JP2011114186A - Thermoelectric element and method of manufacturing the same, and thermoelectric module - Google Patents

Thermoelectric element and method of manufacturing the same, and thermoelectric module Download PDF

Info

Publication number
JP2011114186A
JP2011114186A JP2009269722A JP2009269722A JP2011114186A JP 2011114186 A JP2011114186 A JP 2011114186A JP 2009269722 A JP2009269722 A JP 2009269722A JP 2009269722 A JP2009269722 A JP 2009269722A JP 2011114186 A JP2011114186 A JP 2011114186A
Authority
JP
Japan
Prior art keywords
thermoelectric
alloy
thermoelectric material
layer
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269722A
Other languages
Japanese (ja)
Other versions
JP5514523B2 (en
Inventor
Koji Hisayuki
晃二 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009269722A priority Critical patent/JP5514523B2/en
Publication of JP2011114186A publication Critical patent/JP2011114186A/en
Application granted granted Critical
Publication of JP5514523B2 publication Critical patent/JP5514523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric element that prevents mutual diffusion of elements between a thermoelectric material and an electrode material when metal-joined with the electrode material. <P>SOLUTION: Thermoelectric elements 2, 3 are each prepared with diffusion preventive layers 9 made of Ni-Ti alloy at junction parts of a thermoelectric material 8 made of an alloy containing Sb, with electrodes 4. The thermoelectric materials 8 are each made of a discharge plasma sintered body of a powder of an alloy having a skutterudite type crystal structure. The diffusion preventive layers 9 are each formed of a discharge plasma sintered body of a powder of an alloy which contains 28 to 83 wt.% Ni and 17 to 72 wt.% Ti, the total amount of Ni and Ti being 100 wt.%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、熱エネルギを電気エネルギに変換したり、電気エネルギを熱エネルギに変換する熱電モジュールに用いられる熱電素子およびその製造方法、ならび熱電モジュールに関する。   The present invention relates to a thermoelectric element used in a thermoelectric module that converts thermal energy into electrical energy or converts electrical energy into thermal energy, a manufacturing method thereof, and a thermoelectric module.

この明細書および特許請求の範囲において、「合金」という用語には、固溶体、金属間化合物、および固溶体と金属間化合物との共存相のいずれもを含むものとする。   In this specification and claims, the term “alloy” includes any of solid solutions, intermetallic compounds, and coexisting phases of solid solutions and intermetallic compounds.

近年、自動車や各産業において発生する廃熱を回収し、電気エネルギに変換して利用するといった試みがなされている。熱エネルギを電気エネルギに変換する熱電モジュールは、トムソン効果、ペルチェ効果、ゼーベック効果と呼ばれる熱電効果を利用して、2種類の熱電素子を組み合わせて構成されている。たとえば、熱電材料として半導体を用いた熱電モジュールとしては、従来、p型熱電材料からなる複数のp型熱電素子と、n型熱電材料からなる複数のn型熱電素子と、複数のp型熱電素子と複数のn型熱電素子とを交互に直列接続する電極とを備えており、電極が、p型熱電素子およびn型熱電素子に、はんだ付やろう付などにより金属接合されたものが用いられている。   In recent years, attempts have been made to recover waste heat generated in automobiles and various industries and convert it into electric energy for use. A thermoelectric module that converts thermal energy into electrical energy is configured by combining two types of thermoelectric elements using thermoelectric effects called Thomson effect, Peltier effect, and Seebeck effect. For example, as a thermoelectric module using a semiconductor as a thermoelectric material, conventionally, a plurality of p-type thermoelectric elements made of a p-type thermoelectric material, a plurality of n-type thermoelectric elements made of an n-type thermoelectric material, and a plurality of p-type thermoelectric elements And a plurality of n-type thermoelectric elements connected in series alternately, and the electrodes are metal-bonded to the p-type and n-type thermoelectric elements by soldering or brazing. ing.

しかしながら、上述したような熱電モジュールにより熱エネルギを電気エネルギに変化する場合には、熱電モジュールが加熱された状態となるので、熱エネルギにより元素の活性化エネルギが高くなって元素拡散が生じる。その結果、はんだやろう材からなる接合層に含まれる元素が熱電材料に拡散するとともに、熱電材料に含まれる元素が接合層に拡散し、熱電素子の性能が低下する。   However, when the thermal energy is changed to electrical energy by the thermoelectric module as described above, the thermoelectric module is heated, so that the activation energy of the element is increased by the thermal energy and element diffusion occurs. As a result, the element contained in the joining layer made of solder or brazing material diffuses into the thermoelectric material, and the element contained in the thermoelectric material diffuses into the joining layer, thereby degrading the performance of the thermoelectric element.

このような問題を解決するために、焼結体または溶製体からなる熱電材料と、電極材料とがプラズマ接合された熱電モジュール(特許文献1参照)や、熱電材料と電極材料とが放電プラズマ焼結された熱電モジュール(特許文献2参照)が知られていた。   In order to solve such a problem, a thermoelectric module in which a thermoelectric material made of a sintered body or a melted body and an electrode material are plasma-bonded (refer to Patent Document 1), or a thermoelectric material and an electrode material are discharge plasma. A sintered thermoelectric module (see Patent Document 2) has been known.

しかしながら、特許文献1および2記載の熱電モジュールの場合、熱エネルギを電気エネルギに変化する際に加熱されると、熱エネルギにより元素の活性化エネルギが高くなって元素拡散が生じる結果、熱電材料と電極材料との間で相互に元素が拡散し、熱電材料の性能が低下する。   However, in the case of the thermoelectric modules described in Patent Documents 1 and 2, when the thermal energy is changed to electrical energy, the activation energy of the element is increased by the thermal energy, resulting in element diffusion. The element diffuses between the electrode materials, and the performance of the thermoelectric material deteriorates.

そこで、熱電材料への元素の拡散を防止するために、熱電材料における電極との接合部に、TiまたはTi合金からなる拡散防止層が設けられている熱電素子を用いた熱電モジュールが提案されている(特許文献3参照)。   Therefore, in order to prevent diffusion of elements into the thermoelectric material, a thermoelectric module using a thermoelectric element in which a diffusion prevention layer made of Ti or a Ti alloy is provided at a joint portion of the thermoelectric material with an electrode has been proposed. (See Patent Document 3).

