviolet oxidizer 5 is sent to an ion exchange device installed at a subsequent stage of the ultraviolet oxidizer 5, and anions generated by oxidative decomposition of organic substances are removed by an ion exchange resin.

一方、従来、液体中に含まれているTOC成分を除去する技術として紫外線ランプと光触媒とを組み合わせた技術が数多く報告されており、超純水製造装置への適用もいくつか検討されている。例えば、特許文献1には、超純水等の液体中に過酸化水素、オゾンを添加するとともに、アナタース型等の光触媒の存在下において、紫外線ランプ等により紫外線照射を行い、超純水等の液体中のTOC成分を分解する方法が記載されている。また、特許文献2のように、紫外線ランプと内壁に光触媒を保持させた紫外線処理槽とを組み合わせた装置で、紫外線ランプ近傍で空気のバブリングを発生させることにより有機物の酸化を促進するような例も報告されている。   On the other hand, many techniques combining an ultraviolet lamp and a photocatalyst have been reported as techniques for removing TOC components contained in liquids, and some applications to ultrapure water production apparatuses have been studied. For example, in Patent Document 1, hydrogen peroxide and ozone are added to a liquid such as ultrapure water, and in the presence of a photocatalyst such as an anatase type, ultraviolet irradiation is performed with an ultraviolet lamp or the like, and A method for decomposing TOC components in a liquid is described. In addition, as in Patent Document 2, an apparatus that combines an ultraviolet lamp and an ultraviolet treatment tank having a photocatalyst held on the inner wall, promotes oxidation of organic matter by generating air bubbling in the vicinity of the ultraviolet lamp. Has also been reported.

特開平10−151450号公報JP-A-10-151450 特許第2888185号公報Japanese Patent No. 2888185 特開2005−29866号公報Japanese Patent Laid-Open No. 2005-29866 特許第3370290号公報Japanese Patent No. 3370290

上述した紫外線酸化装置における紫外線ランプを用いた酸化処理では、一般的に、
a)紫外線ランプの消費電力が大きい(一般的に紫外線酸化装置は紫外線ランプが発する185nm紫外線により有機物を酸化分解するが、185nm紫外線の照射出力は投入電力の3〜5%程度に過ぎず、95%強の電力が無効に消費されている。)。
b)185nm紫外線は水への吸収が大きく、純水中でも10mm程度しか透過しないため、十分な酸化効果を得るためには、紫外線ランプと紫外線酸化装置内壁の距離を短くしなければいけない。
c)紫外線ランプには寿命があり、定期的な交換が必要であるにもかかわらず単価が高い。
d)紫外線照射での酸化効果を十分なものにするためには、ランプ本数が必然的に必要となり、そのためランプの交換に手間がかかる。
e)紫外線照射での酸化効果を十分なものにするためには過酸化水素の混合や、エアやオゾン等のバブリングが必要である等の理由によってランニングコストが高い。
等の問題があった。
In the oxidation treatment using the ultraviolet lamp in the ultraviolet oxidation apparatus described above, in general,
a) The power consumption of the ultraviolet lamp is large (in general, the ultraviolet oxidation apparatus oxidizes and decomposes organic substances by the 185 nm ultraviolet ray emitted from the ultraviolet lamp, but the irradiation output of the 185 nm ultraviolet ray is only about 3 to 5% of the input power. A little over% of power is consumed ineffectively.)
b) The 185 nm ultraviolet ray is highly absorbed in water and only transmits about 10 mm even in pure water. Therefore, in order to obtain a sufficient oxidation effect, the distance between the ultraviolet lamp and the inner wall of the ultraviolet oxidizer must be shortened.
c) UV lamps have a lifetime and are expensive despite the need for regular replacement.
d) The number of lamps is inevitably required in order to make the oxidation effect of UV irradiation sufficient, and therefore it takes time to replace the lamps.
e) The running cost is high due to the necessity of mixing hydrogen peroxide or bubbling with air, ozone or the like in order to make the oxidation effect with ultraviolet irradiation sufficient.
There was a problem such as.

例えば前述した紫外線ランプによって、超純水に含まれている5〜20ppbのTOC成分を1ppb以下に分解除去するためには、0.3〜3kwh/mの電力量を必要とした。実処理ラインの液体の流量を50m/hrとした場合、その消費電力は13〜23kwと高電力を消費するという問題があった。 For example, in order to decompose and remove the TOC component of 5 to 20 ppb contained in the ultrapure water to 1 ppb or less by the ultraviolet lamp described above, an electric energy of 0.3 to 3 kwh / m 3 is required. When the flow rate of the liquid in the actual processing line is 50 m 3 / hr, there is a problem that the power consumption is 13 to 23 kw and high power is consumed.

また、従来の紫外線ランプと光触媒とを組み合わせた処理方法は、工業的な技術として完成されているものが少なく、実装置として運転されているものは、光触媒と処理対象液体の接触面積が小さく、結果として光触媒反応の利用効率が極端に悪いという問題があった。   In addition, there are few treatment methods combining conventional ultraviolet lamps and photocatalysts as industrial techniques, and those operating as actual devices have a small contact area between the photocatalyst and the liquid to be treated, As a result, there was a problem that the utilization efficiency of the photocatalytic reaction was extremely bad.

例えば、特許文献2のように紫外線処理槽内壁に光触媒を保持する方法では、必ずしも処理対象とするTOC成分と光触媒が接触することなく、処理水が紫外線処理装置外に出て行ってしまう場合があるため、光触媒によるTOC成分の分解効率が極端に低くなってしまう可能性がある。   For example, in the method of holding the photocatalyst on the inner wall of the ultraviolet treatment tank as in Patent Document 2, the treated water may go out of the ultraviolet treatment apparatus without necessarily contacting the TOC component to be treated and the photocatalyst. Therefore, the decomposition efficiency of the TOC component by the photocatalyst may be extremely low.

また、特許文献1のように過酸化水素、オゾンを併用する方法では、ランニングコストが上昇するとともに、紫外線処理装置の後段でさらに過酸化水素、オゾンの除去を行わなければならず、装置が複雑化するという問題があった。   Further, in the method of using hydrogen peroxide and ozone together as in Patent Document 1, the running cost increases, and hydrogen peroxide and ozone must be further removed after the ultraviolet ray processing apparatus, resulting in a complicated apparatus. There was a problem of becoming.

本発明は、被処理水中のTOC成分の分解除去を効率的に行うことができる紫外線酸化装置である。   The present invention is an ultraviolet oxidation apparatus that can efficiently decompose and remove the TOC component in the water to be treated.

本発明は、紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化装置であって、紫外線を照射する紫外線照射手段と、前記紫外線を前記被処理水に照射して前記有機物の酸化分解を行うための少なくとも1つの反応部と、前記反応部の少なくとも1つに備えた迂流部材と、膜状の保持材の少なくとも両面に光触媒をコーティングして光触媒を担持せしめた光触媒フィルタと、前記被処理水を前記光触媒フィルタに透過させる流路と、を備え、前記光触媒フィルタの前記紫外線照射手段に対する取り付け角度を45度以上135度以下とし、前記光触媒フィルタを前記被処理水の流れ方向に少なくとも2段以上に配置し、前記流れ方向の上流側の光触媒フィルタの平均細孔径が下流側の光触媒フィルタの平均細孔径よりも小さい紫外線酸化装置である。 The present invention relates to an ultraviolet oxidation apparatus that oxidizes and decomposes organic matter contained in water to be treated using ultraviolet rays, ultraviolet irradiation means for irradiating ultraviolet rays, and irradiating the ultraviolet rays to the water to be treated. At least one reaction section for performing oxidative decomposition; a bypass member provided in at least one of the reaction sections; and a photocatalytic filter in which a photocatalyst is supported by coating a photocatalyst on at least both surfaces of a film-shaped holding material ; A flow path for allowing the water to be treated to pass through the photocatalyst filter, wherein an attachment angle of the photocatalyst filter to the ultraviolet irradiation means is 45 degrees or more and 135 degrees or less, and the photocatalyst filter is flow direction of the water to be treated Arranged in at least two stages, and the average pore diameter of the upstream photocatalytic filter in the flow direction is larger than the average pore diameter of the downstream photocatalytic filter It is again ultraviolet oxidation device.

