JP5148550B2 - Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water - Google Patents

Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water Download PDF

Info

Publication number
JP5148550B2
JP5148550B2 JP2009101574A JP2009101574A JP5148550B2 JP 5148550 B2 JP5148550 B2 JP 5148550B2 JP 2009101574 A JP2009101574 A JP 2009101574A JP 2009101574 A JP2009101574 A JP 2009101574A JP 5148550 B2 JP5148550 B2 JP 5148550B2
Authority
JP
Japan
Prior art keywords
concentration
anaerobic treatment
water
series
uasb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009101574A
Other languages
Japanese (ja)
Other versions
JP2010247115A (en
Inventor
康弘 本間
一将 蒲池
厚史 小林
健一 石田
順一 實重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2009101574A priority Critical patent/JP5148550B2/en
Publication of JP2010247115A publication Critical patent/JP2010247115A/en
Application granted granted Critical
Publication of JP5148550B2 publication Critical patent/JP5148550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、各種工場等より排出される有機性の廃水又は有機性の廃棄物等を対象とし、これを無害化する嫌気性処理方法及び装置に関し、更に詳しくは、メタン発酵処理水の一部を蒸発操作により濃縮分離する工程を有する嫌気性処理方法及び装置に関する。   The present invention relates to an anaerobic treatment method and apparatus for detoxifying organic waste water or organic waste discharged from various factories, and more specifically, a part of methane fermentation treated water. The present invention relates to an anaerobic treatment method and apparatus having a step of concentrating and separating the liquid by evaporation operation.

有機性の廃水あるいは有機性の廃棄物等は、嫌気性処理によって分解処理されることがある。このときの嫌気性処理方法には、嫌気微生物を浮遊状態で保持する嫌気性消化法や、嫌気微生物を固定床充填材の表面に生物膜として保持する嫌気性ろ床法、嫌気微生物を砂や粒状活性炭等の流動性担体表面に保持する嫌気性流動床法、上向流嫌気性汚泥床(以後、UASBとも記す)法が用いられることが多い。UASB法は、近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。例えば、この方法を具体化した装置では、重クロム酸カリウムを酸化剤として測定したCODcr(以後CODと記す)の容積負荷が、10〜15kg/m/dの廃水、廃棄物でも、効率よく運転できるという特徴がある。 Organic wastewater or organic waste may be decomposed by anaerobic treatment. The anaerobic treatment method at this time includes an anaerobic digestion method that retains anaerobic microorganisms in a floating state, an anaerobic filter bed method that retains anaerobic microorganisms as a biofilm on the surface of a fixed bed filler, In many cases, an anaerobic fluidized bed method or an upflow anaerobic sludge bed (hereinafter also referred to as UASB) method that is held on the surface of a fluid carrier such as granular activated carbon is used. The UASB method is a method that has become widespread in recent years. It has the feature that the concentration of methane bacteria in the reactor can be maintained at a high level by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of organic matter in the wastewater is considerably high, it can be treated efficiently. For example, in an apparatus embodying this method, even if the volume load of COD cr (hereinafter referred to as COD) measured using potassium dichromate as an oxidizing agent is 10-15 kg / m 3 / d of waste water and waste, it is efficient. It has the feature that it can drive well.

原水の性状にもよるが、UASB処理水の水質は、処理水BOD、SSで数百mg/L以下であることが多い。この場合には、UASB処理水に対して活性汚泥処理等の好気処理を行わずに、下水道放流することが可能である。
近年の水不足事情もあり、メタン発酵処理水を回収し、再利用する要求が高まっている。特に、排水処理設備が、UASB処理設備等のメタン発酵処理設備のみであり、活性汚泥処理等の好気性処理設備を経ずに、メタン発酵処理水あるいはメタン発酵処理水の固形物を除去後、処理水を直接下水道放流している場合では、このメタン発酵処理水あるいはメタン発酵処理水の固形物を除去後、処理水を回収して再利用することが求められる。また、回収水はその用途から、有機物濃度、SS濃度、塩類濃度の極めて低い回収水が要求される。
Although it depends on the properties of the raw water, the quality of the UASB treated water is often several hundred mg / L or less for the treated water BOD and SS. In this case, it is possible to discharge the sewerage without performing an aerobic treatment such as activated sludge treatment on the UASB treated water.
Due to the recent shortage of water, there is an increasing demand for collecting and reusing methane fermentation treated water. In particular, the wastewater treatment facility is only a methane fermentation treatment facility such as a UASB treatment facility, and after removing solids of methane fermentation treatment water or methane fermentation treatment water without passing through an aerobic treatment facility such as activated sludge treatment, In the case where the treated water is discharged directly into the sewer, it is required to recover and reuse the treated water after removing the solid matter from the methane fermentation treated water or the methane fermentation treated water. Further, the recovered water is required to have an extremely low organic substance concentration, SS concentration, and salt concentration depending on its use.

回収水を再利用する手段としては膜分離法があるが、以下の理由により、メタン発酵処理水を回収し、有機物濃度、SS濃度、塩類濃度の極めて低い回収水を再利用するケースには適さない。
除濁膜(MF膜、UF膜)ではSSの低減は可能であるが、イオンや溶解性有機物は透過するため、低有機物濃度、低塩類濃度の回収水は得られない。
脱塩膜(NF膜、RO膜)では、低有機物濃度、低SS濃度、低塩類濃度の回収水を得ることは可能であるが、脱塩膜への供給水のSS、有機物濃度を低減する前処理装置が必要である。特に、有機物濃度はTOCで5mg/L以下まで低減する必要があるため、過大な有機物除去用の前処理設備が必要となる。
特開平11−207384号公報 須藤隆一ら,固定化微生物法による排水処理「7章スラッジブランケット(UASB)法」,産業用水調査会,1988年初版
There is a membrane separation method as a means of reusing the recovered water, but it is suitable for the case of recovering methane fermentation treated water and reusing the recovered water with extremely low organic matter concentration, SS concentration, and salt concentration for the following reasons. Absent.
SS can be reduced in a turbidity membrane (MF membrane, UF membrane), but since ions and soluble organic matter permeate, recovered water with low organic matter concentration and low salt concentration cannot be obtained.
With desalination membranes (NF membrane, RO membrane), it is possible to obtain recovered water with low organic matter concentration, low SS concentration, and low salt concentration, but reduce SS and organic matter concentration of water supplied to desalination membrane. A pre-processing device is required. In particular, since it is necessary to reduce the organic substance concentration to 5 mg / L or less by TOC, an excessive pretreatment facility for removing organic substances is required.
JP-A-11-207384 Ryuichi Sudo et al., Wastewater Treatment by Immobilized Microbial Method “Chapter 7 Sludge Blanket (UASB) Method”, Industrial Water Research Committee, 1988 First Edition

本発明は、上記従来技術に鑑み、蒸発濃縮手段を用いることでメタン発酵処理水から有機物濃度、SS濃度、塩類濃度の極めて低い回収水を得ることができ、その際に発生する、通常、処理処分が困難な濃縮液を有効利用することで、メタン発酵処理工程の処理の安定化と薬品添加コストの低減を可能とする嫌気性処理方法と装置を提供することを課題とする。   In view of the above-mentioned conventional technology, the present invention can obtain recovered water with extremely low organic matter concentration, SS concentration, and salt concentration from methane fermentation treated water by using evaporative concentration means. It is an object of the present invention to provide an anaerobic treatment method and apparatus that makes it possible to stabilize the treatment of the methane fermentation treatment step and reduce the cost of chemical addition by effectively using the concentrated solution that is difficult to dispose of.

上記課題を解決するために、本発明では、有機性廃水又は有機性廃棄物を嫌気性微生物を用いて嫌気性処理する方法において、前記嫌気性処理後のメタン発酵処理水の一部を、蒸発操作により濃縮液のpHが9.5以下になるように濃縮分離し、得られる濃縮液を前記嫌気性処理工程へ返送すると共に、得られる凝縮水は再利用することを特徴とする嫌気性処理方法としたものである。
また、本発明では、有機性廃水又は有機性廃棄物を嫌気性微生物を用いて嫌気性処理する方法において、前記嫌気性処理後のメタン発酵処理水の一部を、蒸発操作により濃縮分離し、得られる濃縮液を前記嫌気性処理工程へ返送し、得られる凝縮水は再利用すると共に、前記嫌気性処理工程中の塩類濃度及び/又は流入する原水の塩類濃度を測定し、蒸発操作により濃縮分離するメタン発酵処理水の流量及び蒸発濃縮する濃縮倍率を制御することを特徴とする嫌気性処理方法としたものである。
前記嫌気性処理方法において、嫌気性処理は、処理工程中の塩類濃度を3%以下に制御して行うのがよく、また、前記嫌気性処理は、流入する原水の塩類濃度及び/又は処理工程中の塩類濃度の測定に電気伝導度計を用いることができる。
In order to solve the above problems, in the present invention, in a method for anaerobically treating organic wastewater or organic waste using anaerobic microorganisms, a part of the methane fermentation treated water after the anaerobic treatment is evaporated. The anaerobic treatment is characterized in that the concentrated solution is concentrated and separated so as to have a pH of 9.5 or less by operation, and the resulting concentrated solution is returned to the anaerobic treatment step, and the obtained condensed water is reused. It is a method.
Further, in the present invention, in the method of anaerobic treatment of organic wastewater or organic waste using anaerobic microorganisms, a part of the methane fermentation treated water after the anaerobic treatment is concentrated and separated by an evaporation operation, The obtained concentrated liquid is returned to the anaerobic treatment step, and the condensed water obtained is reused, and the salt concentration in the anaerobic treatment step and / or the salt concentration of the incoming raw water is measured and concentrated by evaporation operation. This is an anaerobic treatment method characterized by controlling the flow rate of methane fermentation treated water to be separated and the concentration ratio for evaporation and concentration.
In the anaerobic treatment method, the anaerobic treatment is preferably performed by controlling the salt concentration in the treatment step to 3% or less, and the anaerobic treatment is performed by the salt concentration and / or the treatment step of the raw water flowing in. An electric conductivity meter can be used to measure the salt concentration therein.

また、本発明では、有機性廃水又は有機性廃棄物を嫌気性微生物を用いて嫌気性処理する方法において、前記嫌気性処理後のメタン発酵処理水の一部を、蒸発操作により濃縮分離し、得られる濃縮液を前記嫌気性処理工程へ返送し、得られる凝縮水は再利用すると共に、前記嫌気性処理工程中の陽イオン濃度を測定し、蒸発操作により濃縮分離するメタン発酵処理水の流量及び蒸発濃縮する濃縮倍率を制御することを特徴とする嫌気性処理方法としたものである。
前記嫌気性処理方法は、嫌気性処理を、メタン菌の活性促進作用のある微量元素を添加して行うのがよく、また、前記嫌気性処理が、酸発酵工程及びメタン発酵工程からなる二相式嫌気性処理であり、蒸発操作により濃縮分離して得られた濃縮液を酸発酵工程へ流入することができる。
Further, in the present invention, in the method of anaerobic treatment of organic wastewater or organic waste using anaerobic microorganisms, a part of the methane fermentation treated water after the anaerobic treatment is concentrated and separated by an evaporation operation, The obtained concentrated liquid is returned to the anaerobic treatment step, the condensed water obtained is reused, the cation concentration in the anaerobic treatment step is measured, and the methane fermentation treated water is concentrated and separated by an evaporation operation. And an anaerobic treatment method characterized by controlling the concentration ratio for evaporation and concentration.
In each of the anaerobic treatment methods, the anaerobic treatment may be performed by adding a trace element having an activity promoting action of methane bacteria, and each of the anaerobic treatments includes an acid fermentation process and a methane fermentation process. This is a two-phase anaerobic treatment, and a concentrated solution obtained by concentration and separation by an evaporation operation can be introduced into the acid fermentation process.

