JP2011111137A - Apparatus and method of protecting feeding current of ac-at feeding circuit - Google Patents

Apparatus and method of protecting feeding current of ac-at feeding circuit Download PDF

Info

Publication number
JP2011111137A
JP2011111137A JP2009272279A JP2009272279A JP2011111137A JP 2011111137 A JP2011111137 A JP 2011111137A JP 2009272279 A JP2009272279 A JP 2009272279A JP 2009272279 A JP2009272279 A JP 2009272279A JP 2011111137 A JP2011111137 A JP 2011111137A
Authority
JP
Japan
Prior art keywords
section
amount
protection
electric
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009272279A
Other languages
Japanese (ja)
Other versions
JP5319504B2 (en
Inventor
Taiji Hisamizu
泰司 久水
Tetsuo Utsuka
哲夫 兎束
Hiromi Morimoto
大観 森本
Yoshifumi Mochinaga
芳文 持永
Takao Masuyama
隆雄 増山
Osamu Kamimura
修 上村
Yasuyuki Fukuda
恭之 福田
Kazunobu Fukuda
和宜 福田
Hitoshi Matsui
仁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR SOKEN DENKI SYSTEM KK
Toshiba Corp
Railway Technical Research Institute
Original Assignee
JR SOKEN DENKI SYSTEM KK
Toshiba Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR SOKEN DENKI SYSTEM KK, Toshiba Corp, Railway Technical Research Institute filed Critical JR SOKEN DENKI SYSTEM KK
Priority to JP2009272279A priority Critical patent/JP5319504B2/en
Publication of JP2011111137A publication Critical patent/JP2011111137A/en
Application granted granted Critical
Publication of JP5319504B2 publication Critical patent/JP5319504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method of protecting an feeding current of an AC-AT feeding circuit, which can surely detect a failure even in a very long feeding section. <P>SOLUTION: The feeding current protection device synthesizes electrical quantities of electric power stations A and B at both ends of a protection section; calculates a section inrush current of each electric traction and each of up and down lines; computes the vector variation, the amount of a scalar increase of the synthetic current, and a second harmonic content in both up and down lines; selects, from these computation results and determination constants set beforehand, the current variation of a load that runs on electric traction within the protection section and the current variation at the failure to detect the failure within the protection section; and determines the failure location and the failure line. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は電気鉄道における交流ATき電回路のAT区間に発生する短絡あるいは地絡故障を検出するためのき電保護技術に関する。   The present invention relates to a feeder protection technique for detecting a short circuit or a ground fault occurring in an AT section of an AC AT feeder circuit in an electric railway.

交流電気鉄道におけるATき電回路の一般的な系統構成例を図17に示す。鉄道沿線には、き電電源を供給する変電所SSを数10km間隔で備え、双方の変電所電源をき電区分所SPで区分している。さらに、同一電源区間を限定区分するための補助き電区分所SSPを設けている。変電所、及びそれぞれのき電区分所には単巻変圧器ATを備えている。き電区分所で双方向の異なる電源を付き合わせる運転方式を突き合せき電と言い、一方の電源を反対方面へ延ばした運転方法を延長き電と言う。電車線には下り線と上り線があり、変電所では上下線にき電し、それぞれのき電区分所に備える上下線タイ開閉器により分離又は結合して運用する。   An example of a general system configuration of an AT feeder circuit in an AC electric railway is shown in FIG. Along the railway, substations SS that supply feeder power are provided at intervals of several tens of kilometers, and both substation power sources are divided by feeder substations SP. Furthermore, an auxiliary feeder section SSP is provided for restricting the same power source section. Each substation and each feeder section has a self-transforming transformer AT. An operation method in which two-way different power sources are combined at a power distribution section is called butt power, and an operation method in which one power source is extended in the opposite direction is called extended power. There are two types of train lines: down line and up line. In substations, the upper and lower lines are fed, and they are separated or connected by the upper and lower line tie switches provided at each feeding section.

図18に示すように、ATき電回路はトロリ線T、き電線F、レールR及び保護線PWから構成され、約10km間隔で単巻変圧器ATが配置される。変電所SSのき電電圧は単巻変圧器ATでトロリ線とレール間電圧を1/2に降圧して電気車に供給している。トロリ線とレールに流れる電気車電流は単巻変圧器ATで1/2の値に変換されてトロリ線とき電線を帰還し、変電所SSの電源に流れる。   As shown in FIG. 18, the AT feeder circuit is composed of a trolley wire T, a feeder wire F, a rail R, and a protective wire PW, and the autotransformer AT is arranged at intervals of about 10 km. The feeding voltage of the substation SS is supplied to the electric car by stepping down the voltage between the trolley line and the rail by 1/2 with the autotransformer AT. The electric vehicle current flowing through the trolley wire and the rail is converted to a half value by the autotransformer AT, and the electric wire is fed back when the trolley wire is passed, and flows to the power source of the substation SS.

変電所SSで検出する一般的な電車線の線路短絡インピーダンスを図19に示す。T−F短絡インピーダンスは線路長に対し直線であるが、T−R短絡、T−PW短絡、F−PW短絡、及び図示しないT、Fの地絡故障は、レールRと保護線PWの渡り地点を節として上部に膨らむ。き電回路の保護方式としては、このようなATき電回路のインピーダンス特性をカバーするように、故障検出領域が平行四辺形の形状を持った距離継電器(#44F)が一般に使用されてきている。図20にその特性を示す。   FIG. 19 shows the line short-circuit impedance of a general train line detected at the substation SS. Although the TF short-circuit impedance is linear with respect to the line length, the T-R short circuit, the T-PW short circuit, the F-PW short circuit, and the ground faults of T and F (not shown) are crossed between the rail R and the protection line PW. The point bulges up at the top. As a feeder system protection method, a distance relay (# 44F) having a fault detection area having a parallelogram shape has been generally used so as to cover the impedance characteristics of such an AT feeder circuit. . FIG. 20 shows the characteristics.

さらにこの距離継電器とは別に、き電電流の急峻な変化分から故障を検出する交流ΔI形継電器(#50F)が使用され、上記#44Fと併用してき電回路の故障検出を行っている。図21にその特性を示す。これら#44F、#50Fは電源元の変電所SSだけでなく、き電区分所SP、補助き電区分所SSP、電車線路上に配置する各電気所にも設備し、き電形態に応じ分布変化する故障電流に対して少なくとも故障点近傍の電気所で故障を検出できるように構成されている。これら保護要素(#44F、#50F)の配置例を図22に示す。図22は、A変電所AssとB変電所Bssとの間の配置例である。   In addition to this distance relay, an AC ΔI type relay (# 50F) that detects a fault from a sudden change in feeding current is used, and the fault detection of the feeding circuit is performed in combination with the # 44F. FIG. 21 shows the characteristics. These # 44F and # 50F are installed not only at the power source substation SS, but also at the feeder section SP, the auxiliary feeder section SSP, and the electric stations arranged on the train line, and are distributed according to the feeding mode. It is configured such that a fault can be detected at least at an electric station near the fault point with respect to a changing fault current. An arrangement example of these protection elements (# 44F, # 50F) is shown in FIG. FIG. 22 is an arrangement example between the A substation Ass and the B substation Bss.

このような従来のATき電回路には、次のような問題点があった。鉄道き電回路電車線の上下線それぞれは、大別すると電気車に電力を送電するトロリ線T、き電線F、レールR、保護線PWなどの電車線から成るき電区間、及び、上下線を開閉器で結合あるいは分離するき電ポストSS、SSP、SPから構成されている。しかしながら、故障は多様な箇所でT−R、T−PW、F−R、F−PW短絡故障、あるいはT、F地絡故障、さらには、T−F短絡故障が発生する。   Such a conventional AT feeder circuit has the following problems. Each of the upper and lower lines of the railway feeder circuit line is roughly divided into a feeder section composed of a train line such as a trolley line T, a feeder line F, a rail R, and a protection line PW for transmitting power to an electric vehicle, and an upper and lower line. Are composed of feeder posts SS, SSP, and SP that are coupled or separated by a switch. However, the faults occur at various locations such as TR, T-PW, FR, F-PW short-circuit faults, T, F ground faults, and TF short-circuit faults.

一方で電気車両の負荷電流はその走行状態に応じて激しく変動する上、き電区間に進入してくる電気車電流には過大な車両用変圧器の無負荷励磁突入電流が発生して急峻な電流の増加を伴う。さらにき電回路には再閉路機能が備えられ、再閉路時にはき電区間内の複数電気車と複数単巻変圧器ATが一斉に再加圧されて過大な励磁突入電流が発生する。き電回路に設備される保護リレーには、このような負荷電流変動と故障電流とを確実に判別する性能が要求される。ところが変電所建設の都合上変電所間隔が長くなると、在線する車両数が増えるので負荷電流は増加し、線路長の延伸に応じた線路定数の増加で故障電流は減少する。そのため、図23に示す重なり部分のように、最大列車負荷電流と短絡故障電流の領域が近接し、あるいは重なり、遠端故障の検出が困難となる場合が生じる。図23の電流例で、最大負荷電流がTR(トロリ線−レール)故障電流を上回る領域の故障検出が困難であった。   On the other hand, the load current of an electric vehicle fluctuates violently depending on its running condition, and the electric vehicle current entering the feeding section is too steep due to an excessive no-load excitation inrush current of the vehicle transformer. With an increase in current. Further, the feeder circuit is provided with a reclosing function, and at the time of the reclosing, the plurality of electric vehicles and the plurality of single-turn transformers AT in the feeding section are simultaneously repressurized to generate an excessive excitation inrush current. The protection relay provided in the feeder circuit is required to have a capability of reliably discriminating between such load current fluctuation and fault current. However, if the interval between substations becomes longer due to the construction of the substation, the number of vehicles on the line increases, so the load current increases, and the fault current decreases as the line constant increases as the line length increases. Therefore, as shown in the overlapping portion shown in FIG. 23, the maximum train load current and the short-circuit fault current region may be close to each other or overlap, and it may be difficult to detect the far-end fault. In the current example of FIG. 23, it is difficult to detect a failure in a region where the maximum load current exceeds the TR (trolley wire-rail) failure current.