また、前記紫外線酸化装置において、前記酸化分解処理された処理水を前記光触媒フィルタの流出側から流入側へ通水させて前記光触媒フィルタを洗浄する逆洗手段を備えることが好ましい。   The ultraviolet oxidation apparatus preferably includes backwashing means for cleaning the photocatalytic filter by passing the oxidatively decomposed treated water from the outflow side to the inflow side of the photocatalytic filter.

また、前記紫外線酸化装置において、前記光触媒が、TiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、KNbO、Fe、Ta、WO、SnO、Bi、NiO、CuO、SiC、SiO、MoS、InPb、RuO、CeO、および、これらの光触媒にPt、Rh、RuO、Nb、Cu、Sn、NiOのうち少なくとも1つを担持したものから選択される少なくとも1つであることが好ましい。 In the ultraviolet oxidation apparatus, the photocatalyst may be TiO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , K 2 NbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO. 2 , Bi 2 O 3 , NiO, Cu 2 O, SiC, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2 , and their photocatalysts are Pt, Rh, RuO 2 , Nb, Cu, Sn, NiO. Of these, at least one selected from those carrying at least one is preferable.

また、本発明は、紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化方法であって、紫外線を照射する紫外線照射手段と、前記紫外線を前記被処理水に照射して前記有機物の酸化分解を行うための少なくとも1つの反応部と、前記反応部の少なくとも1つに備えた迂流部材と、膜状の保持材の少なくとも両面に光触媒をコーティングして光触媒を担持せしめた光触媒フィルタと、前記被処理水を前記光触媒フィルタに透過させる流路と、を備え、前記光触媒フィルタの前記紫外線照射手段に対する取り付け角度を45度以上135度以下とし、前記光触媒フィルタを前記被処理水の流れ方向に少なくとも2段以上に配置し、前記流れ方向の上流側の光触媒フィルタの平均細孔径が下流側の光触媒フィルタの平均細孔径よりも小さい紫外線酸化装置を用いて、紫外線を前記被処理水に照射して前記有機物の酸化分解を行い、前記被処理水を前記光触媒フィルタを透過させる紫外線酸化方法である。 Further, the present invention is an ultraviolet oxidation method for oxidatively decomposing an organic substance contained in water to be treated by using ultraviolet rays, ultraviolet irradiation means for irradiating ultraviolet rays, and irradiating the water to be treated with the ultraviolet rays. A photocatalyst in which a photocatalyst is supported by coating at least one reaction part for oxidative decomposition of an organic substance, a bypass member provided in at least one of the reaction parts, and at least both surfaces of a film-like holding material A filter and a flow path for allowing the water to be treated to pass through the photocatalyst filter, wherein an attachment angle of the photocatalyst filter to the ultraviolet irradiation means is 45 degrees or more and 135 degrees or less, and the photocatalytic filter is disposed on the water to be treated. Arranged in at least two stages in the flow direction, the average pore diameter of the upstream photocatalytic filter in the flow direction is the average pore diameter of the downstream photocatalytic filter Remote with a small ultraviolet oxidation device, the ultraviolet light is irradiated to the water to be treated subjected to oxidative decomposition of the organic material, wherein an ultraviolet oxidation method which transmits the photocatalyst filter water to be treated.

本発明では、紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化装置において、紫外線照射手段と、紫外線を被処理水に照射して有機物の酸化分解を行うための少なくとも1つの反応部と、光触媒フィルタと、被処理水を光触媒フィルタに透過させる流路と、を備えることにより、被処理水中のTOC成分の分解除去を効率的に行うことが可能な紫外線酸化装置を提供することができる。   In the present invention, in an ultraviolet oxidation apparatus that oxidatively decomposes organic matter contained in water to be treated using ultraviolet rays, at least one for irradiating ultraviolet rays to the water to be treated and oxidatively decomposing organic matter by irradiating the ultraviolet rays with the ultraviolet rays. Provided is an ultraviolet oxidation apparatus capable of efficiently decomposing and removing a TOC component in water to be treated by including a reaction unit, a photocatalyst filter, and a flow path that allows the water to be treated to pass through the photocatalyst filter. be able to.

また、本発明では、紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化方法において、紫外線を被処理水に照射して有機物の酸化分解を行い、その被処理水をさらに光触媒フィルタを透過させることにより、被処理水中のTOC成分の分解除去を効率的に行うことが可能な紫外線酸化方法を提供することができる。   In the present invention, in the ultraviolet oxidation method for oxidizing and decomposing organic substances contained in the water to be treated using ultraviolet rays, the organic substances are oxidatively decomposed by irradiating the water to be treated with ultraviolet rays, and the treated water is further photocatalyzed. By passing through the filter, it is possible to provide an ultraviolet oxidation method that can efficiently decompose and remove the TOC component in the water to be treated.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

以下に本発明の一実施形態に係る紫外線酸化装置を図面により説明する。図1は本実施形態に係る紫外線酸化装置1の縦断面図、図2(a)は図1のA−A線断面矢視図、図2(b)は図1のB−B線断面矢視図である。   Hereinafter, an ultraviolet oxidation apparatus according to an embodiment of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of an ultraviolet oxidation apparatus 1 according to the present embodiment, FIG. 2 (a) is a sectional view taken along line AA in FIG. 1, and FIG. 2 (b) is a sectional view taken along line BB in FIG. FIG.

本実施形態に係る紫外線酸化装置1は、紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化装置であり、紫外線照射手段である紫外線ランプ10を内蔵した透過筒12と、紫外線を被処理水に照射して有機物の酸化分解を行うための少なくとも1つの反応部20を備える反応槽14と、反応槽14内に配置されて紫外線ランプ10からの紫外線が照射されるように配置した、光触媒を担持せしめた膜状の光触媒フィルタ16とを備える。また、反応槽14内の被処理水の撹拌効率を上げるために迂流部材である迂流板(フィン)18を備えることが好ましい。   The ultraviolet oxidation apparatus 1 according to the present embodiment is an ultraviolet oxidation apparatus that oxidizes and decomposes organic substances contained in water to be treated using ultraviolet rays, and includes a transmission tube 12 having a built-in ultraviolet lamp 10 serving as ultraviolet irradiation means, and ultraviolet rays. Is disposed in the reaction tank 14 so as to be irradiated with ultraviolet rays from the ultraviolet lamp 10. And a film-like photocatalytic filter 16 carrying a photocatalyst. Moreover, in order to raise the stirring efficiency of the to-be-processed water in the reaction tank 14, it is preferable to provide the diverting board (fin) 18 which is a diverting member.

図1の紫外線酸化装置1において、反応槽14内の中心付近に紫外線ランプ10を内蔵した透過筒12を少なくとも1本(図1の例では3本)配置し、光触媒を担持した光触媒フィルタ16を紫外線ランプ10と略垂直(取り付け角度90度)になるように反応槽14の高さ方向にほぼ等間隔に4枚配置している。また、反応槽14は光触媒フィルタ16により5つの反応部20に分割され、両端部を除いた反応部20のそれぞれには、被処理水の撹拌効率を向上させるためにフィン18を1枚ずつ反応槽14の内側面の周方向に沿って配置している。反応部20は、被処理水を光触媒フィルタ16に透過させる流路ともなっている。なお、紫外線ランプ10の本数、設置位置、光触媒フィルタ16の枚数、設置位置、フィン18の枚数、設置位置等は一例であって、これらに限定するものではなく、適宜設定することができる。   In the ultraviolet oxidizer 1 of FIG. 1, at least one transmission tube 12 (three in the example of FIG. 1) having a built-in ultraviolet lamp 10 is arranged near the center in the reaction vessel 14, and a photocatalytic filter 16 carrying a photocatalyst is provided. Four pieces are arranged at substantially equal intervals in the height direction of the reaction tank 14 so as to be substantially perpendicular to the ultraviolet lamp 10 (attachment angle 90 degrees). In addition, the reaction tank 14 is divided into five reaction units 20 by the photocatalytic filter 16, and each of the reaction units 20 excluding both ends is reacted with one fin 18 to improve the stirring efficiency of the water to be treated. It arrange | positions along the circumferential direction of the inner surface of the tank 14. As shown in FIG. The reaction unit 20 is also a flow path that allows the water to be treated to pass through the photocatalytic filter 16. The number of ultraviolet lamps 10, the installation position, the number of photocatalytic filters 16, the installation position, the number of fins 18, the installation position, and the like are merely examples and can be set as appropriate.