特許文献3記載の熱電モジュールによれば、Tiが、結晶粒界に沿った短回路拡散が生じる系であるので、温度領域によっては急速に拡散が進む場合がある。また、特許文献3記載の熱電モジュールの熱電素子は、予め焼結された熱電材料にTiまたはTi合金を溶射したり、予め焼結された熱電材料に、予め形成されたTiまたはTi合金からなる拡散防止部材を放電プラズマ焼結することによりつくられている。ところが、Tiの融点が熱電材料の融点よりもはるかに高いので、特許文献3記載の方法では熱電材料がダメージを受けることになり、熱電材料の性能が低下する。しかも、熱電材料に拡散防止層を溶射する方法によれば、十分な膜厚を持った拡散防止層を形成するのは困難であるとともに、拡散防止層の気孔率が高くなって電気抵抗が増大する。また、予め焼結された熱電材料に予め形成された拡散防止部材を放電プラズマ焼結する方法によれば、熱電材料とTiまたはTi合金との融点が大きく異なるので、実際には、両者を接合することは困難である。さらに、特許文献3には、熱電材料粉末と予め形成されたTiまたはTi合金からなる拡散防止部材とを用意し、熱電材料粉末を放電プラズマ焼結して熱電材料をつくるとともに、上記拡散防止部材を熱電材料に放電プラズマ焼結することによって熱電素子をつくる方法も記載されている。しかしながら、この場合、実際には、熱電材料粉末とTiまたはTi合金との融点が大きく異なるので、熱電材料粉末の焼結体を形成することは可能であるが、当該焼結体に拡散防止部材を強固に接合することはできない。   According to the thermoelectric module described in Patent Document 3, since Ti is a system in which short circuit diffusion occurs along the crystal grain boundary, diffusion may proceed rapidly depending on the temperature range. Further, the thermoelectric element of the thermoelectric module described in Patent Document 3 is formed by spraying Ti or a Ti alloy on a pre-sintered thermoelectric material, or comprising a pre-formed Ti or Ti alloy on a pre-sintered thermoelectric material. The diffusion preventing member is made by spark plasma sintering. However, since the melting point of Ti is much higher than the melting point of the thermoelectric material, the method described in Patent Document 3 damages the thermoelectric material, and the performance of the thermoelectric material is degraded. Moreover, according to the method of spraying the diffusion prevention layer on the thermoelectric material, it is difficult to form a diffusion prevention layer having a sufficient film thickness, and the porosity of the diffusion prevention layer is increased to increase the electric resistance. To do. Also, according to the method of performing discharge plasma sintering of a diffusion prevention member formed in advance on a pre-sintered thermoelectric material, the melting points of the thermoelectric material and Ti or Ti alloy are greatly different. It is difficult to do. Further, in Patent Document 3, a thermoelectric material powder and a diffusion prevention member made of Ti or Ti alloy formed in advance are prepared. The thermoelectric material powder is sintered by discharge plasma to produce a thermoelectric material. A method for producing a thermoelectric element by discharge plasma sintering a thermoelectric material is also described. However, in this case, since the melting point of the thermoelectric material powder and Ti or Ti alloy are actually greatly different, it is possible to form a sintered body of the thermoelectric material powder. Cannot be firmly joined.

特開平10−65222号公報JP-A-10-65222 特開平10−74986号公報JP-A-10-74986 特開2003−309294号公報JP 2003-309294 A

この発明の目的は、上記問題を解決し、電極材料と金属接合した際に熱電材料と電極材料との間での元素の相互拡散を防止しうる熱電素子およびその製造方法、ならびに熱電モジュールを提供することにある。   An object of the present invention is to provide a thermoelectric element capable of preventing the interdiffusion of elements between the thermoelectric material and the electrode material when the metal is bonded to the electrode material, a method for manufacturing the thermoelectric element, and a thermoelectric module. There is to do.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)Sbを含む合金からなる熱電材料における電極との接合部に、Ni−Ti合金からなる拡散防止層が設けられている熱電素子。   1) A thermoelectric element in which a diffusion prevention layer made of a Ni—Ti alloy is provided at a joint portion with an electrode in a thermoelectric material made of an alloy containing Sb.

2)上記拡散防止層が、Ni28〜83wt%およびTi17〜72wt%を含有し、かつNiとTiとの合計量が100wt%である合金からなる上記1)記載の熱電素子。   2) The thermoelectric element as described in 1) above, wherein the diffusion preventing layer is made of an alloy containing Ni 28 to 83 wt% and Ti 17 to 72 wt%, and the total amount of Ni and Ti is 100 wt%.

3)熱電材料が、スクッテルダイト型結晶構造を有する合金である上記1)または2)記載の熱電素子。   3) The thermoelectric element according to 1) or 2) above, wherein the thermoelectric material is an alloy having a skutterudite crystal structure.

4)熱電材料が、Sbを含む合金粉末の放電プラズマ焼結体からなり、拡散防止層が、Ni−Ti合金粉末の放電プラズマ焼結体からなる上記1)〜3)のうちのいずれかに記載の熱電素子。   4) The thermoelectric material is made of a discharge plasma sintered body of alloy powder containing Sb, and the diffusion prevention layer is made of a discharge plasma sintered body of Ni-Ti alloy powder. The thermoelectric element as described.

5)上記1)記載の熱電素子を製造する方法であって、ダイス内に、Ni−Ti合金粉末、Sbを含む合金粉末およびNi−Ti合金粉末をこの順序で入れることにより、ダイス内にNi−Ti合金粉末層、Sbを含む合金粉末層およびNi−Ti合金粉末層を形成し、Ni−Ti合金粉末層、Sbを含む合金粉末層およびNi−Ti合金粉末層の粉末を同時に放電プラズマ焼結することによって、熱電材料および拡散防止層を形成する熱電素子の製造方法。   5) A method for producing the thermoelectric element as described in 1) above, wherein Ni—Ti alloy powder, alloy powder containing Sb, and Ni—Ti alloy powder are placed in this order in the die, whereby Ni is added to the die. -Ti alloy powder layer, Sb-containing alloy powder layer and Ni-Ti alloy powder layer are formed, and Ni-Ti alloy powder layer, Sb-containing alloy powder layer and Ni-Ti alloy powder layer powder are simultaneously subjected to discharge plasma sintering. A thermoelectric element manufacturing method for forming a thermoelectric material and a diffusion prevention layer by bonding.

6)放電プラズマ焼結時の焼結温度が600〜900℃、焼結圧力が35〜50MPaである上記5)記載の熱電素子の製造方法。   6) The method for producing a thermoelectric element according to 5) above, wherein the sintering temperature at the time of spark plasma sintering is 600 to 900 ° C. and the sintering pressure is 35 to 50 MPa.

7)p型熱電材料およびp型熱電材料における電極との接合面に設けられた拡散防止層からなる複数のp型熱電素子と、n型熱電材料およびn型熱電材料における電極との接合面に設けられた拡散防止層からなる複数のn型熱電素子と、複数のp型熱電素子と複数のn型熱電素子とを交互に直列接続する電極とを備えており、p型熱電素子およびn型熱電素子が、上記1)〜4)のうちのいずれかに記載の熱電素子からなり、電極が、p型熱電素子およびn型熱電素子の拡散防止層に金属接合されている熱電モジュール。   7) On the junction surface between the p-type thermoelectric material and the electrodes in the p-type thermoelectric material and the electrodes in the n-type thermoelectric material and the n-type thermoelectric material. A plurality of n-type thermoelectric elements each having an anti-diffusion layer provided; and electrodes that alternately connect a plurality of p-type thermoelectric elements and a plurality of n-type thermoelectric elements in series. A thermoelectric module, wherein the thermoelectric element comprises the thermoelectric element according to any one of the above 1) to 4), and an electrode is metal-bonded to a diffusion prevention layer of the p-type thermoelectric element and the n-type thermoelectric element.

