JP2011110507A - Anaerobic treatment method and apparatus - Google Patents

Anaerobic treatment method and apparatus Download PDF

Info

Publication number
JP2011110507A
JP2011110507A JP2009269687A JP2009269687A JP2011110507A JP 2011110507 A JP2011110507 A JP 2011110507A JP 2009269687 A JP2009269687 A JP 2009269687A JP 2009269687 A JP2009269687 A JP 2009269687A JP 2011110507 A JP2011110507 A JP 2011110507A
Authority
JP
Japan
Prior art keywords
acid fermentation
amount
acid
water
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269687A
Other languages
Japanese (ja)
Other versions
JP4920074B2 (en
Inventor
Kazumasa Kamaike
一将 蒲池
Yasuhiro Honma
康弘 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Ebara Engineering Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Engineering Service Co Ltd filed Critical Ebara Engineering Service Co Ltd
Priority to JP2009269687A priority Critical patent/JP4920074B2/en
Publication of JP2011110507A publication Critical patent/JP2011110507A/en
Application granted granted Critical
Publication of JP4920074B2 publication Critical patent/JP4920074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic treatment method and an apparatus, capable of preventing degradation in methane fermentation treatment performance by rapidly detecting acid fermentation failure in an acid fermentation process. <P>SOLUTION: The two-phase anaerobic treatment method includes: an acid fermentation tank 2 for acid-fermenting organic waste water A; a methane fermentation tank 10 for methane-fermenting acid fermentation treatment water B from the acid fermentation tank; a pH meter 5 for detecting a pH value in the acid fermentation tank; and an alkali agent addition pump 7 for detecting the injection amount of alkali agent 6 based on the pH value. Moreover, the anaerobic treatment method includes a flowmeter 3 for controlling the inflow of the waste water into the acid fermentation tank and an organic matter concentration meter 14 to control the inflow of the waste water into the acid fermentation tank, based on the inflow of the alkali agent and the inflow of the waste water into the acid fermentation tank, and a setting value of an injection rate of the alkali agent determined from an organic matter loading amount that is calculated from an organic matter concentration. A control device 15 include decreasing or stopping the inflow when the inflow of the alkali is not more than the setting value of the inflow rate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、食品工場、化学工場などの各種工場より排出される有機性廃水を対象とし、酸発酵工程とメタン発酵工程からなる二相式嫌気性処理方法及び装置に関し、さらに詳しくは酸発酵工程での酸発酵不良を簡便かつ迅速に検知することで安定した処理のできる二相式嫌気性処理方法及び装置に関する。   The present invention is directed to organic wastewater discharged from various factories such as food factories and chemical factories, and relates to a two-phase anaerobic treatment method and apparatus comprising an acid fermentation process and a methane fermentation process, and more specifically, an acid fermentation process. The present invention relates to a two-phase anaerobic treatment method and apparatus capable of performing stable treatment by simply and quickly detecting poor acid fermentation.

有機性廃水は、嫌気性処理によって分解処理される。嫌気性処理は、数多くの細菌類やいくつもの中間代謝過程が関与するような複雑なプロセスによって成り立っている。嫌気性処理は、大きく酸発酵工程とメタン発酵工程に分けられる。酸発酵工程では、先ず、炭水化物やたんぱく質、脂質などの複雑な有機化合物が加水分解によって、糖、アミノ酸、ペプチド等の低分子の有機物に分解され、分解された有機物は、酸発酵によって揮発性有機酸に分解される。次に、長鎖の揮発性有機酸(VFA)が、酢酸生成細菌によって酢酸と水素に変換される。続くメタン発酵工程では、メタン生成細菌によって酢酸、蟻酸、水素、メタノール等からメタンに変換される。このように、メタン生成細菌は、基質として処理できる物質が限られているため、廃水中の有機物を有機酸等に転換する酸発酵工程は重要となる。   Organic wastewater is decomposed by anaerobic treatment. Anaerobic treatment consists of a complex process involving many bacteria and several intermediate metabolic processes. Anaerobic treatment is roughly divided into an acid fermentation process and a methane fermentation process. In the acid fermentation process, first, complex organic compounds such as carbohydrates, proteins, and lipids are decomposed into low-molecular organic substances such as sugars, amino acids, and peptides by hydrolysis, and the decomposed organic substances are volatile organic by acid fermentation. Decomposed into acid. The long chain volatile organic acid (VFA) is then converted to acetic acid and hydrogen by acetic acid producing bacteria. In the subsequent methane fermentation process, acetic acid, formic acid, hydrogen, methanol, etc. are converted into methane by methanogenic bacteria. Thus, since methanogenic bacteria have limited substances that can be treated as substrates, an acid fermentation process that converts organic substances in wastewater into organic acids or the like is important.

嫌気性処理は、大きく一相式嫌気性処理と二相式嫌気性処理に分けられる。一相式嫌気性処理は、主に酸発酵を行う酸発酵工程と主にメタン発酵を行うメタン発酵工程を同一槽内で行う処理方法であり、二相式嫌気性処理は、酸発酵工程とメタン発酵工程を2槽にわけて行う処理方法である。二相式嫌気性処理の特徴としては、(1)一相式より二相式嫌気性処理の方がCOD除去量が多く、プロセスの安定性も勝ること、(2)酸発酵の最適pHの観点から、酸発酵槽内pHは5.0〜6.5であるのに対し、メタン発酵の最適pHは6.5〜8.5に設定されることから、pH調整が容易であることにある。
高分子の有機物を含む原水を、一相式嫌気性処理方式で処理する場合、高分子の有機物の酸発酵工程が律速条件となるため発酵処理装置での滞留時間が長くなるので、設備が過大となり、効率の良い処理が行われない。高分子の有機物を含む原水を対象とする場合には、メタン発酵工程の前段に酸発酵工程を設けた二相式嫌気性処理方式とし、酸発酵工程で高分子の有機物を有機酸あるいは比較的低分子の有機物へ転換させるのがよい。これによって、メタン発酵工程の滞留時間が短くなり、一相式嫌気性処理方式と比べて効率の良い処理が実現できる。
Anaerobic treatment is roughly divided into one-phase anaerobic treatment and two-phase anaerobic treatment. The one-phase anaerobic treatment is a treatment method in which the acid fermentation process that mainly performs acid fermentation and the methane fermentation process that mainly performs methane fermentation are performed in the same tank. It is the processing method which divides a methane fermentation process into two tanks. The characteristics of the two-phase anaerobic treatment are as follows: (1) The two-phase anaerobic treatment has a higher COD removal amount and the process stability is better than the one-phase type, and (2) the optimum pH of acid fermentation. From the viewpoint, the pH in the acid fermenter is 5.0 to 6.5, whereas the optimum pH for methane fermentation is set to 6.5 to 8.5, so that pH adjustment is easy. is there.
When raw water containing high-molecular organic substances is treated with a one-phase anaerobic treatment method, the acid fermentation process of high-molecular organic substances becomes the rate-determining condition, so the residence time in the fermentation treatment equipment becomes longer, so the facilities are excessive. Thus, efficient processing is not performed. When raw water containing high-molecular organic substances is targeted, a two-phase anaerobic treatment method is provided in which an acid fermentation process is provided before the methane fermentation process. It is better to convert it to a low molecular organic substance. Thereby, the residence time of a methane fermentation process becomes short, and an efficient process is realizable compared with the one phase type anaerobic processing system.

比較的高分子の有機物としては、タンパク質や脂質やでんぷん等が例としてあげられる。また、マルチトールやキシリトール等の糖アルコール等の難発酵成分も、高分子の有機物と同様に酸発酵工程が律速となる場合が多い。これらを合わせて難発酵成分と記す。
処理対象となる有機性廃水に含まれる難発酵成分の割合が高い場合、酸発酵工程において、難発酵成分の低分子化や有機酸への転換が十分に進行しない状態(この状態を以下、酸発酵不良とも記す)になる恐れがある。この状態の酸発酵槽流出水をメタン発酵処理する場合、メタン発酵工程の処理性能が低下し、メタン発酵槽流出水中には、残留VFA、未分解の有機物が含まれるとみられる。また、難発酵成分の低分子化や有機酸への転換が、十分に進行していないメタン発酵流出水を循環水として利用する場合、循環水由来の負荷がメタン発酵工程にかかり、さらにメタン発酵工程の処理性能が低下することになる。
さらに、酸発酵不良が悪化すると、メタン発酵工程のpHは、メタン発酵に適した6.5〜8.5の範囲を下回ることになる。この状態では、メタン発酵は停止し、さらにメタン発酵菌が死滅する状態(この状態を以下、酸敗とも記す)になる。
Examples of relatively high molecular organic substances include proteins, lipids, and starches. In addition, difficult-fermentable components such as sugar alcohols such as maltitol and xylitol often have a rate-determining rate in the acid fermentation process, as in the case of high molecular organic substances. These are collectively referred to as difficult-to-ferment components.
When the proportion of difficult-to-ferment components contained in the organic wastewater to be treated is high, the acid fermentation process does not proceed sufficiently to reduce the molecular weight of the difficult-to-ferment components or to convert to organic acids (this state is referred to as acid (It is also described as poor fermentation). When the acid fermenter effluent in this state is subjected to methane fermentation treatment, the processing performance of the methane fermentation process is lowered, and the methane fermenter effluent is considered to contain residual VFA and undecomposed organic matter. In addition, when methane fermentation effluent that has not been sufficiently progressed to reduce the molecular weight of difficult-to-ferment components or convert to organic acids is used as circulating water, the load from the circulating water is applied to the methane fermentation process, and methane fermentation The processing performance of a process will fall.
Furthermore, if the acid fermentation defect deteriorates, the pH of the methane fermentation process falls below the range of 6.5 to 8.5 suitable for methane fermentation. In this state, the methane fermentation is stopped, and further, the methane fermentation bacteria are killed (this state is hereinafter also referred to as an acid loss).

菌体が倍増する倍化時間は、メタン発酵菌で83時間といわれ、酸発酵菌の33時間、活性汚泥の3.5時間と比べて非常に長い。いったん酸敗により、メタン発酵菌が死滅すると、処理性能が回復するまでに長期間を要する。
嫌気性処理装置を安定的に運転するために、特開平10−235391号公報では、二相式嫌気性排水処理装置において、酸生成槽におけるCOD負荷あたりのアルカリ添加量が許容範囲を超えたことを検知することで、処理水に有機酸が残存した処理悪化の状態と判定して、負荷低減の制御を行う方法が示されている。
また、特開平7−171592号公報では、原水CODCrとメタンガス発生量から、ガス化率を算出し、ガス化率から処理能力を判定して流入原水量を調節する方法が示されている。
The doubling time for doubling the cells is said to be 83 hours for methane-fermenting bacteria, which is much longer than 33 hours for acid-fermenting bacteria and 3.5 hours for activated sludge. Once the methane-fermenting bacteria are killed due to rancidity, it takes a long time for the treatment performance to recover.
In order to stably operate the anaerobic treatment apparatus, in Japanese Patent Laid-Open No. 10-235391, in the two-phase anaerobic wastewater treatment apparatus, the amount of alkali added per COD load in the acid generation tank exceeds the allowable range. By detecting this, it is determined that the organic acid remains in the treated water and is in a deteriorated state of treatment, and a method for controlling the load reduction is shown.
Japanese Patent Application Laid-Open No. 7-171592 discloses a method of adjusting the inflow raw water amount by calculating the gasification rate from the raw water COD Cr and the amount of methane gas generated and determining the treatment capacity from the gasification rate.