特開2008−221898号公報JP 2008-221898 A 特開2004−74924号公報JP 2004-74924 A 特開2003−2088号公報JP 2003-2088 A

本発明は、上述した従来技術の課題に鑑みてなされたもので、長大なき電区間においても故障を確実に検出することができる交流ATき電回路のき電保護装置及び方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides a feeder protection device and method for an AC AT feeder circuit that can reliably detect a failure even in a long feeder section. Objective.

本発明は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、保護する電車線区間の両端電気所の電車線と単巻変圧器の電気量をそれぞれの電気所端で取り込む電気量取り込み手段と、それぞれの電気所端で取り込む電気量を両端相互に高速通信してそれぞれの電気所端にて両端の同時系列電気標本量を情報として一元共有する情報共有手段と、保護区間両端の電気標本量を合成演算して前記保護区間に流入する電流と保護区間の電車線に流入する電気量を求める電気量算出手段と、前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のベクトル変化量を求めるベクトル変化量演算手段と、前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のスカラ増加量を求めるスカラ増加量演算手段と、前記保護区間両端の同時系列電気標本量を演算して求めた保護区間の流入電気量をフィルタリングして、基本波と第二調波成分とを求め、かつ前記第二調波の含有率を算出する高調波含有率演算手段と、求めた区間流入電気量のベクトル変化量、スカラ増加量、第二調波含有率、及び予め定めた演算定数を用いて区間故障と故障箇所及び故障した電車線を判定演算する故障判定手段とを備えた交流ATき電回路のき電保護装置を特徴とする。   The present invention relates to a feeder protection device for detecting a failure in a train line bordering on a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeding circuit. Electric quantity capturing means that captures the amount of electricity from the electric line at both ends of the electric line at the electric line at the ends of the electric line, and the amount of electricity that is captured at the ends of the electric stations, respectively, and both ends communicate with each other at high speed. Information sharing means for centrally sharing the electrical sample volume at both ends as information at the end of the electrical station, and combining the electrical sample volume at both ends of the protection section to calculate the current flowing into the protection section and the train line of the protection section An electric quantity calculating means for calculating an inflowing electric quantity; a vector change amount calculating means for calculating a vector change amount of an inflowing electric quantity in the protection section by calculating a simultaneous series electric sample quantity at both ends of the protection section; Simultaneous series electricity A scalar increase amount calculating means for calculating the amount to calculate a scalar increase amount of the inflow electricity amount in the protection section, and filtering the inflow electricity amount in the protection section obtained by calculating the simultaneous series electric sample amounts at both ends of the protection section. A harmonic content rate calculating means for calculating the fundamental wave and the second harmonic component and calculating the content rate of the second harmonic, and the vector change amount, scalar increase amount, Featuring a feeder protection device for an AC AT feeder circuit having a section failure and a failure determination means for determining and calculating a failure location and a failed train line using a biharmonic content rate and a predetermined calculation constant. .

また、本発明は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出する交流ATき電回路のき電保護方法であって、保護する電車線区間の両端電気所の電車線と単巻変圧器の電気量をそれぞれの電気所端で取り込むステップと、それぞれの電気所端で取り込む電気量を両端相互に高速通信してそれぞれの電気所端にて両端の同時系列電気標本量を情報として一元共有するステップと、保護区間両端の電気標本量を合成演算して前記保護区間に流入する電流と保護区間の電車線に流入する電気量を求めるステップと、前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のベクトル変化量を求めるステップと、前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のスカラ増加量を求めるステップと、前記保護区間両端の同時系列電気標本量を演算して求めた保護区間の流入電気量をフィルタリングして、基本波と第二調波成分とを求め、かつ前記第二調波の含有率を算出するステップと、求めた区間流入電気量のベクトル変化量、スカラ増加量、第二調波含有率、及び予め定めた演算定数を用いて区間故障と故障箇所及び故障した電車線を判定演算するステップとを有する交流ATき電回路のき電保護方法を特徴とする。   Further, the present invention provides an AC AT feeder circuit feeding circuit that detects a failure of a train line bounded by a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeding circuit. It is a protection method, the step of taking in the amount of electricity of the electric line of the electric station at both ends of the electric line section to be protected and the autotransformer at the end of each electric station, and the amount of electricity taken in at the end of each electric station mutually A step of sharing high-speed communication and the amount of simultaneous electrical samples at both ends at each electric power station as information, and combining and calculating the electrical sample amounts at both ends of the protection section and the current flowing into the protection section and the protection section Determining the amount of electricity flowing into the train line; calculating the amount of simultaneous series electrical samples at both ends of the protection section to determine a vector change amount of the amount of inflow electricity in the protection section; and simultaneous series electrical samples at both ends of the protection section Play quantity And calculating the scalar increase amount of the inflow electricity amount in the protection section, filtering the inflow electricity amount in the protection section obtained by calculating the simultaneous series electrical sample amount at both ends of the protection section, Calculating the wave component and calculating the content rate of the second harmonic, and calculating the vector change amount, the scalar increase amount, the second harmonic content rate, and a predetermined calculation constant of the calculated section inflow electricity amount. A feeding protection method for an AC AT feeder circuit having a step of using and determining and calculating a section failure and a failure location and a failed train line.

本発明の交流ATき電回路のき電保護装置及び方法によれば、保護区間の両端の電気所の電気量を合成し、電車線毎、及び上下線毎の区間流入電流を算出し、上下線双方において合成電流のベクトル変化量とスカラ増加量、さらに第二調波含有率を演算し、これらの演算結果と予め定める判定定数とから保護区間の電車線を走行する負荷の電流変化と故障時の電流変化とを選別して保護区間の故障を検出し、故障箇所と故障線を判定することができる。   According to the feeder protection device and method of the AC AT feeder circuit of the present invention, the amount of electricity at the electric stations at both ends of the protection section is synthesized, the section inflow current for each train line and each upper and lower line is calculated, Calculates the vector change amount and scalar increase amount of the combined current and the second harmonic content rate in both lines, and the current change and failure of the load traveling on the train line in the protection section from these calculation results and a predetermined determination constant It is possible to detect the failure in the protection section by selecting the current change at the time and determine the failure location and the failure line.

本発明の第1〜第3の実施の形態のき電保護装置を適用する交流ATき電回路の基本構成の回路図。The circuit diagram of the basic composition of the alternating current AT feeder circuit to which the feeder protection device of the 1st-3rd embodiment of the present invention is applied. 上記の交流ATき電回路において保護区間に流れる電気車走行電流の説明図。Explanatory drawing of the electric vehicle traveling current which flows into a protection area in said AC AT feeder circuit. 上記の交流ATき電回路において切替セクションに進入する電気車に流れる区間電流例のグラフ。The graph of the example of the area current which flows into the electric vehicle which approachs a switching section in said AC AT feeder circuit. 上記の交流ATき電回路において加速走行電気車に流れる区間電流例のグラフ。The graph of the example of the area current which flows into an acceleration traveling electric vehicle in said AC AT feeder circuit. 上記の交流ATき電回路において異区間を通過する電気車による区間電流50%急変の様子を示すグラフ。The graph which shows the mode of the section current 50% sudden change by the electric vehicle which passes a different section in said alternating current AT feeder circuit. 上記の交流ATき電回路において電気車の切替セクション抜けと回生制動による区間電流の急減と反転の様子を示すグラフ。The graph which shows the mode of the sudden reduction | decrease and inversion of the section current by the switching section omission of an electric vehicle and regenerative braking in said AC AT feeder circuit. 本発明の第1の実施の形態のき電保護装置の回路図。1 is a circuit diagram of a feeding protection device according to a first embodiment of the present invention. 上記実施の形態による区間差電流保護の原理を示すブロック図。The block diagram which shows the principle of the section difference current protection by the said embodiment. 上記実施の形態のき電保護装置による区間差電流保護の演算ブロック図。The operation block diagram of section difference current protection by the feeding protection device of the above-mentioned embodiment. 本発明の第2の実施の形態のき電保護装置の回路図。FIG. 5 is a circuit diagram of a feeding protection device according to a second embodiment of the present invention. 上記実施の形態のき電保護装置による区間端の電車線電流を導入する計器用変流器位置に対し単巻変圧器ATが保護区間側に位置する場合の区間差電流保護の演算ブロック図。FIG. 6 is a calculation block diagram of section difference current protection when the autotransformer AT is located on the protection section side with respect to the current transformer position for introducing an instrument line current at the section end by the feeder protection device of the embodiment. 本発明の第3の実施の形態のき電保護装置の回路図。FIG. 5 is a circuit diagram of a feeding protection device according to a third embodiment of the present invention. 上記実施の形態のき電保護装置による複数区間の上下線を一括で保護する区間差電流保護の演算ブロック図。The operation block diagram of section difference current protection which protects the upper and lower lines of a plurality of sections collectively by the feeding protection device of the above-mentioned embodiment. 交流ATき電回路における従来のき電保護方式の保護要素の配置を示す回路図。The circuit diagram which shows arrangement | positioning of the protection element of the conventional feeding protection system in an alternating current AT feeding circuit. 交流ATき電回路における本発明のき電保護方式の保護要素の配置を示す回路図。The circuit diagram which shows arrangement | positioning of the protection element of the feeding protection system of this invention in an alternating current AT feeding circuit. 交流ATき電回路における最大負荷電流が流れている状態を模擬した回路図。The circuit diagram which simulated the state in which the maximum load current is flowing in the AC AT feeder circuit. 交流ATき電回路における最小故障電流が流れている状態を模擬した回路図。The circuit diagram which simulated the state in which the minimum fault current has flowed in the AC AT feeder circuit. 交流ATき電回路における従来のき電保護方式の高調波捕捉機能の説明図。Explanatory drawing of the harmonic capture function of the conventional feeding protection system in an AC AT feeding circuit. 交流ATき電回路における本発明のき電保護方式の高調波捕捉機能の説明図。Explanatory drawing of the harmonic capture function of the feeding protection system of this invention in an AC AT feeding circuit. 一般的な交流ATき電回路の回路図。A circuit diagram of a general AC AT feeder circuit. 一般的な交流ATき電回路のき電原理の説明図。Explanatory drawing of the feeding principle of a general AC AT feeding circuit. 一般的な交流ATき電回路の短絡の種類によるインピーダンス特性のグラフ。The graph of the impedance characteristic by the kind of short circuit of a general alternating current AT feeder circuit. 従来使用されている距離継電器(#44F)の動作特性図。The operation characteristic figure of distance relay (# 44F) used conventionally. 従来使用されている交流ΔI形継電器(#50F)の動作特性図。Operation characteristic diagram of AC ΔI type relay (# 50F) conventionally used. 従来例のき電保護装置の回路図。FIG. 6 is a circuit diagram of a conventional feeder protection device. 従来例のき電保護方式による短絡故障検出の課題を示すグラフ。The graph which shows the subject of the short circuit fault detection by the feeder protection system of a prior art example.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
図1は、従来技術として示した図17の交流電気鉄道における一般的なATき電回路の系統構成と同様である。図2は、この図1に示した交流電気鉄道における一般的なATき電回路の系統構成におけるき電区分所SPを境界とする左側の変電所SS電源に属する二つのAT区間(区間1、2)の下り線を代表例として示している。この図2は、区間を走行する電気車電流を説明するために用いる。電車線を流れる区間電流は、区間を走行する電気車編成数に応じ、故障電流に近い値となることが想定されることに加えて、切替セクションへの電気車進入や区間走行車両の加速(力行)、制動(回生)、及び異区間相互通過電気車の前方/後方パンタグラフまたぎ、切替セクションへの電気車走出時の電源切替に応じた急変化を伴う。つまり、き電回路の保護には電車線の故障電流と区間走行負荷電流との選択性を備えることが重要である。
[First Embodiment]
FIG. 1 is the same as the system configuration of a general AT feeder circuit in the AC electric railway of FIG. 17 shown as the prior art. FIG. 2 shows two AT sections (section 1 and section 2) belonging to the left substation SS power supply with the feeder section SP as a boundary in the system configuration of the general AT feeder circuit in the AC electric railway shown in FIG. The down line of 2) is shown as a representative example. This FIG. 2 is used to explain the electric vehicle current traveling in the section. The section current flowing on the train line is assumed to be a value close to the fault current depending on the number of electric vehicles forming the section, and in addition to the electric vehicle approach to the switching section and the acceleration of the section traveling vehicle ( Powering), braking (regeneration), and crossing forward / backward pantographs of electric vehicles passing through different sections, and sudden changes in response to power switching when the electric vehicle runs to the switching section. That is, it is important to provide selectivity between the fault current of the train line and the section traveling load current for protecting the feeder circuit.