上記1)〜4)の熱電素子によれば、Ni−Ti合金からなる拡散防止層の働きによって、電極材料と金属接合した際に、熱電材料と電極材料との間での元素の相互拡散を防止することが可能になる。すなわち、熱電材料に含まれるSbの原子半径が、Ni−Ti合金の原子半径に比べて大きく、しかもNi−Ti合金が規則構造を取るので、上記1)〜4)の熱電素子と電極材料とを金属接合した際に、熱電材料と電極材料との間での元素の相互拡散を防止することが可能になる。   According to the thermoelectric elements 1) to 4), when the metal material is joined to the electrode material by the action of the diffusion preventing layer made of the Ni—Ti alloy, mutual diffusion of elements between the thermoelectric material and the electrode material is performed. It becomes possible to prevent. That is, since the atomic radius of Sb contained in the thermoelectric material is larger than the atomic radius of the Ni—Ti alloy, and the Ni—Ti alloy has an ordered structure, the thermoelectric elements and electrode materials of the above 1) to 4) It is possible to prevent interdiffusion of elements between the thermoelectric material and the electrode material.

上記4)の熱電素子は、上記5)の方法により製造することが可能になるが、この場合、特許文献3記載の予め焼結された熱電材料に拡散防止層を溶射したり、予め焼結された熱電材料に予め焼結された拡散防止部材を放電プラズマ焼結する方法のように、熱電材料がダメージを受けることがなく、熱電材料の性能低下を防止することができる。しかも、電極材料と金属接合した際に、熱電材料と電極材料との間での元素の相互拡散を防止するのに十分な膜厚を有する拡散防止層を簡単に形成することができるとともに、拡散防止層の気孔率が低くなって電気抵抗が低減される。さらに、特許文献3記載の熱電材料粉末と予め形成されたTiまたはTi合金からなる拡散防止部材とを用意し、熱電材料粉末を放電プラズマ焼結して熱電材料をつくるとともに、上記拡散防止部材を熱電材料に放電プラズマ焼結することによって熱電素子をつくる方法に比べて、熱電材料と拡散防止層を強固に接合することができる。   The thermoelectric element of 4) can be manufactured by the method of 5). In this case, a diffusion prevention layer is sprayed on the pre-sintered thermoelectric material described in Patent Document 3, or pre-sintered. The thermoelectric material is not damaged as in the method of performing discharge plasma sintering on the diffusion prevention member that has been sintered in advance to the thermoelectric material, and the performance of the thermoelectric material can be prevented from being deteriorated. In addition, it is possible to easily form a diffusion prevention layer having a film thickness sufficient to prevent interdiffusion of elements between the thermoelectric material and the electrode material when metal-bonded to the electrode material. The porosity of the prevention layer is lowered and the electrical resistance is reduced. Furthermore, a thermoelectric material powder described in Patent Document 3 and a diffusion prevention member made of Ti or Ti alloy formed in advance are prepared, and the thermoelectric material powder is subjected to discharge plasma sintering to produce a thermoelectric material. Compared to the method of producing a thermoelectric element by performing discharge plasma sintering on a thermoelectric material, the thermoelectric material and the diffusion preventing layer can be bonded firmly.

上記5)の熱電素子の製造方法よれば、特許文献3記載の熱電材料に拡散防止層を溶射したり、熱電材料に拡散防止層を放電プラズマ焼結する方法のように、熱電材料がダメージを受けることがなく、熱電材料の性能低下を防止することができる。しかも、電極材料と金属接合した際に、熱電材料と電極材料との間での元素の相互拡散を防止するのに十分な膜厚を有する拡散防止層を簡単に形成することができるとともに、拡散防止層の気孔率が低くなって電気抵抗が低減される。さらに、特許文献3記載の熱電材料粉末と予め形成されたTiまたはTi合金からなる部材とを用意し、熱電材料粉末を放電プラズマ焼結して熱電材料をつくるとともに、上記部材を熱電材料に放電プラズマ焼結することによって熱電素子をつくる方法に比べて、熱電材料と拡散防止層を強固に接合することができる。   According to the method for producing a thermoelectric element of the above 5), the thermoelectric material is damaged like the method of spraying the diffusion prevention layer on the thermoelectric material described in Patent Document 3 or the method of spark plasma sintering the diffusion prevention layer on the thermoelectric material. It is not received, and the performance degradation of the thermoelectric material can be prevented. In addition, it is possible to easily form a diffusion prevention layer having a film thickness sufficient to prevent interdiffusion of elements between the thermoelectric material and the electrode material when metal-bonded to the electrode material. The porosity of the prevention layer is lowered and the electrical resistance is reduced. Furthermore, a thermoelectric material powder described in Patent Document 3 and a member made of Ti or Ti alloy formed in advance are prepared, and the thermoelectric material powder is subjected to discharge plasma sintering to produce a thermoelectric material, and the above member is discharged to the thermoelectric material. Compared with the method of making a thermoelectric element by plasma sintering, the thermoelectric material and the diffusion preventing layer can be bonded firmly.

この発明による熱電素子を用いた熱電モジュールを示す斜視図である。It is a perspective view which shows the thermoelectric module using the thermoelectric element by this invention. 図1の要部を拡大して示す垂直断面図である。FIG. 2 is an enlarged vertical sectional view showing a main part of FIG. 1. 元素の原子寸法を示すグラフである。It is a graph which shows the atomic dimension of an element. Ni−Ti合金の状態図である。It is a phase diagram of a Ni-Ti alloy.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1はこの発明による熱電素子を用いた熱電モジュールの全体構成を示し、図2はその要部の構成を示す。   FIG. 1 shows the overall configuration of a thermoelectric module using a thermoelectric element according to the present invention, and FIG. 2 shows the configuration of the main part thereof.

図1において、熱電モジュール(1)は、複数のp型熱電素子(2)と、複数のn型熱電素子(3)と、すべてのp型熱電素子(2)とすべてのn型熱電素子(3)とを交互に直列接続する複数の電極(4)とを備えており、一端のp型熱電素子(2)および他端のn型熱電素子(3)に、電極(4)を介してリード線(6)が接続されている。   In FIG. 1, a thermoelectric module (1) includes a plurality of p-type thermoelectric elements (2), a plurality of n-type thermoelectric elements (3), all p-type thermoelectric elements (2), and all n-type thermoelectric elements ( 3) and a plurality of electrodes (4) alternately connected in series, and the p-type thermoelectric element (2) at one end and the n-type thermoelectric element (3) at the other end are connected via the electrode (4) Lead wire (6) is connected.