しかしながら、二相式嫌気処理方式の安定運転に関しては以下に示すような問題点がある。
(1) 難発酵成分を含んだ有機性廃水では、難発酵成分の割合が高まると、難発酵成分を低分子化及び有機酸に転換するのに要する滞留時間が不足する状態になりやすく、酸発酵不良を生じる恐れや、酸発酵槽における酸発酵不良に伴いメタン発酵槽内が酸敗状態となりメタン発酵処理性能が低下する恐れが高い。
(2) 従来法の酸発酵工程でのアルカリ添加量が許容範囲を超えた場合に負荷制御を行う方法では、有機酸が残留しpHが低下した状態のメタン発酵処理水を、酸発酵工程に循環している状態であり、上記の負荷制御を行ってもメタン発酵処理性能が回復しない恐れが高い。
(3) 原水CODCrとメタンガス発生量から算出したガス化率をもとに、流入原水量を調節する方法では、ガス化率の低下を検知した状態は既にメタン発酵処理性能が低下している状態であり、上記の負荷制御を行ってもメタン発酵処理性能が回復しない恐れが高い。
特開平 7−171592号公報 特開平10−235391号公報
However, there are the following problems with respect to the stable operation of the two-phase anaerobic treatment method.
(1) In organic wastewater containing difficult-to-ferment components, when the proportion of difficult-to-ferment components increases, the residence time required for converting the difficult-to-ferment components into low molecular weight and organic acids tends to be insufficient. There is a high risk of causing a fermentation failure or a deterioration of the methane fermentation treatment performance due to the acid fermentation failure in the acid fermentation tank and the inside of the methane fermentation tank becoming in an acidified state.
(2) In the method of performing load control when the amount of alkali added in the conventional acid fermentation process exceeds the allowable range, the methane fermentation treated water in which the organic acid remains and the pH is lowered is used as the acid fermentation process. It is in a circulating state, and there is a high possibility that the performance of methane fermentation treatment will not recover even if the load control is performed.
(3) In the method of adjusting the inflow raw water amount based on the gasification rate calculated from the raw water COD Cr and the amount of methane gas generated, the state in which the gasification rate is detected has already deteriorated in the methane fermentation treatment performance. There is a high possibility that the methane fermentation treatment performance will not be restored even if the load control is performed.
Japanese Patent Application Laid-Open No. 7-171592 JP-A-10-235391

本発明は、上記従来技術の問題点を解決するために、難発酵成分を含んだ有機性廃水を処理する場合に際して、酸発酵工程における酸発酵不良の迅速検知を行い、メタン発酵処理性能の低下を未然に防ぐことができる嫌気性処理方法及び装置を提供することを課題とする。   In order to solve the above-mentioned problems of the prior art, the present invention performs rapid detection of acid fermentation failure in an acid fermentation process when processing organic wastewater containing difficult-to-ferment components, and reduces methane fermentation treatment performance. It is an object of the present invention to provide an anaerobic treatment method and apparatus capable of preventing the above.

上記課題を解決するために、本発明では、有機性廃水を、アルカリ剤を用いてpH値を制御しながら酸発酵工程とメタン発酵工程を順次通して処理する二相式の嫌気性処理方法において、前記酸発酵工程でpH値を制御するために添加するアルカリ剤の注入量が、該酸発酵工程へ流入する流入水の有機物負荷量より求めたアルカリ剤注入率の設定値以下になったときに、該酸発酵工程へ流入する前記廃水の流入量を減少又は停止することを特徴とする有機性廃水の嫌気性処理方法としたものである。
前記嫌気性処理方法において、pH値の制御は、酸発酵工程のpHが5.0〜6.5、メタン発酵工程のpHが6.5〜8.5になるように行うのがよく、前記有機物負荷量は、流入水中の有機物濃度と流入水の流入量から算出することができ、また、前記メタン発酵工程では、流出水の一部を前記酸発酵工程及び/又は該メタン発酵工程に循環することができ、その際、前記メタン発酵工程からの流出水を酸発酵工程及び/又はメタン発酵工程に循環する循環水は、前記酸発酵工程で、pH値を制御するために添加するアルカリ剤の注入量が、流入水の有機物負荷量より求めたアルカリ剤注入率の設定値以下になったときに、減少又は停止するのがよい。
In order to solve the above problems, in the present invention, in a two-phase anaerobic treatment method in which organic wastewater is treated through an acid fermentation step and a methane fermentation step sequentially while controlling the pH value using an alkaline agent. When the injection amount of the alkaline agent added to control the pH value in the acid fermentation step is equal to or less than the set value of the alkaline agent injection rate obtained from the organic load amount of the influent water flowing into the acid fermentation step Furthermore, an anaerobic treatment method for organic wastewater is characterized in that the amount of wastewater flowing into the acid fermentation process is reduced or stopped.
In the anaerobic treatment method, the pH value is preferably controlled so that the pH in the acid fermentation process is 5.0 to 6.5 and the pH in the methane fermentation process is 6.5 to 8.5. The amount of organic matter load can be calculated from the concentration of organic matter in the influent water and the inflow amount of the influent water. In the methane fermentation process, a part of the effluent is circulated to the acid fermentation process and / or the methane fermentation process. In this case, the circulating water that circulates the effluent from the methane fermentation process to the acid fermentation process and / or the methane fermentation process is added to control the pH value in the acid fermentation process. It is preferable to reduce or stop the injection amount when the amount becomes less than the set value of the alkali agent injection rate obtained from the organic matter load amount of the influent water.

また、本発明では、有機性廃水を酸発酵する酸発酵槽と、該酸発酵槽からの流出水をメタン発酵するメタン発酵槽と、酸発酵槽中のpH値を検出する手段と、検出したpH値に基づいて注入するアルカリ剤の注入量を検出する手段とを備えた二相式の嫌気性処理装置において、前記有機性廃水が酸発酵槽へ流入する流入量を検出して制御する流量制御手段と、該廃水の有機物濃度検出手段とを備え、前記アルカリ剤の注入量と、前記廃水の酸発酵槽へ流入する流入量と有機物濃度から算出された有機物負荷量から求めたアルカリ剤注入率の設定値とに基づいて、前記酸発酵槽へ流入する前記廃水の流入量を制御する機構を備えたことを特徴とする有機性廃水の嫌気性処理装置としたものである。
前記嫌気性処理装置において、前記メタン発酵槽は、流出水の一部を前記酸発酵槽及び/又は該メタン発酵槽に循環する経路を有することができ、該経路には、前記流出水の循環量を制御する流量制御手段を有し、前記アルカリ剤の注入量と、前記有機物負荷量から求めたアルカリ剤注入率の設定値に基づいて、循環水の循環量を制御する機構を備えることができる。
Further, in the present invention, an acid fermenter for acid fermentation of organic waste water, a methane fermenter for methane fermentation of effluent from the acid fermenter, and means for detecting a pH value in the acid fermenter are detected. In a two-phase anaerobic treatment apparatus comprising a means for detecting the injection amount of an alkaline agent to be injected based on the pH value, a flow rate for detecting and controlling the inflow amount of the organic wastewater flowing into the acid fermentation tank An alkaline agent injection determined from an injection amount of the alkaline agent, an inflow amount flowing into the acid fermenter of the waste water and an organic substance load amount calculated from the organic substance concentration; An anaerobic treatment apparatus for organic wastewater comprising a mechanism for controlling the amount of inflow of the wastewater flowing into the acid fermentation tank based on the set value of the rate.
In the anaerobic treatment apparatus, the methane fermentation tank may have a path for circulating a part of the effluent water to the acid fermentation tank and / or the methane fermentation tank, and the path includes circulation of the effluent water. It has a flow rate control means for controlling the amount, and has a mechanism for controlling the amount of circulating water based on the injection amount of the alkali agent and the set value of the alkali agent injection rate obtained from the organic material load amount. it can.

本発明の方法により、酸発酵不良の迅速な検知によって、流入有機物負荷量を減少及び/又は滞留時間を増加させることで、酸発酵不良が発生してもメタン発酵処理性能の低下を回避し、さらにはメタン発酵菌を死滅させることがなく、難発酵物質流入後の溶解性CODCr除去率を従来法より高くでき、溶解性CODCr除去量を多くすることができる。 By the rapid detection of acid fermentation failure by the method of the present invention, by reducing the inflow organic matter load and / or increasing the residence time, even if acid fermentation failure occurs, the degradation of methane fermentation treatment performance is avoided, Furthermore, the methane-fermenting bacteria are not killed, the soluble COD Cr removal rate after inflow of the hardly fermentable substance can be made higher than that of the conventional method, and the soluble COD Cr removal amount can be increased.

本発明は、有機性廃水、特に比較的高分子の有機物や難発酵成分を含み、酸発酵工程が律速となる有機性廃水を対象として、酸発酵工程とメタン発酵工程からなら二相式嫌気性処理方式において、有機性廃水の有機物濃度検出手段及び流入量検出手段を設け、流入有機物負荷量あたりの酸発酵槽へのアルカリ剤注入量を指標として、酸発酵工程に注入されるアルカリ剤注入量の減少によって酸発酵不良を迅速に検知することで、流入有機物負荷量の変動に拘わらず、酸発酵不良を迅速に検知することで、メタン発酵処理性能の低下を回避するものである。
酸発酵不良の迅速な検知によって、流入有機物負荷量を減少且つ/又は滞留時間を増加させることで、酸発酵不良が発生してもメタン発酵処理性能の低下を回避し、さらにはメタン発酵菌を死滅させないことにある。
The present invention is intended for organic wastewater, particularly organic wastewater containing relatively high-molecular organic matter and difficult-to-ferment components, and rate-determining the acid fermentation process. In the treatment method, organic substance concentration detection means and inflow amount detection means are provided for organic wastewater, and the injection amount of alkaline agent injected into the acid fermentation process using the injection amount of alkaline agent into the acid fermenter per inflow organic matter load as an index By detecting acid fermentation failure quickly by reducing the amount of acid, the acid fermentation failure is detected quickly regardless of fluctuations in the inflowing organic matter load, thereby avoiding a decrease in methane fermentation treatment performance.
By detecting the acid fermentation failure quickly, reducing the inflowing organic matter load and / or increasing the residence time, it is possible to avoid degradation of methane fermentation treatment performance even if acid fermentation failure occurs, and There is in not letting you die.

以下、本発明の実施の形態を図面を参照して説明する。
本発明における嫌気性処理は、酸発酵を主に行う酸発酵槽と、メタン発酵を主に行うメタン発酵槽との2槽からなる二相式嫌気処理をいう。対象とする有機性廃水は、固形性成分を主とする泥状であっても、溶解性成分を主とする液状であってもよい。また、メタン発酵処理には、主に泥状の有機性廃水を嫌気処理する嫌気性消化法や、主に液状の有機性廃水を嫌気処理するUASB法、EGSB法、流動床法、固定床法などの高負荷嫌気性処理があるが、いずれの方式でも本発明に適用できる。
本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理の温度範囲の嫌気性処理のいずれでもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The anaerobic treatment in the present invention refers to a two-phase anaerobic treatment comprising two tanks of an acid fermentation tank mainly for acid fermentation and a methane fermentation tank mainly for methane fermentation. The target organic waste water may be in the form of mud mainly composed of solid components or in the form of liquid mainly composed of soluble components. In addition, the methane fermentation treatment includes an anaerobic digestion method mainly for anaerobically treating mud organic wastewater, and a UASB method, an EGSB method, a fluidized bed method, a fixed bed method for anaerobically treating mainly liquid organic wastewater. However, any system can be applied to the present invention.
The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in the temperature range of a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C. and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. Either is acceptable.