このような紫外線酸化装置1に反応槽14下部の入口から上向流で被処理水を流入させると、被処理水はフィン18の影響で充分に撹拌されながら紫外線ランプ10から照射された紫外線による有機物の酸化分解を受けるとともに、さらに光触媒を担持せしめた光触媒フィルタ16を透過する。光触媒フィルタ16には紫外線ランプ10からの紫外線が照射され、光触媒フィルタ16に担持された光触媒が活性化される。被処理水はさらに光触媒フィルタ16を透過するため、この時、光触媒反応による残存したTOC成分の分解も進行する。TOC成分の直接分解に寄与する波長185nm等の紫外線は一般的にランプ表面から10mm程度の地点で光強度が10%未満に減衰してしまうため、必ずしも分解効率が高いとはいえないが、本実施形態に係る紫外線酸化装置1では従来の紫外線酸化装置では無効消費されていた波長254nm等の紫外線が光触媒の励起に寄与し、有効に利用されるため、非常に高効率な紫外線酸化装置となる。   When the water to be treated flows into the ultraviolet oxidizer 1 from the lower inlet of the reaction tank 14 in an upward flow, the water to be treated is caused by the ultraviolet rays irradiated from the ultraviolet lamp 10 while being sufficiently stirred by the influence of the fins 18. While undergoing oxidative decomposition of the organic matter, it further passes through a photocatalytic filter 16 carrying a photocatalyst. The photocatalytic filter 16 is irradiated with ultraviolet rays from the ultraviolet lamp 10, and the photocatalyst carried on the photocatalytic filter 16 is activated. Since the water to be treated further passes through the photocatalytic filter 16, the decomposition of the remaining TOC component by the photocatalytic reaction also proceeds at this time. Ultraviolet rays having a wavelength of 185 nm or the like that contribute to the direct decomposition of the TOC component generally attenuates the light intensity to less than 10% at a point of about 10 mm from the lamp surface. In the ultraviolet oxidation apparatus 1 according to the embodiment, ultraviolet light having a wavelength of 254 nm or the like that has been ineffectively consumed in the conventional ultraviolet oxidation apparatus contributes to the excitation of the photocatalyst and is effectively used, so that the ultraviolet oxidation apparatus is very highly efficient. .

なお、図1の例では、被処理水を反応槽14に上向流で通水しているが、被処理水を反応槽に下向流または水平流で通水してもかまわない。通常は上向流で通水する。また、ここでは縦置きの反応槽としたが、横置きの反応槽とすることもできる。   In the example of FIG. 1, the water to be treated is passed through the reaction tank 14 in an upward flow, but the water to be treated may be passed through the reaction tank in a downward flow or a horizontal flow. Normally, water flows upward. Moreover, although it was set as the vertical reaction tank here, it can also be set as a horizontal reaction tank.

紫外線を照射する紫外線照射手段としては紫外線ランプ10等が挙げられ、有機物を分解し、かつ光触媒を光活性化するために必要な波長領域の光を放出するランプであれば特に制限はなく、少なくとも波長100nm〜200nmの真空紫外線を放出するランプであることが好ましい。例えば254nmと185nmの各波長を持つ低圧紫外線ランプ、254nmと194nmと185nmの各波長を持つ低圧紫外線ランプ、中圧ランプ、高圧ランプ等を1本または複数本使用することができる。   Examples of the ultraviolet irradiation means for irradiating ultraviolet rays include an ultraviolet lamp 10 and the like, and there is no particular limitation as long as the lamp emits light in a wavelength region necessary for decomposing organic matter and photoactivating the photocatalyst. A lamp that emits vacuum ultraviolet rays having a wavelength of 100 nm to 200 nm is preferable. For example, one or a plurality of low-pressure ultraviolet lamps having wavelengths of 254 nm and 185 nm, low-pressure ultraviolet lamps having wavelengths of 254 nm, 194 nm, and 185 nm, medium-pressure lamps, and high-pressure lamps can be used.

光触媒フィルタ16としては、保持材に光触媒を担持したものを用いることができる。   As the photocatalytic filter 16, a holding material carrying a photocatalyst can be used.

光触媒としては、TiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、KNbO、Fe、Ta、WO、SnO、Bi、NiO、CuO、SiC、SiO、MoS、InPb、RuO、CeO等、および、これらの光触媒にPt、Rh、RuO、Nb、Cu、Sn、NiO等の金属及び金属酸化物のうち少なくとも1つを担持したものから選択される少なくとも1つの他、従来公知のものがすべて適用できる。好ましくはTiOなどである。 The photocatalyst, TiO 2, ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3, K 2 NbO 3, Fe 2 O 3, Ta 2 O 5, WO 3, SnO 2, Bi 2 O 3, NiO , Cu 2 O, SiC, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2, etc., and these photocatalysts of metals and metal oxides such as Pt, Rh, RuO 2 , Nb, Cu, Sn, NiO In addition to at least one selected from those carrying at least one of them, all conventionally known ones can be applied. Preferably TiO 2 and the like.

酸化チタン(TiO)などの金属酸化物系半導体光触媒は、水の直接分解を利用した水素製造をはじめ、脱臭、殺菌、水中微量有機物の分解、排水処理等の応用が提案されている。この光触媒反応の特徴は、非常に強い酸化力を持つこと、選択性に乏しいこと、触媒反応であるため長寿命が期待できること等が挙げられる。 Metal oxide semiconductor photocatalysts such as titanium oxide (TiO 2 ) have been proposed for applications such as hydrogen production using direct decomposition of water, deodorization, sterilization, decomposition of trace organic substances in water, and wastewater treatment. The characteristics of this photocatalytic reaction include a very strong oxidizing power, poor selectivity, and a long life expectancy due to the catalytic reaction.

光触媒を担持する保持材としては、光触媒を保持し、ハンドリングや耐久性が実用上問題のない機械的特性を持ち、かつ液体が透過する性質を持つものであれば特に制限はない。例えば、ガラス繊維、セラミック、金属、プラスチック等はいずれも使用することができ、多孔質体または金属メッシュ等の透水性の保持材が好ましい。しかしながら、光触媒フィルタは紫外線に直接さらされかつ強い酸化力を持つ光触媒を保持することから、酸化反応により侵されにくいセラミック系材料や耐食性金属材料、好ましくはチタン、アルミニウム、ステンレスなどがよい。   The holding material for supporting the photocatalyst is not particularly limited as long as it holds the photocatalyst, has mechanical properties that do not cause practical problems in handling and durability, and has a property of allowing liquid to permeate. For example, any of glass fiber, ceramic, metal, plastic and the like can be used, and a water-permeable holding material such as a porous body or a metal mesh is preferable. However, since the photocatalytic filter retains a photocatalyst that is directly exposed to ultraviolet rays and has a strong oxidizing power, a ceramic material or a corrosion-resistant metal material, preferably titanium, aluminum, stainless steel, or the like, which is not easily attacked by an oxidation reaction, is preferable.