また、本発明は、有機性廃水又は有機性廃棄物を嫌気性処理するメタン発酵装置と、該メタン発酵装置からの流出水の一部を濃縮分離する蒸発装置とを備え、該蒸発装置で得られる濃縮液を、前記メタン発酵装置又は該メタン発酵装置の上流側に流入させる供給管を有し、濃縮液のpHを9.5以下に設定する手段、又は、前記嫌気性処理工程中の塩類濃度及び/又は流入する原水の塩類濃度又は前記嫌気性処理工程中の陽イオン濃度を測定し、前記蒸発装置で、蒸発濃縮する濃縮倍率を制御する手段を備えたことを特徴とする嫌気性処理装置としたものである。
さらに、本発明は、有機性廃水又は有機性廃棄物を二相式嫌気性処理する酸発酵装置及びメタン発酵装置と、該メタン発酵装置からの流出水の一部を濃縮分離する蒸発装置とを備え、該蒸発装置で得られる濃縮液を前記酸発酵装置又は酸発酵装置の上流側に流入させる供給管を有し、濃縮液のpHを9.5以下に設定する手段、又は、前記嫌気性処理工程中の塩類濃度及び/又は流入する原水の塩類濃度又は前記嫌気性処理工程中の陽イオン濃度を測定し、前記蒸発装置で、蒸発濃縮する濃縮倍率を制御する手段を備えたことを特徴とする嫌気性処理装置としたものである。
前記嫌気性処理において、メタン発酵装置及び/又は酸発酵装置には、発酵液中の電気伝導率を計測する電気伝導度計を備えることができる。
The present invention also includes a methane fermentation apparatus for anaerobically treating organic wastewater or organic waste, and an evaporation apparatus for concentrating and separating a part of the effluent from the methane fermentation apparatus. the concentrate is, possess the methane fermentation apparatus, or supply pipe to flow into the upstream side of the methane fermentation apparatus, means for setting the pH of the concentrate to below 9.5, or, salts in the anaerobic treatment step Anaerobic treatment characterized in that it comprises means for measuring the concentration and / or salt concentration of incoming raw water or the cation concentration during the anaerobic treatment step, and controlling the concentration rate for evaporation concentration in the evaporator It is a device.
Furthermore, the present invention includes an acid fermentation apparatus and a methane fermentation apparatus that perform two-phase anaerobic treatment of organic wastewater or organic waste, and an evaporation apparatus that concentrates and separates part of the effluent from the methane fermentation apparatus. provided, have a concentrated liquid obtained by evaporation apparatus supply pipe to flow into the upstream side of the acid fermentation apparatus or acid fermentation device, means for setting the pH of the concentrate to below 9.5, or the anaerobic It comprises means for measuring the salt concentration during the treatment step and / or the salt concentration of the incoming raw water or the cation concentration during the anaerobic treatment step, and controlling the concentration ratio for evaporation and concentration in the evaporator. The anaerobic treatment device is as follows.
In the anaerobic treatment, the methane fermentation apparatus and / or the acid fermentation apparatus can be provided with an electrical conductivity meter that measures the electrical conductivity in the fermentation broth.

本発明によれば、メタン発酵処理水の一部を蒸発装置により濃縮分離を行い、得られる有機物濃度、SS濃度、塩類濃度の極めて低い凝縮水を回収して再利用し、これと同時に、メタン菌の活性促進作用のある微量元素が濃縮されて得られる濃縮液を、メタン発酵処理工程に返送することで、メタン発酵処理の安定化とメタン菌の活性促進作用のある微量元素の添加量低減を図り、さらに嫌気性処理が酸発酵工程及びメタン発酵工程からなる二相式嫌気性処理である場合には、アルカリ成分及びメタン菌の活性促進作用のある微量元素が濃縮された濃縮液を、酸発酵工程に返送することで、酸発酵工程に供給するアルカリ剤及びメタン菌の活性促進作用のある微量元素の添加量を低減でき、通常、処理処分が困難な濃縮液の有効利用が図れる。   According to the present invention, a part of methane fermentation treated water is concentrated and separated by an evaporator, and the resulting condensed water with extremely low organic substance concentration, SS concentration and salt concentration is recovered and reused. By returning the concentrated solution obtained by concentrating trace elements that promote fungal activity to the methane fermentation treatment process, stabilization of the methane fermentation treatment and reduction of the amount of trace elements that promote the activity of methane bacteria If the anaerobic treatment is a two-phase anaerobic treatment consisting of an acid fermentation step and a methane fermentation step, a concentrated solution enriched with alkali components and trace elements capable of promoting the activity of methane bacteria, By returning to the acid fermentation process, it is possible to reduce the amount of alkali agents and trace elements that promote the activity of methane bacteria to be supplied to the acid fermentation process, and it is possible to effectively use concentrated liquids that are usually difficult to dispose of.

以下、本発明を詳細に説明する。
図1は、嫌気性処理方法を実施するのに好ましい本発明の蒸発濃縮手段を備えた酸発酵工程とメタン発酵工程からなる二相式嫌気性処理方法の一形態を示すフロー構成図である。
メタン発酵工程としては、嫌気微生物を浮遊状態で保持する嫌気性消化法や、嫌気微生物を固定床充填材の表面に生物膜として保持する嫌気性ろ床法、嫌気微生物を砂や粒状活性炭等の流動性担体表面に保持する嫌気性流動床法、UASB法が用いられることが多いが、ここでは一例としてUASB法について説明する。
Hereinafter, the present invention will be described in detail.
FIG. 1 is a flow configuration diagram showing an embodiment of a two-phase anaerobic treatment method comprising an acid fermentation step and a methane fermentation step provided with an evaporative concentration means of the present invention, which is preferable for carrying out the anaerobic treatment method.
The methane fermentation process includes an anaerobic digestion method that retains anaerobic microorganisms in a floating state, an anaerobic filter bed method that retains anaerobic microorganisms as a biofilm on the surface of a fixed bed filler, sand and granular activated carbon, etc. The anaerobic fluidized bed method and the UASB method which are held on the surface of the fluid carrier are often used. Here, the UASB method will be described as an example.

有機性廃水などを含んだ原水を酸発酵槽へ導入し、酸発酵処理水をUASBへ上向流で導入する。UASBは、嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など、全ての温度範囲の嫌気性処理を対象としている。酸発酵槽からUASBへの送水は、ポンプ圧送による送水でも良いし、酸発酵槽の水位をUASBの水位よりも高くすることによる水頭差による送水でも良い。原水を、UASB処理水の循環液や系外から供給する希釈水等により、必要に応じて適宜希釈を行うことで、UASB内部での通水速度が0.1〜5m/hとなるように調節する。   Raw water containing organic waste water is introduced into the acid fermenter, and acid fermented water is introduced into the UASB in an upward flow. UASB uses granular sludge made of anaerobic bacteria. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. It is intended for sex processing. The water supply from the acid fermenter to the UASB may be a pumped water supply or a water head difference by raising the water level of the acid fermenter higher than the UASB water level. By appropriately diluting the raw water with circulated liquid of UASB treated water or dilution water supplied from outside the system as necessary, the water flow rate inside UASB is 0.1 to 5 m / h. Adjust.

嫌気微生物による処理法は、一般に酸発酵工程とメタン発酵工程に分けられる。酸発酵工程では、有機物の低分子化、有機酸への転換が行われ、メタン発酵では、主に酢酸などの有機酸を基質としてメタンを生成が行われる。酸発酵及びメタン発酵の至適pHの観点から、酸発酵槽内のpHを5〜8、UASB槽内のpHを6.5〜8.5に設定することが多い。酸発酵槽内でもメタン発酵が、メタン発酵槽であるUASB槽内でも酸発酵が起こるが、酸発酵槽及びUASB槽の機能がより効果的に発揮できるように、酸発酵槽のpHを5.5〜6.5に設定する。酸発酵工程では、メタン発酵が起こりにくいpH6.5以下とし、酸発酵処理を積極的に進行させることで、UASB内で良好なメタン発酵処理が行え、効率的な嫌気性処理が達成できることになる。UASBでは、メタン発酵の進行によりアルカリ度を生成し、pHが上昇するため、酸発酵槽のpHを5.5〜6.5に設定することで、UASB槽内のpHは6.5〜8.5に保たれる。   The treatment method using anaerobic microorganisms is generally divided into an acid fermentation process and a methane fermentation process. In the acid fermentation process, organic molecules are reduced in molecular weight and converted into an organic acid, and in methane fermentation, methane is generated mainly using an organic acid such as acetic acid as a substrate. From the viewpoint of the optimum pH for acid fermentation and methane fermentation, the pH in the acid fermentation tank is often set to 5 to 8, and the pH in the UASB tank is often set to 6.5 to 8.5. Although methane fermentation occurs in the acid fermenter and also in the UASB tank, which is a methane fermenter, the pH of the acid fermenter is set to 5. so that the functions of the acid fermenter and UASB tank can be more effectively exhibited. Set to 5-6.5. In the acid fermentation process, methane fermentation is less likely to occur at pH 6.5 or less, and the acid fermentation treatment is actively advanced, so that a good methane fermentation treatment can be performed in UASB, and an efficient anaerobic treatment can be achieved. . In UASB, alkalinity is generated by the progress of methane fermentation, and the pH rises. Therefore, by setting the pH of the acid fermentation tank to 5.5 to 6.5, the pH in the UASB tank is 6.5 to 8 .5.

酸発酵槽とUASBは、各々1槽でもよいし、各々複数槽から構成されても良い。酸発酵槽を複数槽とする場合には、前段の酸発酵槽で、比較的酸発酵及び低分子化が容易な成分の反応が進行し、後段の酸発酵槽で、比較的酸発酵しにくい成分の酸発酵が進行する。
酸発酵槽では、アルカリ度を消費する酸発酵処理が進行するため、アルカリ剤を添加することで、酸発酵槽のpHを維持し、安定した酸発酵処理を行う。アルカリ剤としては、NaOH、Ca(OH)、Mg(OH)等があるが、pH制御の容易さ及び取り扱いの容易さを考慮して、NaOHを用いることが多い。
Each of the acid fermentation tank and UASB may be one tank or may be composed of a plurality of tanks. In the case where a plurality of acid fermenters are used, the reaction of components that are relatively easy to perform acid fermentation and low molecular weight progresses in the acid fermenter in the previous stage, and it is relatively difficult to perform acid fermentation in the acid fermenter in the subsequent stage. Ingredient acid fermentation proceeds.
In the acid fermenter, since the acid fermentation process that consumes alkalinity proceeds, the pH of the acid fermenter is maintained and a stable acid fermentation process is performed by adding an alkaline agent. Examples of the alkali agent include NaOH, Ca (OH) 2 , Mg (OH) 2, etc. NaOH is often used in consideration of ease of pH control and ease of handling.

メタン発酵処理では、活性汚泥処理などの好気性処理と同様に、有機物を分解し、菌体が増殖する上で、栄養剤として窒素、リンが不可欠である。メタン発酵処理における一般的なCOD:窒素:リンの比率は、300〜500:6.7:1である。廃水中に窒素、リンが含まれていない場合、あるいはCODに対して窒素、リンが不足する場合には、栄養剤として尿素やリン酸等を添加し、不足分の窒素、リンを補う必要がある。
メタン菌の増殖・活性を促進する作用のある微量元素としては、N、P、B、S、Ca、Mg、Fe、Co、Ni、Cu、Zn、K、Se、W、Moなどが挙げられる。以下、メタン菌の増殖・活性を促進する作用のある微量元素を、単に微量元素と記すこともある。これらの微量元素を添加することで、メタン菌の活性が高まり、処理の安定化や処理の高効率化が達成できる。微量元素は、溶解性の形態で供給することが好ましい。メタン菌の活性に影響を及ぼす成分は、相乗的に作用することがあるため、これらの微量元素を、複数組み合わせて添加することが効果的である。これらの微量元素の中には、過剰供給するとメタン菌に阻害を及ぼす成分もあるので、微量元素の添加量を適正にする必要がある。
In the methane fermentation treatment, as in the aerobic treatment such as activated sludge treatment, nitrogen and phosphorus are indispensable as nutrients for decomposing organic substances and growing the cells. A common COD: nitrogen: phosphorus ratio in the methane fermentation process is 300-500: 6.7: 1. If the wastewater does not contain nitrogen or phosphorus, or if the nitrogen and phosphorus are deficient relative to the COD, it is necessary to add urea, phosphoric acid, etc. as nutrients to supplement the deficient nitrogen and phosphorus. is there.
Examples of trace elements having an action of promoting the growth and activity of methane bacteria include N, P, B, S, Ca, Mg, Fe, Co, Ni, Cu, Zn, K, Se, W, and Mo. . Hereinafter, a trace element having an action of promoting the growth and activity of methane bacteria may be simply referred to as a trace element. By adding these trace elements, the activity of methane bacteria is increased, and stabilization of processing and high efficiency of processing can be achieved. The trace element is preferably supplied in a soluble form. Since components that affect the activity of methane bacteria may act synergistically, it is effective to add a plurality of these trace elements in combination. Among these trace elements, there is a component that inhibits methane bacteria when supplied in excess, so it is necessary to make the addition amount of trace elements appropriate.