熱電モジュール(1)の上下両側にはそれぞれ電気絶縁板(7)が配置されており、一方の電気絶縁板(7)、ここでは上側電気絶縁板(7)の上側に高温側熱交換器(図示略)が配置され、同他方の電気絶縁板(7)、ここでは下側電気絶縁板(7)の下側に低温側熱交換器(図示略)が配置されている。そして、矢印Xで示すように、高温側熱交換器により熱を加えるとともに、低温側熱交換器により熱を奪うことによって、各熱電素子(2)(3)の高温側と低温側とに大きな温度差が生じて起電力が発生し、2本のリード線(6)間に電気抵抗負荷を与えると、矢印Yで示すように電流が流れる。   Electrical insulation plates (7) are arranged on both the upper and lower sides of the thermoelectric module (1). One of the electrical insulation plates (7), in this case, the upper side of the upper electrical insulation plate (7) is a high temperature side heat exchanger ( A low-temperature side heat exchanger (not shown) is arranged below the other electric insulating plate (7), here the lower electric insulating plate (7). And as shown by the arrow X, by adding heat with a high temperature side heat exchanger and depriving heat with a low temperature side heat exchanger, it is large to the high temperature side and low temperature side of each thermoelectric element (2) (3). When an electromotive force is generated due to a temperature difference and an electric resistance load is applied between the two lead wires (6), a current flows as shown by an arrow Y.

図2に示すように、p型熱電素子(2)およびn型熱電素子(3)は、Sbを含む合金粉末の放電プラズマ焼結体からなる角柱状の熱電材料(8)における電極(4)との接合部、すなわち上下両端面に、Ni−Ti合金粉末の放電プラズマ焼結体からなる拡散防止層(9)が設けられたものである。   As shown in FIG. 2, the p-type thermoelectric element (2) and the n-type thermoelectric element (3) are composed of electrodes (4) in a prismatic thermoelectric material (8) made of a discharge plasma sintered body of an alloy powder containing Sb. The diffusion prevention layer (9) made of a discharge plasma sintered body of Ni—Ti alloy powder is provided at the joint portion, that is, the upper and lower end faces.

熱電材料(8)を形成する合金としては、REx(Fe−yMy)Sb12(REはLa、Ceのうち少なくとも一種、MはTi、Zr、Sn、Pbからなる群から選ばれた少なくとも一種。0<x≦1、0≦y<1)で表されるフィルドスクッテルダイト型の希土類合金からなる半導体が採用可能である。この合金はp型熱電素子(2)の熱電材料(8)に好適に用いられる。この合金中には、Pb、As、Si、Al、Fe、Mo、W、C、O、Nなど不可避不純物を含んでもよく、焼結体の形態で用いられる。また結晶構造はスクッテルダイト型結晶構造であるのがより好ましい。上記希土類合金では、xが0.01より少ないと熱伝導度が悪化して特性が低下し、yが0.15を超えると、ゼーベック係数および電気伝導度両面において著しく低下するため0.15以下が好ましい。またyが0.01未満では添加による性能向上が不十分なので0.01以上が好ましい。上記の範囲内でMを添加すると、ゼーベック係数と電気伝導度の向上が両立できる。 As an alloy forming the thermoelectric material (8), REx (Fe 1 -yMy) 4 Sb 12 (RE is at least one of La and Ce, M is at least selected from the group consisting of Ti, Zr, Sn, and Pb) One type, a semiconductor made of filled skutterudite type rare earth alloy represented by 0 <x ≦ 1, 0 ≦ y <1) can be used. This alloy is suitably used for the thermoelectric material (8) of the p-type thermoelectric element (2). This alloy may contain inevitable impurities such as Pb, As, Si, Al, Fe, Mo, W, C, O, and N, and is used in the form of a sintered body. The crystal structure is more preferably a skutterudite type crystal structure. In the rare earth alloy, if x is less than 0.01, the thermal conductivity deteriorates and the characteristics are deteriorated. If y exceeds 0.15, both the Seebeck coefficient and the electric conductivity are remarkably reduced. Is preferred. If y is less than 0.01, the performance improvement by addition is insufficient, so 0.01 or more is preferable. When M is added within the above range, both the Seebeck coefficient and the electrical conductivity can be improved.

また、熱電材料(8)を形成する合金としては、REx(Co−yMy)Sb12(REはLa、Ceのうち少なくとも一種、MはTi、Zr、Sn、Pbからなる群から選ばれた少なくとも一種。0<x≦1、0≦y<1)で表される希土類合金からなる半導体も採用可能である。この合金はn型熱電素子(3)に好適に用いられる。この希土類合金は、この中にPb、As、Si、Al、Fe、Mo、W、C、O、Nなど不可避不純物を含んでもよく、焼結体の形態で用いられる。また結晶構造はスクッテルダイト型結晶構造であるのがより好ましい。この希土類合金では、xが0.01より少ないと熱伝導度が悪化して特性が低下し、yが0.15を超えると、ゼーベック係数および電気伝導度両面において著しく低下するため0.15以下が好ましい。またyが0.01未満では添加による性能向上が不十分なので0.01以上が好ましい。上記の範囲内でMを添加すると、おもにゼーベック係数が向上できるため、性能が向上できる。 As the alloy forming thermoelectric material (8), REx (Co 1 -yMy) 4 Sb 12 (RE is La, at least one, M of Ce is selected from the group consisting Ti, Zr, Sn, and Pb In addition, a semiconductor made of a rare earth alloy represented by 0 <x ≦ 1, 0 ≦ y <1) can also be used. This alloy is suitably used for the n-type thermoelectric element (3). This rare earth alloy may contain inevitable impurities such as Pb, As, Si, Al, Fe, Mo, W, C, O, and N, and is used in the form of a sintered body. The crystal structure is more preferably a skutterudite type crystal structure. In this rare earth alloy, if x is less than 0.01, the thermal conductivity is deteriorated and the characteristics are deteriorated. If y exceeds 0.15, both the Seebeck coefficient and the electric conductivity are remarkably lowered. Is preferred. If y is less than 0.01, the performance improvement by addition is insufficient, so 0.01 or more is preferable. When M is added within the above range, the Seebeck coefficient can be mainly improved, so that the performance can be improved.