図3はセクションに進入する電気車に流れる区間電流例であり、測定波、1f実効値、2f実効値、3f実効値をそれぞれ示している。セクションに進入する電気車に流れる区間電流は大きな急変突入電流ではあるが、第二調波2fの含有率によって故障電流との選別が可能である。   FIG. 3 is an example of a section current flowing through the electric vehicle entering the section, and shows a measurement wave, 1f effective value, 2f effective value, and 3f effective value, respectively. The section current flowing through the electric vehicle entering the section is a large sudden change inrush current, but can be selected from the fault current by the content ratio of the second harmonic 2f.

図4は電気車が定格電流に加速(力行)するときの電流の増加推移である。複数編成の電気車が同一区間内で同時加速すれば区間電流はこれら複数電気車電流の総和値となり、検出すべき故障電流を超過することが懸念される。ところが、電気車加速電流の増加時定数dI/dtは、故障電流が急変するのに比べ遥かに緩やかな傾斜である。そのため、数サイクル前の値とのベクトル変化分電流を抽出することによって、故障電流変化との選別は可能である。   FIG. 4 shows the increase in current when the electric vehicle accelerates to the rated current (powering). If a plurality of electric cars are simultaneously accelerated in the same section, the section current becomes the sum of the plurality of electric vehicle currents, and there is a concern that the fault current may be exceeded. However, the increase time constant dI / dt of the electric vehicle acceleration current has a much gentler slope than the sudden change in the fault current. Therefore, it is possible to select a failure current change by extracting a current corresponding to a vector change from a value several cycles before.

図5はエアセクションで分離された補助き電区分所SSPの両翼区間を電気車が通過する際に区間相互に移行する1編成分電気車電流の急減と急増である。電気車の先頭パンタグラフがエアセクションをまたいだ時点(1)で電気車電流の50%が走行方向の区間に急移行し、電気車の最後尾パンタグラフがエアセクションを抜けた時点(2)で電気車電流の100%が移行する。この50%移行電流は故障電流変化と同様な急変化で生じるので、故障検出感度は1編成電気車定格電流の60%以上とする必要がある。   FIG. 5 shows the sudden decrease and increase of the one-component electric vehicle current that moves between the sections when the electric vehicle passes through both wing sections of the auxiliary feeder section SSP separated by the air section. When the first pantograph of the electric vehicle crosses the air section (1), 50% of the electric vehicle current suddenly shifts to the section in the traveling direction, and when the last pantograph of the electric vehicle exits the air section (2) 100% of the car current is transferred. Since this 50% transition current is caused by a sudden change similar to the change in the fault current, the fault detection sensitivity needs to be 60% or more of the rated electric car rated current.

図6は区間走出車両(切替セクション抜け)、制動車両(回生)により急変化する区間電流例である。100%定格電流走行の電気車電流が0%急変化、あるいは50%反転して大きなベクトル変化電流は生じる。しかしながら、絶対値で比較すれば減少するので、数サイクル前後の絶対値比較により故障電流との選別は可能である。   FIG. 6 shows an example of section current that changes suddenly due to section running vehicle (switching section missing) and braking vehicle (regeneration). The electric vehicle current traveling at 100% rated current changes suddenly by 0% or reverses by 50% to generate a large vector changing current. However, since it decreases if the absolute value is compared, it is possible to select the fault current by comparing the absolute values around several cycles.

図7は、本発明の第1の実施の形態の交流ATき電回路のき電保護装置1を示している。本実施の形態のき電保護装置1は、差電流保護回路にて構成される。保護する電車線区間の両端に位置する電気所の始点側(ここでは補助き電区分所SSPを電気所A、終点側(ここではき電区分所SP)を電気所Bとしている。保護区間の両端電気所はトロリ線とき電線との電車線で接続され、トロリ線とき電線とは各電気所で単巻変圧器ATに接続してATの中点をレールに接続する。さらに保護区間の両端の電気所では、上下タイ(断路器89FTなど)により上下線の接続と分離が行えるように構成される。区間を走行する電気車電流はトロリ線とレールとを帰還して両端ATの中点に吸い上げられ、トロリ線とき電線とに流れるATの変換比電流が電源に帰還する。   FIG. 7 shows a feeding protection device 1 for an AC AT feeding circuit according to the first embodiment of the present invention. The feeder protection device 1 according to the present embodiment is configured by a differential current protection circuit. The starting point side of the electric station located at both ends of the train line section to be protected (here, the auxiliary feeder section SSP is the electric station A, and the ending point side (here the feeder section SP) is the electric station B. The electric stations at both ends are connected by electric wires to the trolley wires and electric wires, and the electric wires to the trolley wires are connected to the autotransformer AT at each electric station to connect the midpoint of the AT to the rail. In the electric station, the upper and lower ties (disconnector 89FT, etc.) can be used to connect and disconnect the upper and lower lines. The AT conversion ratio current that flows to the electric wire when the trolley wire is fed back to the power source.

本実施の形態のき電保護装置1は保護区間両端の遠隔電気所A、Bのそれぞれに端末装置2、3を備え、両端末装置2、3間を高速リアルタイム通信装置4で接続して両端末装置2、3が電気情報を一元共有できるように構成している。保護区間5、6の両端の端末装置2、3はそれぞれ、両端電気所A、Bに備えられている計器用変流器CTからトロリ線とき電線の下り電車線電流It1A、It1B、If1A、If1Bと上り電車線電流It2A、It2B、If2A、If2B、さらに下り線ATの中点吸い上げ電流Iat1A、Iat1B、上り線ATの中点吸い上げ電流Iat2A、Iat2Bをそれぞれ導入する。この情報の相互伝送には高速リアルタイム通信装置4を利用する。   The feeder protection device 1 according to the present embodiment includes terminal devices 2 and 3 at remote electrical stations A and B at both ends of the protection section, and both terminal devices 2 and 3 are connected by a high-speed real-time communication device 4. The terminal devices 2 and 3 are configured to be able to share electric information in a unified manner. The terminal devices 2 and 3 at both ends of the protection sections 5 and 6 are connected to the electric current transformers CT provided at both ends of the electric power stations A and B, respectively, and when the trolley wire is connected, the down train line currents It1A, It1B, If1A, If1B And up train line currents It2A, It2B, If2A, If2B, and further, midpoint siphoning currents Iat1A and Iat1B and downline AT midpoint siphoning currents Iat2A and Iat2B are respectively introduced. A high-speed real-time communication device 4 is used for mutual transmission of this information.

図8を用いて、本実施の形態による区間差電流方式によるき電保護方法の原理を説明する。図8は、図1のATき電回路における任意AT区間を簡略化した回路図であり、保護原理の説明に必要な電気標本量を示している。同図において、保護区間両端の電気所は始点側を電気所A、終点側を電気所Bとし、それぞれの電気所A、Bには保護区間のトロリT、レールR、き電Fの各電車線接続点に備える計器用変流器CTから、各電車線電流を導入する。保護区間を走行する電気車の負荷電流ILはトロリ線とレールを帰還して両端のATに吸い上げられる(ILA、ILB)。この負荷電流ILは前記の図3、図4、図5、図6で述べたように保護区間を走行する電気車の編成数と走行位置、加速や制動などの走行状態に応じて大きく変化するので、負荷電流と故障電流との見極めが必要になる。   The principle of the feeding protection method using the section difference current method according to this embodiment will be described with reference to FIG. FIG. 8 is a circuit diagram in which an arbitrary AT section in the AT feeder circuit of FIG. 1 is simplified, and shows an electrical sample amount necessary for explaining the protection principle. In the figure, the electric stations at both ends of the protection section are designated as the electric station A at the start point and the electric station B at the end point, and the electric trains A, B have the trolley T, the rail R, and the feeder F in the protection section. Each train line current is introduced from an instrument current transformer CT provided at the line connection point. The load current IL of the electric vehicle traveling in the protection section is sucked up by the ATs at both ends by returning the trolley line and the rail (ILA, ILB). As described in FIGS. 3, 4, 5, and 6, the load current IL varies greatly depending on the number of trains and the travel position of the electric vehicle traveling in the protection section, and the traveling state such as acceleration and braking. Therefore, it is necessary to determine the load current and the fault current.