光触媒フィルタ16の平均細孔径は被処理水が透過することができれば良く特に制限はないが、1μm以上2000μm以下であることが好ましく、10μm以上100μm以下であることがより好ましい。光触媒フィルタ16の平均細孔径が1μm未満であると被処理水の透過性が低下したり、目詰まりを起こしやすくなる場合があり、2000μmを超えると被処理水と触媒の接触効率が悪化し、有機物の除去率が低下する場合がある。   The average pore diameter of the photocatalytic filter 16 is not particularly limited as long as the water to be treated can permeate, but is preferably 1 μm or more and 2000 μm or less, and more preferably 10 μm or more and 100 μm or less. If the average pore diameter of the photocatalyst filter 16 is less than 1 μm, the permeability of the water to be treated may decrease or clogging may occur easily. If the average pore diameter exceeds 2000 μm, the contact efficiency between the water to be treated and the catalyst will deteriorate. The organic matter removal rate may decrease.

光触媒を保持材に担持させる方法としては、ディップコート法、スピンコート法、スプレー法、刷塗り法、CVD法、陽極酸化法など従来公知のものがすべて適用できる。このうち均一な膜厚の光触媒膜が成膜可能で、かつ光触媒剥離の起きにくいディップコート法、CVD法、陽極酸化法等がコーティング法としては好ましい。   As a method for supporting the photocatalyst on the holding material, all conventionally known methods such as a dip coating method, a spin coating method, a spray method, a printing method, a CVD method, and an anodizing method can be applied. Among these, a dip coating method, a CVD method, an anodic oxidation method and the like that can form a uniform photocatalyst film and hardly cause photocatalytic peeling are preferable as the coating method.

光触媒フィルタ16は、図1のような膜状のものを少なくとも1枚配置しても良いし、特開2003−175333号公報で記載されているようなコーン型のフィルタを複数個多段に重ねるように配置しても良い。   As the photocatalytic filter 16, at least one film-like filter as shown in FIG. 1 may be arranged, or a plurality of cone-type filters as described in JP-A-2003-175333 are stacked in multiple stages. You may arrange in.

光触媒フィルタ16において、接触面積を増やしTOC成分の分解効率を向上させるために、膜状の保持材の少なくとも両面に光触媒がコーティングされていることが好ましい。細孔の表面全体に光触媒が担持されているとより接触面積が増えるためより好ましい。   In the photocatalyst filter 16, in order to increase the contact area and improve the decomposition efficiency of the TOC component, it is preferable that the photocatalyst is coated on at least both surfaces of the film-shaped holding material. It is more preferable that the photocatalyst is supported on the entire surface of the pore because the contact area increases.

膜状の光触媒フィルタ16の厚みは、十分な強度を有すれば良く特に制限はないが、例えば、0.05mm〜5mm、好ましくは0.5mm〜3mmの範囲とすればよい。光触媒フィルタ16の厚みが0.05mm未満では強度が足りず、5mmを超えると保持材の内部まで光が照射されない場合がある。   The thickness of the film-like photocatalytic filter 16 is not particularly limited as long as it has sufficient strength. For example, it may be in the range of 0.05 mm to 5 mm, preferably 0.5 mm to 3 mm. If the thickness of the photocatalytic filter 16 is less than 0.05 mm, the strength is insufficient, and if it exceeds 5 mm, light may not be irradiated to the inside of the holding material.

膜状の光触媒フィルタ16の紫外線ランプ10に対する取り付け角度は、紫外線ランプ10の本数および配置位置、反応槽14の形状等により最適角度を設定すればよいが、45度以上135度以下であることが好ましく、60度以上120度以下であることがより好ましい。取り付け角度が45度未満あるいは135度を超えると、光触媒フィルタ16自身による光の遮蔽効果により、TOC分解率が低下する傾向にある。ここで、取り付け角度とは紫外線ランプ10の発光面と光触媒フィルタ16の面のなす角度(図1におけるα)であり、図1の例では取り付け角度は90度である。   The attachment angle of the film-like photocatalytic filter 16 to the ultraviolet lamp 10 may be set to an optimum angle depending on the number and arrangement position of the ultraviolet lamps 10, the shape of the reaction tank 14, etc., but may be 45 degrees or more and 135 degrees or less. Preferably, it is 60 degrees or more and 120 degrees or less. When the attachment angle is less than 45 degrees or exceeds 135 degrees, the TOC decomposition rate tends to decrease due to the light shielding effect of the photocatalytic filter 16 itself. Here, the attachment angle is an angle formed by the light emitting surface of the ultraviolet lamp 10 and the surface of the photocatalytic filter 16 (α in FIG. 1), and in the example of FIG. 1, the attachment angle is 90 degrees.

また、接触面積を増やすために、光触媒フィルタ16を反応槽14内の被処理水の流れ方向に少なくとも2段以上に配置することが好ましい。さらに、光触媒フィルタ16の目詰まり防止等のために、被処理水の流れ方向の上流側の光触媒フィルタの平均細孔径が下流側のフィルタの平均細孔径よりも小さいことが好ましい。これにより、被処理水中に懸濁物質が含まれていた場合、上流側の目の細かいフィルタでそれらを捕捉することにより、下流側に懸濁物質が洩れない効果がある。例えば、上流側の光触媒フィルタの平均細孔径を10μm以上20μm以下、下流側の光触媒フィルタの平均細孔径を20μm以上100μm以下とすればよい。   Moreover, in order to increase a contact area, it is preferable to arrange | position the photocatalyst filter 16 at least 2 steps | paragraphs or more in the flow direction of the to-be-processed water in the reaction tank 14. FIG. Furthermore, in order to prevent clogging of the photocatalyst filter 16, it is preferable that the average pore diameter of the upstream photocatalyst filter in the flow direction of the water to be treated is smaller than the average pore diameter of the downstream filter. Thereby, when suspended substances are contained in the water to be treated, there is an effect that the suspended substances do not leak downstream by capturing them with a fine filter on the upstream side. For example, the average pore diameter of the upstream photocatalyst filter may be 10 μm or more and 20 μm or less, and the average pore diameter of the downstream photocatalyst filter may be 20 μm or more and 100 μm or less.

反応槽14に設置する迂流部材としては、被処理水の撹拌効率を向上させることができれば良く特に制限はない。例えば、図3のようなドーナツ形状、三日月形状、円形の一部を切り取った形状等の迂流板(フィン)を用いることができる。また、フィン18は、反応槽14の内側面の周方向に沿って配置することが好ましい。フィン18は、被処理水の撹拌を効率良く行うことから、各反応部20に少なくとも1枚設置することが好ましい。   The bypass member installed in the reaction tank 14 is not particularly limited as long as the stirring efficiency of the water to be treated can be improved. For example, a bypass plate (fin) such as a donut shape, a crescent shape, or a shape obtained by cutting a part of a circle as shown in FIG. 3 can be used. Moreover, it is preferable to arrange | position the fin 18 along the circumferential direction of the inner surface of the reaction tank 14. FIG. In order to efficiently stir the water to be treated, it is preferable to install at least one fin 18 in each reaction unit 20.

反応槽14の材質としては、ステンレス、チタン等の公知の材料を用いることができる。反応槽14の内壁面は紫外線を十分に反射する材料で構成されることが好ましい。また、紫外線の反射性が高い材料でコーティングしても良い。また、反応槽14の内壁面に上記光触媒を塗布しても良い。これらによりさらにTOC成分の分解効率を向上することができる。   As a material of the reaction tank 14, well-known materials, such as stainless steel and titanium, can be used. The inner wall surface of the reaction vessel 14 is preferably made of a material that sufficiently reflects ultraviolet rays. Further, it may be coated with a material having high ultraviolet reflectivity. The photocatalyst may be applied to the inner wall surface of the reaction tank 14. By these, the decomposition efficiency of the TOC component can be further improved.