拡散防止層(9)は、Ni28〜83wt%およびTi17〜72wt%を含有し、かつNiとTiとの合計量が100wt%である合金により形成されている。なお、当該合金には不可避不純物が含まれていてもよい。具体的には、NiTi、NiTi、NiTi、β−Ti+NiTi+NiTi、α−Ti+NiTi+NiTi、NiTi+NiTi、NiTi+NiTi、NiTi+NiTi、Ni+NiTi+NiTi+NiTiなどが挙げられる。拡散防止層(9)の厚みは50〜300μm程度であることが好ましい。 The anti-diffusion layer (9) is made of an alloy containing 28 to 83 wt% Ni and 17 to 72 wt% Ti, and the total amount of Ni and Ti is 100 wt%. The alloy may contain inevitable impurities. Specifically, NiTi, NiTi 2 , Ni 3 Ti, β-Ti + NiTi 2 + NiTi, α-Ti + NiTi 2 + Ni 3 Ti, NiTi 2 + NiTi, NiTi + Ni 3 Ti, NiTi 2 + Ni 3 Ti, Ni + NiTi + NiTi 2 + Ni 3 Ti and the like can be mentioned. It is done. The thickness of the diffusion preventing layer (9) is preferably about 50 to 300 μm.

Ni−Ti合金からなる拡散防止層(9)によるSbの拡散抑制のメカニズムは、以下に述べる通りである。   The mechanism of suppressing the diffusion of Sb by the diffusion preventing layer (9) made of a Ni—Ti alloy is as described below.

固相中の原子の拡散は、C、N、Oなどの原子半径が小さい元素の場合の侵入型の拡散を除いては、原子置換による空孔機構による拡散である。空孔機構による拡散には、空孔への移動時の活性化体積および活性化エネルギを得ることが必要となるので、Sbの拡散を抑制するには、拡散防止層(9)を形成するマトリックスにおいて空孔への移動に必要な活性化体積を得られなくするとともに、当該マトリックスにおいて空孔への移動に必要な活性化エネルギを大きくすればよい。拡散防止層(9)を形成するマトリックスにおいて、Sbの拡散のための活性化体積を得られなくするには、拡散防止層(9)を形成するマトリックス中の元素の原子寸法をSbの原子寸法よりも小さくすればよい。また、拡散防止層(9)を形成するマトリックスにおいて必要な活性化エネルギを大きくするには、マトリックスを規則構造とすればよい。   Diffusion of atoms in the solid phase is diffusion by a vacancy mechanism by atomic substitution except for interstitial diffusion in the case of an element having a small atomic radius such as C, N, and O. In order to diffuse by the hole mechanism, it is necessary to obtain an activation volume and activation energy at the time of movement to the hole. Therefore, in order to suppress the diffusion of Sb, the matrix forming the diffusion prevention layer (9) In this case, the activation volume necessary for movement to the vacancy cannot be obtained, and the activation energy necessary for movement to the vacancy in the matrix may be increased. In order to make it impossible to obtain an activation volume for the diffusion of Sb in the matrix forming the diffusion prevention layer (9), the atomic dimensions of the elements in the matrix forming the diffusion prevention layer (9) are changed to the atomic dimensions of Sb. Smaller than that. Further, in order to increase the necessary activation energy in the matrix forming the diffusion prevention layer (9), the matrix may have a regular structure.

ここで、図3に示すように、原子寸法がSbよりも小さい元素の中で、合金系として可能性のあるものは、Ni、Fe、Mn、Cr、Co、W、V、TiおよびAlである。これらの元素から規則構造の合金を形成するものを選択すればよい。これらの元素の原子の核外電子数についてまとめたものを表1に示す。

Figure 2011114186
Here, as shown in FIG. 3, among the elements whose atomic dimensions are smaller than Sb, possible alloys are Ni, Fe, Mn, Cr, Co, W, V, Ti and Al. is there. What forms an alloy having an ordered structure from these elements may be selected. Table 1 summarizes the number of extranuclear electrons of the atoms of these elements.
Figure 2011114186

上述した元素は、Alを除いては遷移元素であるから3d殻が電子で満たされないうちに、エネルギ状態の低い外側の4s殻に電子が配列されている。ここで、エネルギ状態が最も高い3d殻の電子数に着目し、組み合わせた状態で4s殻に電子が行くことなく、3d殻が満たされて結合エネルギが強い元素の組み合わせを考えると、Mn−Cr、Co−V、Ni−Tiが選択される。Mn−Cr系の場合に存在する規則構造の合金は、CrMn(D8b型)、Co−V系の場合に存在する規則構造の合金は、CoV(hp24)、CoV(A15)である。また、Ni−Ti系の場合の規則構造の合金は、NiTi(E93)、NiTi(B2)、NiTi(D024)が存在する。ここで、Mn−Cr系の合金は作成が困難であり、Co−V系の合金は融点が高いため焼結が困難であった。そこで、Ni−Ti系を採用した。 Since the elements described above are transition elements except for Al, electrons are arranged in the outer 4s shell having a low energy state before the 3d shell is filled with electrons. Here, paying attention to the number of electrons in the 3d shell having the highest energy state, and considering the combination of elements having a strong binding energy with the 3d shell filled without the electrons going to the 4s shell in the combined state, Mn—Cr , Co-V, and Ni-Ti are selected. The ordered structure alloy existing in the case of Mn—Cr is CrMn 3 (D8b type), and the ordered structure alloy present in the case of Co—V is Co 3 V (hp24), CoV 3 (A15). is there. In addition, an alloy having a regular structure in the case of the Ni—Ti system includes NiTi 2 (E93), NiTi (B2), and Ni 3 Ti (D024). Here, it was difficult to produce an Mn—Cr alloy, and a Co—V alloy had a high melting point, and was difficult to sinter. Therefore, Ni-Ti system was adopted.

図4にNi−Ti系合金の状態図を示す。この状態図より、拡散時に高いエネルギを必要とするB2構造を取る組成としてNi−Ti、E93構造としてNiTi、D024構造のNiTiが適切である。これらの単相または二相を全て規則構造で得る事は困難であるが、NiTiの固溶合金部(図4のA〜C参照)、金属間化合物部(図4のD〜I参照)または両者混在組織(図4のD〜Iの単相または二相の金属間化合物と、α−Ti、β−Ti、Niが混在している組織)においても適切な性能を得ることが出来る。 FIG. 4 shows a phase diagram of the Ni—Ti alloy. From this state diagram, Ni-Ti, NiTi 2 as the composition of E93 structure, and Ni 3 Ti of D024 structure are suitable as the composition having the B2 structure that requires high energy at the time of diffusion. Although it is difficult to obtain all of these single phases or two phases in a regular structure, NiTi solid solution alloy parts (see AC in FIG. 4), intermetallic compound parts (see DI in FIG. 4) or Appropriate performance can be obtained even in both mixed structures (structures in which the single-phase or two-phase intermetallic compounds of D to I in FIG. 4 and α-Ti, β-Ti, and Ni are mixed).

P型熱電素子およびn型熱電素子は、次の方法で製造される。   The P-type thermoelectric element and the n-type thermoelectric element are manufactured by the following method.

