JP2011104585A - Wastewater treatment method and wastewater treatment apparatus - Google Patents

Wastewater treatment method and wastewater treatment apparatus Download PDF

Info

Publication number
JP2011104585A
JP2011104585A JP2010234876A JP2010234876A JP2011104585A JP 2011104585 A JP2011104585 A JP 2011104585A JP 2010234876 A JP2010234876 A JP 2010234876A JP 2010234876 A JP2010234876 A JP 2010234876A JP 2011104585 A JP2011104585 A JP 2011104585A
Authority
JP
Japan
Prior art keywords
nitrification
tank
oxidation
nitrification tank
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010234876A
Other languages
Japanese (ja)
Other versions
JP5733785B2 (en
Inventor
Yusuke Otake
祐介 大嶽
Shigehiro Suzuki
重浩 鈴木
Toshiaki Saito
利晃 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Metawater Co Ltd
Original Assignee
Nihon University
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Metawater Co Ltd filed Critical Nihon University
Priority to JP2010234876A priority Critical patent/JP5733785B2/en
Publication of JP2011104585A publication Critical patent/JP2011104585A/en
Application granted granted Critical
Publication of JP5733785B2 publication Critical patent/JP5733785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method which controls diffusion into atmosphere of N<SB>2</SB>O gas generated in biotreatment of N<SB>2</SB>containing wastewater. <P>SOLUTION: A control apparatus 9 controls an aeration-amount control apparatus 10 based on the oxidation-reduction potential detected by an ORP meter 7 to adjust the aeration amount of each nitration tank, so that the oxidation-reduction potential of each nitration tank is controlled to be a target oxidation-reduction potential for maintaining an ammoniacal oxidation bacteria activity to be equal to or less than a nitrous-acid oxidation bacteria activity in each nitration tank. Therefore, the condition in each nitration tank is maintained to be the ammoniacal oxidation bacteria activity≤the nitrous-acid oxidation bacteria activity, and remaining of nitrous acid, that is an occurrence cause of nitrous oxide, in a treatment raw water, is controlled. As a result, diffusion into the atmosphere of N<SB>2</SB>O gas, generated in biotreatment of a nitrogen containing wastewater, is controlled. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、窒素含有排水の生物処理時に発生する亜酸化窒素ガス(NO)が大気中へ拡散することを抑制する排水処理方法及び排水処理装置に関するものである。 The present invention relates to a wastewater treatment method and a wastewater treatment apparatus that suppresses diffusion of nitrous oxide gas (N 2 O) generated during biological treatment of nitrogen-containing wastewater into the atmosphere.

生活排水や工場排水などの排水中に含まれるアンモニア性窒素は、排水の放流先となる湖沼や内湾などの閉鎖性水域における溶存酸素の低下や富栄養化現象の原因になる。このため、多くの排水処理設備では硝化処理が行われている(例えば特許文献1参照)。この硝化処理とは、反応槽内の排水に投入した、若しくは、排水中に元々存在する微生物を利用して、アンモニア性窒素を亜硝酸性窒素や硝酸性窒素に硝化する処理のことを意味する。   Ammonia nitrogen contained in wastewater such as domestic wastewater and industrial wastewater causes a decrease in dissolved oxygen and eutrophication in closed water areas such as lakes and inner bays where the wastewater is discharged. For this reason, nitrification is performed in many wastewater treatment facilities (see, for example, Patent Document 1). This nitrification treatment means treatment for nitrifying ammonia nitrogen into nitrite nitrogen or nitrate nitrogen by using microorganisms that have been put into the waste water in the reaction tank or originally present in the waste water. .

このような硝化処理では、微生物活動や反応槽の運転条件などの変化によって、反応副生成物として亜酸化窒素ガス(NO)が発生することが知られている。亜酸化窒素ガスは温室効果ガスであり、その温室効果は二酸化炭素ガスの約310倍と非常に高い。また、亜酸化窒素ガスは、フロンガスと同様、成層圏のオゾン層を破壊するオゾン層破壊ガスとしても問題視されている。このため、大気中への亜酸化窒素ガスの拡散を抑制することが地球環境保護の観点から急務となっている。 In such nitrification treatment, it is known that nitrous oxide gas (N 2 O) is generated as a reaction by-product due to changes in microbial activity, reaction tank operating conditions, and the like. Nitrous oxide gas is a greenhouse gas, and its greenhouse effect is as high as about 310 times that of carbon dioxide gas. Nitrous oxide gas is also regarded as a problem as an ozone depleting gas that destroys the stratospheric ozone layer, like chlorofluorocarbon gas. For this reason, suppressing the diffusion of nitrous oxide gas into the atmosphere is an urgent task from the viewpoint of protecting the global environment.

特開平6−63588公報JP-A-6-63588

高度処理施設設計マニュアル、p225−252、日本下水道協会、平成6年Advanced treatment facility design manual, p225-252, Japan Sewerage Association, 1994 嫌気−無酸素−好気法運転管理マニュアル(案)、東京都下水道サービス、平成9年3月、p21−p53Anaerobic-anoxic-aerobic operation management manual (draft), Tokyo Sewerage Service, March 1997, p21-p53

硝化工程は、以下に示す化学反応式(1)及び化学反応式(2)によりアンモニアが酸化されて亜硝酸となる工程と、以下に示す化学反応式(3)により亜硝酸が酸化されて硝酸となる工程と、を含む。また、以下に示す化学反応式(1)により生成されたNHOHは、以下に示す化学反応式(2)により酸化されてNO -となるが、NHOHの一部は、以下に示す化学反応式(4)により酸化されてNOとなる。 In the nitrification step, ammonia is oxidized to nitrous acid by chemical reaction formula (1) and chemical reaction formula (2) shown below, and nitrous acid is oxidized by nitric acid by chemical reaction formula (3) shown below. And a process that becomes. Moreover, NH 2 OH produced by the chemical reaction formula (1) shown below can be oxidized by chemical reaction formula (2) shown below NO 2 - and becomes, in some NH 2 OH, below It is oxidized to N 2 O by the chemical reaction formula (4) shown.