UASB処理水の一部が、蒸発装置へ流入する。UASB処理水を蒸発装置内で蒸発濃縮させ、生成した蒸気を凝縮し、凝縮水として回収再利用し、濃縮液は、酸発酵槽へ流入させる。蒸発装置は、UASB処理水を蒸発濃縮可能であり、凝縮水及び濃縮液の回収が可能な構造であればよく、その型式は問わない。蒸発装置の配列と操作方式も特に問わないが、蒸気圧縮法、多重効用法、多段フラッシュ法、及びこれらを組み合わせた複合法は、エネルギー効率を向上させる方式である。
UASB処理水は、BOD、SSが数百mg/L以下であることが多く、UASB処理水を直接、蒸発装置内で蒸発濃縮することが可能である。原水性状等に起因して、UASB処理水SSが数百mg/L以上となり、SS濃度が蒸発装置内での蒸発濃縮に支障がある場合には、UASB処理水のSSを予め低減、除去してから蒸発装置内へ供給することが好ましい。UASB処理水のSS低減、除去としては、沈降分離、浮上分離、遠心分離等の手法が用いられるが、多くの場合は重力沈降分離で目的の水質が得られることが多い。
A part of the UASB treated water flows into the evaporator. The UASB treated water is evaporated and concentrated in the evaporator, the generated steam is condensed, recovered and reused as condensed water, and the concentrated liquid is allowed to flow into the acid fermentation tank. The evaporation apparatus may be any structure as long as it can evaporate and concentrate UASB treated water and can recover the condensed water and the concentrated liquid. The arrangement and operation method of the evaporator are not particularly limited, but the vapor compression method, the multi-effect method, the multistage flash method, and the combined method combining these are methods for improving energy efficiency.
UASB treated water often has BOD and SS of several hundred mg / L or less, and UASB treated water can be directly evaporated and concentrated in an evaporator. If the UASB treated water SS is several hundred mg / L or more due to the raw water condition, etc., and the SS concentration hinders evaporation and concentration in the evaporator, the UASB treated water SS is reduced and removed in advance. After that, it is preferable to supply it into the evaporator. For reducing or removing SS of UASB treated water, methods such as sedimentation separation, flotation separation, and centrifugal separation are used. In many cases, the desired water quality is often obtained by gravity sedimentation separation.

濃縮液の酸発酵槽への流入位置は、濃縮液を酸発酵槽へ直接流入させてもよく、濃縮液を原水配管へ流入させてもよく、濃縮液を原水と混合させた後、酸発酵槽へ流入させてもよい。
凝縮水は、SS濃度、有機物濃度、塩類濃度が極めて低いため、冷却水や中水道としての利用が可能である。凝縮水中にアンモニウムイオン等が存在し、再利用の妨げとなる場合には、凝縮水にイオン交換処理等の後処理を施すことで再利用が可能となる。
濃縮液には、アルカリ成分及びメタン菌の活性促進作用のある微量元素が濃縮されている。この濃縮液を、酸発酵槽に流入させることで、酸発酵処理時に消費されるアルカリ度や、メタン菌の増殖・活性を促進する作用のある微量元素を補うことができ、酸発酵槽に供給するアルカリ剤及びメタン菌の活性促進作用のある微量元素の添加量を、低減することが可能となる。
The inflow position of the concentrated liquid into the acid fermenter may be such that the concentrated liquid may directly flow into the acid fermenter, the concentrated liquid may flow into the raw water pipe, or after the concentrated liquid is mixed with the raw water, You may make it flow into a tank.
Since condensed water has extremely low SS concentration, organic substance concentration, and salt concentration, it can be used as cooling water or water supply. When ammonium ions or the like are present in the condensed water and hinder reuse, the condensed water can be reused by performing post-treatment such as ion exchange treatment.
The concentrated solution is enriched with alkali components and trace elements having an activity promoting action on methane bacteria. By feeding this concentrate into the acid fermentation tank, it can supplement the alkalinity consumed during the acid fermentation process and trace elements that have the effect of promoting the growth and activity of methane bacteria. It is possible to reduce the amount of the alkali agent to be added and the amount of the trace element having the activity promoting action of methane bacteria.

濃縮液では、アルカリ成分が濃縮しているため、UASB処理水に比べ、pHが上昇する。pH 7のUASB処理水を、蒸発装置内で10倍濃縮した濃縮液のpHは、約8〜9である。前記の微量元素の中には、濃縮液のpHが高くなると硫化物や水酸化物等の固形物を形成し、固定化されるものもある(ここで、固定化とは、溶解性の元素が硫化物等の固形物になることで、微量元素のメタン菌の増殖・活性を促進する作用が、低下することを意味する)。金属硫化物の溶解度積は、水酸化物の溶解度積よりもはるかに小さいので、硫化物形成時に溶解性金属濃度がより低くなる。UASB処理水中には、溶存硫化物が含まれているため、濃縮液のpHが高くなると硫化物を形成しやすい。
そのため、濃縮液をメタン発酵工程に返送する場合には、メタン菌の活性促進作用のある微量元素が、固定化されないように蒸発濃縮装置の濃縮倍率を設定する必要があり、具体的には、濃縮液のpHが9.5以下、好ましくは9.0以下になるように設定する。一方、濃縮液を酸発酵槽に返送する場合では、微量元素が硫化物等で固定化された濃縮液を、pH5.5〜6.5の酸発酵槽へ流入させることで、微量元素は、再び溶解性元素の形態をとり、微量元素のメタン菌の増殖・活性を促進する作用を発揮できる。そのため、濃縮液を酸発酵槽へ流入させることは、メタン発酵処理の安定化や高効率化を実現する上で非常に有効である。
In the concentrate, since the alkali component is concentrated, the pH rises compared to the UASB treated water. The pH of the concentrated solution obtained by concentrating the UASB treated water of pH 7 10 times in the evaporator is about 8-9. Some of the above-mentioned trace elements form solids such as sulfides and hydroxides and become immobilized when the pH of the concentrate increases (here, immobilization is a soluble element) This means that the action of promoting the growth and activity of trace elements of methane bacteria is reduced by becoming a solid such as sulfide. The solubility product of metal sulfide is much smaller than the solubility product of hydroxide, so that the concentration of soluble metal is lower during sulfide formation. Since dissolved sulfide is contained in the UASB-treated water, sulfide is easily formed when the pH of the concentrate is increased.
Therefore, when returning the concentrated liquid to the methane fermentation process, it is necessary to set the concentration factor of the evaporation concentrator so that the trace elements that promote the activity of methane bacteria are not immobilized, specifically, The pH of the concentrated solution is set to 9.5 or less, preferably 9.0 or less. On the other hand, when returning the concentrated solution to the acid fermentation tank, the trace element is obtained by allowing the concentrated element in which the trace element is fixed with sulfide or the like to flow into the acid fermentation tank having a pH of 5.5 to 6.5. It takes the form of a soluble element again and can exert the effect of promoting the growth and activity of trace elements of methane bacteria. Therefore, flowing the concentrated solution into the acid fermenter is very effective in stabilizing the methane fermentation process and increasing the efficiency.

酸発酵槽及びUASBで発生するバイオガスには、カロリーの高いメタン、水素が含まれているので、バイオガス回収して有効利用を図ることが好ましく、また、可燃性ガスに対する保安面からも望ましい。回収したバイオガスをボイラーの燃料として使用し、発生した蒸気を蒸発装置の熱源として利用することもできる。
UASB処理水の一部を蒸発装置に流入させ、濃縮液を酸発酵槽へ返送する場合においても、酸発酵槽及びUASBでの塩類濃度は上昇するため、酸発酵槽及びUASBでの塩類濃度が、メタン菌の阻害にならない範囲になるように、水回収率(原水に対する凝縮水の回収割合)及び蒸発濃縮処理での濃縮倍率を設定する必要がある。メタン菌への阻害が生じないように、酸発酵槽及びUASBでの塩類濃度が3%以下、好ましくは1%以下となるように蒸発濃縮処理での運転条件を設定する。ここで、塩類濃度とは、溶解性蒸発残留物濃度を意味している。
The biogas generated in the acid fermenter and UASB contains methane and hydrogen with high calories, so it is preferable to recover the biogas for effective use, and also from the viewpoint of safety against flammable gases. . The recovered biogas can be used as boiler fuel, and the generated steam can be used as a heat source for the evaporator.
Even when a part of the UASB treated water is flowed into the evaporator and the concentrated liquid is returned to the acid fermenter, the salt concentration in the acid fermenter and UASB increases, so the salt concentration in the acid fermenter and UASB is Therefore, it is necessary to set the water recovery rate (recovery rate of condensed water with respect to the raw water) and the concentration rate in the evaporative concentration treatment so that the range does not hinder methane bacteria. The operating conditions in the evaporative concentration treatment are set so that the salt concentration in the acid fermenter and UASB is 3% or less, preferably 1% or less so that inhibition to methane bacteria does not occur. Here, the salt concentration means a soluble evaporation residue concentration.

原水の塩類濃度が変動する場合においても、メタン菌への阻害が生じないように、酸発酵槽及びUASBでの塩類濃度が3%以下、好ましくは1%以下となるように、蒸発濃縮処理での運転条件を設定する必要がある。主な運転方法としては、以下の方法が挙げられる。
運転方法(1)
原水の塩類濃度が最も高い条件で、処理工程中の塩類濃度が3%以下、好ましくは1%以下となるように、蒸発濃縮処理での水回収率及び濃縮倍率を設定し、原水の塩類濃度が低くなった段階でも、水回収率及び濃縮倍率は変更しない方法。
運転方法(2)
原水又は処理工程中の塩類濃度を測定し、処理工程での塩類濃度が3%以下、好ましくは1%以下となるように、蒸発濃縮処理での水回収率及び濃縮倍率を制御する方法。具体的には、蒸発濃縮装置へのUASB処理水の流入量と蒸発装置での濃縮倍率を制御する方法である。ここで、処理工程中の塩類濃度とは、濃縮液が混合後の液中の塩類濃度であればよく、酸発酵槽内液、酸発酵槽流出水、UASB槽内液、UASB処理水の何れでもよい。
Even when the salt concentration of the raw water fluctuates, evaporative concentration treatment is performed so that the salt concentration in the acid fermenter and UASB is 3% or less, preferably 1% or less so that inhibition of methane bacteria does not occur. It is necessary to set the operating conditions. The main operation methods include the following methods.
Driving method (1)
Establish the water recovery rate and concentration ratio in evaporative concentration treatment so that the salt concentration in the treatment process is 3% or less, preferably 1% or less under the conditions where the salt concentration of the raw water is the highest. A method that does not change the water recovery rate and concentration rate even when the water level becomes low.
Driving method (2)
A method of measuring the concentration of raw water or a salt in a treatment step, and controlling the water recovery rate and concentration ratio in the evaporation concentration treatment so that the salt concentration in the treatment step is 3% or less, preferably 1% or less. Specifically, it is a method of controlling the inflow amount of UASB treated water to the evaporation concentrator and the concentration factor in the evaporator. Here, the salt concentration in the treatment step may be any salt concentration in the solution after the concentrate is mixed, and any of the acid fermenter solution, acid fermenter effluent, UASB solution, and UASB treated water. But you can.