従来技術として図18を用いて説明したように、保護区間には複数の電車線があり、故障種別には電車線間相互の短絡故障と電車線の地絡故障とがある。図8の短絡故障電流IFはF−R短絡故障を例として示している。T−F短絡故障を除くすべての電車線故障電流IFA、IFBは図8の例と同様に故障線(図8の例では故障線がき電線Fからレールを帰還して両端のATに吸い上げられる。   As described with reference to FIG. 18 as the prior art, there are a plurality of train lines in the protection section, and the failure types include a short-circuit failure between the train lines and a ground fault in the train line. The short-circuit fault current IF in FIG. 8 shows an FR short-circuit fault as an example. All of the train line fault currents IFA and IFB except for the TF short-circuit fault are sucked up to the ATs at both ends by returning the rail from the fault line feeder line F in the example of FIG.

ここで、保護区間に発生するT−F短絡を含むすべての故障電流は必ず両端のトロリ線とき電線の双方又は一方を通過することに着目し、図9を用いて本実施の形態のき電保護装置1による区間差電流方式でのき電保護方法を説明する。   Here, paying attention to the fact that all fault currents including TF short-circuits that occur in the protection section always pass through both or one of the electric wires when the trolley wires at both ends are used, the power feeding according to this embodiment will be described with reference to FIG. A feeding protection method in the section difference current method by the protection device 1 will be described.

標本量合成ステップにて、標本量合成部11は、保護区間の両端A、Bから電気標本量IatA、ItA、IfA、IatB、ItB、IfBを導入し、トロリ線Tとき電線Fそれぞれの両端電流ItA;ItB、IfA;IfBを合成し、区間内流入電流σIt、σIfと全流入電流σIを式1、式2、式3で求める。   In the sample quantity synthesis step, the sample quantity synthesis unit 11 introduces the electrical sample quantities IatA, ItA, IfA, ItatB, ItB, IfB from the both ends A and B of the protection section. ItA; ItB, IfA; IfB are synthesized, and the inflow currents σIt, σIf and the total inflow current σI in the section are obtained by Expression 1, Expression 2, and Expression 3.

σIt=ItA+ItB …(式1)
σIf=IfA+IfB …(式2)
σI=σIt−σIf …(式3)
フィルタリングステップにて、フィルタリング部12は、区間の全流入電流σIに含まれる基本波電流σI1fと第二調波電流σI2fを求める。
σIt = ItA + ItB (Formula 1)
σIf = IfA + IfB (Formula 2)
σI = σIt−σIf (Formula 3)
In the filtering step, the filtering unit 12 obtains the fundamental wave current σI1f and the second harmonic current σI2f included in the total inflow current σI in the section.

第二調波(2f)含有率演算・判定ステップにて、第二調波含有率演算・判定部13は、フィルタリング部12によるフィルタリングステップで求めた基本波電流に対する第二調波電流の比率2f%を式4で求め(第二調波含有率演算ステップ)、予め整定して格納した含有率比較定数k2fとの比較判定を実行し、動作判定関数k2を式5のように生成する(第二調波含有率判定ステップ)。この第二調波含有率演算・判定部13での第二調波含有率演算により前述の図3で説明したセクション侵入車両の急変突入電流と故障電流との選別を行う。   In the second harmonic (2f) content rate calculation / determination step, the second harmonic content rate calculation / determination unit 13 calculates the ratio 2f of the second harmonic current to the fundamental wave current obtained in the filtering step by the filtering unit 12. % Is obtained from Equation 4 (second harmonic content calculation step), and the comparison determination with the content rate comparison constant k2f that has been set and stored in advance is executed, and the motion determination function k2 is generated as shown in Equation 5 (first step). Second harmonic content determination step). By the second harmonic content calculation in the second harmonic content calculation / determination unit 13, the sudden change inrush current and the fault current of the section intruding vehicle described in FIG. 3 are selected.

2f%=σI2f/σI1f …(式4)
(If 2f%<k2f then k2=1、else k2=0) …(式5)
電流変化量演算ステップにて、電流変化量演算部14は、区間流入電流のベクトル変化量dIとスカラ増加量dI+を演算する(ベクトル変化量演算ステップ、スカラ増加量演算ステップ)。ベクトル変化量dIでは、図4で述べた複数編成電気車が同時加速してその総和電流が故障電流域に達することを回避するように作用させるために用いるものであり、式6のように演算する。また、スカラ増加量dI+は、図6で説明した電気車切替セクション抜け、電気車制動(回生)による区間電流の急峻な減少で生じるベクトル変化と故障電流増加で生じるベクトル変化との選別を行うために用いるものであり、式7により求める。さらに、電流変化量演算部14は、スカラ増加量判定ステップにおいて、スカラ増加量演算ステップにて求めたスカラ増加量dI+と予め整定して格納した含有率比較定数k+との比較判定を実行し、動作判定関数k1を式8のように生成する。
2f% = σI2f / σI1f (Formula 4)
(If 2f% <k2f then k2 = 1, else k2 = 0) (Formula 5)
In the current change amount calculation step, the current change amount calculation unit 14 calculates the vector change amount dI and the scalar increase amount dI + of the section inflow current (vector change amount calculation step, scalar increase amount calculation step). The vector change amount dI is used to cause the multiple train electric vehicle described in FIG. 4 to accelerate at the same time and avoid the sum current reaching the fault current region. To do. Further, the scalar increase amount dI + is used to select a vector change caused by a steep decrease in the section current due to the disconnection of the electric car switching section and the electric car braking (regeneration) described in FIG. 6 and a vector change caused by an increase in the fault current. It is used for the above, and is obtained from Equation 7. Further, the current change amount calculation unit 14 performs a comparison determination between the scalar increase amount dI + obtained in the scalar increase amount calculation step and the content rate comparison constant k + that is set and stored in advance in the scalar increase amount determination step. The motion determination function k1 is generated as in Expression 8.

dI=σI−0−σI−n …(式6)
dI+=|σI−0|−|σI−n| …(式7)
(If dI+≧k+ then k1=1、else k1=0) …(式8)
但し、σI−0:現在値、σI−n:任意のnサイクル前の値(過去値)である。
dI = σI −0 −σI −n (Formula 6)
dI + = | σI −0 | − | σI −n | (Expression 7)
(If dI + ≧ k + then k1 = 1, else k1 = 0) (Equation 8)
However, σI −0 is the current value, and σI −n is the value (past value) before any n cycles.

トロリ線Tとき電線Fの故障判定の関数を求める故障判定関数算出部15は、前述の標本量合成部11で算出したそれぞれの電車線電流σIt、σIfの区間電流相互差比率dI%を式9で算出する。   The failure determination function calculation unit 15 for obtaining a function for determining the failure of the electric wire F when the trolley line T is used to calculate the section current mutual difference ratio dI% of each of the train line currents σIt and σIf calculated by the sample amount combining unit 11 described above. Calculate with

dI%=(|σIt|−|σIf|)/|σIt−σIf| …(式9)
故障判定ステップにて、故障判定部16は、区間故障の検出と故障電車線の判定を行う。この区間故障の検出は、前述の第二調波含有率演算部13による動作判定関数k2、及び、電流変化量演算部14にて算出したベクトル変化量dIとスカラ増加量dI+から求めた動作判定関数k1、さらに、予め整定して格納した動作判定定数kIを式10に代入することにより行う。
dI% = (| σIt | − | σIf |) / | σIt−σIf | (formula 9)
In the failure determination step, the failure determination unit 16 detects a section failure and determines a faulty train line. This section failure is detected by the operation determination function k2 obtained by the second harmonic content calculation unit 13 and the operation determination obtained from the vector change amount dI and the scalar increase amount dI + calculated by the current change amount calculation unit 14. This is performed by substituting the function k1 and the operation determination constant kI stored in advance in Expression 10.

k1・k2・dI≧kI …(式10)
故障判定部16による故障線の判定ステップでは、前述した故障判定関数算出部15で求めた電車線電流の区間電流相互差比率dI%を関数に式11で故障線を判定する。この故障線の判定は、区間故障有りと判定された時、つまり、上記の式10が成立した時に有効とする。
k1 · k2 · dI ≧ kI (Equation 10)
In the failure line determination step by the failure determination unit 16, the failure line is determined by Equation 11 using the section current mutual difference ratio dI% of the train line current obtained by the failure determination function calculation unit 15 described above as a function. The determination of the fault line is valid when it is determined that there is a section fault, that is, when the above Equation 10 is satisfied.

(If dI%≧kt then T線故障、If dI%≦kf then F線故障、else TF線故障) …(式11)
但し、kt:T線故障の判定定数、kf:F線故障の判定定数である。
(If dI% ≧ kt then T line failure, If dI% ≦ kf then F line failure, else TF line failure) (Equation 11)
However, kt: a determination constant for T-line failure, and kf: a determination constant for F-line failure.

このように、本実施の形態のATき電回路におけるき電保護装置及び方法では、保護区間の両端の電気所A、Bのトロリ線Tとき電線FおよびAT中性点Nに設けられた計器用変流器CTから取り込んだ保護区間両端の電気量を合成して、各電車線TとF毎、及び上下線毎の区間流入電流を算出し、上下線双方において合成電流のベクトル変化量dIとスカラ増加量dI+、さらに第二調波含有率を演算する。そして、これらの演算結果と予め定める判定定数から、保護区間の電車線を走行する負荷電流変化と故障時の電流変化とを選別して保護区間の故障を検出し、故障箇所(下り線と上り線)と故障線(T、F、TF)を判定する。   Thus, in the feeder protection device and method in the AT feeder circuit of the present embodiment, the instrument provided at the trolley wire T, the electrical wire F, and the AT neutral point N at both ends of the protection section. The amount of electricity flowing at both ends of the protection section taken in from the current transformer CT is synthesized to calculate the section inflow current for each train line T and F and for each upper and lower line, and the vector change amount dI of the combined current in both the upper and lower lines And the scalar increase amount dI + and the second harmonic content rate are calculated. Then, from these calculation results and predetermined determination constants, the load current change traveling on the train line in the protection section and the current change at the time of failure are selected to detect the failure in the protection section, and the failure location (down line and up line) Line) and fault lines (T, F, TF).

これにより、本実施の形態の保護装置及び方法によれば、次のような効果がある。
1)区間両端に備える従来の保護要素数を半減できる。
Thereby, according to the protection apparatus and method of this Embodiment, there exist the following effects.
1) The number of conventional protection elements provided at both ends of the section can be halved.