図1及び図2は、嫌気性処理を実施するためにUASB法を例にした本発明の好ましい一形態の概要を例示した図である。図1は、メタン発酵工程流出水を循環しない例、図2は、メタン発酵工程流出水の一部を酸発酵工程に循環する例である。図2には、メタン発酵工程流出水の一部を循環水として酸発酵槽内部に返送するライン、及びメタン発酵工程流出水の一部をメタン発酵槽の流入部に返送するラインの両方が設置された図を一例として示した。
はじめに、メタン発酵工程流出水を循環しない例について、図1を用いて説明する。
食品工場、化学工場などの各種工場より排出され、難発酵成分の負荷変動がある有機性廃水を原水Aとし、原水は、原水ポンプ1によって酸発酵槽2へ流入する。原水の流入水量は流量計3により測定される。流量は流量調節弁4で調節される。
FIG. 1 and FIG. 2 are diagrams illustrating an outline of a preferred embodiment of the present invention taking the UASB method as an example for performing anaerobic treatment. FIG. 1 is an example in which the methane fermentation process effluent is not circulated, and FIG. 2 is an example in which a part of the methane fermentation process effluent is circulated in the acid fermentation process. In Fig. 2, both a line for returning a part of the effluent from the methane fermentation process to the inside of the acid fermenter as circulating water and a line for returning a part of the effluent from the methane fermentation process to the inflow part of the methane fermenter are installed. The figure is shown as an example.
First, the example which does not circulate methane fermentation process effluent water is demonstrated using FIG.
Organic wastewater discharged from various factories such as food factories and chemical factories and having a load fluctuation of difficult-to-ferment components is used as raw water A, and the raw water flows into the acid fermentation tank 2 by the raw water pump 1. The amount of raw water inflow is measured by the flow meter 3. The flow rate is adjusted by the flow rate control valve 4.

酸発酵槽では、槽内の酸発酵菌の働きにより、炭水化物やたんぱく質、脂質などの複雑な有機化合物が、糖、アミノ酸、ペプチド等の単純な有機化合物に低分子化され、さらに長鎖脂肪酸、酢酸に分解される。
酸発酵槽では、有機酸の生成に伴いpHが低下するが、酸発酵に適したpHである5.0〜6.5とするために、酸発酵槽に設置されたpH計5のpH測定結果をもとに、所定pHとなるようにアルカリ剤6をアルカリ剤添加ポンプ7にて注入する。アルカリ剤の注入量は、流量計8の積算により求められる。酸発酵槽のpHは酸発酵槽内にて測定してもよいし、酸発酵処理水Bを測定してもよい。アルカリ剤としては、NaOH、Ca(OH)、Mg(OH)、NaHCO、NaCOなどがあるが、pH制御の容易さ及び取り扱いの容易さを考慮して、NaOHを用いることが好ましい。
In acid fermentation tanks, complex organic compounds such as carbohydrates, proteins, and lipids are reduced to simple organic compounds such as sugars, amino acids, and peptides by the action of acid-fermenting bacteria in the tank. Decomposed into acetic acid.
In the acid fermenter, the pH decreases with the production of the organic acid, but the pH measurement of the pH meter 5 installed in the acid fermenter is performed in order to adjust the pH to 5.0 to 6.5, which is a pH suitable for acid fermentation. Based on the result, the alkaline agent 6 is injected by the alkaline agent addition pump 7 so as to obtain a predetermined pH. The injection amount of the alkaline agent is obtained by integrating the flow meter 8. The pH of the acid fermentation tank may be measured in the acid fermentation tank, or the acid fermentation treated water B may be measured. Examples of the alkaline agent include NaOH, Ca (OH) 2 , Mg (OH) 2 , NaHCO 3 , and Na 2 CO 3 , but use NaOH in consideration of ease of pH control and ease of handling. Is preferred.

アルカリ剤の注入位置は、酸発酵槽流入部、酸発酵槽内、メタン発酵処理水を酸発酵工程に循環を行う場合であればメタン発酵処理水循環配管のいずれでもよい。
また、原水が高pHや低pHの廃水である場合は酸又はアルカリを注入し、事前に中和を行うことが好ましい。
酸発酵槽で有機酸が生成された酸発酵処理水は、メタン発酵槽流入ポンプ9によって、メタン発酵槽10へ流入される。
メタン発酵槽では、酢酸などの有機酸がメタン発酵菌によってメタンガスと二酸化炭素に分解されバイオガスとなる。バイオガスは、図示されていないガスラインによって系外に排出される。排出されたバイオガスは、必要に応じて脱硫等の処理を行った後、ボイラーや燃焼塔などへ送られ利用される。
The injection position of the alkaline agent may be any of the acid fermenter inflow part, the acid fermenter, and the methane fermentation treated water circulation pipe as long as the methane fermentation treated water is circulated in the acid fermentation process.
Moreover, when raw | natural water is wastewater of high pH or low pH, it is preferable to inject | pour an acid or an alkali and to neutralize in advance.
The acid fermentation treated water in which the organic acid is generated in the acid fermentation tank is flowed into the methane fermentation tank 10 by the methane fermentation tank inflow pump 9.
In a methane fermentation tank, an organic acid such as acetic acid is decomposed into methane gas and carbon dioxide by methane fermentation bacteria to become biogas. Biogas is discharged out of the system by a gas line (not shown). The discharged biogas is subjected to treatment such as desulfurization as necessary, and then sent to a boiler, a combustion tower or the like for use.

次に、メタン発酵工程流出水の一部を酸発酵工程に循環する例を、図2を用いて説明する。
メタン発酵工程流出水Cは、処理水Dとなるが、流出水の一部を酸発酵工程に循環する場合は、メタン発酵処理水を循環水Eとして、循環ポンプ11によって酸発酵槽流入部あるいは酸発酵槽内部に返送する。循環水量は、流量計12により測定される。流量は流量調節弁13で調節される。
酸発酵工程ではアルカリ度を消費する酸発酵処理が、メタン発酵工程ではアルカリ度を生成するメタン発酵処理が進行するため、アルカリ度の高いメタン発酵処理水を酸発酵槽に循環することにより、メタン発酵工程で生成したアルカリ度を有効利用して、酸発酵槽に注入するアルカリ剤の使用量を削減できる。
Next, the example which circulates a part of methane fermentation process effluent water to an acid fermentation process is demonstrated using FIG.
The methane fermentation process effluent C becomes the treated water D, but when a part of the effluent is circulated to the acid fermentation process, the methane fermentation process water is used as the circulating water E by the circulation pump 11 or Return to the acid fermenter. The amount of circulating water is measured by the flow meter 12. The flow rate is adjusted by the flow rate control valve 13.
Since acid fermentation treatment that consumes alkalinity proceeds in the acid fermentation process, and methane fermentation treatment that produces alkalinity proceeds in the methane fermentation process, methane fermentation treated water with high alkalinity is circulated to the acid fermenter. It is possible to effectively use the alkalinity generated in the fermentation process and reduce the amount of the alkaline agent to be injected into the acid fermentation tank.

また、メタン発酵工程にUASB法、EGSB法、流動床法を採用した場合、循環水には、メタン発酵工程から後段の工程へ送られるメタン発酵処理水だけでなく、メタン発酵槽の汚泥界面上方に位置する中間部から直接引き抜いた槽内水を、メタン発酵工程流出水として用いることもできる。
さらに、メタン発酵工程にUASB法、EGSB法、流動床法を採用し、メタン発酵工程流出水の一部をメタン発酵工程に循環する場合は、メタン発酵槽の流入部やメタン発酵槽の底部や汚泥界面下方に位置する中間部に直接循環することがある。これにより、メタン発酵槽内のグラニュール汚泥や流動床の流動を促進でき、処理の安定化を図ることができる。したがって、メタン発酵工程流出水は、酸発酵工程への循環水と、メタン発酵工程への循環水と、後段の工程へ送られるメタン発酵工程処理水の合計となる。
In addition, when the UASB method, EGSB method, and fluidized bed method are adopted for the methane fermentation process, the circulating water includes not only the methane fermentation treated water sent from the methane fermentation process to the subsequent process but also the sludge interface above the methane fermentation tank. Water in the tank drawn directly from the intermediate part located in the methane fermentation process effluent can also be used.
Furthermore, when adopting UASB method, EGSB method, fluidized bed method for methane fermentation process and circulating part of effluent of methane fermentation process effluent to methane fermentation process, inflow part of methane fermenter, bottom of methane fermenter, It may circulate directly to the middle part located below the sludge interface. Thereby, the flow of the granular sludge in a methane fermentation tank and a fluidized bed can be accelerated | stimulated, and stabilization of a process can be aimed at. Therefore, the methane fermentation process outflow water is the sum of the circulating water to the acid fermentation process, the circulating water to the methane fermentation process, and the methane fermentation process treated water sent to the subsequent process.

原水の流入量と有機物濃度の積で表される有機物負荷が変動する場合、有機物負荷に応じて酸発酵工程で生成される有機酸量が増減し、有機酸量に応じてアルカリ剤注入量も増減することになる。本発明では、有機物負荷や有機酸生成量に応じたアルカリ剤注入量を指標とする。この場合、図1、図2に示すように、酸発酵槽へ流入する手前に有機物濃度計14を設置し、有機物濃度のデータが制御装置15へ送られ、制御装置において、式(1)によって算出される有機物負荷量あたりのアルカリ剤注入量の割合から算出されるアルカリ剤注入率を指標として、後述の制御を行う。特に、難発酵成分が一時的に原水に混入する状態が想定される場合に、有機物負荷あたりのアルカリ剤注入率を指標とすることが好ましい。難発酵成分が一時的に原水に混入した場合、酸発酵で生成される難発酵成分由来の有機酸量は少ないので、有機物負荷あたりのアルカリ剤注入率は減少することになる。
有機物負荷あたりのアルカリ剤注入率(kg/kg)
=[アルカリ剤注入量(kg/d)]÷[原水有機物濃度(kg/m)×原水量(m/d)] ・・・(1)
有機物濃度は、クロム酸カリウムによる化学的酸素要求量(CODCr;Chemical Oxygen Demand)、全有機炭素(Total Organic Carbon;TOC)、全酸素要求量(Total Oxygen Demand;TOD)などいずれでもよい。
When the organic load expressed by the product of raw water inflow and organic substance concentration fluctuates, the amount of organic acid generated in the acid fermentation process increases or decreases depending on the organic load, and the amount of alkali agent injected depends on the amount of organic acid. Will increase or decrease. In the present invention, the amount of alkali agent injected according to the organic load and the amount of organic acid produced is used as an index. In this case, as shown in FIG. 1 and FIG. 2, the organic matter concentration meter 14 is installed before flowing into the acid fermenter, and the organic matter concentration data is sent to the control device 15. The below-described control is performed using the alkaline agent injection rate calculated from the ratio of the alkaline agent injection amount per calculated organic substance loading amount as an index. In particular, when it is assumed that a hardly fermentable component is temporarily mixed in raw water, it is preferable to use the alkali agent injection rate per organic substance load as an index. When the hardly fermentable component is temporarily mixed in the raw water, the amount of the organic acid derived from the difficultly fermented component produced by the acid fermentation is small, so that the alkali agent injection rate per organic substance load is decreased.
Alkaline agent injection rate per organic load (kg / kg)
= [Alkaline agent injection amount (kg / d)] ÷ [Raw water organic matter concentration (kg / m 3 ) × Raw water amount (m 3 / d)] (1)
The organic substance concentration may be any of chemical oxygen demand (COD Cr ; Chemical Oxygen Demand), total organic carbon (TOC), total oxygen demand (TOD), etc. due to potassium chromate.