NH+O+2e-+2H→NHOH+HO …(1)
NHOH+HO→NO -+5H+4e …(2)
NO -+0.5O→NO - …(3)
NHOH+0.5O→0.5NO+1.5HO …(4)
NH 3 + O 2 + 2e + 2H + → NH 2 OH + H 2 O (1)
NH 2 OH + H 2 O → NO 2 + 5H + + 4e (2)
NO 2 + 0.5O 2 → NO 3 (3)
NH 2 OH + 0.5O 2 → 0.5N 2 O + 1.5H 2 O (4)

このような硝化反応を促進するためには、排水中に1.5mg/L程度の溶存酸素が残存していることが必要である(非特許文献1及び非特許文献2参照)。このため、硝化工程では、ブロアからのエア送気により曝気を行い、必要な溶存酸素量を確保するようにしている。しかしながら、溶存酸素量を指標とするDO制御では、溶存酸素濃度(DO)を所定値(例えば1.5mg/L)以上に維持するために、曝気量が過剰になる傾向がある。NOは溶解度が高いため、上記化学反応式(4)により生成されるNOは槽内水中に溶存し得るが、曝気量が過剰となった場合には、溶存しているNOが大気中に拡散してしまう。 In order to promote such a nitrification reaction, it is necessary that about 1.5 mg / L of dissolved oxygen remains in the waste water (see Non-Patent Document 1 and Non-Patent Document 2). For this reason, in the nitrification process, aeration is performed by air supply from a blower to ensure a necessary amount of dissolved oxygen. However, in the DO control using the dissolved oxygen amount as an index, the aeration amount tends to be excessive in order to maintain the dissolved oxygen concentration (DO) at a predetermined value (for example, 1.5 mg / L) or more. Since N 2 O has a high solubility, N 2 O produced by the chemical reaction formula (4) may be dissolved in the intracisternal water, but if aeration amount becomes excessive is dissolved N 2 O diffuses into the atmosphere.

一方、曝気量が不足した場合には、化学反応式(1)〜(3)からなる硝化工程に必要な酸素量が確保できないために、硝化反応が十分に進行せず、槽内水中にNO -が蓄積する。この結果、下記の化学反応式(5)又は化学反応式(6)の反応が生じ、排水処理工程における硝化率が低下して、NO転換率が上昇することによって、大気中にNOが拡散することがある。なお、化学反応式(5)及び化学反応式(6)のうち、何れの反応が進行するかは活性汚泥の性状に依存する。 On the other hand, when the amount of aeration is insufficient, the amount of oxygen necessary for the nitrification step consisting of the chemical reaction formulas (1) to (3) cannot be secured, so that the nitrification reaction does not proceed sufficiently and NO in the water in the tank. 2 - accumulates. As a result, the reaction of the following chemical reaction formula (5) or chemical reaction formula (6) occurs, the nitrification rate in the wastewater treatment process decreases, and the N 2 O conversion rate increases, thereby increasing N 2 in the atmosphere. O may diffuse. In addition, which reaction advances among chemical reaction formula (5) and chemical reaction formula (6) depends on the property of the activated sludge.

NHOH+NO -→NO+HO+OH- …(5)
+NO -→0.5NO+0.5HO+OH- …(6)
NH 2 OH + NO 2 → N 2 O + H 2 O + OH (5)
H 2 + NO 2 → 0.5N 2 O + 0.5H 2 O + OH (6)

以上のことから、窒素含有排水の生物処理時に発生するNOガスが大気中へ拡散することを抑制する技術の提供が期待されている。 From the above, provision of a technique for suppressing the diffusion of N 2 O gas generated during biological treatment of nitrogen-containing wastewater into the atmosphere is expected.

本発明は、上記課題に鑑みてなされたものであって、その目的は、窒素含有排水の生物処理時に発生するNOガスが大気中へ拡散することを抑制する排水処理方法及び排水処理装置を提供することにある。 The present invention was made in view of the above problems, suppress waste water treatment method and a wastewater treatment apparatus that N 2 O gas generated during biological treatment of the nitrogen-containing waste water from diffusing into the atmosphere Is to provide.

上記課題を解決し、目的を達成するために、本発明に係る排水処理方法は、窒素含有排水の流れ方向に沿って配列された複数段の硝化槽において、アンモニア酸化細菌と亜硝酸酸化細菌とを含む硝化菌を利用して窒素含有排水中に含まれるアンモニア性窒素を段階的に硝化する硝化ステップを含み、該硝化ステップは、各硝化槽の曝気量を調整することによって、各硝化槽の酸化還元電位が、各硝化槽においてアンモニア酸化細菌活性を亜硝酸酸化細菌活性と同等もしくはそれ以下に維持するための目標酸化還元電位になるように、制御するステップを含む。   In order to solve the above problems and achieve the object, a wastewater treatment method according to the present invention comprises ammonia oxidizing bacteria and nitrite oxidizing bacteria in a multi-stage nitrification tank arranged along the flow direction of nitrogen-containing wastewater. A nitrification step in which ammonia nitrogen contained in nitrogen-containing wastewater is gradually nitrified using a nitrifying bacterium containing the nitrification bacteria, and the nitrification step comprises adjusting the amount of aeration in each nitrification tank. The step of controlling the oxidation-reduction potential to be a target oxidation-reduction potential for maintaining the ammonia-oxidizing bacterial activity in each nitrification tank to be equal to or lower than the nitrite-oxidizing bacterial activity is included.