凝縮水の塩類濃度は極めて低く、蒸発装置に流入したUASB処理水中の塩類のほぼ全量が濃縮液側に残り、酸発酵槽に流入するため、原水の塩類濃度を測定して、蒸発装置へのUASB処理水の流入量と蒸発装置の濃縮倍率を設定することで、処理工程中の塩類濃度を3%以下、好ましくは1%以下に制御することは可能である。また、処理工程中の塩類濃度を測定して、メタン発酵処理工程の塩類濃度を3%以下、好ましくは1%以下になるように、適宜、蒸発装置へのUASB処理水の流入量と、蒸発装置の濃縮倍率を制御することも可能である。原水の塩類濃度と処理工程中の塩類濃度の両者を測定し、蒸発装置へのUASB処理水の流入量と、蒸発装置の濃縮倍率を制御することがより好ましい。
運転方法(2)は、原水の塩類濃度の変動に応じて水回収率及び濃縮倍率を制御することが可能となるため、運転方法(1)に比べて、回収水として再利用する凝縮液の回収量が増え、水回収率が向上する方法である。
The salt concentration in the condensed water is extremely low, and almost all of the salt in the UASB treated water that has flowed into the evaporator remains on the concentrate side and flows into the acid fermenter. By setting the inflow amount of UASB treated water and the concentration rate of the evaporator, the salt concentration during the treatment process can be controlled to 3% or less, preferably 1% or less. In addition, the amount of UASB treated water flowing into the evaporation device and evaporation are appropriately measured so that the salt concentration in the treatment step is measured and the salt concentration in the methane fermentation treatment step is 3% or less, preferably 1% or less. It is also possible to control the concentration factor of the apparatus. It is more preferable to measure both the salt concentration of the raw water and the salt concentration during the treatment process, and to control the amount of UASB treated water flowing into the evaporator and the concentration factor of the evaporator.
Since the operation method (2) can control the water recovery rate and the concentration ratio according to fluctuations in the salt concentration of the raw water, compared to the operation method (1), the condensate to be reused as recovered water can be controlled. This is a method of increasing the amount of recovery and improving the water recovery rate.

塩類濃度と電気伝導率には、相関があるため、直接塩類濃度を測定しなくても、電気伝導率を測定することで、塩類濃度の監視が可能である。塩類濃度と電気伝導率の相関は、それぞれの廃水について求めておけばよく、一例として飲料製造廃水を対象とした場合では、塩類濃度0.5%で電気伝導率は800mS/m、塩類濃度1%で電気伝導率は1300mS/m、塩類濃度3%で電気伝導率は3200mS/mである。電気伝導度計により、原水及び/又は処理工程中の電気伝導率を測定することで、処理工程の塩類濃度を3%以下、好ましくは1%以下になるように、適宜、蒸発装置へのUASB処理水の流入量と蒸発装置の濃縮倍率を制御することは可能である。電気伝導度計により、原水及び/又は処理工程中の電気伝導率を連続的に測定する方法は、溶解性蒸発残留物濃度を適宜測定する方法に比べ、応答性が速く、蒸発装置へのUASB処理水の流入量と蒸発装置の濃縮倍率を制御する上で有効である。処理工程中の電気伝導率とは、濃縮液が混合後の液中の電気伝導率であればよく、酸発酵槽内液、酸発酵槽流出水、UASB槽内液、UASB処理水の何れでもよい。   Since there is a correlation between the salt concentration and the electrical conductivity, the salt concentration can be monitored by measuring the electrical conductivity without directly measuring the salt concentration. The correlation between the salt concentration and the electrical conductivity may be obtained for each waste water. For example, when beverage production waste water is targeted, the salt concentration is 0.5%, the electrical conductivity is 800 mS / m, and the salt concentration is 1. %, The electric conductivity is 1300 mS / m, the salt concentration is 3% and the electric conductivity is 3200 mS / m. By measuring the electrical conductivity of raw water and / or treatment process with an electric conductivity meter, the UASB to the evaporator is appropriately adjusted so that the salt concentration in the treatment process is 3% or less, preferably 1% or less. It is possible to control the inflow of treated water and the concentration rate of the evaporator. The method of continuously measuring the raw water and / or the electrical conductivity during the treatment process with an electric conductivity meter is faster in response than the method of appropriately measuring the soluble evaporation residue concentration, and the UASB to the evaporation device This is effective in controlling the inflow of treated water and the concentration rate of the evaporator. The electrical conductivity in the treatment process may be the electrical conductivity in the liquid after the concentrate is mixed, and any of the acid fermenter liquid, acid fermenter effluent water, UASB tank liquid, and UASB treated water Good.

UASB処理水の一部を蒸発装置に流入させ、濃縮液を酸発酵槽へ返送し、処理工程中の塩類濃度を3%以下とした場合でも、メタン発酵処理に阻害を及ぼす成分、特に、陽イオン金属が、高濃度になることでUASB処理が不安定になる可能性がある。また、酸発酵槽ではpHを維持し、安定した酸発酵処理を行う目的で、NaOH等のアルカリ剤を添加するため、原水中の陽イオン濃度が低い場合でも、アルカリ剤の添加により処理工程中の陽イオン濃度は増加する。   Even if a part of the UASB treated water is flowed into the evaporator and the concentrated solution is returned to the acid fermenter and the salt concentration in the treatment step is 3% or less, components that inhibit the methane fermentation treatment, particularly positive The UASB process may become unstable due to the high concentration of ionic metal. In addition, in order to maintain the pH in the acid fermenter and perform a stable acid fermentation treatment, an alkaline agent such as NaOH is added, so even when the cation concentration in the raw water is low, the alkaline agent is added during the treatment process. The cation concentration of increases.

メタン発酵処理に阻害を及ぼす陽イオン金属としては、Na、K、Mg、Caが挙げられる。これらの陽イオン金属は、適度な濃度であればメタン発酵処理を促進させ、良好なメタン発酵処理を達成する一助となるが、高濃度では、メタン発酵処理を阻害する。例えば、Na:8000mg/L以上、K:5000mg/L以上、Mg:2000mg/L以上、Ca:5000mg/L以上では、メタン発酵処理性能が低下する。そのため、処理工程中の陽イオン濃度を測定し、陽イオン濃度がメタン発酵処理に阻害を及ぼさない濃度となるように、蒸発装置へのUASB処理水の流入量と蒸発装置の濃縮倍率を制御することが効果的である。また、酸発酵槽へ供給するアルカリ剤を複数使用することで、個々の陽イオン金属濃度を低減でき、メタン発酵の阻害を回避することが可能となる。処理工程中の陽イオン濃度とは、濃縮液が酸発酵槽で混合され、酸発酵槽にアルカリ剤が供給された後の液中の陽イオン濃度であればよく、酸発酵槽内液、酸発酵槽流出水、UASB槽内液、UASB処理水の何れでもよい。   Examples of the cation metal that inhibits the methane fermentation treatment include Na, K, Mg, and Ca. These cation metals promote the methane fermentation treatment at an appropriate concentration and help to achieve a good methane fermentation treatment, but inhibit the methane fermentation treatment at a high concentration. For example, in Na: 8000 mg / L or more, K: 5000 mg / L or more, Mg: 2000 mg / L or more, Ca: 5000 mg / L or more, methane fermentation processing performance falls. Therefore, the cation concentration during the treatment process is measured, and the amount of UASB treated water flowing into the evaporator and the concentration ratio of the evaporator are controlled so that the cation concentration does not interfere with the methane fermentation treatment. It is effective. In addition, by using a plurality of alkaline agents supplied to the acid fermenter, it is possible to reduce the concentration of individual cationic metals and avoid inhibition of methane fermentation. The cation concentration in the treatment process may be the cation concentration in the solution after the concentrated solution is mixed in the acid fermenter and the alkaline agent is supplied to the acid fermenter. Any of fermenter outflow water, UASB tank liquid, and UASB treated water may be used.

以下、本発明を実施例により具体的に説明する。
実施例1
図2は、実施例1の概要を示すフロー図である。図2(a)は、従来法のUASB処理を行うA系列である。図2(b)は、UASB処理水の一部を蒸発装置に流入させるB系列(本発明)である。
両系列のUASBの容量は、1.5m(0.5m×0.5m×6m)である。原水には、飲料製造廃水(CODCr約4500mg/L)の中和処理水を使用した。UASBの水温は、35℃に制御した。原水には、リンを栄養剤として加えた。リンの添加量は、A、B系列何れもCOD:P=500:1である。
B系列の蒸発装置である蒸発濃縮装置は、伝熱体にポリエチレンフィルム薄膜を使用した機械式自己蒸気圧縮方式の装置(容量8m)を使用し、減圧圧力は約200hPa、蒸発温度は約60℃の条件で運転を行った。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
FIG. 2 is a flowchart showing an outline of the first embodiment. FIG. 2A shows an A series for performing a conventional UASB process. FIG. 2B is a B series (the present invention) in which part of the UASB treated water is allowed to flow into the evaporator.
The capacity of both series of UASBs is 1.5 m 3 (0.5 m × 0.5 m × 6 m). As raw water, neutralized water of beverage manufacturing wastewater (COD Cr about 4500 mg / L) was used. The water temperature of UASB was controlled at 35 ° C. In raw water, phosphorus was added as a nutrient. The amount of phosphorus added is COD: P = 500: 1 in both A and B series.
The evaporation concentrator, which is a B-series evaporator, uses a mechanical self-vapor compression apparatus (capacity: 8 m 3 ) using a polyethylene film thin film as a heat transfer body, and has a reduced pressure of about 200 hPa and an evaporation temperature of about 60. The operation was performed at a temperature of ° C.

各系列とも所定のCODCr負荷となるように、原水流量を調整した。B系列の蒸発濃縮装置では、水回収率を50%、濃縮倍率を5倍に設定した。原水流量3m/dの場合、B系列では、UASB槽流出水量が3.38m/d、UASB処理水量が1.5m/d、蒸発濃縮装置流入量が1.88m/d、凝縮水流量が1.5m/d、濃縮液流量が0.38m/dとなるように運転を行った。
処理成績を表1に示す。各UASBのCODCr負荷は、原水の流量及びCODCr濃度を基に算出した。各条件とも、1ヶ月間運転を行った。

Figure 0005148550
The raw water flow rate was adjusted so that each series had a predetermined COD Cr load. In the B series evaporation concentrator, the water recovery rate was set to 50% and the concentration factor was set to 5 times. When the raw water flow rate is 3 m 3 / d, in the B series, the UASB tank effluent amount is 3.38 m 3 / d, the UASB treated water amount is 1.5 m 3 / d, the evaporative concentrator inflow amount is 1.88 m 3 / d, and the condensation The operation was performed such that the water flow rate was 1.5 m 3 / d and the concentrate flow rate was 0.38 m 3 / d.
The processing results are shown in Table 1. The COD Cr load of each UASB was calculated based on the raw water flow rate and COD Cr concentration. Each condition was operated for one month.
Figure 0005148550

A−1系列では、CODCr負荷6kg/m/dでCODCr除去率89%の良好な処理であった。A−1系列に引き続きCODCr負荷を10kg/m/dに上げたA−2系列ではCODCr除去率が68%に低下した。
本発明に基づくB系列では、原水3.3m/dに対し、回収水が1.65m/d得られ(水回収率50%)、さらに、CODCr負荷が10kg/m/dで、CODCr除去率は88%の良好な処理であり、従来法のA系列よりも、高いCODCr負荷で安定した処理が達成できた。B系列では、微量元素が濃縮された濃縮液をメタン発酵処理工程に返送することが、メタン菌の活性促進作用のある微量元素を添加することと同等の効果があり、メタン発酵の安定化処理を達成したと考えられる。B系列のUASB流出水は、pHが7.5、溶解性Fe濃度が0.7mg/L、濃縮液は、pHが8.9、溶解性Fe濃度が3.0mg/Lであった。
In the A-1 series, the COD Cr load was 6 kg / m 3 / d, and the COD Cr removal rate was 89%. The COD Cr removal rate decreased to 68% in the A-2 series where the COD Cr load was increased to 10 kg / m 3 / d following the A-1 series.
In the B series based on the present invention, 1.65 m 3 / d of recovered water is obtained with respect to 3.3 m 3 / d of raw water (water recovery rate 50%), and the COD Cr load is 10 kg / m 3 / d. The COD Cr removal rate was a good treatment of 88%, and a stable treatment could be achieved at a higher COD Cr load than the conventional method A series. In the B series, returning the concentrated liquid enriched with trace elements to the methane fermentation process has the same effect as adding a trace element that promotes the activity of methane bacteria, and stabilizes methane fermentation. It is thought that The B series UASB effluent water had a pH of 7.5 and a soluble Fe concentration of 0.7 mg / L, and the concentrate had a pH of 8.9 and a soluble Fe concentration of 3.0 mg / L.