紫外線酸化装置1内に上述の光触媒フィルタ16を配置することにより、紫外線ランプ10の近傍だけでなく、光触媒フィルタ16表面においてもTOCの酸化分解が効率的に行われるため、処理水質の向上、単位処理流量あたりの紫外線ランプ出力の低減が可能となる。特に紫外線酸化装置で一般的に用いられている低圧紫外線ランプを光源として用いた場合、185nm紫外線のほとんど届かないところに光触媒フィルタ16を配置することにより、従来は無効消費されていた95%強の254nm紫外線を効率的に使用することができるため、処理時間の短縮、紫外線処理槽の容積拡大、処理流量の増加、紫外線ランプ使用本数の低減など紫外線酸化処理におけるランニングコストの総合的な低減が可能となる。紫外線ランプ使用本数が低減できれば、複数の紫外線ランプを使用することにより放出した紫外線が遮蔽される陰の部分が少なくなり、ランプの紫外線利用効率をさらに向上することができる。   By disposing the above-described photocatalytic filter 16 in the ultraviolet oxidizer 1, the TOC is efficiently decomposed not only in the vicinity of the ultraviolet lamp 10 but also on the surface of the photocatalytic filter 16. It is possible to reduce the UV lamp output per processing flow rate. In particular, when a low-pressure ultraviolet lamp generally used in an ultraviolet oxidizer is used as a light source, the photocatalytic filter 16 is disposed in a place where the 185 nm ultraviolet ray hardly reaches, so that it is slightly over 95% that has been conventionally consumed ineffectively. Since 254nm ultraviolet rays can be used efficiently, it is possible to comprehensively reduce the running cost in ultraviolet oxidation treatment, such as shortening the treatment time, expanding the volume of the ultraviolet treatment tank, increasing the treatment flow rate, and reducing the number of UV lamps used. It becomes. If the number of ultraviolet lamps used can be reduced, the shaded portion where the emitted ultraviolet rays are shielded by using a plurality of ultraviolet lamps can be reduced, and the ultraviolet utilization efficiency of the lamps can be further improved.

また、紫外線酸化装置1は、被処理水が光触媒フィルタ16を透過する構造を有するため、光触媒と処理対象とするTOCとが少なくとも1回(望ましくは複数回)は接触することとなる。このため、従来の光触媒装置と比べ格段に光触媒酸化効率が上がる。   Moreover, since the to-be-processed water permeate | transmits the photocatalyst filter 16, the ultraviolet-oxidation apparatus 1 will contact a photocatalyst and TOC made into a process object at least once (desirably several times). For this reason, compared with the conventional photocatalyst apparatus, photocatalytic oxidation efficiency rises markedly.

また、紫外線酸化装置1では、反応槽14に迂流部材であるフィン18を設置することにより、紫外線酸化装置1内の被処理水の撹拌を効率良く行うことが可能であり、光触媒によるTOC成分の分解効率を向上することができる。また、従来型の整流板を配置する必要がない。   Moreover, in the ultraviolet oxidation apparatus 1, the fin 18 which is a bypass member is installed in the reaction tank 14, so that the water to be treated in the ultraviolet oxidation apparatus 1 can be efficiently stirred, and the TOC component by the photocatalyst. The decomposition efficiency of can be improved. Moreover, there is no need to arrange a conventional current plate.

さらに、紫外線酸化装置1では過酸化水素やオゾンを併用したり、エアバブリング等を別途行ったりする必要はないため、シンプルな装置設計が可能である。   Furthermore, since it is not necessary to use hydrogen peroxide or ozone in combination or perform air bubbling separately in the ultraviolet oxidation apparatus 1, a simple apparatus design is possible.

また、本実施形態に係る紫外線酸化装置において、酸化分解処理された処理水を光触媒フィルタ16の流出側から流入側へ通水させて光触媒フィルタ16を洗浄する逆洗手段として逆洗配管22、処理水タンク23、逆洗ポンプ24等を図4に示すように備えることが好ましい。これにより、光触媒フィルタ16の付着物を除去することができ、目詰まりを低減することができる。   Further, in the ultraviolet oxidation apparatus according to the present embodiment, the backwash pipe 22 is treated as backwashing means for washing the photocatalyst filter 16 by passing the oxidatively decomposed treated water from the outflow side to the inflow side of the photocatalyst filter 16. It is preferable to provide the water tank 23, the backwash pump 24, etc. as shown in FIG. Thereby, the deposit | attachment of the photocatalyst filter 16 can be removed and clogging can be reduced.

本実施形態では、図5に示すように、紫外線酸化装置1で被処理水中に含まれるTOCを酸化分解した後、その処理水を例えば後段に設けたイオン交換装置26等に通水することにより、TOCが数ppbレベルまで除去が可能となる。   In this embodiment, as shown in FIG. 5, after the TOC contained in the water to be treated is oxidatively decomposed by the ultraviolet oxidizer 1, the treated water is passed through, for example, an ion exchange device 26 provided at the subsequent stage. , TOC can be removed up to several ppb level.

以上説明したとおり、本実施形態に係る紫外線酸化装置によれば、超純水または純水等の被処理水中のTOC成分の分解除去を効率的に促進することによって、TOC成分の除去処理時間を短縮して、TOC成分の少ない高品質の超純水または純水等の処理液体を、消費電力等の製造コストを低減して得ることができる。紫外線酸化装置内に光触媒を担持させた光触媒フィルタならびにフィンを配置することにより、TOC成分の分解を紫外線ランプの近傍だけでなく、光触媒フィルタ表面でも進行させることができ、従来法に比較し、単位流量当りの紫外線ランプの出力を減少させることができる。特に本装置は被処理液体が光触媒フィルタを全量透過するという構造を有するため、従来の光触媒酸化装置と比較して、被処理液体と光触媒との接触面積が飛躍的に増大し、その結果として光化学反応処理効率はこれまでになく高まる。本実施形態に係る紫外線酸化装置を超純水の製造ライン等に組み込むことにより、高品質の超純水を、消費電力コストを大幅に削減しながら得ることが可能となる。   As described above, according to the ultraviolet oxidation apparatus according to the present embodiment, the TOC component removal treatment time can be increased by efficiently promoting the decomposition and removal of the TOC component in the treated water such as ultrapure water or pure water. By shortening, it is possible to obtain a high-quality processing liquid such as ultrapure water or pure water with a low TOC component at a reduced manufacturing cost such as power consumption. By disposing the photocatalyst filter carrying the photocatalyst and the fin in the ultraviolet oxidation device, the decomposition of the TOC component can proceed not only in the vicinity of the ultraviolet lamp but also on the surface of the photocatalyst filter. The output of the ultraviolet lamp per flow rate can be reduced. In particular, this device has a structure in which the liquid to be treated passes through the photocatalyst filter in total, so that the contact area between the liquid to be treated and the photocatalyst is drastically increased compared to conventional photocatalytic oxidation devices. The efficiency of reaction treatment is higher than ever. By incorporating the ultraviolet oxidation apparatus according to the present embodiment into an ultrapure water production line or the like, it becomes possible to obtain high quality ultrapure water while significantly reducing power consumption costs.