上記課題を解決し、目的を達成するために、本発明に係る排水処理装置は、窒素含有排水の流れ方向に沿って配列された、アンモニア酸化細菌と亜硝酸酸化細菌とを含む硝化菌を利用して窒素含有排水中に含まれるアンモニア性窒素を段階的に硝化する複数段の硝化槽と、各硝化槽の曝気量を調整する曝気量制御装置と、各硝化槽の酸化還元電位を検出する検出装置と、前記検出装置によって検出された酸化還元電位に基づいて前記曝気量制御装置を制御することによって各硝化槽の曝気量を調整することにより、各硝化槽の酸化還元電位が、各硝化槽においてアンモニア酸化細菌活性を亜硝酸酸化細菌活性と同等もしくはそれ以下に維持するための目標酸化還元電位になるように、制御する制御装置と、を備える。   In order to solve the above problems and achieve the object, the wastewater treatment apparatus according to the present invention uses nitrifying bacteria including ammonia oxidizing bacteria and nitrite oxidizing bacteria arranged along the flow direction of nitrogen-containing wastewater. Multiple stages of nitrification tanks that nitrify ammonia nitrogen contained in nitrogen-containing wastewater in stages, an aeration amount control device that adjusts the aeration amount of each nitrification tank, and a redox potential of each nitrification tank By adjusting the aeration amount of each nitrification tank by controlling the aeration amount control device based on the detection device and the oxidation-reduction potential detected by the detection device, the oxidation-reduction potential of each nitrification tank And a control device for controlling the ammonia oxidizing bacterial activity in the tank so as to achieve a target oxidation-reduction potential for maintaining the activity of the ammonia oxidizing bacterial activity equal to or lower than that of the nitrite oxidizing bacterial activity.

本発明に係る排水処理方法及び排水処理装置によれば、窒素含有排水の生物処理時に発生するNOガスが大気中へ拡散することを抑制できる。 According to the waste water treatment method and waste water treatment apparatus according to the present invention, it is possible to suppress the diffusion of N 2 O gas generated during biological treatment of nitrogen-containing waste water into the atmosphere.

図1は、本発明の一実施形態である排水処理装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a wastewater treatment apparatus according to an embodiment of the present invention. 図2は、各硝化槽の酸化還元電位の制御が適切に行われた場合における槽内状態を示す模式図である。FIG. 2 is a schematic diagram showing the state in the tank when the oxidation-reduction potential of each nitrification tank is appropriately controlled. 図3は、各硝化槽の酸化還元電位の制御が適切に行われていない場合における槽内状態を示す模式図である。FIG. 3 is a schematic diagram showing a state in the tank when the oxidation-reduction potential of each nitrification tank is not properly controlled.

以下、図面を参照して、本発明の一実施形態である排水処理装置の構成及びその動作(排水処理方法)について説明する。   Hereinafter, with reference to drawings, the composition of drainage processing equipment which is one embodiment of the present invention and the operation (drainage processing method) are explained.

〔排水処理装置の構成〕
始めに、図1を参照して、本発明の一実施形態である排水処理装置の構成について説明する。
[Configuration of wastewater treatment equipment]
First, with reference to FIG. 1, the structure of the waste water treatment equipment which is one Embodiment of this invention is demonstrated.

図1は、本発明の一実施形態である排水処理装置の構成を示す模式図である。図1に示すように、本発明の一実施形態である排水処理装置は、無酸素槽1、複数段の硝化槽2a〜2d(第1〜第4槽),硝化液循環経路3、固液分離槽4、及び汚泥返送経路5を備える。無酸素槽1には、窒素含有処理原水(以下、処理原水と略記)が流入する。無酸素槽1では、無酸素条件下で処理原水中に含まれる亜硝酸性窒素及び硝酸性窒素が窒素ガスに還元される。硝化槽2a〜2dは、処理原水の流れ方向に沿って直列に配列されている。各硝化槽には、無酸素槽1から流出した処理原水が流入する。   FIG. 1 is a schematic diagram showing a configuration of a wastewater treatment apparatus according to an embodiment of the present invention. As shown in FIG. 1, the waste water treatment apparatus according to one embodiment of the present invention includes an oxygen-free tank 1, a plurality of nitrification tanks 2 a to 2 d (first to fourth tanks), a nitrification liquid circulation path 3, and a solid-liquid A separation tank 4 and a sludge return path 5 are provided. Nitrogen-containing treated raw water (hereinafter abbreviated as treated raw water) flows into the anoxic tank 1. In the anoxic tank 1, nitrite nitrogen and nitrate nitrogen contained in the treated raw water are reduced to nitrogen gas under anoxic conditions. The nitrification tanks 2a to 2d are arranged in series along the flow direction of the treated raw water. The raw water treated from the anoxic tank 1 flows into each nitrification tank.

各硝化槽には、散気装置6とORP計7とが備えられている。散気装置6は、ブロア(B)8から供給される空気を利用して、各硝化槽内に貯留されている活性汚泥に対し散気を行う。詳しくは後述するが、各硝化槽では、好気条件下で処理原水中に含まれるアンモニア性窒素が亜硝酸性窒素及び硝酸性窒素に硝化される共に処理原水中に含まれるリンが活性汚泥中に取り込まれる。ORP計7は、各硝化槽内の酸化還元電位(ORP)を測定する装置である。ORP計7は、測定された酸化還元電位の値を制御装置9に入力する。   Each nitrification tank is provided with an air diffuser 6 and an ORP meter 7. The air diffuser 6 diffuses the activated sludge stored in each nitrification tank using the air supplied from the blower (B) 8. As will be described in detail later, in each nitrification tank, ammonia nitrogen contained in the treated raw water under aerobic conditions is nitrified to nitrite nitrogen and nitrate nitrogen, and phosphorus contained in the treated raw water contains activated sludge. Is taken in. The ORP meter 7 is a device that measures the oxidation-reduction potential (ORP) in each nitrification tank. The ORP meter 7 inputs the measured oxidation-reduction potential value to the control device 9.