実施例2
図3は、実施例2の概要を示すフロー図である。図3(a)は、微量元素を添加し、UASB処理を行うC系列(従来法)である。図3(b)は、微量元素を添加し、UASB処理水の一部を蒸発装置に流入させるD系列(本発明)である。
各系列のUASBの容量は、1.5m(0.5m×0.5m×6m)である。原水には、飲料製造廃水(CODCr約4500mg/L)の中和処理水を使用した。各槽の温度は、35℃になるように制御した。原水には、リンを栄養剤として加えた。さらに、メタン菌の活性向上及びUASB処理の安定化の目的のため、原水に微量元素としてFe、Ni、Coを添加した。リンの添加量は、C、D系列何れもCOD:P=500:1とした。微量元素の添加量は、C−1系列でCOD:Fe:Ni:Co=1000:0.5:0.005:0.005とし、C−2系列及びD系列では、C−1系列の5分の1の添加量とした。
Example 2
FIG. 3 is a flowchart showing an outline of the second embodiment. FIG. 3A shows a C series (conventional method) in which trace elements are added and UASB processing is performed. FIG.3 (b) is D series (this invention) which adds a trace element and flows some UASB process water into an evaporator.
The capacity of each series of UASB is 1.5 m 3 (0.5 m × 0.5 m × 6 m). As raw water, neutralized water of beverage manufacturing wastewater (COD Cr about 4500 mg / L) was used. The temperature of each tank was controlled to be 35 ° C. In raw water, phosphorus was added as a nutrient. Furthermore, Fe, Ni, and Co were added to the raw water as trace elements for the purpose of improving the activity of methane bacteria and stabilizing the UASB treatment. The amount of phosphorus added was COD: P = 500: 1 for both C and D series. The amount of the trace element added is COD: Fe: Ni: Co = 1000: 0.5: 0.005: 0.005 for the C-1 series, and 5 for the C-1 series for the C-2 series and D series. The addition amount was 1 / min.

D系列の蒸発装置である蒸発濃縮装置は、実施例1と同様の伝熱体にポリエチレンフィルム薄膜を使用した機械式自己蒸気圧縮方式の装置(容量8m)を使用し、減圧圧力は約200hPa、蒸発温度は約60℃の条件で運転を行った。
各系列とも所定のCODCr負荷となるように、原水流量を調整した。D系列の蒸発濃縮装置では、水回収率を50%、濃縮倍率を5倍に設定した。原水流量5m/dの場合、D系列では、UASB槽流出水量が5.6m/d、UASB処理水量が2.5m/d、蒸発濃縮装置流入量が3.1m/d、凝縮水流量が2.5m/d、濃縮液流量が0.6m/dとなるように運転を行った。
The evaporation concentrator, which is a D-series evaporator, uses a mechanical self-vapor compression apparatus (capacity 8 m 3 ) using a polyethylene film thin film as the heat transfer body in the same manner as in Example 1, and the reduced pressure is about 200 hPa. The operation was carried out at an evaporation temperature of about 60 ° C.
The raw water flow rate was adjusted so that each series had a predetermined COD Cr load. In the D series evaporation concentrator, the water recovery rate was set to 50% and the concentration factor was set to 5 times. When the raw water flow rate is 5 m 3 / d, in the D series, the UASB tank effluent amount is 5.6 m 3 / d, the UASB treated water amount is 2.5 m 3 / d, the evaporative concentrator inflow amount is 3.1 m 3 / d, and the condensation The operation was performed so that the water flow rate was 2.5 m 3 / d and the concentrate flow rate was 0.6 m 3 / d.

UASBの処理成績を表2に示す。各UASBのCODCr負荷は、原水の流量及びCODCr濃度を基に算出した。各条件とも、1ヶ月間運転を行った。

Figure 0005148550
※1 微量金属添加量はC−1系列を100とした時の割合で示す。 Table 2 shows the processing results of UASB. The COD Cr load of each UASB was calculated based on the raw water flow rate and COD Cr concentration. Each condition was operated for one month.
Figure 0005148550
* 1 The amount of trace metal added is the ratio when the C-1 series is 100.

C−1系列では、CODCr負荷15kg/m/dでCODCr除去率91%の良好な処理であった。微量元素添加量をC−1系列の5分の1に減らしたC−2系列では、C−1系列と同じCODCr負荷で処理を行ったが、CODCr除去率は71%であり、A系列に比べCODCr除去率の低下が見られた。これは、微量元素の添加量を減らしたことによる影響であり、従来法では、安定したUASB処理を行う上で、微量元素添加量を5分の1に減らすことはできなかった。
本発明に基づくD系列では、原水5m/dに対し、回収水が2.5m/d得られ(水回収率50%)、さらに、CODCr負荷が15kg/m/dで、CODCr除去率は90%であり、C−1系列と同様に良好な処理成績であった。D系列では、メタン菌の活性促進作用のある微量元素が濃縮された濃縮液をメタン発酵槽に流入させているため、微量元素の添加量を5分の1に低減可能であった。
In the C-1 series, the COD Cr load was 15 kg / m 3 / d, and the COD Cr removal rate was 91%. In the C-2 series in which the trace element addition amount was reduced to 1/5 of the C-1 series, the treatment was performed with the same COD Cr load as in the C-1 series, but the COD Cr removal rate was 71%. A reduction in COD Cr removal rate was seen compared to the series. This is due to the effect of reducing the amount of addition of trace elements. In the conventional method, the amount of addition of trace elements could not be reduced to 1/5 in performing stable UASB treatment.
In the D series based on the present invention, 2.5 m 3 / d of recovered water is obtained with respect to 5 m 3 / d of raw water (water recovery rate 50%), and the COD Cr load is 15 kg / m 3 / d. The Cr removal rate was 90%, which was a good processing result like the C-1 series. In the D series, since the concentrated liquid enriched with the trace elements having the activity promoting action of methane bacteria is allowed to flow into the methane fermentation tank, the amount of the trace elements added can be reduced to 1/5.

実施例3
図4は、実施例3の概要を示すフロー図である。図4(a)は、酸発酵槽の後段でUASB処理を行うE系列(従来法)である。図4(b)は、UASB処理水の一部を蒸発装置に流入させるF系列(本発明)である。
各系列の酸発酵槽の容量は、1.5m、UASBの容量は、1.5m(0.5m×0.5m×6m)である。原水には、飲料製造廃水(CODCr約4500mg/L)の中和処理水を使用した。各槽の温度は、35℃になるように制御した。原水には、リンを栄養剤として加えた。さらに、メタン菌の活性向上及びUASB処理の安定化の目的のため、原水に微量元素としてFe、Ni、Coを添加した。リンの添加量は、E、F系列何れもCOD:P=500:1とした。微量元素の添加量は、E−1系列でCOD:Fe:Ni:Co=1000:0.5:0.005:0.005とし、E−2系列及びF系列では、E−1系列の5分の1の添加量とした。酸発酵槽のpHが6.0になるように酸発酵槽にNaOHを注入した。
Example 3
FIG. 4 is a flowchart showing an outline of the third embodiment. FIG. 4A shows an E series (conventional method) in which UASB treatment is performed in the latter stage of the acid fermenter. FIG. 4B is an F series (the present invention) in which a part of the UASB treated water flows into the evaporator.
The capacity of each series of acid fermenters is 1.5 m 3 , and the capacity of UASB is 1.5 m 3 (0.5 m × 0.5 m × 6 m). As raw water, neutralized water of beverage manufacturing wastewater (COD Cr about 4500 mg / L) was used. The temperature of each tank was controlled to be 35 ° C. In raw water, phosphorus was added as a nutrient. Furthermore, Fe, Ni, and Co were added to the raw water as trace elements for the purpose of improving the activity of methane bacteria and stabilizing the UASB treatment. The amount of phosphorus added was COD: P = 500: 1 for both E and F series. The addition amount of the trace element is COD: Fe: Ni: Co = 1000: 0.5: 0.005: 0.005 in the E-1 series, and 5 in the E-1 series and F series. The addition amount was 1 / min. NaOH was injected into the acid fermenter so that the pH of the acid fermenter was 6.0.

図4(b)で蒸発装置として用いる蒸発濃縮装置は、実施例1及び2と同様の伝熱体にポリエチレンフィルム薄膜を使用した機械式自己蒸気圧縮方式の装置(容量8m)を使用し、減圧圧力は約200hPa、蒸発温度は約60℃の条件で運転を行った。
各系列とも所定のCODCr負荷となるように、原水流量を調整した。F系列の蒸発濃縮装置では、水回収率を50%、濃縮倍率を5倍に設定した。原水流量10m/dの場合、F系列では、UASB槽流出水量が11.25m/d、UASB処理水量が5m/d、蒸発濃縮装置流入量が6.25m/d、凝縮水流量が5m/d、濃縮液流量が1.25m/dとなるように運転を行った。
The evaporative concentration apparatus used as the evaporation apparatus in FIG. 4B uses a mechanical self-vapor compression apparatus (capacity 8 m 3 ) using a polyethylene film thin film as the heat transfer body in the same manner as in Examples 1 and 2. The operation was performed under the conditions of a reduced pressure of about 200 hPa and an evaporation temperature of about 60 ° C.
The raw water flow rate was adjusted so that each series had a predetermined COD Cr load. In the F series evaporation concentrator, the water recovery rate was set to 50% and the concentration factor was set to 5 times. When the raw water flow rate is 10 m 3 / d, in the F series, the UASB tank effluent amount is 11.25 m 3 / d, the UASB treated water amount is 5 m 3 / d, the evaporative concentrator inflow amount is 6.25 m 3 / d, and the condensed water flow rate Was 5 m 3 / d and the concentrate flow rate was 1.25 m 3 / d.

処理成績を表3に示す。各UASB槽のCODCr負荷は、原水の流量及びCODCr濃度を基に算出した。各条件とも、1ヶ月間運転を行った。

Figure 0005148550
※1 微量金属添加量はE−1系列を100とした時の割合で示す。 Table 3 shows the processing results. The COD Cr load of each UASB tank was calculated based on the raw water flow rate and COD Cr concentration. Each condition was operated for one month.
Figure 0005148550
* 1 The amount of trace metal added is the ratio when the E-1 series is 100.

E−1系列では、CODCr負荷30kg/m/dでCODCr除去率90%の良好な処理であった。微量元素添加量をE−1系列の5分の1に減らしたE−2系列では、E−1系列と同じCODCr負荷で処理を行ったが、CODCr除去率は72%であり、E−1系列に比べCODCr除去率の低下が見られた。これは、微量元素の添加量を減らしたことによる影響であり、従来法では、安定したUASB処理を行う上で、微量元素添加量を5分の1に減らすことはできなかった。
F系列では、原水5m/dに対し、回収水が2.5m/d得られ(水回収率50%)、さらに、CODCr負荷15kg/m/dでCODCr除去率90%であり、E−1系列と同様に良好な処理成績であった。F系列では、メタン菌の活性促進作用のある微量元素が濃縮された濃縮液を、酸発酵槽に流入させているため、微量元素の添加量を5分の1に低減可能であった。さらに、F系列では、アルカリ成分が濃縮された濃縮液を酸発酵槽に流入するため、NaOH添加量は4kg/dであり、E−1系列及びE−2系列の11kg/dよりも少なかった。
F系列のUASB流出水は、pHが7.2、M−アルカリ度が2070mg/L、溶解性Fe濃度が0.7mg/L、濃縮液は、pHが8.9、M−アルカリ度が9300mg/L、溶解性Fe濃度が3.0mg/Lであった。
In the E-1 series, the COD Cr load was 30 kg / m 3 / d, and the COD Cr removal rate was 90%. In the E-2 series in which the amount of trace elements added was reduced to 1/5 of the E-1 series, processing was performed with the same COD Cr load as in the E-1 series, but the COD Cr removal rate was 72%. A decrease in the COD Cr removal rate was seen compared to the -1 series. This is due to the effect of reducing the amount of addition of trace elements. In the conventional method, the amount of addition of trace elements could not be reduced to 1/5 in performing stable UASB treatment.
In the F series, 2.5 m 3 / d of recovered water is obtained with respect to 5 m 3 / d of raw water (water recovery rate 50%), and COD Cr removal rate is 90% with a COD Cr load of 15 kg / m 3 / d. Yes, similar to the E-1 series, it was a good treatment result. In the F series, since the concentrated liquid enriched with the trace elements having the activity promoting action of the methane bacteria was allowed to flow into the acid fermentation tank, the amount of trace elements added could be reduced to 1/5. Furthermore, in F series, since the concentrated liquid in which the alkali component was concentrated flows into the acid fermenter, the amount of NaOH added was 4 kg / d, which was less than 11 kg / d of the E-1 series and E-2 series. .
F-series UASB runoff water has a pH of 7.2, M-alkalinity of 2070 mg / L, soluble Fe concentration of 0.7 mg / L, and the concentrated solution has a pH of 8.9 and M-alkaliness of 9300 mg. / L, the soluble Fe concentration was 3.0 mg / L.