図2に示すように、酸発酵工程にメタン発酵工程の処理水を循環水として戻す場合、循環水の水量とM−アルカリ度をそれぞれ流量計、M−アルカリ度計16で測定し制御に組み込むことが好ましい。循環水の水量とM−アルカリ度を測定し制御に組み込むことで、循環水の影響を補正して酸発酵の状態を把握することができる。
この場合、制御装置では、式(2)によって算出されるアルカリ剤注入率を指標として用いる。なお、式(2)では、アルカリ剤注入量をM−アルカリ度換算した例を示したが、循環水のM−アルカリ度量をアルカリ剤量に換算してもよい。
有機物負荷あたりのアルカリ剤注入率(kg/kg)
=[アルカリ剤注入量(M−アルカリ度換算)(kg/d)
+循環水M−アルカリ度量(kg/m)×循環水量(m/d)]
÷[原水有機物濃度(kg/m)×原水量(m/d)] ・・・(2)
As shown in FIG. 2, when the treated water of the methane fermentation process is returned to the acid fermentation process as the circulating water, the amount of the circulating water and the M-alkalinity are measured by the flow meter and the M-alkaline meter 16 and incorporated in the control. It is preferable. By measuring the amount of circulating water and the M-alkalinity and incorporating it in the control, the influence of the circulating water can be corrected and the state of acid fermentation can be grasped.
In this case, the control device uses the alkaline agent injection rate calculated by the equation (2) as an index. In addition, in Formula (2), although the example which converted the alkaline agent injection amount into M-alkalinity was shown, you may convert the M-alkalinity amount of circulating water into the amount of alkaline agent.
Alkaline agent injection rate per organic load (kg / kg)
= [Alkaline agent injection amount (M-alkalinity conversion) (kg / d)
+ Circulating water M- alkali metric (kg / m 3) × circulating water (m 3 / d)]
÷ [Raw water organic matter concentration (kg / m 3 ) × Raw water amount (m 3 / d)] (2)

原水有機物濃度、循環水M−アルカリ度が安定している場合や、原水量、循環水量が一定の場合は、前記の式(1)、式(2)において、それぞれの値を入れて算出することができる。
制御装置にて算出された、式(1)、式(2)の有機物負荷あたりのアルカリ剤注入率の結果が設定値を下回った場合は、警報を発するとともに、1)原水量の減少あるいは停止、及び/又は、2)メタン発酵処理水の循環水量の減少あるいは停止する制御を行う。
図1、図2では、流量調整弁による流量調整の例を図示したが、流量を制御する方法はどのような方法でもよく、ポンプの回転数による制御でもよい。また、流量計によるアルカリ剤注入量の計測例を図示したが、アルカリ剤注入量を計測する方法はどのような方法でもよく、アルカリ剤貯留量の変化から注入量を求めてもよい。さらに、機器による測定と制御の例を示したが、手分析・手計算による制御も可能である。
When the raw water organic matter concentration and the circulating water M-alkalinity are stable, or when the raw water amount and the circulating water amount are constant, the respective values are calculated in the above formulas (1) and (2). be able to.
When the result of the alkaline agent injection rate per load of organic substances calculated by the control device is below the set value, an alarm is issued and 1) the amount of raw water is reduced or stopped And / or 2) Control to reduce or stop the amount of circulating water of methane fermentation treated water.
In FIGS. 1 and 2, an example of flow rate adjustment by the flow rate adjustment valve is illustrated, but any method may be used for controlling the flow rate, and control by the number of rotations of the pump may be used. Moreover, although the measurement example of the alkaline agent injection amount by the flow meter is illustrated, any method may be used for measuring the alkaline agent injection amount, and the injection amount may be obtained from a change in the alkaline agent storage amount. Furthermore, although the example of the measurement and control by an apparatus was shown, control by manual analysis and manual calculation is also possible.

前記の式(1)、式(2)にて算出されたアルカリ剤注入率による制御フローを図4に示す。
必要に応じて原水量、有機物濃度、循環水量、循環水のM−アルカリ度、アルカリ剤注入量を測定する(a)。測定結果を基に、式(1)あるいは式(2)より算出されるアルカリ剤注入率が算出される(b)。
bにおいてアルカリ剤注入率が設定値以上であれば、酸発酵は良好との判定がなされ、一巡前の判定を参照する(c)。一巡前の判定で、酸発酵が良好と判断されていれば、運転条件の変更は行われない(d)。一巡前の判定で、酸発酵が不良と判断されていれば、一巡前に変更された原水量及び/又は循環水量の復帰を行う(e)。
bにおいてアルカリ剤注入率が設定値未満であれば、酸発酵は不良との判定がなされ、一巡前の判定を参照する(f)。一巡前の判定で、酸発酵が良好と判断されていれば、原水量の減少あるいは停止、及び/又は、循環水量の減少あるいは停止を行う(g)。一巡前の判定で、酸発酵が不良と判断されていれば、運転条件の変更は行われない(h)。
d、e、f、gの後、制御を継続する場合はaへ戻る。
図4では、酸発酵不良の判定を一段階で行う例を説明したが、アルカリ剤注入率の設定値を2つ以上設けて、多段階で酸発酵不良を判定してもよい。
FIG. 4 shows a control flow based on the alkali agent injection rate calculated by the above formulas (1) and (2).
If necessary, the raw water amount, the organic matter concentration, the circulating water amount, the M-alkalinity of the circulating water, and the alkaline agent injection amount are measured (a). Based on the measurement result, the alkali agent injection rate calculated from the formula (1) or the formula (2) is calculated (b).
If the alkaline agent injection rate is equal to or greater than the set value in b, it is determined that the acid fermentation is good, and the determination before one round is referred to (c). If it is determined that the acid fermentation is good in the determination before one round, the operating condition is not changed (d). If it is determined that the acid fermentation is poor in the determination before one round, the raw water amount and / or the circulating water amount changed before the one round is restored (e).
If the alkaline agent injection rate is less than the set value in b, it is determined that the acid fermentation is defective, and the determination before one round is referred to (f). If it is determined that the acid fermentation is good in the determination before one round, the raw water amount is reduced or stopped and / or the circulating water amount is reduced or stopped (g). If it is determined that the acid fermentation is poor in the determination before one round, the operating condition is not changed (h).
After d, e, f, g, return to a to continue the control.
In FIG. 4, an example in which determination of acid fermentation failure is performed in one stage has been described, but two or more set values of the alkaline agent injection rate may be provided to determine acid fermentation failure in multiple stages.

アルカリ剤注入率の設定値は、循環水となるメタン発酵処理水由来のM−アルカリ度と供給アルカリ剤由来のアルカリ度とで供給される合計のM−アルカリ度が、中和処理後の原水のTOC 1.0kg当たりのM−アルカリ度として0.3〜1.5kg、好ましくは0.6〜1.0kgの間に設定される。
原水の受入停止もしくは原水量の低減を行う目的は、流入有機物負荷量を減少することで難発酵成分の負荷を減少させ、酸発酵工程で難発酵成分の酸発酵を、十分進めることができる。
原水の受入停止もしくは原水量の低減を行うこと、及びメタン発酵処理水の酸発酵工程への循環水量の低減もしくは停止を行う目的は、酸発酵工程における滞留時間を増加することにある。滞留時間を増加することにより、難発酵成分の酸発酵を十分進めることができる。
また、メタン発酵槽流入部への循環水量の低減もしくは停止を行うことにより、メタン発酵処理水中に残存する難発酵成分及び酸発酵が十分されていない難発酵成分を、メタン発酵槽に再流入させないことで、メタン発酵槽内での酸発酵の進行による槽内pHの低下を抑制することもできる。
原水の流量の減少あるいは停止と、循環水量の減少あるいは停止の両方を行うことが好ましいが、受け入れなかった原水を産廃として工場外で処分することになり好ましくないので、循環水量の低減もしくは停止のみを行うこともできる。
The set value of the alkali agent injection rate is the total M-alkalinity supplied by the M-alkalinity derived from the methane fermentation treated water and the alkalinity derived from the supply alkaline agent as the circulating water. The M-alkalinity per 1.0 kg of TOC is set between 0.3 and 1.5 kg, preferably between 0.6 and 1.0 kg.
The purpose of stopping the acceptance of raw water or reducing the amount of raw water is to reduce the load of difficult-to-ferment components by reducing the inflow organic matter load, and to sufficiently promote acid fermentation of difficult-to-ferment components in the acid fermentation process.
The purpose of stopping acceptance of raw water or reducing the amount of raw water and reducing or stopping the amount of circulating water to the acid fermentation process of methane fermentation treated water is to increase the residence time in the acid fermentation process. By increasing the residence time, acid fermentation of difficult-to-ferment components can be sufficiently advanced.
In addition, by reducing or stopping the amount of circulating water to the methane fermentation tank inflow section, difficult fermentation components remaining in the methane fermentation treated water and difficult fermentation components with insufficient acid fermentation are not reflowed into the methane fermentation tank. Thereby, the fall of the pH in a tank by progress of acid fermentation in a methane fermentation tank can also be suppressed.
It is preferable to reduce or stop the flow of raw water and to reduce or stop the amount of circulating water, but it is not preferable because the unaccepted raw water is disposed of outside the factory as industrial waste. Can also be done.

以下に、本発明を実施例により従来法と共に、さらに具体的に説明する。
TOC 3300〜3700mg/L、CODCr では9000〜10000mg/Lに調整した糖質系廃水を原水として、グラニュール汚泥を投入したUASBタイプのメタン発酵槽で処理を行った。UASBの前段処理工程として酸発酵工程を設置し、酸発酵工程の設定pHは6.0で運転した。アルカリ剤として水酸化ナトリウムを、無機栄養塩類として窒素、リンなどを添加した。水酸化ナトリウム 1000mg/LはM−アルカリ度 1250mg/Lとして換算することができる。種汚泥は、同じ清涼飲料廃水を処理している実機のグラニュール汚泥を投入した。有機物濃度としてTOCを指標とした。本発明の制御を行う前の標準状態での原水量は20L/dとした。このときUASBのCODCr容積負荷が20kg/(m・d)となる。なお、糖質系廃水のみの運転でUASBのCODCr容積負荷が30kg/(m・d)でも同等の処理が可能なことを事前に確認している。
In the following, the present invention will be described more specifically together with conventional methods by examples.
In TOC 3300-3700 mg / L, COD Cr was processed in a UASB type methane fermenter in which granule sludge was introduced using saccharide wastewater adjusted to 9000-10000 mg / L as raw water. An acid fermentation process was installed as a pre-treatment process of UASB, and the pH of the acid fermentation process was set at 6.0. Sodium hydroxide was added as an alkaline agent, and nitrogen, phosphorus, etc. were added as inorganic nutrients. Sodium hydroxide 1000 mg / L can be converted as M-alkalinity 1250 mg / L. For seed sludge, granule sludge of the actual machine treating the same soft drink wastewater was used. TOC was used as an index as the organic substance concentration. The amount of raw water in the standard state before performing the control of the present invention was 20 L / d. At this time, the COD Cr volumetric load of UASB is 20 kg / (m 3 · d). In addition, it has been confirmed in advance that the same treatment is possible even if the UASB COD Cr volumetric load is 30 kg / (m 3 · d) by operating only the sugar-based wastewater.