散気装置6には曝気量制御装置10が設けられている。曝気量制御装置10は、空気流量制御弁などによって構成され、制御装置9からの制御信号に従って各硝化槽の曝気量を個別に制御する。最下流の硝化槽2dには、溶存酸素濃度(DO)を測定するための検出装置11が設けられている。検出装置11は、測定された溶存酸素濃度の値を制御装置9に入力する。硝化液循環経路3は、無酸素槽1と最下流の硝化槽2dとを接続する配管であり、硝化槽2d内の硝化液を無酸素槽1に循環する。   The aeration device 6 is provided with an aeration amount control device 10. The aeration amount control device 10 is constituted by an air flow rate control valve or the like, and individually controls the aeration amount of each nitrification tank in accordance with a control signal from the control device 9. The most downstream nitrification tank 2d is provided with a detection device 11 for measuring the dissolved oxygen concentration (DO). The detection device 11 inputs the measured dissolved oxygen concentration value to the control device 9. The nitrification liquid circulation path 3 is a pipe connecting the anoxic tank 1 and the most downstream nitrification tank 2 d, and circulates the nitrification liquid in the nitrification tank 2 d to the anoxic tank 1.

固液分離槽4には、最下流の硝化槽2dから流出した処理原水が流入する。固液分離槽4では、処理原水が分離液4aと活性汚泥4bとに分離される。固液分離槽4の側壁には、図示しない配管が接続されており、図示しない配管を介して消毒処理された分離液4aを系外に排出できるように構成されている。また、固液分離槽4の底部には、汚泥返送経路5が接続されており、固液分離槽4の底部に堆積した活性汚泥4bを無酸素槽1と硝化槽2b,2cとに返送できるように構成されている。これにより、無酸素槽1及び硝化槽2b,2c内の生物量を所定量に維持することができる。   Into the solid-liquid separation tank 4, the treated raw water flowing out from the most downstream nitrification tank 2 d flows. In the solid-liquid separation tank 4, the treated raw water is separated into the separation liquid 4 a and the activated sludge 4 b. A pipe (not shown) is connected to the side wall of the solid-liquid separation tank 4 so that the sterilized separation liquid 4a can be discharged out of the system through the pipe (not shown). In addition, a sludge return path 5 is connected to the bottom of the solid-liquid separation tank 4 so that the activated sludge 4b deposited on the bottom of the solid-liquid separation tank 4 can be returned to the anoxic tank 1 and the nitrification tanks 2b and 2c. It is configured as follows. Thereby, the biomass in the anoxic tank 1 and the nitrification tanks 2b and 2c can be maintained at a predetermined amount.

〔硝化工程〕
次に、硝化槽2a〜2dにおいて行われる硝化工程について説明する。
[Nitrification process]
Next, the nitrification process performed in the nitrification tanks 2a to 2d will be described.

無酸素槽1からの処理原水は順次、硝化槽2aから硝化槽2dへと送られ、各硝化槽内において、好気性条件下で活性汚泥中の好気性微生物である硝化菌により処理原水中のアンモニア性窒素(NH)が亜硝酸性窒素(NO -)や硝酸性窒素(NO -)に硝化処理される(化学反応式(1)〜(3))。硝化菌は、主に、化学反応式(1),(2)を促進するアンモニア酸化細菌(AOB)と、化学反応式(3)を促進する亜硝酸酸化細菌(NOB)とを含む。 The treated raw water from the anoxic tank 1 is sequentially sent from the nitrification tank 2a to the nitrification tank 2d, and in each nitrification tank, the treated raw water is treated by nitrifying bacteria which are aerobic microorganisms in activated sludge under aerobic conditions. Ammonia nitrogen (NH 3 ) is nitrified to nitrite nitrogen (NO 2 ) or nitrate nitrogen (NO 3 ) (chemical reaction formulas (1) to (3)). The nitrifying bacteria mainly include ammonia oxidizing bacteria (AOB) that promote chemical reaction formulas (1) and (2) and nitrite oxidizing bacteria (NOB) that promote chemical reaction formula (3).

NH+O+2e-+2H→NHOH+HO …(1)
NHOH+HO→NO -+5H+4e …(2)
NO -+0.5O→NO - …(3)
NH 3 + O 2 + 2e + 2H + → NH 2 OH + H 2 O (1)
NH 2 OH + H 2 O → NO 2 + 5H + + 4e (2)
NO 2 + 0.5O 2 → NO 3 (3)

これらの各菌の活性が、アンモニア酸化細菌活性>亜硝酸酸化細菌活性となる条件下では、化学反応式(3)の反応が速やかに進行しないため、処理原水中にNO -が蓄積して、下記の化学反応式(5)又は化学反応式(6)の反応により、NOが生成されやすくなる。一方、アンモニア酸化細菌活性≦亜硝酸酸化細菌活性となる条件下では、化学反応式(3)の反応が速やかに進行するため、上記NOの生成反応は進行し難くなる。なお、本明細書中において、活性とは、単位汚泥量あたりの酸化速度のことを意味する。 Since the reaction of the chemical reaction formula (3) does not proceed rapidly under the condition that the activity of each of these bacteria is ammonia oxidizing bacterial activity> nitrite oxidizing bacterial activity, NO 2 accumulates in the treated raw water. N 2 O is easily generated by the reaction of the following chemical reaction formula (5) or chemical reaction formula (6). On the other hand, since the reaction of chemical reaction formula (3) proceeds rapidly under the condition of ammonia oxidizing bacterial activity ≦ nitrite oxidizing bacterial activity, the N 2 O production reaction hardly proceeds. In addition, in this specification, activity means the oxidation rate per unit sludge amount.