UASB処理水を蒸発装置内で蒸発濃縮し、生成した蒸気を凝縮し、凝縮水として回収再利用し、これと同時に、メタン菌の活性促進作用のある微量金属が濃縮された濃縮液を、メタン発酵処理工程に返送する本願発明のB系列では、従来法のA系列よりも高いCODCr負荷での運転が可能となり、原水に微量元素を添加する場合では、本願発明のD系列では、従来法のC系列に比べ微量元素の添加量低減が可能であり、さらに、嫌気性処理が酸発酵工程及びメタン発酵工程からなる二相式嫌気性処理である場合には、アルカリ成分及びメタン菌の活性促進作用のある微量元素が濃縮された濃縮液を、酸発酵工程に返送することで、本発明のF系列では、従来法のE系列に比べ、酸発酵工程に供給するアルカリ剤及びメタン菌の活性促進作用のある微量元素の添加量の低減が可能であった。
B、D、F系列の蒸発濃縮装置で得られた凝縮水は、電気伝導率が約20mS/m、TOCが1mg/L以下、SSが1mg/L以下、アンモニア性窒素が10mg/Lであり、中水道等に有効利用可能な水質であった。この凝縮水をイオン交換処理し、アンモニウムイオンを除去することで、冷却水等に有効利用可能な水質となった。また、原水の塩類濃度は、0.5%以下、UASB処理水の塩類濃度は、1%以下であり、メタン菌の活性の阻害を与えることはなかった。
The UASB-treated water is evaporated and concentrated in the evaporator, and the generated steam is condensed and recovered and reused as condensed water. At the same time, the concentrated liquid enriched with trace metals that promote the activity of methane bacteria is converted into methane. In the B series of the present invention that is returned to the fermentation treatment step, it is possible to operate at a higher COD Cr load than the conventional A series. When trace elements are added to the raw water, the D series of the present invention uses the conventional method. It is possible to reduce the amount of trace elements added compared to the C series, and when the anaerobic treatment is a two-phase anaerobic treatment comprising an acid fermentation step and a methane fermentation step, the activity of alkali components and methane bacteria By returning the concentrated liquid enriched with trace elements having a promoting action to the acid fermentation process, the F series of the present invention has an alkaline agent and methane fungus that are supplied to the acid fermentation process compared to the conventional E series. Activity promotion work It was possible to reduce the amount of added trace elements.
The condensed water obtained by the B, D, F series evaporative concentration apparatus has an electric conductivity of about 20 mS / m, a TOC of 1 mg / L or less, an SS of 1 mg / L or less, and an ammoniacal nitrogen of 10 mg / L. It was water quality that could be used effectively for middle water. The condensed water was subjected to an ion exchange treatment to remove ammonium ions, so that the water quality can be effectively used for cooling water or the like. The salt concentration of raw water was 0.5% or less, and the salt concentration of UASB-treated water was 1% or less, which did not inhibit the activity of methane bacteria.

実施例4
実施例4のF、G、H系列は、UASB処理水の一部を蒸発装置に流入させる実施例3の図4(b)と同じ系列(本発明)である。
各系列の酸発酵槽の容量は、1.5m、UASBの容量は、1.5m(0.5m×0.5m×6m)である。原水には、飲料製造廃水(CODCr約4500mg/L)の中和処理水を使用した。各槽の温度は、35℃になるように制御した。原水には、リンを栄養剤として加えた。さらに、メタン菌の活性向上及びUASB処理の安定化の目的のため、原水に微量元素としてFe、Ni、Coを添加した。リンの添加量は、何れもCOD:P=500:1とした。微量元素の添加量は、COD:Fe:Ni:Co=1000:0.1:0.001:0.001とした。酸発酵槽のpHが6.0になるように、酸発酵槽にNaOHを注入した。
Example 4
The F, G, and H series of the fourth embodiment are the same series (the present invention) as FIG. 4B of the third embodiment in which a part of the UASB treated water flows into the evaporator.
The capacity of each series of acid fermenters is 1.5 m 3 , and the capacity of UASB is 1.5 m 3 (0.5 m × 0.5 m × 6 m). As raw water, neutralized water of beverage manufacturing wastewater (COD Cr about 4500 mg / L) was used. The temperature of each tank was controlled to be 35 ° C. In raw water, phosphorus was added as a nutrient. Furthermore, Fe, Ni, and Co were added to the raw water as trace elements for the purpose of improving the activity of methane bacteria and stabilizing the UASB treatment. The amount of phosphorus added was COD: P = 500: 1 in all cases. The amount of trace elements added was COD: Fe: Ni: Co = 1000: 0.1: 0.001: 0.001. NaOH was injected into the acid fermenter so that the pH of the acid fermenter was 6.0.

蒸発装置として用いた蒸発濃縮装置は、実施例1〜3と同様の伝熱体にポリエチレンフィルム薄膜を使用した機械式自己蒸気圧縮方式の装置(容量8m)を使用し、減圧圧力が約200hPa、蒸発温度が約60℃の条件で運転を行った。
各系列とも、原水流量10m/dで運転を行った。F系列では、蒸発濃縮装置での水回収率を50%、蒸発濃縮装置での濃縮倍率を5倍に設定し、UASB槽流出水量が11.25m/d、UASB処理水量が5m/d、蒸発濃縮装置流入量が6.25m/d、凝縮水流量が5m/d、濃縮液流量が1.25m/dとなるように運転を行った。
G系列では、UASB処理水の塩類濃度として溶解性蒸発残留物濃度を測定し、処理工程中の塩類濃度が1%となるように、蒸発装置へのUASB処理水流入量を制御した系列である。蒸発濃縮装置での濃縮倍率は、5倍に設定した。
H系列では、原水の塩類濃度として溶解性蒸発残留物濃度を測定し、処理工程中の塩類濃度が1%となるように、蒸発装置へのUASB処理水流入量を制御した系列である。蒸発濃縮装置での濃縮倍率は、5倍に設定した。
The evaporation concentrator used as the evaporator uses a mechanical self-vapor compression apparatus (capacity 8 m 3 ) using a polyethylene film thin film as the heat transfer body in Examples 1 to 3, and a reduced pressure of about 200 hPa. The operation was performed under the condition where the evaporation temperature was about 60 ° C.
Each series was operated at a raw water flow rate of 10 m 3 / d. In the F series, the water recovery rate in the evaporative concentrator is set to 50%, the concentration rate in the evaporative concentrator is set to 5 times, the UASB tank effluent amount is 11.25 m 3 / d, and the UASB treated water amount is 5 m 3 / d. The operation was performed such that the inflow amount of the evaporation concentrator was 6.25 m 3 / d, the condensed water flow rate was 5 m 3 / d, and the concentrated liquid flow rate was 1.25 m 3 / d.
In the G series, the soluble evaporation residue concentration is measured as the salt concentration of UASB treated water, and the amount of UASB treated water flowing into the evaporator is controlled so that the salt concentration in the treatment process is 1%. . The concentration ratio in the evaporative concentration apparatus was set to 5 times.
In the H series, the soluble evaporation residue concentration is measured as the salt concentration of raw water, and the inflow amount of UASB treated water to the evaporator is controlled so that the salt concentration in the treatment process becomes 1%. The concentration ratio in the evaporative concentration apparatus was set to 5 times.

図5にフロー図として示すI系列では、UASB処理水の電気伝導率を電気伝導度計で連続的に計測し、測定した電気伝導率を塩類濃度に換算し、処理工程中の塩類濃度が1%となるように蒸発装置へのUASB処理水流入量を制御した系列である。蒸発濃縮装置での濃縮倍率は5倍に設定した。
図5にフロー図として示すJ系列では、原水の電気伝導率を電気伝導度計で連続的に計測し、測定した電気伝導率を塩類能に換算し、処理工程中の塩類濃度が1%となるように蒸発装置へのUASB処理水流入量を制御した系列である。蒸発濃縮装置での濃縮倍率は5倍に設定した。
In the I series shown as a flow chart in FIG. 5, the electrical conductivity of UASB treated water is continuously measured with an electrical conductivity meter, the measured electrical conductivity is converted into salt concentration, and the salt concentration during the treatment process is 1 This is a series in which the amount of UASB treated water flowing into the evaporator is controlled to be%. The concentration ratio in the evaporative concentration apparatus was set to 5 times.
In the J series shown as a flow chart in FIG. 5, the electrical conductivity of raw water is continuously measured with an electrical conductivity meter, the measured electrical conductivity is converted into salt ability, and the salt concentration in the treatment process is 1%. This is a series in which the amount of UASB treated water flowing into the evaporator is controlled. The concentration ratio in the evaporative concentration apparatus was set to 5 times.

処理成績を図7及び表4に示す。各UASB槽のCODCr負荷は、原水の流量及びCODCr濃度を基に算出した。各条件とも、1ヶ月間運転を行った。

Figure 0005148550
The processing results are shown in FIG. The COD Cr load of each UASB tank was calculated based on the raw water flow rate and COD Cr concentration. Each condition was operated for one month.
Figure 0005148550

図7(a)に原水塩類濃度を示す。原水の塩類濃度は、0.25%〜0.5%で変動した。
図7(b)にUASB処理水塩類濃度、図7(c)に電気伝導率(mS/m)、図7(d)に水回収率(%)を示す。
水回収率を50%に設定したF系列では、UASB処理水の塩類濃度は0.5〜1%、CODCr除去率は90%であった。UASB処理水塩類濃度により、蒸発装置へのUASB処理水流入量を制御したG系列では、UASB処理水の塩類濃度は0.85〜1.1%(平均値1.0%)、水回収率は45〜70%(平均値60%)、CODCr除去率は90%であった。原水塩類濃度により、蒸発装置へのUASB処理水流入量を制御したH系列では、UASB処理水の塩類濃度は0.85〜1.2%(平均値1.0%)、水回収率は46〜73%(平均値61%)、CODCr除去率は90%であった。
FIG. 7 (a) shows the raw water salt concentration. The salt concentration of the raw water varied from 0.25% to 0.5%.
FIG. 7B shows the concentration of UASB-treated water salt, FIG. 7C shows the electric conductivity (mS / m), and FIG. 7D shows the water recovery rate (%).
The F series set the water recovery rate 50%, salt concentration of UASB process water 0.5 to 1% COD Cr removal rate was 90%. In the G series in which the amount of UASB treated water flowing into the evaporator is controlled by the concentration of UASB treated water salt, the salt concentration of UASB treated water is 0.85 to 1.1% (average value 1.0%), and the water recovery rate Was 45 to 70% (average value 60%), and the COD Cr removal rate was 90%. In the H series in which the amount of UASB treated water flowing into the evaporator is controlled by the raw water salt concentration, the salt concentration of UASB treated water is 0.85 to 1.2% (average value 1.0%), and the water recovery rate is 46. ˜73% (average value 61%), COD Cr removal rate was 90%.