図1、図2、図3に示す二相式嫌気性排水処理装置にて運転を行った。酸発酵槽の有効容量は10L、UASB槽の有効容量は10Lである。酸発酵槽及びUASB槽内部の水温は、35℃に保たれるよう温度制御した。循環ありとした場合、UASB処理水の一部を酸発酵槽もしくは、UASB槽流入部に循環した。循環水量は20L/dとした。
運転は、30日間行い評価を行った。始めの10日間は、Run1とし糖質系廃水のみを原水として投入した。続く10日間は、Run2とし糖質系廃水に難発酵成分を混合した原水を投入した。難発酵成分として、A系列、D系列、E系列ではマルチトール、B系列ではキシリトール、C系列ではデンプンを使用した。難発酵成分を混合した原水のTOCは5200〜5600mg/L、CODCrでは14000〜15000mg/Lとなり、難発酵成分はTOC、CODCrの約35%を占めた。最後の10日間は、Run3とし、Run1と同じ糖質系廃水のみを原水として投入した。酸発酵状態の判定は、1日1回行った。
表1に運転条件を、表2に運転結果として各Runでの溶解性CODCr除去率の平均値、及びRun2、Run3の溶解性CODCr除去量を示す。図5には代表的な系列の処理結果の経時変化を示す。
ここで、
溶解性CODCr除去率(%)=100×(原水の溶解性CODCr濃度 − UASB処理水の溶解性CODCr濃度)/原水の溶解性CODCr
原水及びUASB処理水の溶解性CODCr濃度(mg/L)は、孔径1.0μろ紙で得たろ液を分析し得た。
The operation was performed using the two-phase anaerobic wastewater treatment apparatus shown in FIGS. 1, 2, and 3. The effective capacity of the acid fermentation tank is 10L, and the effective capacity of the UASB tank is 10L. The water temperature inside the acid fermentation tank and the UASB tank was controlled to be kept at 35 ° C. When there was circulation, a part of the UASB treated water was circulated to the acid fermentation tank or the UASB tank inflow part. The amount of circulating water was 20 L / d.
The operation was performed for 30 days and evaluated. For the first 10 days, Run 1 was used as raw water and only saccharide wastewater was added. For the next 10 days, raw water mixed with a non-fermentable component in saccharide wastewater as Run 2 was added. As the hardly fermentable component, maltitol was used in the A series, D series, and E series, xylitol was used in the B series, and starch was used in the C series. The TOC of raw water mixed with difficult-to-ferment components was 5200 to 5600 mg / L, and COD Cr was 14,000 to 15000 mg / L, and the hardly-fermentable components accounted for about 35% of TOC and COD Cr . For the last 10 days, Run 3 was used, and only the same carbohydrate wastewater as Run 1 was used as raw water. The acid fermentation state was determined once a day.
The operating conditions are shown in Table 1, the average value of the solubility COD Cr removal rate for each Run as the operation results are shown in Table 2, and Run2, the solubility COD Cr removal of Run 3. FIG. 5 shows changes with time in the processing results of a typical series.
here,
Soluble COD Cr removal rate (%) = 100 × (soluble COD Cr concentration of the raw water - soluble COD Cr concentration of UASB treated water) / raw water solubility COD Cr
The solubility COD Cr concentration (mg / L) of raw water and UASB treated water was obtained by analyzing the filtrate obtained with a filter paper having a pore size of 1.0 μm.

次に各系列の運転条件及び結果について、詳細に説明する。
A−1系列(従来法)
従来法のA−1系列は、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
A−1系列では、原水量20L/d、循環水量20L/dの一定条件とし、流入有機物負荷量による酸発酵状態の判定は行わなかった。
Run1では、溶解性CODCr除去率の平均値88%で安定した処理が行えていたが、Run2になるとアルカリ剤注入量が減少すると共に、溶解性CODCr除去率の平均値は27%に低下した。
Run3においても、溶解性CODCr除去率は改善せず、溶解性CODCr除去率の平均値は5%と著しく低かった。
Next, the operating conditions and results of each series will be described in detail.
A-1 series (conventional method)
The conventional method A-1 series was processed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Maltitol was used as a difficult-to-ferment component.
In the A-1 series, the conditions of the raw water amount 20 L / d and the circulating water amount 20 L / d were set as constant conditions, and the acid fermentation state was not determined based on the inflowing organic matter load.
In Run 1, stable treatment could be performed with an average value of 88% of the soluble COD Cr removal rate. However, when Run 2 was reached, the amount of alkali agent injected was reduced and the average value of the soluble COD Cr removal rate was reduced to 27%. did.
Also in Run 3, the soluble COD Cr removal rate did not improve, and the average value of the soluble COD Cr removal rate was extremely low at 5%.

A−2系列(従来法)
従来法のA−2系列は、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
A−2系列では、UASB処理水に残存する有機酸量が設定値を超えたと判断した場合にメタン発酵不良状態と判定して原水量を減少させる制御を行った。すなわちTOC負荷あたりのアルカリ剤注入率が0.7kg−Mアルカリ度/kg−TOCを超えた場合にメタン発酵不良状態と判定し、原水の受入量を50%にすることにした。その後、TOC負荷あたりのアルカリ剤注入率が0.7kg−Mアルカリ度/kg−TOCより下がった場合にメタン発酵状態が改善したと判定し、原水量を元に戻すこととした。
Run1では、溶解性CODCr除去率の平均値88%で安定して処理が行えていた。Run2の3日後、アルカリ剤注入率が0.73kg−Mアルカリ度/kg−TOCとなりメタン発酵不良状態と判定されたため、原水受入量を20L/dから10L/dに減少した。Run2の溶解性CODCr除去率の平均値は32%であった。Run3のTOCあたりのアルカリ剤注入量は設定値を超えて維持され、メタン発酵状態の改善を示すアルカリ注入率に到達しなかったので原水量も元に戻さなかった。その結果、Run3の溶解性CODCr除去率の平均値は30%と低かった。
A-2 series (conventional method)
The conventional method A-2 series was processed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Maltitol was used as a difficult-to-ferment component.
In the A-2 series, when it was determined that the amount of organic acid remaining in the UASB treated water exceeded the set value, it was determined that the methane fermentation was in a poor state, and control was performed to reduce the amount of raw water. That is, when the alkali agent injection rate per TOC load exceeded 0.7 kg-M alkalinity / kg-TOC, it was determined that the methane fermentation was in a poor state, and the amount of raw water received was 50%. After that, when the alkali agent injection rate per TOC load was lower than 0.7 kg-M alkalinity / kg-TOC, it was determined that the methane fermentation state had improved, and the raw water amount was returned to the original.
In Run 1, the treatment was stably performed with an average value of 88% for the removal rate of soluble COD Cr . Three days after Run 2, the alkaline agent injection rate was 0.73 kg-M alkalinity / kg-TOC, and the methane fermentation was judged to be in a poor state, so the amount of raw water received was reduced from 20 L / d to 10 L / d. The average value of Run2 soluble COD Cr removal rate was 32%. The amount of alkaline agent injected per TOC of Run 3 was maintained beyond the set value, and the amount of raw water was not restored because it did not reach the alkali injection rate indicating an improvement in the methane fermentation state. As a result, the average value of the soluble COD Cr removal rate of Run 3 was as low as 30%.

A−3系列(従来法)
従来法のA−3系列は、図3に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。メタン発酵工程で発生するバイオガスのガス流量計17、メタン濃度計18を設置した。難発酵成分としてマルチトールを使用した。
原水量、原水TOC、メタンガス発生量を測定し、TOC負荷量あたりのメタンガス発生量から算出されるTOC負荷あたりのガス化率を式(3)により算出した。メタン発酵不良と判定するTOC負荷あたりのガス化率の制御設定値を0.75m−メタンガス(NTP)/kg−原水TOCとした。A−3系列ではTOC負荷あたりのガス化率が設定値未満に減少した場合にメタン発酵不良と判定した。その後、TOC負荷あたりのガス化率が増加した場合にメタン発酵状態が改善したと判定し、原水量を元に戻すこととした。
TOC負荷あたりのガス化率[m−メタンガス(NTP)/kg−原水TOC]
=[メタンガス発生量[m−メタンガス(NTP)/d]
÷[原水TOC濃度(kg/m)×原水量(m/d)] ・・・(3)
Run1では、溶解性CODCr除去率の平均値88%で安定した処理が行えていた。Run2の2日後になるとガス化率は設定値未満の0.72m−メタンガス(NTP)/kg−原水TOCに減少したため、原水受入量を10L/dに減少した。Run2の溶解性CODCr除去率の平均値は50%となった。Run3のガス化率は設定値未満で、Run3の溶解性CODCr除去率の平均値は45%であった。
A-3 series (conventional method)
The conventional method A-3 series was processed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. A gas flow meter 17 and a methane concentration meter 18 for biogas generated in the methane fermentation process were installed. Maltitol was used as a difficult-to-ferment component.
The raw water amount, raw water TOC, and methane gas generation amount were measured, and the gasification rate per TOC load calculated from the methane gas generation amount per TOC load amount was calculated by Equation (3). The control set value of the gasification rate per TOC load determined to be methane fermentation failure was set to 0.75 m 3 -methane gas (NTP) / kg-raw water TOC. In the A-3 series, when the gasification rate per TOC load decreased below the set value, it was determined that the methane fermentation was poor. Then, when the gasification rate per TOC load increased, it was determined that the state of methane fermentation was improved, and the amount of raw water was restored.
Gasification rate per TOC load [m 3 -methane gas (NTP) / kg-raw water TOC]
= [Methane gas generation amount [m 3 -methane gas (NTP) / d]
÷ [Raw water TOC concentration (kg / m 3 ) × Raw water amount (m 3 / d)] (3)
In Run 1, stable treatment was possible with an average value of 88% for the removal rate of soluble COD Cr . Two days after Run 2, the gasification rate was reduced to 0.72 m 3 -methane gas (NTP) / kg-raw water TOC, which was less than the set value, so the raw water acceptance amount was reduced to 10 L / d. The average value of Run2 soluble COD Cr removal rate was 50%. The gasification rate of Run 3 was less than the set value, and the average value of Run 3 soluble COD Cr removal rate was 45%.

A−4系列(本発明)
本発明のA−4系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は、循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。A−4系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水量を75%の15L/dにした。酸発酵状態が回復したと判定された場合、原水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.54kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、原水量を15L/dに減少した。Run2では溶解性CODCr除去率の平均値は52%となった。Run3の1日後には、アルカリ剤注入率が0.84kg−Mアルカリ度/kg−TOCとなり、酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は77%となった。
本発明の方法により、難発酵物質流入時に一時的に処理が悪化したものの、従来法A−2系列、A−3系列より迅速に酸発酵不良を検知することができ、従来法A−1系列、A−2系列、A−3系列より、適正な負荷とすることでRun2、Run3での除去溶解性CODCr量は多かった。
A-4 series (present invention)
In the A-4 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermenter as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the A-4 series, when it decreased below this control setting, it was determined that acid fermentation was poor.
When it was determined that the acid fermentation state was poor, the raw water amount was 75% of 15 L / d. When it was determined that the acid fermentation state was recovered, the raw water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate became 0.54 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The raw water amount was reduced to 15 L / d. In Run 2, the average value of the soluble COD Cr removal rate was 52%. One day after Run 3, the alkaline agent injection rate was 0.84 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered. The average value of the soluble COD Cr removal rate was 77%.
According to the method of the present invention, although the treatment is temporarily deteriorated when the hardly fermentable substance flows in, the acid fermentation failure can be detected more quickly than the conventional methods A-2 series and A-3 series, and the conventional method A-1 series From the A-2 series and A-3 series, the amount of removed soluble COD Cr in Run 2 and Run 3 was higher by setting the load appropriately.