図14Aに従来方式、図14Bに本実施の形態の差電流方式を対比して示している。本実施の形態の方式によれば、保護すべき区間の両端に備える保護要素は区間差電流保護設備に統括でき、これにより、保護区間の両端に備える保護要素数を従来より半減できる。   FIG. 14A shows a conventional method, and FIG. 14B shows a comparison between the differential current method of the present embodiment. According to the system of the present embodiment, the protection elements provided at both ends of the section to be protected can be integrated with the section difference current protection equipment, and thereby the number of protection elements provided at both ends of the protection section can be halved as compared with the prior art.

2)負荷電流に対する故障時の電流変化量を増大できる。   2) The amount of current change at the time of failure with respect to the load current can be increased.

図15Aに従来方式(50FV)、図15Bに本実施の形態の差電流方式の故障時に生じる電流変化を対比して示している。図15Aは保護区間の上下線それぞれを一定の間隔で走行する複数の電気車電流I1、I2、I3を配置した最大負荷の模擬、同図15Bは保護区間下り線の遠端に生じる故障と検出すべき最小故障電流IFminを模擬している。同図15A、図15Bにおいて保護区間の電源側に位置する50FVが検出する故障前の電流と故障後の電流の変化量dIAは式12の値である。また、区間の電源より遠端側の50FVが検出する故障前の電流dIBは、上下線負荷の位置と電流I1、I2、I3を同等と模擬すると、ほとんど零に近い値から故障時には故障電流の最大50%が健全側の上り線から迂回するので、故障後の変化電流はIFmin/2の値を検出する。ここで、変化電流の比較を簡略するために保護区間の上下線を走行する最大負荷時の全負荷電流2×(I1+I2+I3)と保護区間の遠端に生じる検出すべき最小故障電流IFminとの値は同等、双方電流の位相差θは75°として比較する。すなわち、2×(I1+I2+I3)=IFmin∠75°である。   FIG. 15A shows a comparison of current changes that occur at the time of failure in the conventional method (50 FV) and FIG. 15B in the differential current method of the present embodiment. FIG. 15A is a simulation of a maximum load in which a plurality of electric vehicle currents I1, I2, and I3 that travel on the upper and lower lines of the protection section at regular intervals, and FIG. 15B is a fault detected at the far end of the protection section down line. The minimum fault current IFmin to be simulated is simulated. In FIG. 15A and FIG. 15B, the pre-failure current detected by the 50 FV located on the power supply side of the protection section and the change amount dIA of the current after the failure are the values of Equation 12. Also, the current dIB before failure detected by the 50 FV on the far end side of the power supply in the section simulates the failure current at the time of failure from a value close to zero when the position of the vertical load and the currents I1, I2, and I3 are simulated to be equivalent. Since a maximum of 50% detours from the healthy up line, the change current after the failure detects the value of IFmin / 2. Here, in order to simplify the comparison of the change current, the value of the total load current 2 × (I1 + I2 + I3) at the maximum load traveling on the upper and lower lines of the protection section and the minimum fault current IFmin to be detected generated at the far end of the protection section Are the same, and the phase difference θ of both currents is 75 ° for comparison. That is, 2 × (I1 + I2 + I3) = IFmin∠75 °.

dIA=現在のIA−故障前のIA
=IFmin/2−(I1+I2+I3)
=IFmin√(1−cosθ)/2 …(式12)
式12から分かるように、最大負荷電流と検出すべき最小故障電流の値が接近すると電源端側に生じる変化電流は故障電流の1/2以下で故障点に抵抗が介在して負荷と故障の電流位相が接近するにつれてさらに減少する。一方、本実施の形態の区間差電流方式によれば、区間両端電流の合成により、故障線(下り線)の電源端から流れる故障電流と健全側(上り線)を迂回して故障線(下り線)の遠端から流れる電流の双方が加算されるので検出感度が安定し、従来方式に比べて2倍以上の改善が実現できる。
dIA = current IA−IA before failure
= IFmin / 2- (I1 + I2 + I3)
= IFmin√ (1-cos θ) / 2 (Expression 12)
As can be seen from Equation 12, when the maximum load current and the minimum fault current value to be detected approach each other, the change current generated on the power supply end side is 1/2 or less of the fault current and a resistance is interposed at the fault point so that the load and fault It further decreases as the current phase approaches. On the other hand, according to the section difference current method of the present embodiment, the fault current (downstream) bypasses the fault current flowing from the power supply end of the fault line (down line) and the healthy side (up line) by combining the currents at both ends of the section. Since both of the currents flowing from the far end of the line are added, the detection sensitivity is stable, and an improvement of two times or more can be realized as compared with the conventional method.

3)故障区間を判別できる。   3) A failure section can be determined.

図14Aから明らかなように、従来方式では故障電流が健全区間の電車線を通過して遠端の故障点に流れる。そのため、故障点位置と上下タイの接続状態及び故障検出位置に応じ、各電気所に備えた故障検出リレーは一斉に故障検出する場合と故障点に近い電気所の故障検出リレーが故障検出する場合とがあり、故障区間を特定できない。一方、区間両端合成電流から故障を検出する本実施の形態による区間差電流方式では、健全区間では故障電流が通過して合成電流が両端相殺され、故障区間では両端流入により全故障電流が合成電流として算出されるので、故障区間の判定が明確になる。   As is clear from FIG. 14A, in the conventional method, the fault current flows through the train line in the healthy section and flows to the far-end fault point. Therefore, depending on the failure point position, the connection status of the upper and lower ties, and the failure detection position, the failure detection relays provided at each electric station detect failure at the same time, and the failure detection relay at the electric station near the failure point detects failure The failure section cannot be specified. On the other hand, in the section difference current method according to this embodiment for detecting a failure from the combined current at both ends of the section, the fault current passes in the healthy section and the combined current is canceled at both ends, and in the fault section, the total fault current is combined by the inflow at both ends. Therefore, the determination of the failure section becomes clear.

4)トロリ線故障、き電線故障、トロリ〜き電線故障の三種を選別できる。   4) Three types of trolley wire failure, feeder failure, and trolley to feeder failure can be selected.

5)突入電流に含まれる高調波成分を確実に捕捉できる。   5) Harmonic components included in the inrush current can be reliably captured.

図16Aは従来方式(50FV)、図16Bは本実施の形態による高調波の捕捉性能を対比して示している。同図16A、図16Bでは、電車線にき電回路電圧の安定、補償制御を行う系統安定化装置として静止形無効電力補償装置SVCを接続している。電源切替セクションに進入した電気車の電源再加圧時に流れる車両用変圧器励磁突入電流ILに含まれる第二調波成分I2のほとんどはSVCの高速制御で補償される。故に、変電所の電源に流れる電流には急峻な基本波成分I1とわずかな第二調波成分I2が流れる。その結果として、従来方法では、セクションに進入する電気車の急峻な電流変化に対する第二調波の検出抑制が効かないおそれがあった。一方、区間両端合成電流から故障を検出する本実施の形態の区間差電流方式では、SVCが補償する第二調波電流I2をSVC側の区間端から導入するので、セクションに進入する電気車の急峻な電流変化に対する第二調波の捕捉と故障検出の抑制が確実にできる。   FIG. 16A shows the conventional method (50 FV), and FIG. 16B shows the harmonic capture performance according to this embodiment. In FIG. 16A and FIG. 16B, a static reactive power compensator SVC is connected as a system stabilizing device that performs stabilization and compensation control of the feeder circuit voltage on the train line. Most of the second harmonic component I2 included in the vehicle transformer excitation inrush current IL that flows when the electric vehicle that has entered the power supply switching section is re-pressurized is compensated for by the high-speed control of the SVC. Therefore, a steep fundamental wave component I1 and a slight second harmonic component I2 flow in the current flowing through the power source of the substation. As a result, in the conventional method, there is a possibility that detection suppression of the second harmonic with respect to a steep current change of the electric vehicle entering the section may not be effective. On the other hand, in the section difference current method of this embodiment for detecting a failure from the combined current at both ends of the section, the second harmonic current I2 compensated by the SVC is introduced from the section end on the SVC side. It is possible to reliably capture the second harmonic and suppress the failure detection against a sudden current change.

[第2の実施の形態]
上記第1の実施の形態のATき電回路のき電保護装置及び方法は、本発明の基本原理を使用したものであった。つまり、保護区間両端の電車線電流を故障判定の標本量として導入するものであった。ところが、前述した交流電気鉄道におけるATき電回路の系統には、保護区間の電車線と電気所の境界点とに計器用変流器CTを備えない構成(電気所の単巻変圧器ATが電流導入点よりも保護区間側に位置する)も多く存在している。
[Second Embodiment]
The feeder protection device and method of the AT feeder circuit according to the first embodiment uses the basic principle of the present invention. That is, the train line current at both ends of the protection section is introduced as a sample amount for failure determination. However, the above-described AT feeder circuit system in the AC electric railway has a configuration in which the current transformer CT for the electric station is not provided between the train line in the protection section and the boundary point of the electric station. Many of them are located closer to the protection section than the current introduction point.

図10は保護区間のA端側(変電所A)の導入電流ItA、IfA位置に対しATが保護区間側に位置する場合の本発明の第2の実施の形態のき電保護装置1Aの構成を示している。尚、本実施の形態のき電保護装置1Aも第1の実施の形態と同様に両端の端末装置2、3とそれらの両端末装置2、3間を接続する高速リアルタイム通信装置4により構成される。   FIG. 10 shows the configuration of the feeder protection device 1A according to the second embodiment of the present invention when the AT is positioned on the protection section side with respect to the positions of the introduction currents ItA and IfA on the A end side (substation A) of the protection section. Is shown. Note that the feeder protection device 1A of the present embodiment is also composed of the terminal devices 2 and 3 at both ends and the high-speed real-time communication device 4 that connects the two terminal devices 2 and 3 as in the first embodiment. The

保護区間に流れる電流は、負荷電流であれ故障電流であれ、電車線を通過して両端の単巻変圧器ATに吸い上げられ、AT比変換電流が電源に帰還するので、両端合成電流にはATが吸い上げる電流とAT変換比に応じた電流差が生じている。   The current that flows in the protection section, whether it is a load current or a fault current, passes through the train line and is sucked up by the autotransformer AT at both ends, and the AT ratio conversion current returns to the power source. There is a difference between the current sucked by and the AT conversion ratio.