UASB処理水の塩類濃度を測定し、処理工程中の塩類濃度が1%となるように、蒸発装置へのUASB処理水流入量を制御したG系列及び原水の塩類濃度を測定し、処理工程中の塩類濃度が1%となるように蒸発装置へのUASB処理水流入量を制御したH系列では、F系列よりも水回収率が向上し、CODCr除去性能が同等の処理方式であった。
UASB処理水の電気伝導率により、蒸発装置へのUASB処理水流入量を制御したI系列では、UASB処理水の塩類濃度は0.95〜1.1%(平均値1.0%)、水回収率は48〜74%(平均値63%)、CODCr除去率は90%であった。原水の電気伝導率により、蒸発装置へのUASB処理水流入量を制御したJ系列では、UASB処理水の塩類濃度は0.95〜1.1%(平均値1.0%)、水回収率は49〜75%(平均値64%)、CODCr除去率は90%であった。
電気伝導度計により、UASB処理水又は原水の電気伝導率を連続的に測定するI系列、J系列では、溶解性蒸発残留物濃度を測定するG系列、H系列に比べ、応答性が速く、適宜蒸発装置へのUASB処理水の流入量とを制御することが可能であるため、水回収率の向上が達成できた。
Measure the salt concentration of UASB treated water, measure the salt concentration of G series and raw water controlling the inflow of UASB treated water to the evaporator so that the salt concentration in the treatment process is 1%, the H series with a controlled UASB process water inflow into the salt concentration of the evaporation apparatus such that the 1%, than F series improves water recovery ratio, COD Cr removal performance was comparable processing method.
In the I series in which the amount of UASB treated water flowing into the evaporator is controlled by the electrical conductivity of the UASB treated water, the salt concentration of the UASB treated water is 0.95 to 1.1% (average value 1.0%), water The recovery rate was 48 to 74% (average value 63%), and the COD Cr removal rate was 90%. In the J series in which the inflow of UASB treated water into the evaporator is controlled by the electrical conductivity of raw water, the salt concentration of UASB treated water is 0.95 to 1.1% (average value 1.0%), and the water recovery rate Was 49 to 75% (average value 64%), and the COD Cr removal rate was 90%.
In the I series and J series that continuously measure the electrical conductivity of UASB treated water or raw water with an electric conductivity meter, the responsiveness is faster than the G series and H series that measure the concentration of soluble residue. Since it was possible to control the amount of UASB treated water flowing into the evaporator as appropriate, an improvement in the water recovery rate was achieved.

実施例5
図6は、実施例5のK、L系列の概要を示すフロー図である。K、L系列は、UASB処理水の一部を蒸発装置に流入させる系列(本発明)である。
各系列の酸発酵槽の容量は、1.5m、UASBの容量は、1.5m(0.5m×0.5m×6m)である。原水には、飲料製造廃水(CODCr約4500mg/L)の中和処理水を使用した。各槽の温度は、35℃になるように制御した。原水には、リンを栄養剤として加えた。さらに、メタン菌の活性向上及びUASB処理の安定化の目的のため、原水に微量元素としてFe、Ni、Coを添加した。リンの添加量は、何れもCOD:P=500:1とした。微量元素の添加量は、各系列でCOD:Fe:Ni:Co=1000:0.1:0.001:0.001とした。酸発酵槽のpHが6.0になるように、酸発酵槽にK系列では、NaOHを注入し、L系列では、NaOHとCa(OH)を併用した。
Example 5
FIG. 6 is a flowchart showing an outline of the K and L sequences in the fifth embodiment. The K and L series are series (present invention) in which a part of the UASB treated water flows into the evaporator.
The capacity of each series of acid fermenters is 1.5 m 3 , and the capacity of UASB is 1.5 m 3 (0.5 m × 0.5 m × 6 m). As raw water, neutralized water of beverage manufacturing wastewater (COD Cr about 4500 mg / L) was used. The temperature of each tank was controlled to be 35 ° C. In raw water, phosphorus was added as a nutrient. Furthermore, Fe, Ni, and Co were added to the raw water as trace elements for the purpose of improving the activity of methane bacteria and stabilizing the UASB treatment. The amount of phosphorus added was COD: P = 500: 1 in all cases. The amount of trace elements added was COD: Fe: Ni: Co = 1000: 0.1: 0.001: 0.001 in each series. In the acid fermenter, NaOH was injected into the acid fermentor so that the pH of the acid fermenter was 6.0, and NaOH and Ca (OH) 2 were used in combination in the L fermenter.

蒸発装置として用いた蒸発濃縮装置は、実施例1〜4と同様の伝熱体にポリエチレンフィルム薄膜を使用した機械式自己蒸気圧縮方式の装置(容量8m)を使用し、減圧圧力は約200hPa、蒸発温度は約60℃の条件で運転を行った。
各系列とも、原水流量10m/dで運転を行った。
K系列、L系列は、原水の塩類濃度として溶解性蒸発残留物濃度を測定し、処理工程中の塩類濃度が設定値となるように、蒸発装置へのUASB処理水流入量を調整した系列であり、蒸発濃縮装置での濃縮倍率は5倍に設定した。
K系列では、処理工程中の塩類濃度を、K−1系列:1%、K−2系列:2%、K−3系列:3%、K−4系列:4%となるように、蒸発装置へのUASB処理水流入量を調整した。K−5系列は、UASBのNa濃度を測定し、Na濃度が7500mg/Lを超えないように、蒸発装置へのUASB処理水流入量を制御した系列である。L系列では、処理工程中の塩類濃度を、L−1系列:1%、L−2系列:2%、L−3系列:3%、L−4系列:4%となるように、蒸発装置へのUASB処理水流入量を調整し、さらに。処理工程中のNa濃度を測定し、Naが7500mg/Lを超えないように、酸発酵槽へ注入するアルカリ剤としてNaOHとCa(OH)を併用した。
The evaporation concentrator used as the evaporator uses a mechanical self-vapor compression apparatus (capacity 8 m 3 ) using a polyethylene film thin film as the heat transfer body in Examples 1 to 4, and the reduced pressure is about 200 hPa. The operation was carried out at an evaporation temperature of about 60 ° C.
Each series was operated at a raw water flow rate of 10 m 3 / d.
The K series and L series are series in which the concentration of soluble evaporation residue is measured as the salt concentration of raw water, and the amount of UASB treated water flowing into the evaporator is adjusted so that the salt concentration during the treatment process becomes the set value. Yes, the concentration ratio in the evaporative concentration apparatus was set to 5 times.
In the K series, the evaporation apparatus is such that the salt concentration during the treatment process is K-1 series: 1%, K-2 series: 2%, K-3 series: 3%, K-4 series: 4%. UASB treated water inflow amount to was adjusted. The K-5 series is a series in which the Na concentration of UASB is measured, and the amount of UASB treated water flowing into the evaporator is controlled so that the Na concentration does not exceed 7500 mg / L. In the L series, the evaporator concentration is set so that the salt concentration during the treatment process is L-1 series: 1%, L-2 series: 2%, L-3 series: 3%, L-4 series: 4%. Adjust the UASB treated water inflow to Na concentration during the treatment process was measured, and NaOH and Ca (OH) 2 were used together as an alkaline agent to be injected into the acid fermentation tank so that Na would not exceed 7500 mg / L.

処理成績を表5に示す。各UASB槽のCODCr負荷は、原水の流量及びCODCr濃度を基に算出した。各条件とも、1ヶ月間運転を行った。ただし、処理が悪化した系列ではCODCr除去率が50%を下回った段階で運転を中止した。

Figure 0005148550
Table 5 shows the processing results. The COD Cr load of each UASB tank was calculated based on the raw water flow rate and COD Cr concentration. Each condition was operated for one month. However, in the series in which the treatment deteriorated, the operation was stopped when the CODCr removal rate was below 50%.
Figure 0005148550

K−1系列では、水回収率55%、UASB処理水塩類濃度1%、CODCr除去率90%、K−2系列では、水回収率78%、UASB処理水塩類濃度2%、CODCr除去率84%の良好な処理成績であった。一方、UASB処理水塩類濃度3%のK−3系列及びUASB処理水塩類濃度4%のK−4系列では、処理が悪化し、CODCr除去率50%以下であった。UASB処理水のNa濃度は、K−1:3000mg/L、K−2:6500mg/L、K−3:10500mg/L、K−4:14000mg/Lであった。塩類濃度の増加とNa濃度の増加により、K−3系列及びK−4系列の処理が悪化した。K−5系列では、水回収率80%、UASB処理水塩類濃度2.2%、CODCr除去率81%の良好な処理成績であった。 In the K-1 series, the water recovery rate is 55%, the UASB-treated water salt concentration is 1%, and the COD Cr removal rate is 90%. In the K-2 series, the water recovery rate is 78%, the UASB-treated water salt concentration is 2%, and the COD Cr removal. It was a good processing result with a rate of 84%. On the other hand, the K-3 series and UASB treated water salt concentration of 4% of the K-4 series UASB treated water salinity of 3%, the processing is deteriorated, were below COD Cr removal rate of 50%. The Na concentration of the UASB-treated water was K-1: 3000 mg / L, K-2: 6500 mg / L, K-3: 10500 mg / L, K-4: 14000 mg / L. The treatment of the K-3 series and K-4 series deteriorated due to the increase in the salt concentration and the Na concentration. The K-5 series, the water recovery rate 80% UASB process water salinity 2.2%, was good processing results of COD Cr removal rate 81%.

L−1系列はK−1系列と、L−2系列はK−2系列と、同じ処理成績であった。L−3系列では、水回収率85%、UASB処理水塩類濃度3%、CODCr除去率78%の処理成績であった。一方、UASB処理水塩類濃度4%のL−4系列では、処理が悪化し、CODCr除去率30%であった。UASB処理水のNa濃度を、7500mg/L以下とすることで、塩類濃度3%のL−3系列においても、CODCr除去率78%を達成できたが、塩類濃度4%のL−4系列では、塩類濃度が高いため、処理が悪化した。
塩類濃度が増加すると、CODCr除去率は低下する傾向にあるが、塩類濃度3%以下では、UASB処理は可能であった。また、塩類濃度が3%以下であっても、Na濃度が10000mg/L以上になると、UASB処理は悪化した。K−5系列のように、処理工程中のNa濃度を測定し、Na濃度が、メタン発酵処理に阻害を及ぼさない濃度となるように、蒸発装置へのUASB処理水の流入量を制御することで、安定したCODCr除去性能と高い水回収率を達成できた。
The L-1 series had the same processing results as the K-1 series and the L-2 series as the K-2 series. In the L-3 series, the water recovery was 85%, the UASB-treated water salt concentration was 3%, and the COD Cr removal rate was 78%. On the other hand, the L-4 series UASB treated water salt concentration of 4% processing is degraded, was COD Cr removal rate of 30%. By setting the Na concentration of the UASB treated water to 7500 mg / L or less, the COD Cr removal rate of 78% was achieved even in the L-3 series having a salt concentration of 3%, but the L-4 series having a salt concentration of 4%. Then, the treatment deteriorated due to the high salt concentration.
When salt concentration is increased, but the COD Cr removal rate tends to decrease, the salt concentration of 3% or less, UASB process was possible. Moreover, even if the salt concentration was 3% or less, the UASB treatment deteriorated when the Na concentration was 10000 mg / L or more. As in the K-5 series, the Na concentration in the treatment process is measured, and the amount of UASB treated water flowing into the evaporator is controlled so that the Na concentration does not interfere with the methane fermentation treatment. Thus, stable COD Cr removal performance and high water recovery rate could be achieved.

本発明の二相式嫌気性処理方法の一形態を示すフロー構成図。The flow block diagram which shows one form of the two-phase-type anaerobic processing method of this invention. 実施例1で用いたフロー図で、(a)A系列、(b)B系列を示す。In the flowchart used in Example 1, (a) A series and (b) B series are shown. 実施例2で用いたフロー図で、(a)C系列、(b)D系列を示す。In the flowchart used in Example 2, (a) C series and (b) D series are shown. 実施例3と4で用いたフロー図で、(a)E系列、(b)F、G、H系列を示す。In the flowchart used in Examples 3 and 4, (a) E series, (b) F, G, H series are shown. 実施例4で用いたフロー図で、I系列とJ系列を示す。In the flowchart used in Example 4, I series and J series are shown. 実施例5で用いたフロー図で、K系列とL系列を示す。In the flowchart used in Example 5, the K series and the L series are shown. 実施例4の処理結果を示すグラフで、(a)原水塩類濃度(%)、(b)UASB処理水塩類濃度(%)、(c)電気伝導率(mS/m)、(d)水回収率(%)の経時変化を示す。It is a graph which shows the processing result of Example 4, (a) Raw water salt concentration (%), (b) UASB process water salt concentration (%), (c) Electrical conductivity (mS / m), (d) Water recovery The time-dependent change of rate (%) is shown.