A−5系列(本発明)
本発明のA−5系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は、循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。A−5系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水量を50%の10L/dにした。酸発酵状態が回復したと判定された場合、原水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.47kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、原水量を10L/dに減少した。Run2の溶解性CODCr除去率の平均値は85%となった。Run3の1日後には、アルカリ剤注入率が0.88kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は88%となった。
本発明の方法により、難発酵物質流入時に一時的に処理が悪化したものの、従来法A−2系列、A−3系列より迅速に酸発酵不良を検知することができ、本願発明のA−4系列と比べてさらに安定した処理が可能であり、適正な負荷とすることでRun2、Run3での除去溶解性CODCr量は多かった。
A-5 series (present invention)
In the A-5 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermenter as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the A-5 series, it was determined that acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the amount of raw water was 50% of 10 L / d. When it was determined that the acid fermentation state was recovered, the raw water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate became 0.47 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of raw water was reduced to 10 L / d. The average value of the soluble CODCr removal rate of Run 2 was 85%. One day after Run 3, the alkaline agent injection rate was 0.88 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered. The average value of the soluble CODCr removal rate was 88%.
By the method of the present invention, although the treatment was temporarily deteriorated when the hardly fermentable substance flowed in, the acid fermentation failure could be detected more quickly than the conventional methods A-2 series and A-3 series. More stable treatment was possible compared to the series, and the removal soluble COD Cr amount in Run 2 and Run 3 was large by setting the load appropriately.

A−6系列(本発明)
本発明のA−6系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。A−6系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水の供給を停止した。原水の供給を停止しているため、アルカリ剤注入が停止した時点を酸発酵状態が回復したと判定し、原水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.47kg−Mアルカリ度/kg−TOCとなり、酸発酵不良と判定されたため、原水の供給を停止した。Run2では、1日おきに酸発酵状態の不良と良好の判定を繰り返し、溶解性CODCr除去率の平均値は84%となった。Run3の1日後には、酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は88%となった。
本発明の方法によるTOC負荷あたりのアルカリ剤注入率が設定値以下に減少した場合に原水の受入停止を行う制御により、適正な負荷とすることで安定した処理が可能であった。
A-6 series (present invention)
In the A-6 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the A-6 series, it was determined that acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the supply of raw water was stopped. Since the supply of raw water was stopped, it was determined that the acid fermentation state had recovered when the alkaline agent injection was stopped, and the raw water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkali agent injection rate became 0.47 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The supply of raw water was stopped. In Run 2, the acid fermentation state was determined to be poor and good every other day, and the average value of the soluble COD Cr removal rate was 84%. One day after Run3, it was determined that the acid fermentation state had recovered, so the amount of water was returned to the original amount. The average value of the soluble COD Cr removal rate was 88%.
When the alkaline agent injection rate per TOC load according to the method of the present invention is reduced to a set value or less, stable treatment can be performed by setting an appropriate load by controlling to stop receiving raw water.

A−7系列(本発明)
本発明のA−7系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は、循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。A−7系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、循環水量を50%の10L/dにした。酸発酵状態が回復したと判定された場合、循環水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.57kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、循環水量を10L/dに減少した。Run2の溶解性CODCr除去率の平均値は72%となった。Run3の1日後には、アルカリ剤注入率が0.73kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は86%となった。
本発明の方法により、適正な酸発酵槽の滞留時間を確保し、処理水中の難発酵成分の再流入を低減することで安定した処理が可能であった。
A-7 series (present invention)
In the A-7 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermenter as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the A-7 series, it was determined that acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the amount of circulating water was 50%, 10 L / d. When it was determined that the acid fermentation state was recovered, the circulating water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkali agent injection rate became 0.57 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of circulating water was reduced to 10 L / d. The average value of the soluble COD Cr removal rate of Run 2 was 72%. One day after Run 3, the alkaline agent injection rate became 0.73 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered. The average value of the soluble COD Cr removal rate was 86%.
By the method of the present invention, a stable treatment was possible by securing a proper residence time of the acid fermenter and reducing reflow of difficult-to-ferment components in the treated water.

A−8系列(本発明)
本発明のA−8系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。A−8系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、循環水の供給を停止した。酸発酵状態が回復したと判定された場合、循環水の供給を再開した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.58kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、循環水の供給を停止した。Run2の溶解性CODCr除去率の平均値は76%となった。Run3の1日後には、アルカリ剤注入率が0.65kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、循環水の供給を再開した。溶解性CODCr除去率の平均値は87%となった。
本発明の方法により、適正な酸発酵槽の滞留時間を確保し、処理水中の難発酵成分の再流入を低減することで安定した処理が可能であった。
A-8 series (present invention)
In the A-8 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the A-8 series, it was determined that acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the supply of circulating water was stopped. When it was determined that the acid fermentation state was recovered, the supply of circulating water was resumed.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate was 0.58 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The supply of circulating water was stopped. The average value of the run-off soluble COD Cr removal rate was 76%. One day after Run 3, the alkaline agent injection rate was 0.65 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered, so the supply of circulating water was resumed. The average value of the soluble COD Cr removal rate was 87%.
By the method of the present invention, a stable treatment was possible by securing a proper residence time of the acid fermenter and reducing reflow of difficult-to-ferment components in the treated water.

A−9系列(本発明)
本発明のA−9系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。A−9系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水量を50%の10L/dとすると共に、循環水量を50%の10L/dとした。酸発酵状態が回復したと判定された場合、原水量及び循環水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.54kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、原水量と循環水量を50%に減少した。Run2の溶解性CODCr除去率の平均値は88%となった。Run3の1日後には、アルカリ剤注入率が0.81kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、循環水の供給を再開した。溶解性CODCr除去率の平均値は88%となった。
本発明の方法により、適正な負荷及び適正な酸発酵槽の滞留時間を確保し、処理水中の難発酵成分の再流入を低減することで安定した処理が可能であった。
A-9 series (present invention)
In the A-9 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the A-9 series, it was determined that acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the raw water amount was 50% 10 L / d and the circulating water amount was 50% 10 L / d. When it was determined that the acid fermentation state was recovered, the raw water amount and the circulating water amount were returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate became 0.54 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of raw water and circulating water was reduced to 50%. The average value of Run2 soluble COD Cr removal rate was 88%. One day after Run 3, the alkaline agent injection rate was 0.81 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered, so the supply of circulating water was resumed. The average value of the soluble COD Cr removal rate was 88%.
According to the method of the present invention, it was possible to ensure a proper load and a proper residence time of the acid fermenter, and to reduce the reflow of difficult-to-ferment components in the treated water, thereby enabling stable treatment.

B−1系列(従来法)
従来法のB−1系列は、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてキシリトールを使用した。
B−1系列では、原水量20L/d、循環水量20L/dの一定条件とし、酸発酵状態の判定は行わなかった。
Run1では、溶解性CODCr除去率の平均値88%で安定した処理が行えていたが、Run2になるとアルカリ剤注入量が減少すると共に、溶解性CODCr除去率の平均値は28%に低下した。
Run3においても、溶解性CODCr除去率は改善せず、溶解性CODCr除去率の平均値は5%と著しく低かった。
B-1 series (conventional method)
The B-1 series of the conventional method was processed with the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Xylitol was used as a difficult-to-ferment component.
In the B-1 series, the raw water amount was 20 L / d and the circulating water amount was 20 L / d, and the acid fermentation state was not determined.
In Run 1, stable treatment could be performed with an average value of 88% of the soluble COD Cr removal rate. However, when Run 2 was reached, the alkaline agent injection amount decreased and the average value of the soluble COD Cr removal rate dropped to 28%. did.
Also in Run 3, the soluble COD Cr removal rate did not improve, and the average value of the soluble COD Cr removal rate was extremely low at 5%.

B−2系列(本発明)
本発明のB−2系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてキシリトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。B−2系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水量を50%の10L/dにした。酸発酵状態が回復したと判定された場合、原水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.55kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、原水量を10L/dに減少した。Run2の溶解性CODCr除去率の平均値は85%となった。Run3の1日後にはアルカリ剤注入率が0.89kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は88%となった。
本発明の方法により、難発酵物質流入時に一時的に処理が悪化したものの、従来法B−2系列より、適正な負荷とすることでRun2、Run3での除去溶解性CODCr量は多かった。
B-2 series (present invention)
In the B-2 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Xylitol was used as a difficult-to-ferment component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the B-2 series, it was determined that acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the amount of raw water was 50% of 10 L / d. When it was determined that the acid fermentation state was recovered, the raw water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate was 0.55 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of raw water was reduced to 10 L / d. The average value of the run-off soluble COD Cr removal rate was 85%. One day after Run 3, the alkaline agent injection rate was 0.89 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered. The average value of the soluble COD Cr removal rate was 88%.
Although the treatment temporarily deteriorated when the difficult-to-ferment substance flowed in by the method of the present invention, the amount of removed soluble COD Cr in Run 2 and Run 3 was larger than in the conventional method B-2 series by setting an appropriate load.

C−1系列(従来法)
従来法のC−1系列は、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてデンプンを使用した。
C−1系列では、原水量20L/d、循環水量20L/dの一定条件とし、酸発酵状態の判定は行わなかった。
Run1では、溶解性CODCr除去率の平均値88%で安定した処理が行えていたが、Run2になるとアルカリ剤注入量が減少すると共に、溶解性CODCr除去率の平均値は42%に低下した。
Run3においても、溶解性CODCr除去率は改善せず、溶解性CODCr除去率の平均値は30%と低かった。
C-1 series (conventional method)
The C-1 series of the conventional method was processed with the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Starch was used as a hardly fermentable component.
In the C-1 series, the raw water amount was 20 L / d and the circulating water amount was 20 L / d, and the acid fermentation state was not determined.
In Run 1, stable treatment was performed with an average value of 88% soluble COD Cr removal rate. However, when Run 2 was reached, the amount of alkali agent injected decreased and the average value of soluble COD Cr removal rate dropped to 42%. did.
Also in Run 3, the soluble COD Cr removal rate did not improve, and the average value of the soluble COD Cr removal rate was as low as 30%.