本実施形態に係る紫外線酸化装置は、半導体製造工業等において、洗浄水等の用途に用いる純水、超純水の製造等に使用することができる。   The ultraviolet oxidation apparatus according to the present embodiment can be used for the production of pure water and ultrapure water used for applications such as cleaning water in the semiconductor manufacturing industry and the like.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

参考例1)
紫外線酸化装置としては図1に示す装置(ステンレス製、内径=134mm、高さ=1800mm)を用いた。紫外線酸化装置1内のほぼ中心に254nmと185nmの各波長を持つ200W低圧の紫外線ランプ10を内蔵した透過筒12を1本、2本または3本配置し、光触媒(酸化チタン)を基材(多孔質SUSフィルタ(SUS316))の少なくとも両面にCVD法にて担持した透過性の光触媒フィルタ16(平均細孔径=20μm)を、紫外線ランプ10と略垂直(取り付け角度α=90度)になるように、また紫外線酸化装置1の高さ方向に等間隔になるように4枚配置した。また、各光触媒フィルタ16により分割された5つの反応部20の両端部を除いたそれぞれには、ドーナツ形状(幅15mm)のフィン18を反応槽14の内側面の周方向に沿って、高さ方向のほぼ中央付近に1枚配置した。処理対象となる被処理水は2−プロパノールを超純水で希釈し、初期濃度50ppbに設定した。また、処理流量は3m3/hrとして、紫外線酸化装置1に通水した。UVランプを点灯後、30分経ってから通水を開始し、通水から1時間後に採水を行って、2−プロパノールの濃度を測定した。結果を表1に示す。
( Reference Example 1)
As the ultraviolet oxidation apparatus, the apparatus shown in FIG. 1 (made of stainless steel, inner diameter = 134 mm, height = 1800 mm) was used. One, two, or three transmission cylinders 12 incorporating 200 W low-pressure ultraviolet lamps 10 having respective wavelengths of 254 nm and 185 nm are arranged at substantially the center in the ultraviolet oxidation apparatus 1, and a photocatalyst (titanium oxide) is used as a base material ( A transparent photocatalyst filter 16 (average pore diameter = 20 μm) carried by a CVD method on at least both surfaces of a porous SUS filter (SUS316) is set substantially perpendicular to the ultraviolet lamp 10 (attachment angle α = 90 degrees). In addition, four sheets were arranged at equal intervals in the height direction of the ultraviolet oxidation apparatus 1. In addition, doughnut-shaped (width 15 mm) fins 18 are provided along the circumferential direction of the inner surface of the reaction tank 14 except for the ends of the five reaction sections 20 divided by the photocatalytic filters 16. One sheet was placed near the center of the direction. As the water to be treated, 2-propanol was diluted with ultrapure water and set to an initial concentration of 50 ppb. The treatment flow rate was 3 m 3 / hr, and water was passed through the ultraviolet oxidizer 1. After the UV lamp was turned on, water flow was started after 30 minutes, and water was collected 1 hour after the water flow, and the concentration of 2-propanol was measured. The results are shown in Table 1.

(比較例1)
参考例1の光触媒フィルタ16の代わりに光触媒を担持せずに多孔質SUSフィルタ(SUS316、孔径20μm)を用いた以外は、参考例1と同様の条件で実験を行った。結果を表1に示す。
(Comparative Example 1)
Porous SUS filter (SUS316, pore size 20 [mu] m) without carrying a photocatalyst instead of the photocatalyst filter 16 of Example 1 except for using the experiments were conducted under the same conditions as in Reference Example 1. The results are shown in Table 1.

これらの結果より参考例1の紫外線酸化装置の高い処理性能が確認された。3本の紫外線ランプを使用する従来型の紫外線酸化装置と同程度のTOC分解効率を得るのに、光触媒フィルタを組み込んだ紫外線酸化装置では、紫外線ランプ本数が1本で足りることが判明した。 From these results, high processing performance of the ultraviolet oxidation apparatus of Reference Example 1 was confirmed. In order to obtain the same TOC decomposition efficiency as that of a conventional ultraviolet oxidation apparatus using three ultraviolet lamps, it has been found that only one ultraviolet lamp is sufficient for an ultraviolet oxidation apparatus incorporating a photocatalytic filter.

参考例2)
参考例1の紫外線酸化装置内のフィン18を外した以外は、参考例1と同様の条件で実験を行った。紫外線ランプ10として254nmと185nmの各波長を持つ200W低圧紫外線ランプを内蔵した透過筒12を1本配置した。結果を表1に示す。
( Reference Example 2)
The experiment was performed under the same conditions as in Reference Example 1 except that the fin 18 in the ultraviolet oxidation apparatus of Reference Example 1 was removed. As the ultraviolet lamp 10, one transmission tube 12 having a built-in 200W low-pressure ultraviolet lamp having wavelengths of 254 nm and 185 nm was disposed. The results are shown in Table 1.

この結果より紫外線酸化装置内にフィンを設置することにより、反応部での撹拌効率が向上し、TOC分解率が上昇することがわかった。   From this result, it was found that by installing fins in the ultraviolet oxidation apparatus, the stirring efficiency in the reaction part was improved and the TOC decomposition rate was increased.

参考例3)
参考例1の紫外線酸化装置1において、光触媒フィルタ16の取り付け角度αを12度とした以外は、参考例1と同様の条件で実験を行った。紫外線ランプ10として254nmと185nmの各波長を持つ200W低圧紫外線ランプを内蔵した透過筒12を1本配置した。結果を表1に示す。
( Reference Example 3)
In the ultraviolet oxidation apparatus 1 of Reference Example 1, an experiment was performed under the same conditions as Reference Example 1 except that the mounting angle α of the photocatalytic filter 16 was set to 12 degrees. As the ultraviolet lamp 10, one transmission tube 12 having a built-in 200W low-pressure ultraviolet lamp having wavelengths of 254 nm and 185 nm was disposed. The results are shown in Table 1.

この結果より光触媒フィルタ16の紫外線ランプ10に対する取り付け角度αを小さくしすぎると、光触媒フィルタ16自身による光の遮蔽効果により、TOC分解率が低下することがわかった。   From this result, it was found that if the mounting angle α of the photocatalytic filter 16 with respect to the ultraviolet lamp 10 is made too small, the TOC decomposition rate decreases due to the light shielding effect of the photocatalytic filter 16 itself.

参考例4)
光触媒フィルタとして、光触媒(酸化チタン)を基材(多孔質SUSフィルタ(SUS316))の片面にコーティングした透過性の光触媒フィルタ16(平均細孔径=20μm)を使用した以外は参考例1と同様の条件で実験を行った。紫外線ランプ10として254nmと185nmの各波長を持つ200W低圧紫外線ランプを内蔵した透過筒12を1本配置した。結果を表1に示す。
( Reference Example 4)
As the photocatalyst filter, the same as in Reference Example 1 except that a permeable photocatalyst filter 16 (average pore diameter = 20 μm) coated with a photocatalyst (titanium oxide) on one side of a base material (porous SUS filter (SUS316)) was used. The experiment was conducted under conditions. As the ultraviolet lamp 10, one transmission tube 12 having a built-in 200W low-pressure ultraviolet lamp having wavelengths of 254 nm and 185 nm was disposed. The results are shown in Table 1.

この結果より光触媒を少なくとも両面に担持することにより、TOC分解率が上昇することがわかった。   From this result, it was found that the TOC decomposition rate was increased by supporting the photocatalyst on at least both sides.

(実施例
被処理水の流れ方向の上流側の1枚の光触媒フィルタ16として平均細孔径が10μmのもの、下流側の3枚の光触媒フィルタ16として平均細孔径が20μmのものを使用し、参考例1と同様の条件で実験を行った。紫外線ランプ10として254nmと185nmの各波長を持つ200W低圧紫外線ランプを内蔵した透過筒12を1本配置した。また、図4のように逆洗配管22、処理水タンク23、逆洗ポンプ24を配置し、逆洗を行えるような装置とした。通水は1週間連続で行い、1週間後の処理水TOC、差圧ΔP(入口圧力−出口圧力)の値を測定した。さらにその後、逆洗を実施し、通水再開1時間後の処理水TOC、差圧ΔPの値を測定した。また、光触媒フィルタ16として4枚全て平均細孔径が20μmのものを使用して、同様に実験を行った。結果を表2に示す。
(Example 1 )
An average pore diameter of 10μm as a single photocatalytic filter 16 on the upstream side in the flow direction of the water to be treated, the average pore diameter as three photocatalytic filter 16 on the downstream side using those 20 [mu] m, as in Reference Example 1 The experiment was performed under the same conditions. As the ultraviolet lamp 10, one transmission tube 12 having a built-in 200W low-pressure ultraviolet lamp having wavelengths of 254 nm and 185 nm was disposed. Further, as shown in FIG. 4, a backwash pipe 22, a treated water tank 23, and a backwash pump 24 are arranged so that backwashing can be performed. Water flow was continued for one week, and the values of treated water TOC and differential pressure ΔP (inlet pressure-outlet pressure) after one week were measured. Thereafter, backwashing was performed, and the values of treated water TOC and differential pressure ΔP after 1 hour of resuming water flow were measured. Further, all the four photocatalytic filters 16 having an average pore diameter of 20 μm were used for the experiment. The results are shown in Table 2.