ダイス内に、NiTi、NiTi、NiTi、β−Ti+NiTi+NiTi、α−Ti+NiTi+NiTi、NiTi+NiTi、NiTi+NiTi、NiTi+NiTi、Ni+NiTi+NiTi+NiTiなどからなるNi−Ti合金粉末、上述した熱電材料を構成するSbを含む合金粉末、および上記と同様のNi−Ti合金粉末をこの順序で入れることにより、ダイス内にNi−Ti合金粉末層、Sbを含む合金粉末層およびNi−Ti合金粉末層を形成する。ついで、Ni−Ti合金粉末層、Sbを含む合金粉末層およびNi−Ti合金粉末層の粉末を同時に放電プラズマ焼結する。こうして、熱電材料(8)および拡散防止層(9)からなる熱電素子(2)(3)が製造される。 Ni made of NiTi, NiTi 2 , Ni 3 Ti, β-Ti + NiTi 2 + NiTi, α-Ti + NiTi 2 + Ni 3 Ti, NiTi 2 + NiTi, NiTi + Ni 3 Ti, NiTi 2 + Ni 3 Ti, Ni + NiTi + NiTi 2 + Ni 3 Ti in the die. -Ti alloy powder, alloy powder containing Sb constituting the thermoelectric material described above, and Ni-Ti alloy powder similar to the above are placed in this order, whereby an alloy containing Ni-Ti alloy powder layer and Sb in the die A powder layer and a Ni-Ti alloy powder layer are formed. Subsequently, the powders of the Ni—Ti alloy powder layer, the alloy powder layer containing Sb, and the Ni—Ti alloy powder layer are simultaneously subjected to discharge plasma sintering. Thus, the thermoelectric elements (2) and (3) composed of the thermoelectric material (8) and the diffusion preventing layer (9) are manufactured.

次に、この発明の具体的実施例を、比較例とともに説明する。   Next, specific examples of the present invention will be described together with comparative examples.

実施例1
黒鉛製ダイス内に、β−Ti+α−Ti+NiTi+NiTi+NiTiからなる平均粒径5μmの粉末と、La0.3FeSb4.0からなる平均粒径5μmのp型熱電材料粉末と、β−Ti+α−Ti+NiTi+NiTi+NiTiからなる平均粒径5μmの粉末とをこの順序で入れることにより、ダイス内にNi−Ti合金粉末層、p型熱電材料粉末層およびNi−Ti合金粉末層を形成し、ダイス内に臨むように1対の電極を配置した。その後、焼結温度650℃、焼結圧力40MPaの条件で放電プラズマ焼結を行い、p型熱電材料粉末の放電プラズマ焼結体からなるp型熱電材料の上下両端面に、Ni−Ti合金粉末の放電プラズマ焼結体からなりかつ厚みが300μmの拡散防止層が設けられたp型熱電素子を作製した。
Example 1
In a graphite die, a powder having an average particle diameter of 5 μm made of β-Ti + α-Ti + NiTi 2 + NiTi + Ni 3 Ti, a p-type thermoelectric material powder having an average particle diameter of 5 μm made of La 0.3 FeSb 4.0 , and β-Ti + α A powder having an average particle diameter of 5 μm composed of −Ti + NiTi 2 + NiTi + Ni 3 Ti is put in this order to form a Ni—Ti alloy powder layer, a p-type thermoelectric material powder layer, and a Ni—Ti alloy powder layer in the die, A pair of electrodes was placed so as to face the die. Thereafter, discharge plasma sintering is performed under conditions of a sintering temperature of 650 ° C. and a sintering pressure of 40 MPa, and Ni—Ti alloy powder is formed on the upper and lower end surfaces of the p-type thermoelectric material made of the discharge plasma sintered body of the p-type thermoelectric material powder. A p-type thermoelectric element having a diffusion prevention layer having a thickness of 300 μm was prepared.

実施例2
拡散防止層を形成するNi−Ti合金粉末としてNiTiからなる平均粒径5μmの粉末を使用し、放電プラズマ焼結条件として、焼結温度670℃、焼結圧力40MPaとしたことを除いては、上記実施例1と同様にして、p型熱電材料粉末の放電プラズマ焼結体からなるp型熱電材料の上下両端面に、Ni−Ti合金粉末の放電プラズマ焼結体からなりかつ厚みが300μmの拡散防止層が設けられたp型熱電素子を作製した。
Example 2
Except that the Ni-Ti alloy powder forming the diffusion prevention layer is a powder having an average particle diameter of 5 μm made of NiTi and the discharge plasma sintering conditions are a sintering temperature of 670 ° C. and a sintering pressure of 40 MPa. In the same manner as in Example 1, the upper and lower end surfaces of the p-type thermoelectric material made of the p-type thermoelectric material powder are made of a discharge plasma sintered body of Ni-Ti alloy powder and have a thickness of 300 μm. A p-type thermoelectric element provided with a diffusion prevention layer was produced.

実施例3
拡散防止層を形成するNi−Ti合金粉末としてNiTi+NiTiからなる平均粒径10μmの粉末を使用し、放電プラズマ焼結条件として、焼結温度650℃、焼結圧力40MPaとしたことを除いては、上記実施例1と同様にして、p型熱電材料粉末の放電プラズマ焼結体からなるp型熱電材料の上下両端面に、Ni−Ti合金粉末の放電プラズマ焼結体からなりかつ厚みが300μmの拡散防止層が設けられたp型熱電素子を作製した。
Example 3
A powder having an average particle diameter of 10 μm made of NiTi 2 + Ni 3 Ti was used as the Ni—Ti alloy powder forming the diffusion prevention layer, and the discharge plasma sintering conditions were a sintering temperature of 650 ° C. and a sintering pressure of 40 MPa. Except for the above, in the same manner as in Example 1, the upper and lower end surfaces of the p-type thermoelectric material made of the p-type thermoelectric material powder are made of a discharge plasma sintered body of Ni-Ti alloy powder and A p-type thermoelectric element provided with a diffusion prevention layer having a thickness of 300 μm was produced.

実施例4〜6
p型熱電材料粉末の代わりに、Ce0.15CoSb3.0からなる平均粒径5μmのn型熱電材料粉末を使用したことを除いては、上記実施例1〜3と同様にして、n型熱電素子を作製した。
Examples 4-6
In the same manner as in Examples 1 to 3, except that an n-type thermoelectric material powder having an average particle size of 5 μm made of Ce 0.15 CoSb 3.0 was used instead of the p-type thermoelectric material powder, n A mold thermoelectric element was produced.

評価試験
実施例1〜6の熱電素子を、N2ガス雰囲気中において、500℃で250時間熱暴露した。なお、熱暴露をN2ガス雰囲気中において行ったのは、酸化による熱電材料(8)の崩壊の発生を防止し、正確な拡散状況を観察するためである。そして、EMPA(日本電子社製 JXA-8100)を用いてSb、Ni、Tiの各元素の線分析、面分析を行い、熱電材料(8)中のSbの拡散防止層(9)への拡散状況、および反応層の形成状況を観察した。
Evaluation Test The thermoelectric elements of Examples 1 to 6 were exposed to heat at 500 ° C. for 250 hours in an N 2 gas atmosphere. The reason why the heat exposure was performed in the N 2 gas atmosphere was to prevent the thermoelectric material (8) from collapsing due to oxidation and to observe an accurate diffusion state. Then, using EMPA (JXA-8100 manufactured by JEOL Ltd.), line analysis and surface analysis of each element of Sb, Ni and Ti are performed, and diffusion of Sb in the thermoelectric material (8) to the diffusion preventing layer (9) is performed. The situation and the reaction layer formation were observed.