図11は、上述した、電気所の単巻変圧器ATが電流導入点よりも保護区間側に位置する場合の本実施の形態のき電保護装置1Aによる演算ブロック図であり、本実施の形態のき電保護方法をも示す。同図11において、図9において使用した符号と同一の符号のブロックは両者で同様であり、それらによる処理ステップも同様であるので説明は省略する。   FIG. 11 is a calculation block diagram by the feeder protection device 1A of the present embodiment when the autotransformer AT of the electric station is located on the protection section side of the current introduction point, as described above. Also shows the protection method for firewood. In FIG. 11, blocks having the same reference numerals as those used in FIG. 9 are the same in both, and the processing steps by them are also the same, and the description thereof will be omitted.

本実施の形態では、標本量合成ステップにて、標本量合成部17が、ATが保護区間側に位置する場合にATが吸い上げる電流とAT変換比に応じて両端の導入電流に生じる電流差を、式2−1、式2−2、式2−3を用いて保護区間端の電車線電流に等価し、区間両端の差電流を求める。   In the present embodiment, in the sample amount combining step, the sample amount combining unit 17 calculates the current difference generated between the current sucked by the AT when the AT is located on the protection section side and the introduced current at both ends according to the AT conversion ratio. , Equation 2-2, Equation 2-2, and Equation 2-3 are used to obtain the difference current at both ends of the section, which is equivalent to the train line current at the end of the protection section.

σIt=(1−kAct)・ItA+(kAct・IatA/Nat)+(1−kBct)・ItB+(kBct・IatB/Nat) …(式2−1)
σIf=(1−kAct)・IfA+(kAct・IatA/Nat)+(1−kBct)・IfB+(kBct・IatB/Nat) …(式2−2)
σI=σIt−σIf …(式2−3)
但し、kAct:予め定めて記憶するA端の電流導入点に対するAT位置定数(外「1」、内「0」)、kBct:予め定めて記憶するB端の電流導入点に対するAT位置定数(外「1」、内「0」)、Nat:予め定めて記憶するAT変換比である。
σIt = (1−kAct) · ItA + (kAct · IatA / Nat) + (1−kBct) · ItB + (kBct · IatB / Nat) (Formula 2-1)
σIf = (1−kAct) · IfA + (kAct · IatA / Nat) + (1−kBct) · IfB + (kBct · IatB / Nat) (Formula 2-2)
σI = σIt−σIf (Formula 2-3)
However, kAct: AT position constant (external “1”, internal “0”) for the current introduction point at the A end stored in advance and kBct: AT position constant (external position for the current introduction point at the B end stored in advance) “1”, “0”), Nat: AT conversion ratio determined and stored in advance.

このように、本実施の形態のき電保護装置及び方法によれば、保護区間端の電気所のトロリ線Tとき電線F電流を導入する計器用変流器CTが電気所のATを境界とし、保護区間の電車線側に位置するか、或いは反対側に位置するかに応じて予め定める定数を用いて行う電気量合成により、保護区間端の電気所のATが電流導入点よりも保護区間側に位置する場合にATが吸い上げる電流とAT変換比に応じて両端の導入電流に生じる電流差を補償する。これにより、本実施の形態のATき電回路におけるき電保護装置及び方法によれば、電気所に備える計器用変流器の設置位置(電流導入点)を制約しないので、既設設備構成に対して柔軟に対応が可能となる効果がある。   As described above, according to the feeder protection device and method of the present embodiment, the current transformer CT for introducing the electric wire F current when the trolley wire T of the electric station at the end of the protection section is set at the AT of the electric station as a boundary. The AT of the electric station at the end of the protective section is more protected than the current introduction point by combining the electricity using a predetermined constant depending on whether it is located on the train line side of the protective section or on the opposite side. When it is located on the side, the current difference generated in the introduced current at both ends is compensated according to the current sucked by the AT and the AT conversion ratio. Thus, according to the feeder protection device and method in the AT feeder circuit of the present embodiment, the installation position (current introduction point) of the current transformer for the instrument provided in the electric station is not restricted. This has the effect of being able to respond flexibly.

[第3の実施の形態]
図12に、本発明の第3の実施の形態のATき電回路におけるき電保護装置1Bによる区間差保護の構成を示す。尚、本実施の形態のき電保護装置1Bも第1の実施の形態と同様に、端末装置2、3と両端末装置2、3を接続する高速リアルタイム通信装置4にて構成される。
[Third Embodiment]
FIG. 12 shows a configuration of section difference protection by the feeder protection device 1B in the AT feeder circuit according to the third embodiment of the present invention. As in the first embodiment, the feeder protection device 1B according to the present embodiment is also composed of the high-speed real-time communication device 4 that connects the terminal devices 2 and 3 and the two terminal devices 2 and 3.

本実施の形態のき電保護装置1Bは、中間電気所を介して連なる複数区間の上下線を一括で保護することを特徴とし、上下線を含めた一括区間の両端(電気所A、B)に備えた計器用変流器CTから下り線の電車線電流ItAD、IfAD、ItBD、IfBDと単巻変圧器AT吸い上げ電流IatAD、IatBD、同様に上り線の電車線電流ItAU、IfAU、ItBU、IfBUと単巻変圧器AT吸い上げ電流IatAU、IatBUを一括区間保護の標本量として導入する。   The feeder protection device 1B according to the present embodiment is characterized by collectively protecting the upper and lower lines of a plurality of sections connected via an intermediate electric station, and both ends (electric stations A and B) of the collective section including the upper and lower lines. Current line currents ItAD, IfAD, ItBD, IfBD and auto-transformer AT suction currents IatAD, ItatBD, as well as upward line currents ItAU, IfAU, ItBU, IfBU And the autotransformer AT suction currents IatAU and IatBU are introduced as a sample amount for collective section protection.

保護区間内の中間電気所では、上下線を接続、あるいは分離するための上下タイが設置されている。中間電気所の上下タイは電源供給や負荷状況に応じて運用される。ところが、中間電気所の上下タイが閉じて上下線が接続された状態で生じる電車線故障電流は、健全線側の両端と中間電気所の上下タイを迂回する。故に、上下線をそれぞれ個別にして区間の流入電流を算出する方法では故障点に流れる電流に対し、健全線側を迂回する電流の減少が生じて故障検出感度の低下を招く。   Upper and lower ties for connecting or separating the upper and lower lines are installed at the intermediate electrical station in the protection section. The upper and lower ties of the intermediate electric station are operated according to the power supply and load conditions. However, a train line fault current that occurs when the upper and lower ties of the intermediate electric station are closed and the upper and lower lines are connected bypasses both ends of the sound line side and the upper and lower ties of the intermediate electric station. Therefore, in the method of calculating the inflow current of the section with each of the upper and lower lines individually, the current flowing around the failure point is reduced with respect to the current flowing through the failure point, and the failure detection sensitivity is lowered.

図13は本実施の形態による複数区間の上下線を一括で保護する区間差電流保護の演算ブロック図である。この図13において、図9において使用した符号と同一の符号のブロックは両者で同様であり、それらによる演算ステップも同様であるので説明は省略する。   FIG. 13 is a calculation block diagram of section difference current protection that collectively protects upper and lower lines of a plurality of sections according to the present embodiment. In FIG. 13, the blocks having the same reference numerals as those used in FIG. 9 are the same in both, and the calculation steps by them are also the same.

上下線区間一括保護の標本量合成ステップにて、上下線区間一括保護の標本量合成部18は、区間一括で電車線毎にトロリ線流入電流σItを、式3−1を用いて算出し、き電線流入電流σIfを式3−2、区間一括で上下線毎に下り線流入電流σIDを式3−3、上り線流入電流σIUを式3−4、区間一括流入電流σIを式3−5をそれぞれ用いて算出する。   In the sample amount synthesizing step for the upper and lower line section collective protection, the sample amount synthesizing unit 18 for the upper and lower line section collective protection calculates the trolley line inflow current σIt for each train line in the section collective using Equation 3-1. The feeder inflow current σIf is expressed by Formula 3-2, the down line inflow current σID is expressed by Formula 3-3 for each up and down line in the section, the up line inflow current σIU is expressed by Formula 3-4, and the entire section inflow current σI is expressed by Formula 3-5. To calculate each.

σIt=σItD+σItU …(式3−1)
σIf=σIfD+σIfU …(式3−2)
σID=σItD−σIfD …(式3−3)
σIU=σItU−σIfU …(式3−4)
σI=σIt+σIf …(式3−5)
但し、
σItD=(1−kAct)・ItAD+(kAct・IatAD/Nat)+(1−kBct)・ItBD+(kBct・IatBD/Nat)
σIfD=(1−kAct)・IfAD+(kAct・IatAD/Nat)+(1−kBct)・IfBD+(kBct・IatBD/Nat)
σItU=(1−kAct)・ItAU+(kAct・IatAU/Nat)+(1−kBct)・ItBU+(kBct・IatBU/Nat)
σIfU=(1−kAct)・IfAU+(kAct・IatAU/Nat)+(1−kBct)・IfBU+(kBct・IatBU/Nat)
である。
σIt = σItD + σItU (Formula 3-1)
σIf = σIfD + σIfU (Formula 3-2)
σID = σItD−σIfD (Formula 3-3)
σIU = σItU−σIfU (Formula 3-4)
σI = σIt + σIf (Formula 3-5)
However,
σItD = (1−kAct) · ItAD + (kAct · IatAD / Nat) + (1−kBct) · ItBD + (kBct · IatBD / Nat)
σIfD = (1−kAct) · IfAD + (kAct · IatAD / Nat) + (1−kBct) · IfBD + (kBct · IatBD / Nat)
σItU = (1−kAct) · ItAU + (kAct · IatAU / Nat) + (1−kBct) · ItBU + (kBct · IatBU / Nat)
σIfU = (1−kAct) · IfAU + (kAct · IatAU / Nat) + (1−kBct) · IfBU + (kBct · IatBU / Nat)
It is.

また、kAct:予め定めて記憶するA端の電流導入点に対するAT位置定数(外「1」、内「0」)、kBct:予め定めて記憶するB端の電流導入点に対するAT位置定数(外「1」、内「0」)、Nat:予め定めて記憶するAT変換比である。   KAct: AT position constant (external “1”, internal “0”) with respect to the current introduction point at the A end stored in advance, kBct: AT position constant (external with respect to the current introduction point at the B end, stored in advance) “1”, “0”), Nat: AT conversion ratio determined and stored in advance.