この結果より被処理水の流れ方向の上流側の光触媒フィルタの平均細孔径を下流側の光触媒フィルタの平均細孔径よりも小さくすることにより、高いTOC分解率を長期間維持できることがわかった。これは被処理水中の懸濁物質を上流側の光触媒フィルタで捕捉することにより、後段の光触媒フィルタに悪影響を及ぼすと考えられる懸濁物質が流れ出ない効果と考えられる。またこの結果より、逆洗を行うことにより光触媒フィルタの付着物が除去可能で、光触媒活性も初期の値まで回復するということがわかった。   From this result, it was found that a high TOC decomposition rate can be maintained for a long time by making the average pore diameter of the upstream photocatalyst filter in the flow direction of the water to be treated smaller than the average pore diameter of the downstream photocatalyst filter. This is thought to be due to the fact that suspended substances in the water to be treated are captured by the upstream photocatalyst filter, so that the suspended substances that are thought to adversely affect the subsequent photocatalyst filter do not flow out. Moreover, from this result, it was found that deposits on the photocatalyst filter can be removed by backwashing, and the photocatalytic activity is restored to the initial value.

参考
参考例1の紫外線酸化装置1において、光触媒を担持した透過性の光触媒フィルタ16として、平均細孔径を10μm、75μm、1000μm、2000μmと変更した以外は、参考例1と同様の条件で実験を行った。紫外線ランプ10として254nmと185nmの各波長を持つ200W低圧紫外線ランプを内蔵した透過筒12を1本配置した。結果を表3に示す。
( Reference Example 5 )
In the ultraviolet oxidation apparatus 1 of Reference Example 1, the experiment was performed under the same conditions as Reference Example 1 except that the average pore diameter was changed to 10 μm, 75 μm, 1000 μm, and 2000 μm as the transmissive photocatalytic filter 16 carrying the photocatalyst. It was. As the ultraviolet lamp 10, one transmission tube 12 having a built-in 200W low-pressure ultraviolet lamp having wavelengths of 254 nm and 185 nm was disposed. The results are shown in Table 3.

なお、光触媒フィルタの平均細孔径は、10μm、20μm、75μmのものはメーカ公証値であり、1000μm、2000μmのものは目開きを実測した値である。   The average pore diameter of the photocatalyst filter is 10 μm, 20 μm, 75 μm, which is a notarized value by the manufacturer, and those of 1000 μm, 2000 μm are values obtained by actually measuring openings.

これらの結果より、紫外線酸化装置で使用する光触媒フィルタの平均細孔径は1μm以上2000μm以下が好ましく、10μm以上100μm以下がより好ましいことがわかった。   From these results, it was found that the average pore diameter of the photocatalytic filter used in the ultraviolet oxidation apparatus is preferably 1 μm or more and 2000 μm or less, and more preferably 10 μm or more and 100 μm or less.

本発明の実施形態に係る紫外線酸化装置の一例の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of an example of the ultraviolet-ray oxidation apparatus which concerns on embodiment of this invention. (a)図1におけるA−A線断面矢視図である。(b)図1におけるB−B線断面矢視図である。(A) It is an AA sectional view taken on the line in FIG. (B) It is a BB sectional view taken on the line in FIG. 本発明の実施形態に係る紫外線酸化装置における迂流部材の一例を示す図である。It is a figure which shows an example of the bypass member in the ultraviolet-ray oxidation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線酸化装置の他の例の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the other example of the ultraviolet-ray oxidation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線酸化装置をイオン交換装置と組み合わせた装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the apparatus which combined the ultraviolet-ray oxidation apparatus which concerns on embodiment of this invention with the ion exchange apparatus. 従来の紫外線酸化装置の一例の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of an example of the conventional ultraviolet oxidation apparatus.

符号の説明Explanation of symbols

1,3,5 紫外線酸化装置、10,50 紫外線ランプ、12 透過筒、14,52 反応槽、16 光触媒フィルタ、18 迂流板(フィン)、20 反応部、22 逆洗配管、23 処理水タンク、24 逆洗ポンプ、26 イオン交換装置。   1,3,5 UV oxidizer, 10,50 UV lamp, 12 transmission tube, 14,52 reaction tank, 16 photocatalytic filter, 18 bypass plate (fin), 20 reaction section, 22 backwash pipe, 23 treated water tank , 24 Backwash pump, 26 Ion exchange device.

Claims (4)

紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化装置であって、
紫外線を照射する紫外線照射手段と、
前記紫外線を前記被処理水に照射して前記有機物の酸化分解を行うための少なくとも1つの反応部と、
前記反応部の少なくとも1つに備えた迂流部材と、
膜状の保持材の少なくとも両面に光触媒をコーティングして光触媒を担持せしめた光触媒フィルタと、
前記被処理水を前記光触媒フィルタに透過させる流路と、
を備え
前記光触媒フィルタの前記紫外線照射手段に対する取り付け角度を45度以上135度以下とし、
前記光触媒フィルタを前記被処理水の流れ方向に少なくとも2段以上に配置し、前記流れ方向の上流側の光触媒フィルタの平均細孔径が下流側の光触媒フィルタの平均細孔径よりも小さいことを特徴とする紫外線酸化装置。
An ultraviolet oxidation apparatus that oxidizes and decomposes organic substances contained in water to be treated using ultraviolet rays,
Ultraviolet irradiation means for irradiating ultraviolet rays;
At least one reaction section for irradiating the water to be treated with the ultraviolet light to oxidatively decompose the organic matter;
A bypass member provided in at least one of the reaction sections;
A photocatalyst filter in which a photocatalyst is coated on at least both surfaces of a film-shaped holding material to carry the photocatalyst;
A flow path for allowing the water to be treated to pass through the photocatalytic filter;
Equipped with a,
The mounting angle of the photocatalytic filter with respect to the ultraviolet irradiation means is 45 degrees to 135 degrees,
The photocatalyst filter is disposed in at least two stages in the flow direction of the water to be treated, and the average pore diameter of the upstream photocatalyst filter in the flow direction is smaller than the average pore diameter of the downstream photocatalyst filter. UV oxidation equipment.
請求項1に記載の紫外線酸化装置であって、
前記酸化分解処理された処理水を前記光触媒フィルタの流出側から流入側へ通水させて前記光触媒フィルタを洗浄する逆洗手段を備えることを特徴とする紫外線酸化装置。
The ultraviolet oxidation apparatus according to claim 1 ,
An ultraviolet oxidation apparatus, comprising backwashing means for cleaning the photocatalyst filter by passing the oxidatively decomposed treated water from the outflow side to the inflow side of the photocatalyst filter.
請求項1または2に記載の紫外線酸化装置であって、
前記光触媒が、TiO2、ZnO、SrTiO3、CdS、GaP、InP、GaAs、BaTiO3、K2NbO3、Fe23、Ta25、WO3、SnO2、Bi23、NiO、Cu2O、SiC、SiO2、MoS2、InPb、RuO2、CeO2、および、これらの光触媒にPt、Rh、RuO2、Nb、Cu、Sn、NiOのうち少なくとも1つを担持したものから選択される少なくとも1つであることを特徴とする紫外線酸化装置。
The ultraviolet oxidation apparatus according to claim 1 or 2 ,
The photocatalyst is TiO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , K 2 NbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3 , NiO. , Cu 2 O, SiC, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2 , and these photocatalysts carrying at least one of Pt, Rh, RuO 2 , Nb, Cu, Sn, NiO An ultraviolet oxidizer characterized in that it is at least one selected from:
紫外線を用いて被処理水中に含まれる有機物を酸化分解処理する紫外線酸化方法であって、
紫外線を照射する紫外線照射手段と、前記紫外線を前記被処理水に照射して前記有機物の酸化分解を行うための少なくとも1つの反応部と、前記反応部の少なくとも1つに備えた迂流部材と、膜状の保持材の少なくとも両面に光触媒をコーティングして光触媒を担持せしめた光触媒フィルタと、前記被処理水を前記光触媒フィルタに透過させる流路と、を備え、前記光触媒フィルタの前記紫外線照射手段に対する取り付け角度を45度以上135度以下とし、前記光触媒フィルタを前記被処理水の流れ方向に少なくとも2段以上に配置し、前記流れ方向の上流側の光触媒フィルタの平均細孔径が下流側の光触媒フィルタの平均細孔径よりも小さい紫外線酸化装置を用いて、紫外線を前記被処理水に照射して前記有機物の酸化分解を行い、前記被処理水を前記光触媒フィルタを透過させることを特徴とする紫外線酸化方法。
An ultraviolet oxidation method that oxidizes and decomposes organic substances contained in water to be treated using ultraviolet rays,
An ultraviolet irradiation means for irradiating ultraviolet rays; at least one reaction part for irradiating the water to be treated with the ultraviolet light to oxidatively decompose the organic matter; and a bypass member provided in at least one of the reaction parts; A photocatalyst filter coated with a photocatalyst on at least both surfaces of a film-like holding material, and a flow path for allowing the water to be treated to pass through the photocatalyst filter, and the ultraviolet irradiation means of the photocatalyst filter The photocatalytic filter is disposed in at least two stages in the flow direction of the water to be treated, and the average pore diameter of the upstream photocatalytic filter in the flow direction is a downstream photocatalyst. using a small ultraviolet oxidation device than the average pore size of the filter, the ultraviolet light is irradiated to the water to be treated subjected to oxidative decomposition of the organic material, wherein UV oxidation process which comprises bringing the treated water is passed through the photocatalytic filter.
JP2007184384A 2007-07-13 2007-07-13 Ultraviolet oxidation apparatus and ultraviolet oxidation method Expired - Fee Related JP4758399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184384A JP4758399B2 (en) 2007-07-13 2007-07-13 Ultraviolet oxidation apparatus and ultraviolet oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184384A JP4758399B2 (en) 2007-07-13 2007-07-13 Ultraviolet oxidation apparatus and ultraviolet oxidation method