その結果、実施例1〜6のいずれにおいても、熱電材料(8)中のSbの拡散防止層(9)への拡散は50μm未満であった。また、拡散防止層(9)において、NiとSbとの反応層、TiとSbとの反応層、NiとTiとSbとの反応層が認められた。これらの反応層も、Sbの拡散を防止する働きをする。   As a result, in any of Examples 1 to 6, the diffusion of Sb in the thermoelectric material (8) into the diffusion prevention layer (9) was less than 50 μm. Further, in the diffusion prevention layer (9), a reaction layer of Ni and Sb, a reaction layer of Ti and Sb, and a reaction layer of Ni, Ti and Sb were observed. These reaction layers also serve to prevent Sb diffusion.

比較例1
黒鉛製ダイス内に、Tiからなる平均粒径50μmの粉末と、La0.3FeSb4.0からなる平均粒径5μmのp型熱電材料粉末と、Tiからなる平均粒径50μmの粉末とをこの順序で入れることにより、ダイス内にTi粉末層、p型熱電材料粉末層およびTi粉末層を形成し、ダイス内に臨むように1対の電極を配置した。その後、焼結温度650〜700℃、焼結圧力40MPaの条件で放電プラズマ焼結を行った。
Comparative Example 1
In a graphite die, a powder having an average particle diameter of 50 μm made of Ti, a p-type thermoelectric material powder having an average particle diameter of 5 μm made of La0.3FeSb4.0, and a powder having an average particle diameter of 50 μm made of Ti are arranged in this order. By inserting, a Ti powder layer, a p-type thermoelectric material powder layer, and a Ti powder layer were formed in the die, and a pair of electrodes were arranged so as to face the die. Thereafter, spark plasma sintering was performed under conditions of a sintering temperature of 650 to 700 ° C. and a sintering pressure of 40 MPa.

比較例2
p型熱電材料粉末の代わりに、Ce0.15CoSb3.0からなる平均粒径5μmのn型熱電材料粉末を使用したことを除いては、上記比較例1と同様にして、放電プラズマ焼結を行った。
Comparative Example 2
Spark plasma sintering was performed in the same manner as in Comparative Example 1 except that n-type thermoelectric material powder having an average particle size of 5 μm made of Ce0.15CoSb3.0 was used instead of p-type thermoelectric material powder. It was.

上記比較例1および2の場合、熱電材料粉末を焼結して熱電材料を形成することができたが、Ti粉末からなる焼結体層はポーラスで気孔率が高く、拡散防止層としては機能しないことが分かった。また、形成された熱電材料とTi粉末からなる焼結体層との接合は極めて脆弱であった。   In the case of Comparative Examples 1 and 2, the thermoelectric material powder was sintered to form the thermoelectric material. However, the sintered body layer made of Ti powder is porous and has a high porosity, and functions as a diffusion prevention layer. I knew that I would not. Further, the bonding between the formed thermoelectric material and the sintered body layer made of Ti powder was extremely fragile.

比較例3
黒鉛製ダイス内にTi粉末からなる焼結体と、La0.3FeSb4.0粉末の焼結体からなるp型熱電材料と、Ti粉末からなる焼結体を入れ、ダイス内に臨むように1対の電極を配置した。その後、焼結温度1000℃、焼結圧力40MPaの条件で放電プラズマ焼結を行った。
Comparative Example 3
A sintered body made of Ti powder, a p-type thermoelectric material made of La0.3FeSb4.0 powder, and a sintered body made of Ti powder are placed in a graphite die, and a pair is placed so as to face the die. Electrodes were arranged. Thereafter, spark plasma sintering was performed under conditions of a sintering temperature of 1000 ° C. and a sintering pressure of 40 MPa.

比較例4
p型熱電材料の代わりに、Ce0.15CoSb3.0粉末の焼結体からなるn型熱電材料を使用したことを除いては、上記比較例3と同様にして放電プラズマ焼結を行った。
Comparative Example 4
Spark plasma sintering was performed in the same manner as in Comparative Example 3 except that an n-type thermoelectric material made of a sintered body of Ce0.15CoSb3.0 powder was used instead of the p-type thermoelectric material.

上記比較例3および4の場合、焼結温度が熱電材料の融点を超えているため、熱電材料とTi粉末焼結体とが接合された熱電素子を作製することはできなかった。   In Comparative Examples 3 and 4, since the sintering temperature exceeded the melting point of the thermoelectric material, it was not possible to produce a thermoelectric element in which the thermoelectric material and the Ti powder sintered body were joined.

この発明による熱電素子は、熱エネルギを電気エネルギに変換したり、電気エネルギを熱エネルギに変換する熱電モジュールに好適に用いられる。   The thermoelectric element according to the present invention is suitably used for a thermoelectric module that converts thermal energy into electrical energy or converts electrical energy into thermal energy.

(1):熱電モジュール
(2)(3):熱電素子
(4):電極
(8):熱電材料
(9):拡散防止層
(1): Thermoelectric module
(2) (3): Thermoelectric element
(4): Electrode
(8): Thermoelectric material
(9): Diffusion prevention layer

Claims (7)