故障判定ステップにて、故障判定部19は、区間故障の検出と故障電車線、及び故障箇所(上下線)の判定を行う。区間故障の検出は、前述した図9の第二調波含有率演算部13による第二調波含有率演算ステップで算出する動作判定関数k2、同様に、前述した図9の変化量演算部14によるベクトル変化量とスカラ増加量の変化量演算ステップそれぞれで算出するベクトル変化量dIとスカラ増加量dI+から求めた動作判定関数k1、さらに、予め整定して格納した動作判定定数kI、これらを関数として式3−6に代入して判定する。   In the failure determination step, the failure determination unit 19 detects the section failure and determines the failure train line and the failure location (upper and lower lines). The section failure is detected by the operation determination function k2 calculated in the second harmonic content rate calculating step by the second harmonic content rate calculating unit 13 in FIG. 9 described above, and similarly, the change amount calculating unit 14 in FIG. 9 described above. The motion determination function k1 obtained from the vector change amount dI and the scalar increase amount dI + calculated in each of the vector change amount and scalar increase amount change step by the above, and the operation determination constant kI previously set and stored. As a result, it is determined by substituting into Expression 3-6.

k1・k2・dI≧kI …(式3−6)
次に、故障判定部19による故障線の判定ステップでも、前述した図9の故障判定関数算出部15による故障判定関数算出ステップで求めた電車線電流の区間電流相互差比率dI%を関数として式3−7を用いて故障線を判定し、この判定結果は区間故障と判定されたとき、つまり上記の式3−6が成立したときに有効とする。
k1 · k2 · dI ≧ kI (Formula 3-6)
Next, in the failure line determination step by the failure determination unit 19, the section current mutual difference ratio dI% of the train line current obtained in the failure determination function calculation step by the failure determination function calculation unit 15 of FIG. 3-7 is used to determine the fault line, and this determination result is valid when it is determined that there is a section fault, that is, when the above expression 3-6 is satisfied.

(If dI%≧kt then T線故障、If dI%≦kf then F線故障、else TF線故障) …(式3−7)
但し、kt:T線故障の判定定数、kf:F線故障の判定定数である。
(If dI% ≧ kt then T line failure, If dI% ≦ kf then F line failure, else TF line failure) (Formula 3-7)
However, kt: a determination constant for T-line failure, and kf: a determination constant for F-line failure.

加えて、故障判定部19は、上述の標本量合成部18による標本量合成ステップで上下線毎にそれぞれ算出した下り線の区間流入電流σIDと上り線の区間流入電流σIUとを関数として式3−8を用いて故障箇所の判定を行う。   In addition, the failure determination unit 19 uses the down-line section inflow current σID and the up-line section inflow current σIU, which are calculated for each of the upper and lower lines in the sample amount synthesis step by the sample amount synthesis unit 18 as a function, as shown in Equation 3 Use -8 to determine the failure location.

(If σID>σIU then 下り線故障、If σID<σIU then 上り線故障、else 判定不能) …(式3−8)
本実施の形態の交流ATき電回路におけるき電保護装置及び方法では、中間電気所で区分され複数区間が連なる保護区間において、上下線両端電車線電流の総和合成電気量から複数区間に生じる電車線故障を上下線一括で検出し、電車線毎、上下線毎の合成電気量から故障箇所(下り線、又は上り線)と故障電車線(T、F、T−F)を判定する。
(If σID> σIU then downlink failure, If σID <σIU then uplink failure, else cannot be determined) (Equation 3-8)
In the feeding protection device and method in the AC AT feeding circuit according to the present embodiment, in a protection section divided by an intermediate electric station and connected to a plurality of sections, a train generated in a plurality of sections from the total combined electric quantity of electric currents at both ends of the upper and lower lines. Line faults are detected collectively in the upper and lower lines, and the fault location (down line or up line) and fault train line (T, F, TF) are determined from the combined electric quantity for each train line and each upper and lower line.

これにより、本実施の形態のATき電回路におけるき電保護装置及び方法によれば、次の効果がある。   Thereby, according to the feeder protection apparatus and method in the AT feeder circuit of the present embodiment, the following effects are obtained.

1)区間両端、及び上下線双方に備える従来の保護装置を包括できる。つまり、図14Bで示す区間差電流方式の左右区間と上下線を包括できる。   1) The conventional protection device provided at both ends of the section and the upper and lower lines can be included. That is, the left and right sections and the vertical lines of the section difference current method shown in FIG. 14B can be included.

2)上下タイ運用(上下線の結合と分離)に係わらず故障検出感度は劣化しない。全区間を一括で上下線の両端電流を合成するので、上下のタイ運用と故障線(下り線と上り線)、故障区間に係わらず全故障電流を検出するので故障検出の感度は安定する
3)上下線における故障箇所選別ができる。つまり、上下線毎の合成電流比較により中間電気所の近端故障を除き上下線における故障箇所選別ができる。
2) The fault detection sensitivity does not deteriorate regardless of the upper and lower tie operation (up and down line connection and separation). Since the currents at both ends of the upper and lower lines are combined at the same time for all sections, the fault detection sensitivity is stable because all fault currents are detected regardless of the upper and lower tie operations, fault lines (down lines and up lines), and fault sections. ) It is possible to select the fault location on the vertical line. That is, it is possible to select the fault location in the vertical line by comparing the combined current for each vertical line, except for the near-end fault in the intermediate electric station.

4)き電回路構成の変化を回路構成定数により網羅できるので既存設備への適用柔軟性が高まる。   4) Since changes in the feeder circuit configuration can be covered by circuit configuration constants, the flexibility of application to existing facilities is increased.

1、1A、1B き電保護装置
2 端末装置
3 端末装置
4 高速リアルタイム通信装置
5、6 保護区間
11 標本量合成部
12 フィルタリング部
13 第二調波含有率演算部
14 電流変化量演算部
15 故障判定関数算出部
16 故障判定部
17 標本量合成部
18 標本量合成部
19 故障判定部
AT 単巻変圧器
CT 計器用変流器
SS 変電所
SP き電区分所
SSP 補助き電区分所
1, 1A, 1B Feeder protection device 2 Terminal device 3 Terminal device 4 High-speed real-time communication device 5, 6 Protection section 11 Sample amount synthesis unit 12 Filtering unit 13 Second harmonic content rate calculation unit 14 Current change amount calculation unit 15 Failure Judgment Function Calculation Unit 16 Failure Judgment Unit 17 Sample Size Synthesizer 18 Sample Size Synthesizer 19 Failure Judgment Unit AT Autotransformer CT Current Transformer for SS SS Substation SP Feeding Division SSP Auxiliary Feeding Division

Claims (6)