NHOH+NO -→NO+HO+OH- …(5)
+NO -→0.5NO+0.5HO+OH- …(6)
NH 2 OH + NO 2 → N 2 O + H 2 O + OH (5)
H 2 + NO 2 → 0.5N 2 O + 0.5H 2 O + OH (6)

一方、溶存酸素濃度が高いときには、アンモニア酸化細菌活性≦亜硝酸酸化細菌活性となりNO生成が抑制される。しかしながら、各硝化槽の溶存酸素濃度を比較すると、上流側に位置する硝化槽2a,2bでは、処理原水により持ち込まれるアンモニア性窒素(NH)が多いため、アンモニア酸化細菌が優先的に増殖する。すなわち、硝化槽2a,2bでは、槽内の菌活性はアンモニア酸化細菌活性>亜硝酸酸化細菌活性となる傾向にあり、槽内のアンモニア酸化細菌が活発に酸素を消費するため、溶存酸素は低くなる傾向がある。また、硝化槽の前段では溶存酸素が低濃度の状態から高い状態へと移行する部分が存在し、アンモニア酸化菌の活性と亜硝酸酸化菌の活性のバランスが崩れやすい傾向が認められる。このような現象は亜硝酸の生成につながり好ましくない。 On the other hand, when the dissolved oxygen concentration is high, the ammonia oxidizing bacterial activity ≦ the nitrite oxidizing bacterial activity, and N 2 O production is suppressed. However, when the dissolved oxygen concentration of each nitrification tank is compared, in the nitrification tanks 2a and 2b located on the upstream side, a large amount of ammonia nitrogen (NH 3 ) is brought in by the treated raw water, so that ammonia oxidizing bacteria proliferate preferentially. . That is, in the nitrification tanks 2a and 2b, the bacterial activity in the tank tends to be ammonia oxidizing bacterial activity> nitrite oxidizing bacterial activity, and the ammonia oxidizing bacteria in the tank actively consume oxygen, so the dissolved oxygen is low. Tend to be. In addition, there is a portion where dissolved oxygen shifts from a low concentration state to a high state in the previous stage of the nitrification tank, and it is recognized that the balance between the activity of ammonia oxidizing bacteria and the activity of nitrite oxidizing bacteria tends to be lost. Such a phenomenon leads to generation of nitrous acid, which is not preferable.

そこで、本発明では、制御装置9が、各硝化槽内に設置したORP計7による連続測定データのモニタリングを行いつつ、曝気量制御装置10によって各硝化槽の曝気量を調整することにより、各硝化槽のORPが、各硝化槽においてアンモニア酸化細菌活性を亜硝酸酸化細菌活性と同等もしくはそれ以下に維持するための目標酸化還元電位になるように、制御する。目標酸化還元電位は、各硝化槽においてアンモニア酸化細菌活性が亜硝酸酸化細菌活性と同等もしくはそれ以下に維持されるように、予め実験データの蓄積により各硝化槽について設定されている。   Therefore, in the present invention, the controller 9 adjusts the aeration amount of each nitrification tank by the aeration amount control device 10 while monitoring the continuous measurement data by the ORP meter 7 installed in each nitrification tank. The ORP of the nitrification tank is controlled so as to reach a target oxidation-reduction potential for maintaining the ammonia oxidizing bacterial activity equal to or lower than the nitrite oxidizing bacterial activity in each nitrifying tank. The target oxidation-reduction potential is set for each nitrification tank in advance by accumulating experimental data so that the ammonia-oxidizing bacteria activity is maintained equal to or less than the nitrite-oxidizing bacteria activity in each nitrification tank.

具体的には、制御装置9は、曝気量制御装置10を制御することにより、図2に模式的に示すように各硝化槽(第1〜第4槽)のORPを後段に行くほど段階的に上昇させる。これにより、各硝化槽内をアンモニア酸化細菌活性≦亜硝酸酸化細菌活性となる条件に維持することができ、亜酸化窒素の発生原因となる亜硝酸が処理原水中に残存することを抑制できる。なお、図3は空気量を一定として各硝化槽のORPの制御が適切に行われていない場合を示すものであり、アンモニア酸化細菌活性が亜硝酸酸化細菌活性よりも大きい硝化槽2b(第2槽)において亜硝酸酸化が追い付かず、亜硝酸が水中に残存することを示している。   Specifically, the control device 9 controls the aeration amount control device 10 to gradually increase the ORP of each nitrification tank (first to fourth tanks) as shown in FIG. To rise. Thereby, the inside of each nitrification tank can be maintained under the conditions of ammonia oxidizing bacterial activity ≦ nitrite oxidizing bacterial activity, and nitrite that causes nitrous oxide generation can be suppressed from remaining in the treated raw water. FIG. 3 shows a case where the air volume is constant and the ORP of each nitrification tank is not properly controlled. The nitrification tank 2b (second oxidization bacteria activity is larger than the nitrite oxidation bacteria activity). In the tank), nitrite oxidation could not catch up and nitrite remained in water.

このように、各硝化槽において、常にアンモニア酸化細菌活性≦亜硝酸酸化細菌活性となるように各硝化槽のORPを制御することにより、窒素含有排水の生物処理時に発生するNOガスが大気中へ拡散することを抑制することができる。また、曝気量を最適に制御することにより、ブロア8の消費電力量を削減することができる。 Thus, in each nitrification tank, N 2 O gas generated during biological treatment of nitrogen-containing wastewater is controlled by controlling the ORP of each nitrification tank so that ammonia-oxidizing bacterial activity ≦ nitrite-oxidizing bacterial activity. Diffusion into the inside can be suppressed. Moreover, the power consumption of the blower 8 can be reduced by optimally controlling the amount of aeration.

なお、本実施形態では、曝気量を制御することによって各硝化槽のORPを制御したが、各硝化槽への酸化剤又は還元剤の添加量を制御することによって、各硝化槽のORPを制御するようにしてもよい。この場合、酸化剤としては、純酸素、オゾン、及び次亜塩素酸ナトリウムのうちの少なくとも一つ、還元剤としては、チオ硫酸ナトリウム及び硫化ナトリウムのうちの少なくとも一つを用いることができる。   In this embodiment, the ORP of each nitrification tank is controlled by controlling the amount of aeration. However, the ORP of each nitrification tank is controlled by controlling the amount of oxidizing agent or reducing agent added to each nitrification tank. You may make it do. In this case, at least one of pure oxygen, ozone, and sodium hypochlorite can be used as the oxidizing agent, and at least one of sodium thiosulfate and sodium sulfide can be used as the reducing agent.

また、アンモニア酸化細菌の増殖に最適なpHは7.0〜8.5であり、亜硝酸酸化細菌の増殖に最適なpHは6.0〜7.5であるため、ORPの段階的制御と合わせて、硝化槽2a,2bのpHを7.0以下、硝化槽2c,2dのpHを7.0以上にする制御を行うことが好ましい。また、硝化槽2b,2cでは、アンモニア酸化細菌が増殖しやすく、遅れて亜硝酸酸化細菌の増殖が進む傾向があるため、硝化槽2b,2cに一部汚泥返送を行うことにより、好気槽前段で亜硝酸酸化菌の活性を高めることもできる。   In addition, the optimum pH for the growth of ammonia oxidizing bacteria is 7.0 to 8.5, and the optimum pH for the growth of nitrite oxidizing bacteria is 6.0 to 7.5. In addition, it is preferable to control the nitrification tanks 2a and 2b to have a pH of 7.0 or less and the nitrification tanks 2c and 2d to have a pH of 7.0 or more. Further, in the nitrification tanks 2b and 2c, ammonia-oxidizing bacteria are likely to grow, and there is a tendency for the growth of nitrite-oxidizing bacteria to proceed with a delay. Therefore, by partially returning sludge to the nitrifying tanks 2b and 2c, an aerobic tank The activity of nitrite oxidizing bacteria can also be increased in the previous stage.

下記の表1には、都市下水最初沈殿池越流水(T−N濃度;25mg/L、NH4-N濃度;20mg/L)を、図1に示す装置を用いて、本発明の方法により、各硝化槽2a〜2dのORPが、各硝化槽2a〜2dにおいてアンモニア酸化細菌活性≦亜硝酸酸化細菌活性を維持するのに、最適な制御範囲となるように、曝気量を調整しながら排水処理を行った際のNO排出量を示している。一方、表2には、図1に示す装置を用いて、上記細菌活性の制御は行わずに排水処理を行った際のNO排出量を示している。表1に示すように、本発明の方法によれば、NOガスの排出量を大幅に削減することができることが確認された。 In Table 1 below, urban sewage first sedimentation basin overflow water (TN concentration: 25 mg / L, NH4-N concentration; 20 mg / L) is obtained by the method of the present invention using the apparatus shown in FIG. Waste water treatment while adjusting the amount of aeration so that the ORP of each nitrification tank 2a to 2d is in the optimal control range in order to maintain the ammonia oxidation bacteria activity ≦ the nitrite oxidation bacteria activity in each nitrification tank 2a to 2d This shows the amount of N 2 O emission when. On the other hand, Table 2 shows N 2 O emission when the wastewater treatment is performed without controlling the bacterial activity using the apparatus shown in FIG. As shown in Table 1, according to the method of the present invention, it was confirmed that the discharge amount of N 2 O gas can be greatly reduced.

Figure 2011104585
Figure 2011104585
Figure 2011104585
Figure 2011104585

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 脱窒槽
2 硝化槽
3 硝化液循環経路
4 固液分離槽
5 汚泥返送経路
6 散気装置
7 ORP計
8 ブロア
9 制御装置
10 曝気量制御装置
11 検出装置
DESCRIPTION OF SYMBOLS 1 Denitrification tank 2 Nitrification tank 3 Nitrification liquid circulation path 4 Solid-liquid separation tank 5 Sludge return path 6 Aeration apparatus 7 ORP meter 8 Blower 9 Control apparatus 10 Aeration amount control apparatus 11 Detection apparatus

Claims (6)

窒素含有排水の流れ方向に沿って配列された複数段の硝化槽において、アンモニア酸化細菌と亜硝酸酸化細菌とを含む硝化菌を利用して窒素含有排水中に含まれるアンモニア性窒素を段階的に硝化する硝化ステップを含み、
前記硝化ステップは、各硝化槽の曝気量を調整することによって、各硝化槽の酸化還元電位が、各硝化槽においてアンモニア酸化細菌活性を亜硝酸酸化細菌活性と同等もしくはそれ以下に維持するための目標酸化還元電位になるように、制御する制御ステップを含むこと
を特徴とする排水処理方法。
In a multi-stage nitrification tank arranged along the flow direction of nitrogen-containing wastewater, ammonia nitrogen contained in nitrogen-containing wastewater is stepped using nitrifying bacteria containing ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. Including a nitrification step to nitrify,
The nitrification step is for adjusting the aeration amount of each nitrification tank so that the oxidation-reduction potential of each nitrification tank maintains the ammonia-oxidizing bacterial activity in each nitrifying tank equal to or less than the nitrite oxidizing bacterial activity. A wastewater treatment method characterized by including a control step of controlling so as to achieve a target oxidation-reduction potential.
前記制御ステップは、各硝化槽への酸化剤又は還元剤の添加量を制御するステップを含むことを特徴とする請求項1に記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein the control step includes a step of controlling an addition amount of an oxidizing agent or a reducing agent to each nitrification tank. 前記酸化剤は、純酸素、オゾン、及び次亜塩素酸ナトリウムのうちの少なくとも一つであり、前記還元剤は、チオ硫酸ナトリウム及び硫化ナトリウムのうちの少なくとも一つであることを特徴とする請求項2に記載の排水処理方法。   The oxidizing agent is at least one of pure oxygen, ozone, and sodium hypochlorite, and the reducing agent is at least one of sodium thiosulfate and sodium sulfide. Item 3. A wastewater treatment method according to Item 2. 前記制御ステップは、酸又はアルカリ剤を添加することにより各硝化槽のPHを調整するステップを含むことを特徴とする請求項1に記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein the control step includes a step of adjusting the pH of each nitrification tank by adding an acid or an alkali agent. 処理水を固液分離することによって得られた汚泥を2段目以降の硝化槽に返送するステップを含むことを特徴とする請求項1に記載の排水処理方法。   The wastewater treatment method according to claim 1, further comprising a step of returning sludge obtained by solid-liquid separation of the treated water to the second and subsequent nitrification tanks. 窒素含有排水の流れ方向に沿って配列された、アンモニア酸化細菌と亜硝酸酸化細菌とを含む硝化菌を利用して窒素含有排水中に含まれるアンモニア性窒素を段階的に硝化する複数段の硝化槽と、
各硝化槽の曝気量を調整する曝気量制御装置と、
各硝化槽の酸化還元電位を検出する検出装置と、
前記検出装置によって検出された酸化還元電位に基づいて前記曝気量制御装置を制御することによって各硝化槽の曝気量を調整することにより、各硝化槽の酸化還元電位が、各硝化槽においてアンモニア酸化細菌活性を亜硝酸酸化細菌活性と同等もしくはそれ以下に維持するための目標酸化還元電位になるように、制御する制御装置と、
を備えることを特徴とする排水処理装置。
Multiple stages of nitrification that stepwise nitrify ammonia nitrogen contained in nitrogen-containing wastewater using nitrifying bacteria containing ammonia-oxidizing bacteria and nitrite-oxidizing bacteria arranged along the flow direction of nitrogen-containing wastewater A tank,
An aeration amount control device for adjusting the aeration amount of each nitrification tank;
A detection device for detecting the oxidation-reduction potential of each nitrification tank;
By adjusting the aeration amount of each nitrification tank by controlling the aeration amount control device based on the oxidation-reduction potential detected by the detection device, the oxidation-reduction potential of each nitrification tank is converted to ammonia oxidation in each nitrification tank. A control device for controlling the bacterial activity to become a target redox potential for maintaining the bacterial activity equal to or lower than the nitrite oxidizing bacterial activity;
A wastewater treatment apparatus comprising:
JP2010234876A 2009-10-20 2010-10-19 Waste water treatment method and waste water treatment equipment Active JP5733785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234876A JP5733785B2 (en) 2009-10-20 2010-10-19 Waste water treatment method and waste water treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009241012 2009-10-20
JP2009241012 2009-10-20
JP2010234876A JP5733785B2 (en) 2009-10-20 2010-10-19 Waste water treatment method and waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2011104585A true JP2011104585A (en) 2011-06-02
JP5733785B2 JP5733785B2 (en) 2015-06-10

Family

ID=44228704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234876A Active JP5733785B2 (en) 2009-10-20 2010-10-19 Waste water treatment method and waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP5733785B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2011147858A (en) * 2010-01-20 2011-08-04 Hitachi Ltd Apparatus and method for treating sewage
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2012148217A (en) * 2011-01-17 2012-08-09 Toshiba Corp Biological treatment method of wastewater, and wastewater treatment apparatus
WO2012128212A1 (en) * 2011-03-18 2012-09-27 栗田工業株式会社 Water treatment method and ultrapure water production method
JP2012228646A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Biological water treating apparatus
JP2015027659A (en) * 2013-03-08 2015-02-12 メタウォーター株式会社 Device and method for processing drain water
JP2016013502A (en) * 2014-07-01 2016-01-28 メタウォーター株式会社 N2o suppression type water treatment method and treatment device

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190796A (en) * 1984-10-08 1986-05-08 Showa Denko Kk Treatment of sewage containing nitrogen
JPS63291698A (en) * 1987-05-25 1988-11-29 Osaka Gas Co Ltd Biological denitrification of waste water
JPH03278894A (en) * 1990-03-28 1991-12-10 Nippon Steel Corp Simultaneous removal of bod, nitrogen compound and phosphorus compound in waste water
JPH047095A (en) * 1990-04-25 1992-01-10 Nippon Steel Corp Uniformly mixing method of aeration tank in activated sludge treatment
JPH04110198U (en) * 1991-03-07 1992-09-24 株式会社明電舎 Anaerobic/aerobic activated sludge treatment equipment
JPH0663589A (en) * 1992-08-25 1994-03-08 Kurita Water Ind Ltd Sewage treatment device
JPH06312197A (en) * 1993-04-30 1994-11-08 Meidensha Corp Activated sludge treatment apparatus
JPH0780494A (en) * 1993-07-22 1995-03-28 Meidensha Corp Controlling method for operation of activated sludge circulation modification method
JPH07195067A (en) * 1994-01-12 1995-08-01 Mitsubishi Heavy Ind Ltd Method for purifying water for breeding aquatic living things
JPH0985290A (en) * 1995-09-29 1997-03-31 Mitsubishi Heavy Ind Ltd Control of nitration and denitrification apparatus
JPH09168796A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Removal of nitrogen in waste water
JPH10128389A (en) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JPH10296283A (en) * 1997-04-30 1998-11-10 Showa Eng Kk Carrier separating method for biological reaction tank using carrier combinedly
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2003088888A (en) * 2001-09-20 2003-03-25 Ebara Corp Biological nitrogen removing device for organic waste water
JP2006012425A (en) * 2004-06-22 2006-01-12 Sumitomo Electric Ind Ltd Operation method of redox flow battery
JP2006136820A (en) * 2004-11-12 2006-06-01 Nippon Steel Corp Method for removing phosphorus and/or nitrogen from sewage
JP2006346589A (en) * 2005-06-16 2006-12-28 Kobelco Eco-Solutions Co Ltd Biological nitrification process and nitrification apparatus for ammonia nitrogen-containing waste water
JP2007510402A (en) * 2003-10-09 2007-04-26 アクアリア・インコーポレーテッド Nitrite-oxidizing bacteria and methods of use and detection thereof
JP2007136298A (en) * 2005-11-16 2007-06-07 Nippon Steel Corp Removal method of nitrogen and phosphorus from sewage, and removal apparatus
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
WO2008156151A1 (en) * 2007-06-19 2008-12-24 Kobelco Eco-Solutions Co., Ltd. Simulation method, simulation apparatus, biological treatment method and biological treatment apparatus
JP2009131828A (en) * 2007-06-19 2009-06-18 Kobelco Eco-Solutions Co Ltd Simulation method, simulation device, biological treatment method, and biological treatment apparatus
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2010099560A (en) * 2008-10-22 2010-05-06 Metawater Co Ltd Air supply system and air supply method
WO2010074008A1 (en) * 2008-12-28 2010-07-01 メタウォーター株式会社 Method and device for removing biological nitrogen and support therefor
JP2010269254A (en) * 2009-05-22 2010-12-02 Hitachi Ltd Water treatment equipment
JP2011212670A (en) * 2010-03-19 2011-10-27 Swing Corp Wastewater treatment apparatus and wastewater treatment method

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190796A (en) * 1984-10-08 1986-05-08 Showa Denko Kk Treatment of sewage containing nitrogen
JPS63291698A (en) * 1987-05-25 1988-11-29 Osaka Gas Co Ltd Biological denitrification of waste water
JPH03278894A (en) * 1990-03-28 1991-12-10 Nippon Steel Corp Simultaneous removal of bod, nitrogen compound and phosphorus compound in waste water
JPH047095A (en) * 1990-04-25 1992-01-10 Nippon Steel Corp Uniformly mixing method of aeration tank in activated sludge treatment
JPH04110198U (en) * 1991-03-07 1992-09-24 株式会社明電舎 Anaerobic/aerobic activated sludge treatment equipment
JPH0663589A (en) * 1992-08-25 1994-03-08 Kurita Water Ind Ltd Sewage treatment device
JPH06312197A (en) * 1993-04-30 1994-11-08 Meidensha Corp Activated sludge treatment apparatus
JPH0780494A (en) * 1993-07-22 1995-03-28 Meidensha Corp Controlling method for operation of activated sludge circulation modification method
JPH07195067A (en) * 1994-01-12 1995-08-01 Mitsubishi Heavy Ind Ltd Method for purifying water for breeding aquatic living things
JPH0985290A (en) * 1995-09-29 1997-03-31 Mitsubishi Heavy Ind Ltd Control of nitration and denitrification apparatus
JPH09168796A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Removal of nitrogen in waste water
JPH10128389A (en) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JPH10296283A (en) * 1997-04-30 1998-11-10 Showa Eng Kk Carrier separating method for biological reaction tank using carrier combinedly
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2003088888A (en) * 2001-09-20 2003-03-25 Ebara Corp Biological nitrogen removing device for organic waste water
JP2007510402A (en) * 2003-10-09 2007-04-26 アクアリア・インコーポレーテッド Nitrite-oxidizing bacteria and methods of use and detection thereof
JP2006012425A (en) * 2004-06-22 2006-01-12 Sumitomo Electric Ind Ltd Operation method of redox flow battery
JP2006136820A (en) * 2004-11-12 2006-06-01 Nippon Steel Corp Method for removing phosphorus and/or nitrogen from sewage
JP2006346589A (en) * 2005-06-16 2006-12-28 Kobelco Eco-Solutions Co Ltd Biological nitrification process and nitrification apparatus for ammonia nitrogen-containing waste water
JP2007136298A (en) * 2005-11-16 2007-06-07 Nippon Steel Corp Removal method of nitrogen and phosphorus from sewage, and removal apparatus
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
WO2008156151A1 (en) * 2007-06-19 2008-12-24 Kobelco Eco-Solutions Co., Ltd. Simulation method, simulation apparatus, biological treatment method and biological treatment apparatus
JP2009131828A (en) * 2007-06-19 2009-06-18 Kobelco Eco-Solutions Co Ltd Simulation method, simulation device, biological treatment method, and biological treatment apparatus
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2010099560A (en) * 2008-10-22 2010-05-06 Metawater Co Ltd Air supply system and air supply method
WO2010074008A1 (en) * 2008-12-28 2010-07-01 メタウォーター株式会社 Method and device for removing biological nitrogen and support therefor
JP2010269254A (en) * 2009-05-22 2010-12-02 Hitachi Ltd Water treatment equipment
JP2011212670A (en) * 2010-03-19 2011-10-27 Swing Corp Wastewater treatment apparatus and wastewater treatment method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2011147858A (en) * 2010-01-20 2011-08-04 Hitachi Ltd Apparatus and method for treating sewage
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2012148217A (en) * 2011-01-17 2012-08-09 Toshiba Corp Biological treatment method of wastewater, and wastewater treatment apparatus
WO2012128212A1 (en) * 2011-03-18 2012-09-27 栗田工業株式会社 Water treatment method and ultrapure water production method
JP2012196588A (en) * 2011-03-18 2012-10-18 Kurita Water Ind Ltd Water treatment method and ultrapure water production method
JP2012228646A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Biological water treating apparatus
JP2015027659A (en) * 2013-03-08 2015-02-12 メタウォーター株式会社 Device and method for processing drain water
JP2016013502A (en) * 2014-07-01 2016-01-28 メタウォーター株式会社 N2o suppression type water treatment method and treatment device

Also Published As

Publication number Publication date
JP5733785B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JP5698025B2 (en) Waste water treatment apparatus and waste water treatment method
JP5424789B2 (en) Nitrous oxide emission control method for nitrogen-containing wastewater treatment
US8323487B2 (en) Waste water treatment apparatus
JP2005246136A (en) Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2006281003A (en) Biological waste water treatment method
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
JP2010063987A (en) Waste water treatment device and treatment method
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
Hong et al. Integration of EBPR with mainstream anammox process to treat real municipal wastewater: process performance and microbiology
WO2015062613A1 (en) Control system for a wastewater treatment facility
JP2009131854A (en) Sewage treatment apparatus
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP6774341B2 (en) Nitrogen removal system and nitrogen removal method
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP2010005554A (en) Removal apparatus of ammoniacal nitrogen
JP5592162B2 (en) Sewage treatment equipment
JP5656656B2 (en) Water treatment equipment
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP2009189942A (en) Nitrification method and apparatus
JP2003326297A (en) Nitrification method for waste water
JP5883697B2 (en) Waste water treatment apparatus and waste water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5733785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250