C−2系列(本発明)
本発明のC−2系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水として酸発酵槽に戻した。難発酵成分としてデンプンを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOC、循環水量、循環水のアルカリ度を測定し、TOC負荷あたりのアルカリ剤注入率を式(2)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。C−2系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水量を50%の10L/dにした。酸発酵状態が回復したと判定された場合、原水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.58kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、原水量を10L/dに減少した。Run2の溶解性CODCr除去率の平均値は88%となった。Run3の1日後には、アルカリ剤注入率が0.93kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は88%となった。
本発明の方法により、従来法C−1系列より、適正な負荷とすることでRun2、Run3での除去溶解性CODCr量は多かった。
C-2 series (present invention)
In the C-2 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the acid fermentation tank as circulating water. Starch was used as a hardly fermentable component.
The alkali agent injection amount, the raw water amount, the raw water TOC, the circulating water amount, and the alkalinity of the circulating water in the acid fermenter were measured, and the alkali agent injection rate per TOC load was calculated by the formula (2). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the C-2 series, it was determined that the acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the amount of raw water was 50% of 10 L / d. When it was determined that the acid fermentation state was recovered, the raw water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate was 0.58 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of raw water was reduced to 10 L / d. The average value of Run2 soluble COD Cr removal rate was 88%. One day after Run 3, the alkaline agent injection rate was 0.93 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered. The average value of the soluble COD Cr removal rate was 88%.
By the method of the present invention, the amount of removed soluble COD Cr in Run 2 and Run 3 was higher than in the conventional method C-1 series by setting the load appropriately.

D−1系列(従来法)
従来法のD−1系列では、図1に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の循環は行わなかった。難発酵成分としてマルチトールを使用した。
D−1系列では、原水量20L/dの一定条件とし、酸発酵状態の判定は行わなかった。
Run1では、溶解性CODCr除去率の平均値88%で安定した処理が行えていたが、Run2になるとアルカリ剤注入量が減少すると共に、溶解性CODCr除去率の平均値は69%に低下した。
Run3の溶解性CODCr除去率の平均値は83%であった。
D-1 series (conventional method)
In the conventional method D-1 series, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. The UASB treated water was not circulated. Maltitol was used as a difficult-to-ferment component.
In D-1 series, it was set as the fixed conditions of the raw water amount 20L / d, and the acid fermentation state was not determined.
In Run 1, stable treatment was possible with an average value of 88% soluble COD Cr removal rate, but with Run 2, the amount of alkali agent injected decreased and the average value of soluble COD Cr removal rate dropped to 69%. did.
The average removal rate of the soluble CODCr of Run3 was 83%.

D−2系列(本発明)
本発明のD−2系列では、図1に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の循環は行わなかった。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOCを測定し、TOC負荷あたりのアルカリ剤注入率を式(1)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。D−2系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、原水量を75%の15L/dにした。酸発酵状態が回復したと判定された場合、原水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.49kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、循環水量を15L/dに減少した。Run2の溶解性CODCr除去率の平均値は88%となった。Run3の1日後には、アルカリ剤注入率が0.81kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、元の水量に戻した。溶解性CODCr除去率の平均値は88%となった。
本発明の方法により、D−1系列と比べて適正な負荷とすることでことで安定した処理が可能であった。D−1系列、D−2系列では、循環がないため酸発酵槽の滞留時間が長く、A−8系列の酸発酵不良時の運転に相当するため、処理性能の低下は少なかったが、A−8系列と比べてアルカリ剤注入量が多くなった。
D-2 series (present invention)
In the D-2 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. The UASB treated water was not circulated. Maltitol was used as a difficult-to-ferment component.
The alkaline agent injection amount, raw water amount, and raw water TOC in the acid fermenter were measured, and the alkaline agent injection rate per TOC load was calculated by equation (1). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In the D-2 series, it was determined that the acid fermentation was poor when it decreased below this control setting.
When it was determined that the acid fermentation state was poor, the raw water amount was 75% of 15 L / d. When it was determined that the acid fermentation state was recovered, the raw water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate became 0.49 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of circulating water was reduced to 15 L / d. The average value of Run2 soluble COD Cr removal rate was 88%. One day after Run 3, the alkaline agent injection rate was 0.81 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered. The average value of the soluble COD Cr removal rate was 88%.
By the method of the present invention, stable processing was possible by setting the load appropriately as compared with the D-1 series. In the D-1 series and D-2 series, since there is no circulation, the residence time of the acid fermenter is long, and it corresponds to the operation at the time of poor acid fermentation of the A-8 series. Compared with the -8 series, the amount of alkali agent injected was increased.

E−1系列(従来法)
従来法のE−1系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水としてUASB流入部に戻した。難発酵成分としてマルチトールを使用した。
E−1系列では、原水量20L/d、循環水量20L/dの一定条件とし、酸発酵状態の判定は行わなかった。
Run1では、溶解性CODCr除去率の平均値88%で安定した処理が行えていたが、Run2になるとアルカリ剤注入量が減少すると共に、溶解性CODCr除去率の平均値は58%に低下した。
Run3の溶解性CODCr除去率の平均値は70%であった。
E-1 series (conventional method)
In the E-1 series of the conventional method, it processed with the two-phase type anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the UASB inflow part as circulating water. Maltitol was used as a difficult-to-ferment component.
In the E-1 series, the raw water amount was 20 L / d and the circulating water amount was 20 L / d, and the acid fermentation state was not determined.
In Run 1, stable treatment could be performed with an average value of 88% soluble COD Cr removal rate, but with Run 2, the amount of alkali agent injected decreased and the average value of soluble COD Cr removal rate decreased to 58%. did.
The average value of Run3 soluble COD Cr removal rate was 70%.

・E−2系列(本発明)
本発明のE−2系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水としてUASB流入部に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOCを測定し、TOC負荷あたりのアルカリ剤注入率を式(1)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。E−2系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、循環水量を50%の10L/dにした。酸発酵状態が回復したと判定された場合、循環水量を元の水量に戻した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.49kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、循環水量を10L/dに減少した。Run2の溶解性CODCr除去率の平均値は66%となった。Run3の1日後には、アルカリ剤注入率が0.69kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、循環水量を元に戻した。溶解性CODCr除去率の平均値は86%となった。
本発明の方法により、適正な酸発酵槽の滞留時間を確保し、処理水中の難発酵成分の再流入を低減することで安定した処理が可能であった。
E-2 series (present invention)
In the E-2 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the UASB inflow part as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkaline agent injection amount, raw water amount, and raw water TOC in the acid fermenter were measured, and the alkaline agent injection rate per TOC load was calculated by equation (1). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In E-2 series, when it decreased to less than this control setting, it determined with acid fermentation failure.
When it was determined that the acid fermentation state was poor, the amount of circulating water was 50%, 10 L / d. When it was determined that the acid fermentation state was recovered, the circulating water amount was returned to the original water amount.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate became 0.49 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The amount of circulating water was reduced to 10 L / d. The average value of the soluble COD Cr removal rate of Run2 was 66%. One day after Run 3, the alkaline agent injection rate was 0.69 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered, so the amount of circulating water was restored. The average value of the soluble COD Cr removal rate was 86%.
By the method of the present invention, a stable treatment was possible by securing a proper residence time of the acid fermenter and reducing reflow of difficult-to-ferment components in the treated water.

E−3系列(本発明)
本発明のE−3系列では、図2に示す二相式嫌気性排水処理装置にて処理を行った。UASB処理水の一部は循環水としてUASB流入部に戻した。難発酵成分としてマルチトールを使用した。
酸発酵槽でのアルカリ剤注入量、原水量、原水TOCを測定し、TOC負荷あたりのアルカリ剤注入率を式(1)により算出した。酸発酵不良と判定するTOC負荷あたりのアルカリ剤注入率の制御設定値を0.6kg−Mアルカリ度/kg−TOCとした。E−3系列では、本制御設定未満に減少した場合に酸発酵不良と判定した。
酸発酵状態が不良と判定された場合、循環水の供給を停止した。酸発酵状態が回復したと判定された場合、循環水の供給を再開した。
Run1では、平均CODCr除去率88%で安定した処理が行えていたが、Run2の1日後、アルカリ剤注入率が0.49kg−Mアルカリ度/kg−TOCとなり酸発酵不良と判定されたため、循環水の供給を停止した。Run2の溶解性CODCr除去率の平均値は77%となった。Run3の1日後には、アルカリ剤注入率が0.69kg−Mアルカリ度/kg−TOCとなり酸発酵状態は回復したと判定されたため、循環水の供給を再開した。溶解性CODCr除去率の平均値は87%となった。
本発明の方法により、適正な酸発酵槽の滞留時間を確保し、処理水中の難発酵成分の再流入を低減することで安定した処理が可能であった。
E-3 series (present invention)
In the E-3 series of the present invention, the treatment was performed by the two-phase anaerobic waste water treatment apparatus shown in FIG. A part of the UASB treated water was returned to the UASB inflow part as circulating water. Maltitol was used as a difficult-to-ferment component.
The alkaline agent injection amount, raw water amount, and raw water TOC in the acid fermenter were measured, and the alkaline agent injection rate per TOC load was calculated by equation (1). The control set value of the alkali agent injection rate per TOC load determined to be acid fermentation failure was 0.6 kg-M alkalinity / kg-TOC. In E-3 series, when it decreased to less than this control setting, it determined with acid fermentation failure.
When it was determined that the acid fermentation state was poor, the supply of circulating water was stopped. When it was determined that the acid fermentation state was recovered, the supply of circulating water was resumed.
In Run 1, stable treatment could be performed with an average COD Cr removal rate of 88%, but one day after Run 2, the alkaline agent injection rate became 0.49 kg-M alkalinity / kg-TOC, and it was determined that acid fermentation was poor. The supply of circulating water was stopped. The average value of Run2 soluble COD Cr removal rate was 77%. One day after Run 3, the alkaline agent injection rate was 0.69 kg-M alkalinity / kg-TOC, and it was determined that the acid fermentation state had recovered, so the supply of circulating water was resumed. The average value of the soluble COD Cr removal rate was 87%.
By the method of the present invention, a stable treatment was possible by securing a proper residence time of the acid fermenter and reducing reflow of difficult-to-ferment components in the treated water.

本発明の嫌気性処理方法の一例を示すフロー構成図。The flow block diagram which shows an example of the anaerobic processing method of this invention. 本発明の嫌気性処理方法の他の例を示すフロー構成図。The flow block diagram which shows the other example of the anaerobic processing method of this invention. 公知の嫌気性処理方法の一例を示すフロー構成図。The flow block diagram which shows an example of a well-known anaerobic processing method. 本発明の嫌気性処理方法の制御フロー図。The control flow figure of the anaerobic processing method of this invention. 実施例のA−1系列(従来例)、実施例のA−2系列(従来例)、実施例のA−3系列(従来例)、実施例のA−5系列(本発明)、実施例のA−8系列(本発明)、の処理結果の経時変化を示すグラフ。Example A-1 series (conventional example), Example A-2 series (conventional example), Example A-3 series (conventional example), Example A-5 series (present invention), Example The graph which shows a time-dependent change of the processing result of A-8 series (this invention).