交流単巻変圧器を備えた交流ATき電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、
保護区間の両端電気所の電車線と単巻変圧器の電気量をそれぞれの電気所端で取り込む電気量取り込み手段と、
それぞれの電気所端で取り込む電気量を両端相互に高速通信してそれぞれの電気所端にて両端の同時系列電気標本量を情報として一元共有する情報共有手段と、
保護区間両端の電気標本量を合成演算して前記保護区間に流入する電流と保護区間の電車線に流入する電気量を求める電気量算出手段と、
前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のベクトル変化量を求めるベクトル変化量演算手段と、
前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のスカラ増加量を求めるスカラ増加量演算手段と、
前記保護区間両端の同時系列電気標本量を演算して求めた保護区間の流入電気量をフィルタリングして基本波と第二調波成分とを求め、かつ前記第二調波の含有率を算出する高調波含有率演算手段と、
求めた区間流入電気量のベクトル変化量、スカラ増加量、第二調波含有率、及び予め定めた演算定数を用いて区間故障と故障箇所及び故障した電車線を判定演算する故障判定手段とを備えたことを特徴とする交流ATき電回路のき電保護装置。
In an AC AT feeder circuit equipped with an alternating current transformer, a feeder protection device for detecting a failure of a train line that borders the automatic transformer of an electric station arranged for each arbitrary distance section,
Electric quantity taking means for taking in the electric quantity of the electric wire of the electric line of the electric station at both ends of the protected section and the auto-transformer,
Information sharing means for high-speed communication between both ends of the amount of electricity taken in at each electric station end, and sharing the simultaneous series electric sample amount at both ends as information at each electric station end; and
An electric quantity calculation means for calculating an electric amount flowing into the protection section and a current flowing into the protection section by synthesizing the electric sample amounts at both ends of the protection section;
A vector change amount calculating means for calculating a simultaneous series electric sample amount at both ends of the protection interval to obtain a vector change amount of the inflow electricity amount in the protection interval;
A scalar increase amount calculating means for calculating a scalar increase amount of the inflow electricity amount in the protection section by calculating a simultaneous series electrical sample amount at both ends of the protection section;
Filtering the amount of inflow electricity in the protection interval obtained by calculating the amount of simultaneous series electrical samples at both ends of the protection interval to obtain the fundamental wave and the second harmonic component, and calculating the content rate of the second harmonic Harmonic content calculation means;
Using the obtained vector change amount, scalar increase amount, second harmonic content rate, and predetermined calculation constants, the failure determination means for determining and calculating the section failure, the failure location, and the failed train line. A feeder protection device for an AC AT feeder circuit, characterized by comprising:
前記電気量算出手段は、電気所の単巻変圧器を境界として保護区間の反対方面の電車線に流れ出る電流と前記保護区間端の単巻変圧器の電気量と予め定めた演算定数とを用いて当該保護区間端の電車線を通過する電気量を求めることを特徴とする請求項1に記載の交流ATき電回路のき電保護装置。   The electric quantity calculation means uses a current flowing out on a train line on the opposite side of the protection section with a single transformer at an electric station as a boundary, an electric quantity of the single transformer at the end of the protection section, and a predetermined calculation constant. 2. The feeder protection device for an AC AT feeder circuit according to claim 1, wherein the amount of electricity passing through the train line at the end of the protection section is obtained. 前記電気量算出手段は、複数区間を有する上下線の区間総和と電車線毎総和、及び上下線毎総和の区間流入電気量それぞれを求め、
前記故障判定手段は、前記上下線の区間総和の区間流入電気量から故障を検出し、前記上下線毎総和の区間流入電気量の差から故障箇所を判定し、前記電車線毎総和の電気量比率から故障線を判定することを特徴とする請求項1に記載の交流ATき電回路のき電保護装置。
The electric quantity calculating means obtains the section sum of the upper and lower lines having a plurality of sections and the sum of each train line, and the section inflow electricity amount of the sum of the upper and lower lines,
The failure determination means detects a failure from the section inflow electricity amount of the section sum of the upper and lower lines, determines a failure location from the difference of section inflow electricity amount of the sum of the upper and lower lines, and the amount of electricity of the sum per train line The fault protection device for an AC AT feeding circuit according to claim 1, wherein a fault line is determined from the ratio.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出する交流ATき電回路のき電保護方法であって、
保護する電車線区間の両端電気所の電車線と単巻変圧器の電気量をそれぞれの電気所端で取り込むステップと、
それぞれの電気所端で取り込む電気量を両端相互に高速通信してそれぞれの電気所端にて両端の同時系列電気標本量を情報として一元共有するステップと、
保護区間両端の電気標本量を合成演算して前記保護区間に流入する電流と保護区間の電車線に流入する電気量を求めるステップと、
前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のベクトル変化量を求めるステップと、
前記保護区間両端の同時系列電気標本量を演算して保護区間の流入電気量のスカラ増加量を求めるステップと、
前記保護区間両端の同時系列電気標本量を演算して求めた保護区間の流入電気量をフィルタリングして基本波と第二調波成分とを求め、かつ前記第二調波の含有率を算出するステップと、
求めた区間流入電気量のベクトル変化量、スカラ増加量、第二調波含有率、及び予め定めた演算定数を用いて区間故障と故障箇所及び故障した電車線を判定演算するステップとを有することを特徴とする交流ATき電回路のき電保護方法。
In the AC auto-transformer feeder circuit, a feeding protection method for an AC AT feeder circuit that detects a failure of a train line that borders the auto-transformer of an electric station arranged for each arbitrary distance section,
Capturing the amount of electricity in the electric line at both ends of the electric line and the autotransformer at the electric line ends to be protected;
A step of performing high-speed communication between the two ends of the electric quantity to be captured at each electric station end, and sharing the amount of simultaneous electrical samples at both ends at each electric station end as information,
Calculating the amount of electricity flowing into the protection section and the current flowing into the protection section by synthesizing the electrical sample quantities at both ends of the protection section; and
Calculating a simultaneous series electrical sample amount at both ends of the protection interval to obtain a vector change amount of the inflow electricity amount of the protection interval; and
Calculating a simultaneous series electrical sample amount at both ends of the protection interval to obtain a scalar increase amount of the inflow electricity amount in the protection interval; and
Filtering the amount of inflow electricity in the protection interval obtained by calculating the amount of simultaneous series electrical samples at both ends of the protection interval to obtain the fundamental wave and the second harmonic component, and calculating the content rate of the second harmonic Steps,
Using the calculated vector change amount of the section inflow electricity amount, the scalar increase amount, the second harmonic content rate, and a predetermined calculation constant to determine and calculate the section failure, the failure location, and the failed train line. A feeding protection method for an AC AT feeding circuit characterized by the above.
前記電気量を求めるステップにおいて、電気所の単巻変圧器を境界として保護区間の反対方面の電車線に流れ出る電流と前記保護区間端の単巻変圧器の電気量と予め定めた演算定数を用いて当該保護区間端の電車線を通過する電気量を求めることを特徴とする請求項4に記載の交流ATき電回路のき電保護方法。   In the step of obtaining the amount of electricity, using a current flowing out to the train line on the opposite side of the protective section with the single transformer of the electric station as a boundary, the electric amount of the single transformer at the end of the protective section, and a predetermined calculation constant are used. 5. The method of protecting a feeding of an AC AT feeding circuit according to claim 4, wherein the amount of electricity passing through the train line at the end of the protection section is obtained. 前記電気量を求めるステップにおいて、複数区間を有する上下線の区間総和と電車線毎総和、及び上下線毎総和の区間流入電気量それぞれを求め、
前記区間故障と故障箇所及び故障した電車線を判定演算するステップにおいて、前記上下線の区間総和の区間流入電気量から故障を検出し、前記上下線毎総和の区間流入電気量の差から故障箇所を判定し、前記電車線毎総和の電気量比率から故障線を判定することを特徴とする請求項4に記載の交流ATき電回路のき電保護方法。
In the step of determining the amount of electricity, the section sum of the upper and lower lines having a plurality of sections and the sum of each train line, and the section inflow electricity amount of each sum of the upper and lower lines, respectively,
In the step of determining and calculating the section fault and the fault location and the faulty train line, a fault is detected from the section inflow electricity amount of the section sum of the upper and lower lines, and the failure section is determined from the difference of the section inflow electricity amount of the sum of the upper and lower lines. The fault protection line is determined from the electric quantity ratio of the sum total for each train line, and the feeding protection method for the AC AT feeder circuit according to claim 4.
JP2009272279A 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method Active JP5319504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272279A JP5319504B2 (en) 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272279A JP5319504B2 (en) 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method

Publications (2)

Publication Number Publication Date
JP2011111137A true JP2011111137A (en) 2011-06-09
JP5319504B2 JP5319504B2 (en) 2013-10-16

Family

ID=44233785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272279A Active JP5319504B2 (en) 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method

Country Status (1)

Country Link
JP (1) JP5319504B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325896A (en) * 2014-09-30 2015-02-04 西南交通大学 Segmenting power supply distributed protection system for electrified railway traction network
KR101653954B1 (en) * 2015-03-18 2016-09-06 한국철도공사 System and method for fault localization using current of trolly-feeder in at feeding system
CN106427672A (en) * 2016-09-30 2017-02-22 国网北京市电力公司 Malfunction treating method and device for rail traffic
CN110221181A (en) * 2019-07-02 2019-09-10 西南交通大学 A kind of AT sections of full Parallel AT tractive power supply system failure short-circuit independent positioning methods
KR102064721B1 (en) 2019-12-04 2020-01-10 (주) 호크마테크 Apparatus for determining fault type of electric railway
CN112255501A (en) * 2020-10-12 2021-01-22 成都交大许继电气有限责任公司 Method for accurately extracting fault current during traction network fault
EP3893350A1 (en) * 2020-03-30 2021-10-13 Hitachi Rail Ltd. Reconnection of electrically powered train units

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443354B (en) * 2016-11-03 2019-02-19 中铁电气化局集团有限公司 A kind of high-speed rail circuit fault distance measurement and fault localization system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076608A (en) * 2005-09-16 2007-03-29 Toshiba Corp Failure detecting device of failure point standardizing device for alternating current at feeding circuit
JP2008141896A (en) * 2006-12-04 2008-06-19 Toshiba Corp Protection relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076608A (en) * 2005-09-16 2007-03-29 Toshiba Corp Failure detecting device of failure point standardizing device for alternating current at feeding circuit
JP2008141896A (en) * 2006-12-04 2008-06-19 Toshiba Corp Protection relay

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325896A (en) * 2014-09-30 2015-02-04 西南交通大学 Segmenting power supply distributed protection system for electrified railway traction network
WO2016070492A1 (en) * 2014-11-07 2016-05-12 西南交通大学 Distributed protection system for power supply at sections of electrified railway propulsion system
KR101653954B1 (en) * 2015-03-18 2016-09-06 한국철도공사 System and method for fault localization using current of trolly-feeder in at feeding system
CN106427672A (en) * 2016-09-30 2017-02-22 国网北京市电力公司 Malfunction treating method and device for rail traffic
CN106427672B (en) * 2016-09-30 2019-01-08 国网北京市电力公司 Fault handling method and device for rail traffic
CN110221181A (en) * 2019-07-02 2019-09-10 西南交通大学 A kind of AT sections of full Parallel AT tractive power supply system failure short-circuit independent positioning methods
KR102064721B1 (en) 2019-12-04 2020-01-10 (주) 호크마테크 Apparatus for determining fault type of electric railway
EP3893350A1 (en) * 2020-03-30 2021-10-13 Hitachi Rail Ltd. Reconnection of electrically powered train units
CN112255501A (en) * 2020-10-12 2021-01-22 成都交大许继电气有限责任公司 Method for accurately extracting fault current during traction network fault
CN112255501B (en) * 2020-10-12 2023-09-26 成都交大许继电气有限责任公司 Method for accurately extracting fault current during traction network fault

Also Published As

Publication number Publication date
JP5319504B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5319504B2 (en) AC AT feeder circuit protection device and method
JP5319503B2 (en) AC AT feeder circuit protection device and method
US7683558B2 (en) Electric car control apparatus
US20120095707A1 (en) Method for Identifying Type of Fault on Power Line
JP6299920B1 (en) DC ground fault detection system and DC ground fault detection method for DC electric railway
CN103231668B (en) Self-check type auto-passing neutral section system and auto-passing neutral section method of electrified railway
JP4745000B2 (en) Fault detection device for fault location device for AC AT feeder circuit
CN102253308B (en) Method for determining asymmetric short circuit fault of long stator according to negative sequence voltage
KR101456819B1 (en) Real time monitoring system for common ground facility of the electric railway
KR100910549B1 (en) Traction power system supplies of railway
CN105691244B (en) A kind of system zero load monitoring method of electric railway insertion power supply
JP6003949B2 (en) AC electric vehicle power supply equipment
RU2498328C1 (en) Method for control of automatic reclosure of feeder switch with short-circuiting control in overhead system
KR100903525B1 (en) Traction power system supplies of railway
Dong et al. High-resistance grounding fault detection and location in DC railway system
Caracciolo et al. Managing the italian high-speed railway network: Provisions for reducing interference between electric traction systems
JP2005119519A (en) Position/current detecting device of electric vehicle
Pons et al. Electrical safety of dc urban rail traction systems
KR101537194B1 (en) Real time monitoring system for common ground facility of the electric railway
KR101323730B1 (en) Circuit for protecting auto transformer and railway power supply system
Han et al. Protection scheme for out-of-phase short-circuit fault of traction feeding network
Shen et al. A Novel Distance Protection Method for Out-of-Phase Faults of AC Traction Power Supply System
Yu et al. Simulation and protection algorithm development of sequential tripping in DC traction system
CN213905770U (en) Power supply protection system of track type amusement riding equipment
Ganjavi et al. Distance protection settings in electrical railway systems with positive and negative feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350