Sbを含む合金からなる熱電材料における電極との接合部に、Ni−Ti合金からなる拡散防止層が設けられている熱電素子。 A thermoelectric element in which a diffusion prevention layer made of a Ni-Ti alloy is provided at a joint portion with an electrode in a thermoelectric material made of an alloy containing Sb. 上記拡散防止層が、Ni28〜83wt%およびTi17〜72wt%を含有し、かつNiとTiとの合計量が100wt%である合金からなる請求項1記載の熱電素子。 The thermoelectric element according to claim 1, wherein the diffusion preventing layer is made of an alloy containing Ni 28 to 83 wt% and Ti 17 to 72 wt%, and the total amount of Ni and Ti is 100 wt%. 熱電材料が、スクッテルダイト型結晶構造を有する合金である請求項1または2記載の熱電素子。 The thermoelectric element according to claim 1 or 2, wherein the thermoelectric material is an alloy having a skutterudite type crystal structure. 熱電材料が、Sbを含む合金粉末の放電プラズマ焼結体からなり、拡散防止層が、Ni−Ti合金粉末の放電プラズマ焼結体からなる請求項1〜3のうちのいずれかに記載の熱電素子。 The thermoelectric material according to any one of claims 1 to 3, wherein the thermoelectric material is a discharge plasma sintered body of an alloy powder containing Sb, and the diffusion prevention layer is a discharge plasma sintered body of a Ni-Ti alloy powder. element. 請求項1記載の熱電素子を製造する方法であって、ダイス内に、Ni−Ti合金粉末、Sbを含む合金粉末およびNi−Ti合金粉末をこの順序で入れることにより、ダイス内にNi−Ti合金粉末層、Sbを含む合金粉末層およびNi−Ti合金粉末層を形成し、Ni−Ti合金粉末層、Sbを含む合金粉末層およびNi−Ti合金粉末層の粉末を同時に放電プラズマ焼結することによって、熱電材料および拡散防止層を形成する熱電素子の製造方法。 The method for producing a thermoelectric device according to claim 1, wherein Ni-Ti alloy powder, alloy powder containing Sb, and Ni-Ti alloy powder are placed in this order in the die, and Ni-Ti is then placed in the die. An alloy powder layer, an alloy powder layer containing Sb, and an Ni—Ti alloy powder layer are formed, and the Ni—Ti alloy powder layer, the alloy powder layer containing Sb, and the Ni—Ti alloy powder layer are simultaneously subjected to discharge plasma sintering. The manufacturing method of the thermoelectric element which forms a thermoelectric material and a diffusion prevention layer by this. 放電プラズマ焼結時の焼結温度が600〜900℃、焼結圧力が35〜50MPaである請求項5記載の熱電素子の製造方法。 The method for producing a thermoelectric element according to claim 5, wherein a sintering temperature at the time of spark plasma sintering is 600 to 900 ° C and a sintering pressure is 35 to 50 MPa. p型熱電材料およびp型熱電材料における電極との接合面に設けられた拡散防止層からなる複数のp型熱電素子と、n型熱電材料およびn型熱電材料における電極との接合面に設けられた拡散防止層からなる複数のn型熱電素子と、複数のp型熱電素子と複数のn型熱電素子とを交互に直列接続する電極とを備えており、p型熱電素子およびn型熱電素子が、請求項1〜4のうちのいずれかに記載の熱電素子からなり、電極が、p型熱電素子およびn型熱電素子の拡散防止層に金属接合されている熱電モジュール。 The p-type thermoelectric material and the p-type thermoelectric material are provided on the junction surface between the plurality of p-type thermoelectric elements composed of the diffusion prevention layer provided on the junction surface with the electrode and the n-type thermoelectric material and the electrode in the n-type thermoelectric material. A plurality of n-type thermoelectric elements each including an anti-diffusion layer, and electrodes that alternately connect the plurality of p-type thermoelectric elements and the plurality of n-type thermoelectric elements in series, the p-type thermoelectric element and the n-type thermoelectric element A thermoelectric module comprising the thermoelectric element according to claim 1, wherein the electrode is metal-bonded to a diffusion prevention layer of the p-type thermoelectric element and the n-type thermoelectric element.
JP2009269722A 2009-11-27 2009-11-27 Thermoelectric element, manufacturing method thereof, and thermoelectric module Active JP5514523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009269722A JP5514523B2 (en) 2009-11-27 2009-11-27 Thermoelectric element, manufacturing method thereof, and thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269722A JP5514523B2 (en) 2009-11-27 2009-11-27 Thermoelectric element, manufacturing method thereof, and thermoelectric module

Publications (2)

Publication Number Publication Date
JP2011114186A true JP2011114186A (en) 2011-06-09
JP5514523B2 JP5514523B2 (en) 2014-06-04

Family

ID=44236288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269722A Active JP5514523B2 (en) 2009-11-27 2009-11-27 Thermoelectric element, manufacturing method thereof, and thermoelectric module

Country Status (1)

Country Link
JP (1) JP5514523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153779A (en) * 2014-02-10 2015-08-24 昭和電工株式会社 Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
CN112276275A (en) * 2020-10-27 2021-01-29 哈尔滨工业大学 Method for connecting skutterudite thermoelectric material and electrode by using high-thermal-stability alloy composite intermediate layer
WO2021036544A1 (en) * 2019-08-30 2021-03-04 中国科学院物理研究所 Magnesium-antimony-based thermoelectric element, preparation method therefor and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
WO2009093455A1 (en) * 2008-01-23 2009-07-30 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
JP2011003559A (en) * 2009-05-19 2011-01-06 Furukawa Co Ltd Thermoelectric conversion module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
WO2009093455A1 (en) * 2008-01-23 2009-07-30 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
JP2011003559A (en) * 2009-05-19 2011-01-06 Furukawa Co Ltd Thermoelectric conversion module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153779A (en) * 2014-02-10 2015-08-24 昭和電工株式会社 Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
US9960335B2 (en) 2014-02-10 2018-05-01 Showa Denko K.K. Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
WO2021036544A1 (en) * 2019-08-30 2021-03-04 中国科学院物理研究所 Magnesium-antimony-based thermoelectric element, preparation method therefor and use thereof
CN112276275A (en) * 2020-10-27 2021-01-29 哈尔滨工业大学 Method for connecting skutterudite thermoelectric material and electrode by using high-thermal-stability alloy composite intermediate layer
CN112276275B (en) * 2020-10-27 2022-06-07 哈尔滨工业大学 Method for connecting skutterudite thermoelectric material and electrode by using high-thermal-stability alloy composite intermediate layer

Also Published As

Publication number Publication date
JP5514523B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
AU2012340268C1 (en) Thermoelectric devices with interface materials and methods of manufacturing the same
US9559281B2 (en) Thermoelectric power module
CN103000798B (en) Thermoelectric converting module and manufacturing method thereof
JP5671258B2 (en) Thermoelectric conversion module
JP5386239B2 (en) Thermoelectric conversion module
WO2014084315A1 (en) Thermoelectric conversion module
US20180033938A1 (en) Thermoelectric module and manufacturing method thereof
WO2013076765A1 (en) Thermoelectric conversion module
JP2003309294A (en) Thermoelectric module
JP5463204B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP4850083B2 (en) Thermoelectric conversion module, power generation device and cooling device using the same
JP6122736B2 (en) Thermoelectric generator module
JP2003092435A (en) Thermoelectric module and its manufacturing method
JP6404983B2 (en) Thermoelectric module
US9960335B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
JP5514523B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP6433245B2 (en) Thermoelectric element and thermoelectric module
JP7314927B2 (en) Thermoelectric conversion module member, thermoelectric conversion module, and method for manufacturing thermoelectric conversion module member
WO2018038285A1 (en) Thermoelectric element and thermoelectric module comprising same
KR20200054539A (en) Anti-diffusion layer of thermoelectric material and manufacturing method thereof
WO2016088762A2 (en) Silicide-based thermoelectric power generation element
EP3813130A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2003332637A (en) Thermoelectric material and thermoelectric module using the same
JP2001189497A (en) Thermoelectric conversion element and manufacturing method therefor
JP6549442B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150