1:原水ポンプ、2:酸発酵槽、3、8、12:流量計、4、13:流量調節弁、5:pH計、6:アルカリ剤、7:アルカリ剤添加ポンプ、9:メタン発酵槽流入ポンプ、10:メタン発酵槽、11:循環ポンプ、14:有機物濃度計、15:制御装置、16:アルカリ度計、17:ガス流量計、18:メタンガス濃度計   1: Raw water pump, 2: Acid fermenter, 3, 8, 12: Flow meter, 4, 13: Flow control valve, 5: pH meter, 6: Alkaline agent, 7: Alkaline agent addition pump, 9: Methane fermenter Inflow pump, 10: methane fermenter, 11: circulation pump, 14: organic substance concentration meter, 15: control device, 16: alkalinity meter, 17: gas flow meter, 18: methane gas concentration meter

Claims (8)

有機性廃水を、アルカリ剤を用いてpH値を制御しながら酸発酵工程とメタン発酵工程を順次通して処理する二相式の嫌気性処理方法において、前記酸発酵工程でpH値を制御するために添加するアルカリ剤の注入量が、該酸発酵工程へ流入する流入水の有機物負荷量より求めたアルカリ剤注入率の設定値以下になったときに、該酸発酵工程へ流入する前記廃水の流入量を減少又は停止することを特徴とする有機性廃水の嫌気性処理方法。   In a two-phase anaerobic treatment method in which organic wastewater is processed through an acid fermentation process and a methane fermentation process in order while controlling the pH value using an alkaline agent, in order to control the pH value in the acid fermentation process When the injection amount of the alkaline agent added to the acid fermented water is equal to or less than the set value of the alkaline agent injection rate obtained from the organic load amount of the inflow water flowing into the acid fermentation step, the waste water flowing into the acid fermentation step An anaerobic treatment method for organic wastewater, characterized in that the inflow is reduced or stopped. 前記pH値の制御は、酸発酵工程のpHが5.0〜6.5、メタン発酵工程のpHが6.5〜8.5になるように行うことを特徴とする請求項1記載の嫌気性処理方法。   2. The anaerobic treatment according to claim 1, wherein the pH value is controlled such that the pH in the acid fermentation process is 5.0 to 6.5 and the pH in the methane fermentation process is 6.5 to 8.5. Sex processing method. 前記有機物負荷量は、流入水中の有機物濃度と流入水の流入量から算出することを特徴とする請求項1又は2記載の嫌気性処理方法。   The anaerobic treatment method according to claim 1, wherein the organic load amount is calculated from an organic matter concentration in the inflow water and an inflow amount of the inflow water. 前記メタン発酵工程では、流出水の一部を前記酸発酵工程及び/又は該メタン発酵工程に循環することを特徴とする請求項1、2又は3記載の嫌気性処理方法。   The anaerobic treatment method according to claim 1, 2 or 3, wherein in the methane fermentation step, part of the effluent is circulated to the acid fermentation step and / or the methane fermentation step. 前記メタン発酵工程からの流出水を酸発酵工程及び/又はメタン発酵工程に循環する循環水は、前記酸発酵工程で、pH値を制御するために添加するアルカリ剤の注入量が、流入水の有機物負荷量より求めたアルカリ剤注入率の設定値以下になったときに、減少又は停止することを特徴とする請求項4記載の嫌気性処理方法。   The circulating water that circulates the effluent from the methane fermentation process to the acid fermentation process and / or the methane fermentation process is such that the injection amount of the alkaline agent added to control the pH value in the acid fermentation process is The anaerobic treatment method according to claim 4, wherein the anaerobic treatment method decreases or stops when the alkaline agent injection rate obtained from the organic substance loading amount is equal to or less than a set value. 有機性廃水を酸発酵する酸発酵槽と、該酸発酵槽からの流出水をメタン発酵するメタン発酵槽と、酸発酵槽中のpH値を検出する手段と、検出したpH値に基づいて注入するアルカリ剤の注入量を検出する手段とを備えた二相式の嫌気性処理装置において、前記有機性廃水が酸発酵槽へ流入する流入量を検出して制御する流量制御手段と、該廃水の有機物濃度検出手段とを備え、前記アルカリ剤の注入量と、前記廃水の酸発酵槽へ流入する流入量と有機物濃度から算出された有機物負荷量から求めたアルカリ剤注入率の設定値とに基づいて、前記酸発酵槽へ流入する前記廃水の流入量を制御する機構を備えたことを特徴とする有機性廃水の嫌気性処理装置。   Acid fermentation tank for acid fermentation of organic wastewater, methane fermentation tank for methane fermentation of effluent from the acid fermentation tank, means for detecting the pH value in the acid fermentation tank, and injection based on the detected pH value A two-phase type anaerobic treatment apparatus comprising a means for detecting an injection amount of the alkaline agent, and a flow rate control means for detecting and controlling an inflow amount of the organic wastewater flowing into the acid fermentation tank, and the wastewater Organic substance concentration detection means, and the injection amount of the alkaline agent, the inflow amount flowing into the acid fermentation tank of the waste water, and the set value of the alkaline agent injection rate obtained from the organic substance load calculated from the organic substance concentration Based on the anaerobic treatment apparatus for organic wastewater, comprising a mechanism for controlling the inflow amount of the wastewater flowing into the acid fermentation tank. 前記メタン発酵槽は、流出水の一部を前記酸発酵槽及び/又は該メタン発酵槽に循環する経路を有することを特徴とする請求項6記載の嫌気性処理装置。   The anaerobic treatment apparatus according to claim 6, wherein the methane fermentation tank has a path for circulating a part of the effluent water to the acid fermentation tank and / or the methane fermentation tank. 前記メタン発酵槽の流出水を循環する経路には、該流出水の循環量を制御する流量制御手段を有し、前記アルカリ剤の注入量と、前記有機物負荷量から求めたアルカリ剤注入率の設定値に基づいて、循環水の循環量を制御する機構を備えたことを特徴とする請求項7記載の嫌気性処理装置。
The path for circulating the effluent of the methane fermenter has a flow rate control means for controlling the circulation amount of the effluent, and the alkaline agent injection rate determined from the injection amount of the alkaline agent and the organic substance load amount. The anaerobic treatment apparatus according to claim 7, further comprising a mechanism for controlling a circulation amount of the circulating water based on the set value.
JP2009269687A 2009-11-27 2009-11-27 Anaerobic treatment method and apparatus Active JP4920074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009269687A JP4920074B2 (en) 2009-11-27 2009-11-27 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269687A JP4920074B2 (en) 2009-11-27 2009-11-27 Anaerobic treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2011110507A true JP2011110507A (en) 2011-06-09
JP4920074B2 JP4920074B2 (en) 2012-04-18

Family

ID=44233278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269687A Active JP4920074B2 (en) 2009-11-27 2009-11-27 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4920074B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398746A (en) * 2013-08-20 2013-11-20 黑龙江省科学院科技孵化中心 Method for monitoring high-temperature anerobic fermentation operation parameters through using wireless real-time monitoring system of high-temperature anerobic fermentation operation parameters
JP2015171677A (en) * 2014-03-11 2015-10-01 住友重機械エンバイロメント株式会社 Water treatment method and water treatment device
JP2018164890A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Water treatment apparatus
JP2018167177A (en) * 2017-03-29 2018-11-01 大阪瓦斯株式会社 Wastewater treatment method and wastewater treatment apparatus
CN112591936A (en) * 2020-12-15 2021-04-02 徐州市国栋生化装备有限公司 Industrial wastewater purification treatment system and purification method capable of automatically adjusting pH value

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425104B1 (en) 2012-07-27 2014-07-31 민예지 System for producing biogas using substitution reaction in pretreatment process of anaerobic fermentation to improve biogas production from organic wastes, production method thereof and biogas produced by the method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115896A (en) * 1991-10-25 1993-05-14 Toshiba Corp Control system for anaerobic bioreactor
JPH10235391A (en) * 1997-02-25 1998-09-08 Kurita Water Ind Ltd Two-phase anaerobic wastewater treatment apparatus
JP2000167587A (en) * 1998-12-02 2000-06-20 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for anaerobic biological treatment of organic solid-containing waste water
JP2001137887A (en) * 1999-11-10 2001-05-22 Hitachi Plant Eng & Constr Co Ltd Anaerobic biological treating method
JP2003290789A (en) * 2002-03-29 2003-10-14 Sumitomo Heavy Ind Ltd Anaerobic treatment equipment and its monitoring method
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115896A (en) * 1991-10-25 1993-05-14 Toshiba Corp Control system for anaerobic bioreactor
JPH10235391A (en) * 1997-02-25 1998-09-08 Kurita Water Ind Ltd Two-phase anaerobic wastewater treatment apparatus
JP2000167587A (en) * 1998-12-02 2000-06-20 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for anaerobic biological treatment of organic solid-containing waste water
JP2001137887A (en) * 1999-11-10 2001-05-22 Hitachi Plant Eng & Constr Co Ltd Anaerobic biological treating method
JP2003290789A (en) * 2002-03-29 2003-10-14 Sumitomo Heavy Ind Ltd Anaerobic treatment equipment and its monitoring method
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398746A (en) * 2013-08-20 2013-11-20 黑龙江省科学院科技孵化中心 Method for monitoring high-temperature anerobic fermentation operation parameters through using wireless real-time monitoring system of high-temperature anerobic fermentation operation parameters
CN103398746B (en) * 2013-08-20 2015-06-17 黑龙江省科学院科技孵化中心 Method for monitoring high-temperature anerobic fermentation operation parameters through using wireless real-time monitoring system of high-temperature anerobic fermentation operation parameters
JP2015171677A (en) * 2014-03-11 2015-10-01 住友重機械エンバイロメント株式会社 Water treatment method and water treatment device
JP2018164890A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Water treatment apparatus
JP7215821B2 (en) 2017-03-28 2023-01-31 住友重機械エンバイロメント株式会社 water treatment equipment
JP2018167177A (en) * 2017-03-29 2018-11-01 大阪瓦斯株式会社 Wastewater treatment method and wastewater treatment apparatus
CN112591936A (en) * 2020-12-15 2021-04-02 徐州市国栋生化装备有限公司 Industrial wastewater purification treatment system and purification method capable of automatically adjusting pH value

Also Published As

Publication number Publication date
JP4920074B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4920074B2 (en) Anaerobic treatment method and apparatus
EP2323954B1 (en) Methods for processing organic waste
Aboudi et al. Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: effect of the organic loading rate (OLR) on process performance
EP1910233A1 (en) Method and arrangement for processing nitrogen-concentrated effluents in a sequential fractionated cycle biological reactor
JP5148550B2 (en) Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water
JP2008253870A (en) Methane fermentation control system
JP2009219960A (en) Methane fermentation process
Zupančič et al. Biogas production from brewer’s yeast using an anaerobic sequencing batch reactor
JP2008155072A (en) Anaerobic treatment apparatus and method
Esparza Soto et al. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: A pilot-scale experience
JP5930805B2 (en) Anaerobic wastewater treatment method and apparatus for organic wastewater
JP5092840B2 (en) Biological denitrification equipment
JP4844608B2 (en) Methane fermentation equipment
JP4893647B2 (en) Method and apparatus for treating water containing organic matter
JP3906509B2 (en) Two-phase anaerobic wastewater treatment equipment
Luo et al. Enhancement of anaerobic digestion to treat saline sludge from recirculating aquaculture systems
JP2005329377A (en) Anaerobic treatment apparatus and method for anaerobically treating organic waste water
JP5759839B2 (en) Anaerobic treatment equipment for organic wastewater
Del Pozo et al. Start-up of a pilot-scale anaerobic fixed film reactor at low temperature treating slaughterhouse wastewater
JP3134493B2 (en) High-temperature anaerobic treatment of organic wastewater
Maes et al. Co-digestion of glycerine and sewage sludge to optimise green electricity production
Sulaiman et al. Co-digestion of palm oil mill effluent and refined glycerin wash water for chemical oxygen demand removal and methane production
JPH10277583A (en) Control of methane fermentation
Huang et al. Comparative study of high-temperature anaerobic digestion of municipal sludge under acid/alkali and low-temperature hydrothermal synergistic pretreatment
CN110398160B (en) Method for treating SCAL indirect air-cooling circulating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4920074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250