EC:電気伝導度計
EC: Electric conductivity meter

Claims (10)

有機性廃水又は有機性廃棄物を嫌気性微生物を用いて嫌気性処理する方法において、前記嫌気性処理後のメタン発酵処理水の一部を、蒸発操作により濃縮液のpHが9.5以下になるように濃縮分離し、得られる濃縮液を前記嫌気性処理工程へ返送すると共に、得られる凝縮水は再利用することを特徴とする嫌気性処理方法。 In the method of anaerobically treating organic waste water or organic waste using anaerobic microorganisms, a part of the methane fermentation treated water after the anaerobic treatment is subjected to an evaporation operation so that the pH of the concentrate is 9.5 or less. The anaerobic treatment method is characterized in that the concentrated liquid obtained is concentrated and separated and returned to the anaerobic treatment step, and the condensed water obtained is reused. 有機性廃水又は有機性廃棄物を嫌気性微生物を用いて嫌気性処理する方法において、前記嫌気性処理後のメタン発酵処理水の一部を、蒸発操作により濃縮分離し、得られる濃縮液を前記嫌気性処理工程へ返送し、得られる凝縮水は再利用すると共に、前記嫌気性処理工程中の塩類濃度及び/又は流入する原水の塩類濃度を測定し、蒸発操作により濃縮分離するメタン発酵処理水の流量及び蒸発濃縮する濃縮倍率を制御することを特徴とする嫌気性処理方法。 In the method of anaerobically treating organic wastewater or organic waste using anaerobic microorganisms, a part of the methane fermentation treated water after the anaerobic treatment is concentrated and separated by an evaporation operation, and the resulting concentrated liquid is The condensed water obtained by returning to the anaerobic treatment step is reused, and the concentration of the salt in the anaerobic treatment step and / or the salt concentration of the incoming raw water is measured and concentrated and separated by evaporation operation. anaerobic treatment how to and controlling the concentration ratio of the flow rate and evaporation. 前記嫌気性処理は、処理工程中の塩類濃度を3%以下に制御することを特徴とする請求項2に記載の嫌気性処理方法。 The anaerobic treatment method according to claim 2, wherein the salt concentration during the treatment step is controlled to 3% or less. 前記嫌気性処理は、流入する原水の塩類濃度及び/又は処理工程中の塩類濃度の測定に電気伝導度計を用いることを特徴とする請求項2又は3に記載の嫌気性処理方法。 4. The anaerobic treatment method according to claim 2 or 3 , wherein the anaerobic treatment uses an electrical conductivity meter for measuring the salt concentration and / or the salt concentration during the treatment step of the raw water. 有機性廃水又は有機性廃棄物を嫌気性微生物を用いて嫌気性処理する方法において、前記嫌気性処理後のメタン発酵処理水の一部を、蒸発操作により濃縮分離し、得られる濃縮液を前記嫌気性処理工程へ返送し、得られる凝縮水は再利用すると共に、前記嫌気性処理工程中の陽イオン濃度を測定し、蒸発操作により濃縮分離するメタン発酵処理水の流量及び蒸発濃縮する濃縮倍率を制御することを特徴とする嫌気性処理方法。 In the method of anaerobically treating organic wastewater or organic waste using anaerobic microorganisms, a part of the methane fermentation treated water after the anaerobic treatment is concentrated and separated by an evaporation operation, and the resulting concentrated liquid is The condensed water obtained after returning to the anaerobic treatment step is reused , and the cation concentration in the anaerobic treatment step is measured, and the flow rate of methane fermentation treated water to be concentrated and separated by evaporation operation and the concentration ratio for evaporation concentration anaerobic treatment how to and controlling the. 前記嫌気性処理は、メタン菌の活性促進作用のある微量元素を添加して行うことを特徴とする請求項1〜5のいずれか1項に記載の嫌気性処理方法。 The anaerobic treatment method according to any one of claims 1 to 5, wherein the anaerobic treatment is performed by adding a trace element having an activity promoting action on methane bacteria. 前記嫌気性処理が、酸発酵工程及びメタン発酵工程からなる二相式嫌気性処理であり、蒸発操作により濃縮分離して得られた濃縮液を酸発酵工程へ流入させることを特徴とする請求項1〜6のいずれか1項に記載の嫌気性処理方法。 The anaerobic treatment is a two-phase anaerobic treatment comprising an acid fermentation step and a methane fermentation step, and the concentrated liquid obtained by concentration and separation by an evaporation operation is caused to flow into the acid fermentation step. The anaerobic treatment method according to any one of 1 to 6 . 有機性廃水又は有機性廃棄物を嫌気性処理するメタン発酵装置と、該メタン発酵装置からの流出水の一部を濃縮分離する蒸発装置とを備え、該蒸発装置で得られる濃縮液を、前記メタン発酵装置又は該メタン発酵装置の上流側に流入させる供給管を有し、濃縮液のpHを9.5以下に設定する手段、又は、前記嫌気性処理工程中の塩類濃度及び/又は流入する原水の塩類濃度又は前記嫌気性処理工程中の陽イオン濃度を測定し、前記蒸発装置で、蒸発濃縮する濃縮倍率を制御する手段を備えたことを特徴とする嫌気性処理装置。 A methane fermentation apparatus for anaerobically treating organic waste water or organic waste, and an evaporation apparatus for concentrating and separating a part of the effluent from the methane fermentation apparatus, the concentrated liquid obtained by the evaporation apparatus, have a methane fermentation apparatus or supply pipe to flow into the upstream side of the methane fermentation apparatus, means for setting the pH of the concentrate to 9.5, or to salinity and / or the inflow in the anaerobic treatment step An anaerobic treatment apparatus comprising means for measuring a salt concentration of raw water or a cation concentration during the anaerobic treatment step and controlling a concentration ratio for evaporating and concentrating with the evaporation apparatus. 有機性廃水又は有機性廃棄物を二相式嫌気性処理する酸発酵装置及びメタン発酵装置と、該メタン発酵装置からの流出水の一部を濃縮分離する蒸発装置とを備え、該蒸発装置で得られる濃縮液を前記酸発酵装置又は酸発酵装置の上流側に流入させる供給管を有し、濃縮液のpHを9.5以下に設定する手段、又は、前記嫌気性処理工程中の塩類濃度及び/又は流入する原水の塩類濃度又は前記嫌気性処理工程中の陽イオン濃度を測定し、前記蒸発装置で、蒸発濃縮する濃縮倍率を制御する手段を備えたことを特徴とする嫌気性処理装置。 An acid fermentation apparatus and a methane fermentation apparatus that perform two-phase anaerobic treatment of organic wastewater or organic waste, and an evaporation apparatus that concentrates and separates a part of the effluent from the methane fermentation apparatus. the resulting concentrate have a supply pipe to flow into the upstream side of the acid fermentation apparatus or acid fermentation device, means for setting the pH of the concentrate to below 9.5, or, salts concentration in the anaerobic treatment step And / or an anaerobic treatment apparatus comprising means for measuring a concentration of salt in flowing raw water or a cation concentration in the anaerobic treatment step, and controlling a concentration ratio for evaporation and concentration in the evaporator. . 前記メタン発酵装置及び/又は酸発酵装置には、発酵液中の電気伝導率を計測する電気伝導度計を備えたことを特徴とする請求項又はに記載の嫌気性処理装置。 The anaerobic treatment apparatus according to claim 8 or 9 , wherein the methane fermentation apparatus and / or the acid fermentation apparatus includes an electrical conductivity meter for measuring electrical conductivity in the fermentation broth.
JP2009101574A 2009-04-20 2009-04-20 Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water Active JP5148550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101574A JP5148550B2 (en) 2009-04-20 2009-04-20 Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101574A JP5148550B2 (en) 2009-04-20 2009-04-20 Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water

Publications (2)

Publication Number Publication Date
JP2010247115A JP2010247115A (en) 2010-11-04
JP5148550B2 true JP5148550B2 (en) 2013-02-20

Family

ID=43310081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101574A Active JP5148550B2 (en) 2009-04-20 2009-04-20 Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water

Country Status (1)

Country Link
JP (1) JP5148550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645578B (en) * 2016-02-02 2018-06-08 广州中科正川环保科技有限公司 A kind of two-phase anaerobic process that biogas is recycled from native rubber processing waste water

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209686B2 (en) * 2010-10-08 2013-06-12 水ing株式会社 Organic waste water treatment apparatus and treatment method
TWI555708B (en) * 2011-01-17 2016-11-01 財團法人工業技術研究院 System and method for treating simultaneously wastewater containing organic and inorganic pollutants
JP5731209B2 (en) * 2011-01-24 2015-06-10 大阪瓦斯株式会社 Method and apparatus for treating soap production waste liquid
JP5742254B2 (en) * 2011-01-28 2015-07-01 栗田工業株式会社 Organic wastewater treatment method
JP5801769B2 (en) * 2012-06-28 2015-10-28 水ing株式会社 Method and apparatus for anaerobic digestion treatment of organic wastewater
NO335177B1 (en) * 2013-03-06 2014-10-13 Cambi Technology As Process and apparatus for thermal biodegradation and dewatering of biomass
JP6432226B2 (en) * 2014-09-05 2018-12-05 栗田工業株式会社 Method and apparatus for anaerobic digestion of sewage treatment sludge
JP6533113B2 (en) * 2015-07-29 2019-06-19 株式会社クラレ Wastewater treatment method using carrier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588897A (en) * 1978-12-27 1980-07-04 Hitachi Plant Eng & Constr Co Ltd Organic waste treating method
JPS6135899A (en) * 1984-07-27 1986-02-20 Mitsubishi Electric Corp Methane fermentation tank
JPS62160183A (en) * 1986-01-08 1987-07-16 Ebara Res Co Ltd Method for treating excretion
JPS6351997A (en) * 1986-08-22 1988-03-05 Toshihiko Hashimoto System for mixing and treating night soil and garbage
JP4503418B2 (en) * 2004-11-11 2010-07-14 荏原エンジニアリングサービス株式会社 Method and apparatus for treating organic wastewater containing salts
JP2006272252A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Method for treating nitrogen-containing organic drainage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645578B (en) * 2016-02-02 2018-06-08 广州中科正川环保科技有限公司 A kind of two-phase anaerobic process that biogas is recycled from native rubber processing waste water

Also Published As

Publication number Publication date
JP2010247115A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5148550B2 (en) Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water
Song et al. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges
Yan et al. A critical review on membrane hybrid system for nutrient recovery from wastewater
Eskicioglu et al. Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants
CN107235601B (en) Comprehensive electroplating wastewater treatment method, treatment system and application
CN104609632B (en) Zero-discharge treating process for coking wastewater
JP6727056B2 (en) Wastewater treatment equipment and wastewater treatment method
CN103288309A (en) Coal gasification wastewater zero-emission treatment method, treatment system and application thereof
CN107235600B (en) Electroplating wastewater treatment method, treatment system and application
CN107381932B (en) Chromium-containing wastewater treatment method, treatment system and application
Ferby et al. Reduction of reverse solute flux induced solute buildup in the feed solution of forward osmosis
JP5914964B2 (en) Ultrapure water production method
Seib et al. Reduced energy demand for municipal wastewater recovery using an anaerobic floating filter membrane bioreactor
Yang et al. A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors
CN107226581B (en) Zinc-containing wastewater treatment method, treatment system and application
Ab Hamid et al. Economic, energy and carbon footprint assessment of integrated forward osmosis membrane bioreactor (FOMBR) process in urban wastewater treatment
Wu et al. Smart utilisation of reverse solute diffusion in forward osmosis for water treatment: A mini review
JP5516892B2 (en) Water treatment method and ultrapure water production method
JP5702221B2 (en) Method and apparatus for treating wastewater containing ethanolamine and hydrazine
JP5143358B2 (en) Organic waste treatment method and apparatus
CN107200436A (en) One kind complexing electroplating effluent treatment method, processing system and application
WO2020080244A1 (en) Method for treating object to be treated
JP2013208594A (en) Method and apparatus for anaerobic wastewater treatment of organic wastewater
CN107365013B (en) Cyanide-containing wastewater treatment method, treatment system and application
JP2013208583A (en) Water treatment method, water treatment system, and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250