Publications (2)

Publication Number Publication Date
JP2009018282A JP2009018282A (en) 2009-01-29
JP4758399B2 true JP4758399B2 (en) 2011-08-24

Family

ID=40358392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184384A Expired - Fee Related JP4758399B2 (en) 2007-07-13 2007-07-13 Ultraviolet oxidation apparatus and ultraviolet oxidation method

Country Status (1)

Country Link
JP (1) JP4758399B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540673A4 (en) 2010-02-24 2013-07-31 Ube Industries Ultraviolet oxidation device, ultrapure water production device using same, ultraviolet oxidation method, and ultrapure water production method
CN104326525B (en) * 2014-10-21 2015-12-30 国家电网公司 A kind of urban sewage recycling is in the treatment process of the recirculated cooling water in fuel-burning power plant
CN104528912B (en) * 2014-12-02 2016-08-03 河海大学 A kind of photocatalysis apparatus based on nano-magnetic titanium deoxide catalyst
JP2016160800A (en) * 2015-02-27 2016-09-05 株式会社セラフィム Fuel supply control method and its device for diesel engine
CN107185558B (en) * 2017-05-16 2019-09-03 浙江师范大学 A kind of photocatalysis hydrogen production catalyst and preparation method thereof
CN107500452A (en) * 2017-09-25 2017-12-22 四川大学 A kind of ultraviolet method for treating water for strengthening copper circulation catalytic oxygen
CN109019756A (en) * 2018-09-12 2018-12-18 华南理工大学 A kind of photocatalyst reaction vessel and photocatalysis performance test device
CN110201677A (en) * 2019-05-10 2019-09-06 上海应用技术大学 A kind of preparation method and applications of potassium niobate based photocatalyst
CN110354859A (en) * 2019-06-28 2019-10-22 黄山学院 A kind of preparation method and applications of cuprous oxide-zinc oxide composite
CN113387491A (en) * 2021-07-22 2021-09-14 重庆市机电设计研究院 Rural sewage treatment work system based on photocatalyst ceramic pellet technology
CN116273030A (en) * 2023-03-30 2023-06-23 四川大学 Polarization-enhanced potassium niobate/copper oxide composite photocatalytic material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361982A (en) * 1989-07-31 1991-03-18 Mita Ind Co Ltd Paper dust removing device
JP3812968B2 (en) * 1996-03-31 2006-08-23 日本無機株式会社 Photocatalyst cartridge
JP2000201569A (en) * 1999-01-18 2000-07-25 Toshiba Lighting & Technology Corp Water purifier and water tank unit
JP2000237543A (en) * 1999-02-23 2000-09-05 Tao:Kk Photocatalytic device
JP2001029747A (en) * 1999-07-26 2001-02-06 Shimadzu Corp Photochemical oxidative decomposition method and reactor
JP2002263176A (en) * 2001-03-13 2002-09-17 Hitachi Metals Ltd Photocatalyst device
JP2004148285A (en) * 2002-10-29 2004-05-27 Kiyoaki Yoshii Fresh water sterilization device
JP2005313088A (en) * 2004-04-28 2005-11-10 Shinshu Ceramics:Kk Water purifying device
JP4915979B2 (en) * 2004-12-03 2012-04-11 独立行政法人産業技術総合研究所 Fluid purification device

Also Published As

Publication number Publication date
JP2009018282A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4758399B2 (en) Ultraviolet oxidation apparatus and ultraviolet oxidation method
US10519051B2 (en) Systems and methods for the treatment of ballast water
JP5141846B2 (en) Ultraviolet oxidation apparatus, ultrapure water production apparatus using the same, ultraviolet oxidation method, and ultrapure water production method
US7425272B2 (en) Systems and methods for in-situ cleaning of protective sleeves in UV decontamination systems
JP5015542B2 (en) Water purification equipment
US20210053027A1 (en) Device For Regenerating Activated Carbon
KR101928905B1 (en) Method for purifying contaminated water and facility using the same
JP2007167807A (en) Fluid purification device and method
KR20140134990A (en) A water treatment system including porous alumina membranes immobilized photocatalysts, operating method thereof, and purifying method of wastewater using thereby
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
JP2010046611A (en) Ultraviolet oxidation apparatus
Wang et al. Combined catalytic ozonation and membrane system for trihalomethane control
CA2582467C (en) Systems and methods for in-situ cleaning of protective sleeves in uv decontamination systems
JP2567273Y2 (en) UV irradiation device for photochemical reaction treatment
JP2007136372A (en) Ultrapure water production device
CN107176647B (en) Microwave photocatalysis-ceramic membrane coupling purifier
JP2011218327A (en) Water treatment apparatus, and ballast water treatment apparatus
JP5376670B2 (en) Waste water treatment apparatus and waste water treatment method
CN110921769A (en) Method for treating drinking water by photocatalysis
JP2016059901A (en) Catalyst cartridge and peroxide-containing aqueous solution treatment apparatus equipped with the same
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP5496629B2 (en) Organic substance decomposition apparatus and organic substance decomposition method in pure water
KR100205443B1 (en) Apparatus for treating waste water using photocatalyst
JP2005152815A (en) Sewage treatment apparatus
CN216549904U (en) Suspension system reaction equipment for degrading organic matters based on nano photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

R150 Certificate of patent or registration of utility model

Ref document number: 4758399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees