JP2011089958A - Method for measuring height of center of gravity - Google Patents

Method for measuring height of center of gravity Download PDF

Info

Publication number
JP2011089958A
JP2011089958A JP2009245511A JP2009245511A JP2011089958A JP 2011089958 A JP2011089958 A JP 2011089958A JP 2009245511 A JP2009245511 A JP 2009245511A JP 2009245511 A JP2009245511 A JP 2009245511A JP 2011089958 A JP2011089958 A JP 2011089958A
Authority
JP
Japan
Prior art keywords
support
support beam
center
point
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009245511A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fujimaki
和彦 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Car Corp
Original Assignee
Tokyu Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Car Corp filed Critical Tokyu Car Corp
Priority to JP2009245511A priority Critical patent/JP2011089958A/en
Publication of JP2011089958A publication Critical patent/JP2011089958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the height of the center of gravity capable of reducing the time and labor expended. <P>SOLUTION: In the method, a support beam 12 carrying thereon a vehicle body T of a railroad vehicle is supported horizontally by hoisting accessaries 14, and a reaction force R<SP>0</SP>is measured by load cells 13. Then, the support beam 12 is supported in an inclined way, by the hoisting accessaries 14 so as to incline with respect to the state of horizontal support, and a reaction force R is measured by the load cells 13. The height of the center of gravity of the vehicle body T is calculated based on the measured reaction forces R<SP>0</SP>and R. In the calculation, the height of the center of gravity of the vehicle body T is compensated by arithmetic operation, with respect to the tilt angles ϕ<SB>13</SB>and ϕ<SB>24</SB>of the hoisting accessaries 14, in a state of inclined support. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、物体の重心高さ測定方法に関する。   The present invention relates to a method for measuring the height of the center of gravity of an object.

従来の重心高さ測定方法としては、例えば特許文献1に記載されたものが知られている。この重心高さ測定方法では、昇降機及びロードセルを有する支持部によって車体(物体)が支持されており、まず、車体が水平に保持された後、ロードセルによって反力が測定される。続いて、昇降機が稼動されて車体が傾斜された後、ロードセルによって反力が測定される。そして、反力の変化量と昇降機の昇降量とに基づいて重心高さが演算される。このような重心高さ測定方法では、昇降機を作動させて車体を傾斜させる際、例えば反力方向が鉛直方向に保たれるように支持部を水平方向に移動させることで、測定精度の向上が図られている。   As a conventional method for measuring the height of the center of gravity, for example, the method described in Patent Document 1 is known. In this center-of-gravity height measurement method, a vehicle body (object) is supported by a support portion having an elevator and a load cell. First, after the vehicle body is held horizontally, a reaction force is measured by the load cell. Subsequently, after the elevator is operated and the vehicle body is tilted, the reaction force is measured by the load cell. Then, the height of the center of gravity is calculated based on the reaction force change amount and the lift amount of the elevator. In such a center-of-gravity height measurement method, when tilting the vehicle body by operating the elevator, the measurement accuracy can be improved by moving the support portion in the horizontal direction so that the reaction force direction is maintained in the vertical direction, for example. It is illustrated.

特開平08−170935号公報Japanese Patent Laid-Open No. 08-170935

しかし、上記の重心高さ測定方法では、前述のように、物体を傾斜させる際に支持部を水平方向に移動させて反力方向を鉛直方向に保つことが要されるため、重心高さの測定に費やされる時間と労力が大きいという問題がある。   However, in the above-described center-of-gravity height measurement method, as described above, it is necessary to keep the reaction force direction in the vertical direction by moving the support portion in the horizontal direction when tilting the object. There is a problem that the time and labor spent for the measurement are large.

そこで、本発明は、費やされる時間と労力を低減することができる重心高さ測定方法を提供することを課題とする。   Then, this invention makes it a subject to provide the center-of-gravity height measuring method which can reduce time and an effort spent.

上記課題を達成するため、本発明に係る重心高さ測定方法は、物体を載せた支持はりを支持部で水平支持すると共に、支持部の反力を第1測定値として測定する第1測定工程と、支持はりを第1測定工程における状態に対し傾斜するように支持部で傾斜支持すると共に、支持部の反力を第2測定値として測定する第2測定工程と、第1測定工程で測定した第1測定値、及び第2測定工程で測定した第2測定値に基づいて、物体の重心高さを算出する算出工程と、を備え、算出工程では、第2測定工程で支持はりを傾斜支持した際に支持部の反力方向が第1測定工程で支持はりを水平支持した際の反力方向に対し傾斜する傾斜角度に関して、物体の重心高さを演算処理により補正することを特徴とする。   In order to achieve the above object, the center of gravity height measuring method according to the present invention includes a first measuring step in which a support beam on which an object is placed is horizontally supported by a support portion and the reaction force of the support portion is measured as a first measurement value. The support beam is tilted and supported by the support portion so as to be inclined with respect to the state in the first measurement step, and the reaction force of the support portion is measured as the second measurement value, and the measurement is performed in the first measurement step. And a calculation step for calculating the height of the center of gravity of the object based on the first measurement value and the second measurement value measured in the second measurement step. In the calculation step, the support beam is inclined in the second measurement step. The height of the center of gravity of the object is corrected by calculation processing with respect to the inclination angle at which the reaction force direction of the support portion inclines with respect to the reaction force direction when the support beam is horizontally supported in the first measurement step. To do.

この重心高さ測定方法では、支持はりを傾斜支持した際における支持部の反力方向の傾斜角度に関して、重心高さを演算処理により補正している。すなわち、傾斜支持した際の反力方向が水平支持した際の反力方向と同じ方向に保たれるように、支持部を水平方向に移動させることが要されず、演算処理による補正で重心高さが精度よく求められることとなる。従って、本発明によれば、物体の重心高さを測定する際に費やされる時間と労力を低減することが可能となる。   In this center-of-gravity height measurement method, the center-of-gravity height is corrected by an arithmetic processing with respect to the inclination angle in the reaction force direction of the support portion when the support beam is inclined and supported. That is, it is not necessary to move the support portion in the horizontal direction so that the direction of the reaction force when tilting is supported is the same as the direction of the reaction force when horizontally supporting. Is required with high accuracy. Therefore, according to the present invention, it is possible to reduce the time and labor spent when measuring the height of the center of gravity of an object.

ここで、費やされる時間と労力を低減するという上記作用効果を好適に奏する構成として、具体的には、支持部は、支持はりにおいて一方側を吊下げ支持する第1吊り具と、支持はりにおいて一方側と物体に対して反対側の他方側を吊下げ支持する第2吊り具と、を含み、第1測定工程では、第1及び第2吊り具の少なくとも一方に取り付けられたロードセルによって第1測定値を測定し、第2測定工程では、第1及び第2吊り具の少なくとも一方を持ち上げる又は下げることによって支持はりを傾斜させると共に、ロードセルによって第2測定値を測定する構成が挙げられる。   Here, as a configuration that favorably achieves the above-described effect of reducing time and labor spent, specifically, the support portion includes a first hanging tool that supports one side of the support beam, and a support beam. A second suspender that suspends and supports the one side and the other side opposite to the object. In the first measurement step, the load cell is attached to at least one of the first and second suspenders. The measurement value is measured, and in the second measurement step, the support beam is tilted by lifting or lowering at least one of the first and second suspensions, and the second measurement value is measured by the load cell.

このとき、第2測定工程において物体を傾斜させる際の回転における水平な回転軸の方向をx軸方向とし、第1及び第2吊り具の長さは共通の所定長であり、x軸方向に対して垂直な投影面を定義し、第1吊り具による支持はりの支持点の投影面への投影は一点に重なり、該一点を第1支持点とし、第2吊り具による支持はりの支持点の投影面への投影は一点に重なり、該一点を第2支持点とし、第1支持点と第2支持点とを結ぶ線分を支持はり中心線とし、投影面上での支持はり中心線の垂直二等分線をz軸とし、支持はり中心線に対して物体と同じ側にz軸上に任意に定めた点を原点とし、原点をz軸と共有し支持はり中心線に沿う方向の軸をy軸とし、第1測定工程では、支持はり中心線は水平であり且つ支持部の反力方向は鉛直であり、算出工程では、物体及び支持はりの重心高さをz軸上の重心位置z´として下式(1),(2)によって算出し、該重心高さに基づいて物体の重心高さを求める場合がある。

Figure 2011089958

但し、
a :支持はり中心線の長さ/2
W´:物体及び支持はりの重量
ζ :補正係数
ΔR:第1及び第2測定工程間での支持部の反力変化量
θ :前記第2測定工程における前記支持はり中心線の水平面に対する傾斜角度
h :前記支持はり中心線と前記原点との間の前記z軸方向距離
c :前記第1及び第2吊り具の所定長
y´:前記物体及び前記支持はりの前記y軸上の重心位置 At this time, the direction of the horizontal rotation axis in the rotation at the time of tilting the object in the second measurement step is the x-axis direction, and the lengths of the first and second suspension tools are a common predetermined length, and the x-axis direction is A projection plane that is perpendicular to the projection plane is defined, and the projection of the support point of the support beam by the first lifting device overlaps the projection surface, and this point is taken as the first support point, and the support point of the support beam by the second suspension device Projection onto the projection plane overlaps with one point, this point is the second support point, the line segment connecting the first support point and the second support point is the support beam centerline, and the support beam centerline on the projection plane The vertical bisector of the z axis is the z axis, the point arbitrarily defined on the z axis on the same side as the object with respect to the support beam center line is the origin, and the origin is shared with the z axis along the support beam center line In the first measurement step, the support beam center line is horizontal and the reaction force direction of the support portion is vertical. In the calculation step, the center of gravity height of the object and the support beam is calculated as the center of gravity position z ′ on the z-axis by the following equations (1) and (2), and the center of gravity height of the object is obtained based on the center of gravity height. There is a case.
Figure 2011089958

However,
a: Length of support beam center line / 2
W ′: Weight of the object and the support beam ζ: Correction coefficient ΔR: Change amount of reaction force of the support portion between the first and second measurement steps θ: Angle of inclination of the support beam center line with respect to the horizontal plane in the second measurement step h: Z-axis direction distance between the support beam center line and the origin c: Predetermined length of the first and second hanger y ': Position of the center of gravity of the object and the support beam on the y-axis

また、費やされる時間と労力を低減するという上記作用効果を奏する構成として、具体的には、支持部は、支持はりにおいて一方側を吊下げ支持する吊り具と、支持はりにおいて一方側と物体に対して反対側の他方側を傾動可能に固定支持する傾動支持具と、を含み、第1測定工程では、吊り具及び傾動支持具の少なくとも一方に取り付けられたロードセルによって第1測定値を測定し、第2測定工程では、吊り具を持ち上げる又は下げることによって支持はりを傾斜させると共に、ロードセルによって第2測定値を測定する構成が挙げられる。   In addition, as a configuration that achieves the above-described effect of reducing time and labor spent, specifically, the support portion includes a suspension tool that supports one side of the support beam, and a support member that supports the one side and the object. And a tilting support that fixedly supports the other side opposite to the tilting support. In the first measurement step, the first measurement value is measured by a load cell attached to at least one of the suspension and the tilting support. In the second measurement step, there is a configuration in which the support beam is tilted by lifting or lowering the lifting tool and the second measurement value is measured by the load cell.

このとき、第2測定工程において物体を傾斜させる際の回転における水平な回転軸の方向をx軸方向とし、吊り具の長さは所定長であり、x軸方向に対して垂直な投影面を定義し、吊り具による支持はりの支持点の投影面への投影は一点に重なり、該一点を第1支持点とし、傾動支持具による支持はりの支持点の投影面への投影は一点に重なり、該一点を第2支持点とし、第1支持点と第2支持点とを結ぶ線分を支持はり中心線とし、投影面上での支持はり中心線の垂直二等分線をz軸とし、支持はり中心線に対して物体と同じ側にz軸上に任意に定めた点を原点とし、原点をz軸と共有し支持はり中心線に沿う方向の軸をy軸とし、第1測定工程では、支持はり中心線は水平であり且つ支持部の反力方向は鉛直であり、算出工程では、物体及び支持はりの重心高さをz軸上の重心位置z´として下式(3),(4)によって算出し、該重心高さに基づいて物体の重心高さを求める場合がある。

Figure 2011089958

但し、
a :支持はり中心線の長さ/2
W´:物体及び支持はりの重量
ζ :補正係数
ΔR:第1及び第2測定工程間での支持部の反力変化量
θ :前記第2測定工程における前記支持はり中心線の水平面に対する傾斜角度
h :前記支持はり中心線と前記原点との間の前記z軸方向距離
c :前記吊り具の所定長
y´:前記物体及び前記支持はりの前記y軸上の重心位置 At this time, the direction of the horizontal rotation axis in the rotation when tilting the object in the second measurement step is the x-axis direction, the length of the suspension is a predetermined length, and the projection plane perpendicular to the x-axis direction is Defined, the projection of the support point of the support beam by the lifting tool overlaps with one point, and this one point is the first support point, and the projection of the support point of the support beam by the tilting support device overlaps with one point. The one support point is the second support point, the line segment connecting the first support point and the second support point is the support beam center line, and the perpendicular bisector of the support beam center line on the projection plane is the z-axis. The first measurement is performed by using the point arbitrarily defined on the z axis on the same side as the object with respect to the center axis of the support beam as the origin, and the axis in the direction along the support beam center line as the origin while sharing the origin with the z axis. In the process, the support beam center line is horizontal and the reaction force direction of the support part is vertical. The following expression height of the center of gravity of the fine supporting beam as the center-of-gravity position z'on the z axis (3), there is a case where the calculated seek height of the center of gravity of the object based on said heavy heart height by (4).
Figure 2011089958

However,
a: Length of support beam center line / 2
W ′: Weight of the object and the support beam ζ: Correction coefficient ΔR: Change amount of reaction force of the support portion between the first and second measurement steps θ: Angle of inclination of the support beam center line with respect to the horizontal plane in the second measurement step h: Distance in the z-axis direction between the support beam center line and the origin c: Predetermined length of the hanger y ′: Position of the center of gravity of the object and the support beam on the y-axis

さらにまた、費やされる時間と労力を低減するという上記作用効果を好適に奏する構成として、具体的には、支持部は、支持はりにおいて一方側を伸縮装置を介して傾動可能に固定支持する第1傾動支持具と、支持はりにおいて一方側と物体に対して反対側の他方側を傾動可能に固定支持する第2傾動支持具と、を含み、第1測定工程では、第1及び第2傾動支持具の少なくとも一方に取り付けられたロードセルによって第1測定値を測定し、第2測定工程では、伸縮装置を伸縮させることによって支持はりを傾斜させると共に、ロードセルによって第2測定値を測定する構成が挙げられる。   Furthermore, as a configuration that preferably exhibits the above-described effect of reducing time and labor spent, specifically, the support portion is fixedly supported so that one side of the support beam can be tilted via an expansion / contraction device. A tilt support, and a second tilt support that fixedly supports one side of the support beam and the other side opposite to the object so as to be tiltable. In the first measurement step, the first and second tilt supports The first measurement value is measured by a load cell attached to at least one of the tools, and in the second measurement step, the support beam is tilted by expanding and contracting the extension device, and the second measurement value is measured by the load cell. It is done.

このとき、第2測定工程において物体を傾斜させる際の回転における水平な回転軸の方向をx軸方向とし、x軸方向に対して垂直な投影面を定義し、第1傾動支持具による支持はりの支持点の投影面への投影は一点に重なり、該一点を第1支持点とし、第2傾動支持具による支持はりの支持点の投影面への投影は一点に重なり、該一点を第2支持点とし、第1支持点と第2支持点とを結ぶ線分を支持はり中心線とし、投影面上での支持はり中心線の垂直二等分線をz軸とし、支持はり中心線に対して物体と同じ側にz軸上に任意に定めた点を原点とし、原点をz軸と共有し支持はり中心線に沿う方向の軸をy軸とし、第1測定工程では、支持はり中心線は水平であり且つ支持部の反力方向は鉛直であり、算出工程では、物体及び支持はりの重心高さをz軸上の重心位置z´として下式(5),(6)によって算出し、該重心高さに基づいて物体の重心高さを求める場合がある。

Figure 2011089958

但し、
a :支持はり中心線の長さ/2
W´:物体及び支持はりの重量
ζ :補正係数
ΔR:第1及び第2測定工程間での支持部の反力変化量
θ :前記第2測定工程における前記支持はり中心線の水平面に対する傾斜角度
h :前記支持はり中心線と前記原点との間の前記z軸方向距離
c :前記第1測定工程における前記伸縮装置の鉛直方向長さ
y´:前記物体及び前記支持はりの前記y軸上の重心位置 At this time, the direction of the horizontal rotation axis in the rotation when tilting the object in the second measurement step is defined as the x-axis direction, a projection plane perpendicular to the x-axis direction is defined, and the support beam by the first tilt support tool The projection of the support point on the projection plane overlaps with one point, the one point serves as the first support point, the projection of the support point of the support beam by the second tilting support tool onto the projection plane overlaps with one point, and the one point becomes the second point. As a support point, a line segment connecting the first support point and the second support point is a support beam center line, a perpendicular bisector of the support beam center line on the projection plane is az axis, and the support beam center line is On the other hand, a point arbitrarily defined on the z-axis on the same side as the object is the origin, the origin is shared with the z-axis, and the axis along the support beam center line is the y-axis. The line is horizontal and the reaction force direction of the support is vertical, and in the calculation process, the weight of the object and the support beam Lower expression level as the center-of-gravity position z'on z-axis (5), there is a case where the calculated seek height of the center of gravity of the object based on said heavy heart height by (6).
Figure 2011089958

However,
a: Length of support beam center line / 2
W ′: Weight of the object and the support beam ζ: Correction coefficient ΔR: Change amount of reaction force of the support portion between the first and second measurement steps θ: Angle of inclination of the support beam center line with respect to the horizontal plane in the second measurement step h: distance in the z-axis direction between the support beam center line and the origin c: vertical length of the telescopic device in the first measurement step y ′: the object and the support beam on the y-axis Position of the center of gravity

本発明によれば、物体の重心高さを測定する際に費やされる時間と労力を低減することが可能となる。   According to the present invention, it is possible to reduce the time and labor spent when measuring the height of the center of gravity of an object.

第1実施形態に係る重心高さ測定方法を実施する傾斜支持装置を後方から見たときの概略図である。It is the schematic when the inclination support apparatus which enforces the gravity center height measuring method which concerns on 1st Embodiment is seen from back. (a)は図1の傾斜支持装置のコンピュータを示すブロック図、(b)は図1の傾斜支持装置の制御盤を示すブロック図である。(A) is a block diagram showing a computer of the tilt support apparatus of FIG. 1, (b) is a block diagram showing a control panel of the tilt support apparatus of FIG. 本実施形態を示すフローチャートである。It is a flowchart which shows this embodiment. 本実施形態の測定結果を示すグラフである。It is a graph which shows the measurement result of this embodiment. 図1の傾斜支持装置の他の例を示す概略図である。It is the schematic which shows the other example of the inclination support apparatus of FIG. 第2実施形態に係る重心高さ測定方法を実施する傾斜支持装置を後方から見たときの概略図である。It is the schematic when the inclination support apparatus which enforces the gravity center height measuring method which concerns on 2nd Embodiment is seen from back. 第3実施形態に係る重心高さ測定方法を実施する傾斜支持装置を後方から見たときの概略図である。It is the schematic when the inclination support apparatus which implements the gravity center height measuring method which concerns on 3rd Embodiment is seen from back.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当要素には同一符号を付し、重複する説明を省略する。また、「前」「後」「左」「右」の語は、車体の前後方向、左右方向に対応するものである。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent element in each figure, and the overlapping description is abbreviate | omitted. The terms “front”, “rear”, “left”, and “right” correspond to the front-rear direction and the left-right direction of the vehicle body.

まず、本発明の第1実施形態について説明する。図1は、第1実施形態に係る重心高さ測定方法を実施する傾斜支持装置を後方から見たときの概略図である。本実施形態では、傾斜支持装置10を用い、車体(物体)Tを、図1(a)に示すように水平支持した状態から、図1(b)に示すように傾斜支持した状態へと車体Tの幅方向(左右方向)に傾斜させる。傾斜の際の回転における回転軸の方向(図1の紙面垂直方向、すなわち車体Tの前後方向)は、水平である。この回転軸の方向をx軸方向とする。図1は、傾斜支持装置10を後方から見たものであることから、x軸方向に対して垂直な1つの投影面を表している(後述の図6,7についても同様)。   First, a first embodiment of the present invention will be described. FIG. 1 is a schematic view of an inclined support device that performs the center-of-gravity height measurement method according to the first embodiment when viewed from the rear. In the present embodiment, the vehicle body (object) T is used from the state where it is horizontally supported as shown in FIG. 1A to the state where it is inclined and supported as shown in FIG. Inclined in the width direction (left-right direction) of T. The direction of the rotation axis in the rotation at the time of tilting (the direction perpendicular to the plane of FIG. 1, that is, the front-rear direction of the vehicle body T) is horizontal. The direction of this rotation axis is the x-axis direction. Since FIG. 1 is a view of the tilt support device 10 from the rear, it shows one projection plane perpendicular to the x-axis direction (the same applies to FIGS. 6 and 7 described later).

この傾斜支持装置10を用い、本実施形態では、車体Tを水平支持したときの反力(第1測定値)Rと、車体Tを傾斜支持したときの反力(第2測定値)Rと、をそれぞれ測定する。そして、これら反力R,Rの変化に基づく演算処理によって車体Tにおける重心の上下方向位置、すなわち、車体Tの重心高さを算出する。そこで、まず、傾斜支持装置10について説明する。 In this embodiment, using the tilt support device 10, in the present embodiment, the reaction force (first measured value) R0 when the vehicle body T is horizontally supported and the reaction force (second measured value) R when the vehicle body T is tilted supported. And are measured respectively. Then, the vertical position of the center of gravity of the vehicle body T, that is, the height of the center of gravity of the vehicle body T is calculated by an arithmetic process based on changes in the reaction forces R 0 and R. First, the tilt support device 10 will be described.

傾斜支持装置10は、いわゆる両吊り支持方式のものであり、車体Tの左側及び右側の双方を吊り下げるように支持する。この傾斜支持装置10は、車体Tを載置して支持する一対の支持はり12,12と、支持はり12をロードセル13を介して吊下する吊り具14と、吊り具14を吊り上げ又は下げるジャッキ15と、を備えている。   The tilt support device 10 is of a so-called both suspension support system, and supports the left and right sides of the vehicle body T so as to be suspended. The inclined support device 10 includes a pair of support beams 12 and 12 for mounting and supporting a vehicle body T, a suspension 14 for suspending the support beam 12 via a load cell 13, and a jack for lifting or lowering the suspension 14. 15.

車体Tは、電車等の鉄道車両の構造体であり、乗客を収容する空間を内部に有する箱型形状をなしている。支持はり12,12は、左右方向に延在する梁部材である。これら支持はり12,12は、車体Tの枕梁に対応する位置に当接する当接部21,21をそれぞれ有しており、この当接部21を介して車体Tを支持する。   The vehicle body T is a structure of a railway vehicle such as a train, and has a box shape having a space for accommodating passengers therein. The support beams 12 and 12 are beam members extending in the left-right direction. These support beams 12 and 12 have contact portions 21 and 21 that contact the positions corresponding to the pillow beams of the vehicle body T, respectively, and support the vehicle body T via the contact portions 21.

吊り具14は、ジャッキ15に対して支持はり12を吊下するものであり、ここでは、棒状の部材(ボルト等)が用いられている。吊り具14は、その長さが所定長c(例えば、約1060mm)とされている。ここでは、吊り具14は、4セット用いられており、支持はり12,12の両端部にそれぞれ接続されている。具体的には、吊り具14の下端が、前後方向(紙面垂直方向)を軸とする支持はりピン16を介して、支持はり12の両端部に取り付けられている。これにより、吊り具14にあっては、支持はりピン16を支持点として、支持はり12を支持はりピン16の軸回りに回転可能(傾動可能)に吊下し、車体Tを前方の左右両端側及び後方の左右両端側で4点支持する。   The hanging tool 14 suspends the support beam 12 from the jack 15, and here, a rod-shaped member (bolt or the like) is used. The hanging tool 14 has a predetermined length c (for example, about 1060 mm). Here, four sets of the hanging tool 14 are used, and are connected to both ends of the supporting beams 12 and 12, respectively. Specifically, the lower end of the hanger 14 is attached to both ends of the support beam 12 via support beam pins 16 with the front-rear direction (the direction perpendicular to the paper surface) as an axis. As a result, in the hanger 14, the support beam 12 is suspended around the support beam pin 16 so as to be rotatable (tiltable) with the support beam pin 16 as a support point, and the vehicle body T is suspended at the front left and right ends. Four points are supported on both the left and right ends of the side and rear.

一対の支持はり12,12は同一に作られていることから、後述のようにジャッキ15を適切に調整すれば、左端側の吊り具14lによる支持はり12,12の支持点(支持はりピン16l,16l)の上記投影面への投影は、一点(すなわち、第1支持点)に重なり、右端側の吊具14rによる支持はり12,12の支持点(支持はりピン16r,16r)の上記投影面への投影は、一点(すなわち、第2支持点)に重なる。なお、図1は上記投影面を表すから、図1において、点16lは第1支持点をも表し、点16rは第2支持点をも表す。第1支持点と第2支持点とを結ぶ線分を、支持はり中心線Aと称する。   Since the pair of support beams 12 and 12 are made the same, if the jack 15 is appropriately adjusted as will be described later, the support point of the support beams 12 and 12 by the lifting tool 14l on the left end side (support beam pin 16l) , 16l) is projected onto the projection plane at one point (that is, the first support point), and the projection of the support points (support beam pins 16r, 16r) of the support beams 12, 12 by the hanger 14r on the right end side. The projection onto the surface overlaps one point (ie, the second support point). Since FIG. 1 represents the projection plane, in FIG. 1, the point 16l also represents the first support point, and the point 16r also represents the second support point. A line segment connecting the first support point and the second support point is referred to as a support beam center line A.

一方、各吊り具14の上端は、例えばボールジョイント等の吊りピン17を介してジャッキ15に回転可能(傾動可能)に取り付けられている。左右方向に隣接する支持はりピン16l,16r間の直線距離、及び左右方向に隣接する吊りピン17l,17r間の直線距離は、所定距離a(例えば、1800mm)の2倍である距離2aとされている。なお、支持はりピン16l,16rは左右方向に隣接している(すなわち、図1が表す上記投影面に平行な同一平面上にある)から、支持はり中心線Aの長さも2aである。   On the other hand, the upper end of each suspension tool 14 is attached to the jack 15 via a suspension pin 17 such as a ball joint so as to be rotatable (tiltable). The linear distance between the support beam pins 16l and 16r adjacent in the left-right direction and the linear distance between the suspension pins 17l and 17r adjacent in the left-right direction are the distance 2a that is twice the predetermined distance a (for example, 1800 mm). ing. Since the support beam pins 16l and 16r are adjacent to each other in the left-right direction (that is, on the same plane parallel to the projection plane shown in FIG. 1), the length of the support beam center line A is also 2a.

ロードセル13は、各吊り具14にそれぞれ取り付けられている。このロードセル13は、吊り具14のそれぞれに作用する張力(軸力)を、車体Tによる反力として測定する。   The load cell 13 is attached to each hanging tool 14. The load cell 13 measures the tension (axial force) acting on each of the hanging tools 14 as a reaction force by the vehicle body T.

図2(a)は、図1の傾斜支持装置のコンピュータを示すブロック図である。図2(a)に示すように、ロードセル13には、データロガー27を介してコンピュータ18が接続されている。データロガー27は、ロードセル13で計測された反力をデジタル化してコンピュータ18に送信する。   FIG. 2A is a block diagram showing a computer of the tilt support apparatus of FIG. As shown in FIG. 2A, a computer 18 is connected to the load cell 13 via a data logger 27. The data logger 27 digitizes the reaction force measured by the load cell 13 and transmits it to the computer 18.

コンピュータ18は、データロガー27から受信した反力に基づいて演算処理を行い、車体T及び支持はり12の全体(車体T及び支持はり12を含む構造体)の重心高さである重心高さz´(以下、単に「重心高さz´」ともいう)を算出し、車体Tの重心高さを算出する。また、このコンピュータ18は、表示部を有しており、算出した車体Tの重心高さを表示部に表示する。   The computer 18 performs arithmetic processing based on the reaction force received from the data logger 27, and the center-of-gravity height z that is the center-of-gravity height of the entire vehicle body T and the support beam 12 (the structure including the vehicle body T and the support beam 12). '(Hereinafter, also simply referred to as “centroid height z ′”) is calculated, and the center of gravity height of the vehicle body T is calculated. The computer 18 has a display unit, and displays the calculated height of the center of gravity of the vehicle body T on the display unit.

図1(a)に戻り、ジャッキ15は、鉛直方向に吊りピン17を移動させて吊り具14の上端を鉛直方向に吊り上げ又は下げる。つまり、ジャッキ15が適宜動作されることで、支持はり12が左右方向(車体Tのロール方向)に傾動されることになる(図1(b)参照)。   Returning to FIG. 1A, the jack 15 moves the suspension pin 17 in the vertical direction to lift or lower the upper end of the suspension tool 14 in the vertical direction. That is, the support beam 12 is tilted in the left-right direction (the roll direction of the vehicle body T) by appropriately operating the jack 15 (see FIG. 1B).

図2(b)は、図1の傾斜支持装置の制御盤を示すブロック図である。図2(b)に示すように、ジャッキ15には、制御盤19が接続されている。制御盤19は、ジャッキ15の動作を制御するためのものである。この制御盤19は、ジャッキ15を適宜動作させ、支持はり12を左右方向に所望に傾動させる。   FIG. 2B is a block diagram showing a control panel of the tilt support apparatus of FIG. As shown in FIG. 2B, a control panel 19 is connected to the jack 15. The control panel 19 is for controlling the operation of the jack 15. The control panel 19 operates the jack 15 appropriately to tilt the support beam 12 in the left-right direction as desired.

なお、図1に示すように、本実施形態においては、上記投影面上での支持はり中心線Aの垂直二等分線(すなわち、上下方向)をz軸とし、支持はり中心線Aに対して車体Tと同じ側にz軸上に任意に定め得る点の1つであってz軸が床板20の平面と交わる点を、原点Oに定める。これと共に、原点Oをz軸と共有し支持はり中心線Aに沿う方向(すなわち、左右方向)の軸をy軸として車体Tの重心高さを測定している(以下、同じ)。   As shown in FIG. 1, in the present embodiment, the vertical bisector (that is, the vertical direction) of the support beam center line A on the projection plane is defined as the z axis, and the support beam center line A is Thus, one of the points that can be arbitrarily determined on the z-axis on the same side as the vehicle body T, and the point where the z-axis intersects the plane of the floor plate 20 is determined as the origin O. At the same time, the origin O is shared with the z-axis, and the center of gravity height of the vehicle body T is measured with the axis in the direction along the support beam center line A (that is, the left-right direction) as the y-axis (hereinafter the same).

このような傾斜支持装置10を用いた重心高さ測定方法では、まず、図1(a)に示すように、制御盤19を操作することで、支持はり中心線Aが水平となるようジャッキ15を調整しつつ、支持はり12を吊り具14で水平支持する(水平支持状態:図3のS1)。この水平支持状態では、吊り具14に作用する反力Rの方向が鉛直方向となっている。 In the method of measuring the height of the center of gravity using such an inclined support device 10, first, as shown in FIG. 1A, the jack 15 is set so that the support beam center line A becomes horizontal by operating the control panel 19. The support beam 12 is horizontally supported by the hanger 14 (horizontal support state: S1 in FIG. 3). In this horizontal support state, the direction of the reaction force R0 acting on the hanger 14 is the vertical direction.

次に、この水平支持状態にてロードセル13により反力Rを測定する(S2)。ここでは、車体Tの左側に位置する2つのロードセル13l,13lによる反力Rの和を反力R13 とし、右側に位置する2つのロードセル13r,13rによる反力Rの和を反力R24 としている。つまり、測定された反力Rを右側と左側とで分けている。 Next, the reaction force R0 is measured by the load cell 13 in this horizontal support state (S2). Here, two load cells 13l positioned on the left side of the vehicle body T, the sum of the reaction force R 0 and reaction force R 13 0 by 13l, two load cells 13r positioned on the right side, the sum of the reaction force R 0 by 13r anti The force is R 24 0 . That is, the measured reaction force R0 is divided into the right side and the left side.

次に、測定した反力Rに基づいて、下式(7),(8)により、車体T及び支持はり12の重量W´と、車体T及び支持はり12のy軸上(左右方向)の重心位置y´とを算出する(S3)。

Figure 2011089958
Next, based on the measured reaction force R 0 , the weight W ′ of the vehicle body T and the support beam 12 and the y axis of the vehicle body T and the support beam 12 (left-right direction) by the following formulas (7) and (8). Is calculated (S3).
Figure 2011089958

次に、図1(b)に示すように、制御盤19を操作することで、支持はり中心線Aが水平面に対し傾斜角θで傾斜するよう(水平支持状態に対し傾斜するよう)ジャッキ15の少なくとも一方を調整しつつ、支持はり12を吊り具14で傾斜支持する(傾斜支持状態:S4)。換言すると、左右方向に隣接する支持はりピン16l,16rを繋ぐ方向と水平方向との間の角度が傾斜角θとなるように、ジャッキ15を制御して車体Tを左右方向に傾斜させる。   Next, as shown in FIG. 1B, by operating the control panel 19, the support beam center line A is inclined at an inclination angle θ with respect to the horizontal plane (so as to be inclined relative to the horizontal support state). The support beam 12 is tilted and supported by the hanger 14 while adjusting at least one of them (inclined support state: S4). In other words, the vehicle body T is tilted in the left-right direction by controlling the jack 15 so that the angle between the direction connecting the support beam pins 16l, 16r adjacent in the left-right direction and the horizontal direction becomes the tilt angle θ.

このとき、ジャッキ15にあっては、吊りピン17を水平方向に移動させずに鉛直方向に上げ下げするのみであることから、吊りピン17l,17r間の水平距離は、常に距離2aとされている。一方、支持はりピン16l,16r間の水平距離は、傾斜角θに伴って変化するため、距離2acosθとなる。また、車体Tの左側に位置する吊り具14lは、鉛直方向に対して傾斜角φ13で傾斜し、車体Tの右側に位置する吊り具14rは、鉛直方向に対して傾斜角φ24で傾斜する。つまり、吊り具14l,14rの反力方向が傾斜角φ13,φ24でそれぞれ傾斜する。 At this time, in the jack 15, the horizontal distance between the suspension pins 17l and 17r is always set to the distance 2a because the suspension pin 17 is merely moved up and down in the vertical direction without moving in the horizontal direction. . On the other hand, since the horizontal distance between the support beam pins 16l and 16r changes with the inclination angle θ, the distance becomes 2acosθ. Further, hanger 14l positioned on the left side of the vehicle body T is inclined at an inclination angle phi 13 with respect to the vertical direction, hanger 14r on the right side of the vehicle body T is inclined at an inclination angle phi 24 with respect to the vertical direction To do. That is, the reaction force directions of the hanging tools 14l and 14r are inclined at the inclination angles φ 13 and φ 24 , respectively.

次に、この傾斜支持状態にてロードセル13により反力Rを測定する(S5)。ここでは、上記S2と同様に、左側のロードセル13l,13lによる反力Rの和を反力R13とし、右側のロードセル13r,13rによる反力Rの和を反力R24としている。つまり、測定された反力Rを右側と左側とで分けている。 Next, the reaction force R is measured by the load cell 13 in this inclined support state (S5). Here, as in the above S2, the left side of the load cell 13l, and the sum of the reaction forces R and reaction force R 13 by 13l, it is right load cell 13r, the sum of the reaction force R due 13r and the reaction force R 24. That is, the measured reaction force R is divided into the right side and the left side.

次に、上記S2にて測定した反力R及び上記S5にて測定した反力Rに基づいて、z軸上の重心位置z´(以下、「重心高さz´」ともいう)をコンピュータ18で算出する。具体的には、まず、上記S2,S5で測定した反力R,Rに基づいて、下式(9)〜(11)により、水平支持状態と傾斜支持状態との間での反力R,Rの変化量の平均値である反力変化量ΔRを算出する(S6)。

Figure 2011089958
Next, based on the reaction force R0 measured in S2 and the reaction force R measured in S5, the center-of-gravity position z ′ (hereinafter also referred to as “center-of-gravity height z ′”) on the z-axis is calculated. 18 is calculated. Specifically, first, based on the reaction forces R 0 and R measured in S2 and S5, the reaction force R between the horizontal support state and the inclined support state is obtained by the following equations (9) to (11). A reaction force variation ΔR, which is an average value of the variation amounts of 0 and R, is calculated (S6).
Figure 2011089958

なお、上記S6では、ロードセル13lにおける反力R,Rの変化量を反力変化量R13 とし、ロードセル13rにおける反力R,Rの変化量を反力変化量R24 としている。上記S2にて測定されたロードセル13の反力Rをゼロとする場合(つまり、いわゆるゼロリセットを行う場合)、上記S5では、反力変化量R13 ,R24 が直接求められるため、上式(9),(10)の演算を不要にできる。 In the above-S6, the reaction force R 0, the change amount of the R in the load cell 13l and the reaction force change amount R 13 *, has a reaction force R 0, the change amount of the R in the load cell 13r and the reaction force change amount R 24 * . When the reaction force R 0 of the load cell 13 measured in S2 is set to zero (that is, when so-called zero reset is performed), in S5, the reaction force change amounts R 13 * and R 24 * are directly obtained. The operations of the above equations (9) and (10) can be made unnecessary.

そして、吊り具14l,14rが傾斜角φ13,φ24で傾斜することに応じて(すなわち、傾斜角φ13,φ24に関して)補正されてなる下式(35),(36)に従って、上記S6にて算出した反力変化量ΔRに基づき重心高さz´を算出する(S7)。ここで、下式(35),(36)の導出について、具体的に説明する。 Then, according to the following expressions (35) and (36) corrected according to the inclination of the hanging tools 14l and 14r at the inclination angles φ 13 and φ 24 (that is, regarding the inclination angles φ 13 and φ 24 ), The center-of-gravity height z ′ is calculated based on the reaction force change amount ΔR calculated in S6 (S7). Here, the derivation of the following expressions (35) and (36) will be specifically described.

図1(b)に示すように、傾斜支持状態においてのy−z平面内での鉛直方向及び水平方向の力の釣り合い、並びにx軸回りのモーメントの釣り合いにより、下式(12)〜(14)を導出する。

Figure 2011089958

但し、
h :支持はり中心線Aと原点Oとの間のz軸方向距離 As shown in FIG. 1 (b), the following formulas (12) to (14) are obtained by balancing the forces in the vertical and horizontal directions in the yz plane in the inclined support state, and by balancing the moments about the x axis. ) Is derived.
Figure 2011089958

However,
h: Distance in the z-axis direction between the support beam center line A and the origin O

続いて、上式(14)を変形して下式(15)を求め,さらに変形して下式(16)を求める。

Figure 2011089958
Subsequently, the above equation (14) is modified to obtain the following equation (15), and further transformed to obtain the following equation (16).
Figure 2011089958

続いて、上式(16)に上式(13)を代入して下式(17)を求め、これに上式(12)を代入して下式(18)を求める。

Figure 2011089958
Subsequently, the above equation (13) is substituted into the above equation (16) to obtain the following equation (17), and the above equation (12) is substituted into this to obtain the following equation (18).
Figure 2011089958

続いて、傾斜角φ13,φ24を微小とみなすことができるため、上式(18)においてcosφ13=cosφ24≒1と近似し、下式(19)の関係を導出する。

Figure 2011089958
Subsequently, since the inclination angles φ 13 and φ 24 can be regarded as being minute, in the above equation (18), it is approximated as cos φ 13 = cos φ 24 ≈1, and the relationship of the following equation (19) is derived.
Figure 2011089958

この上式(19)に、上式(9)〜(11)を代入して下式(20)を求め,これを変形して下式(21)を求める。

Figure 2011089958
By substituting the above equations (9) to (11) into the above equation (19), the following equation (20) is obtained, and this is modified to obtain the following equation (21).
Figure 2011089958

続いて、上式(21)に上式(8)を代入して重心位置y´を消去する。その結果、下式(22)が導出されることとなる。

Figure 2011089958
Subsequently, the above equation (8) is substituted into the above equation (21) to delete the gravity center position y ′. As a result, the following expression (22) is derived.
Figure 2011089958

この上式(22)において、最後の項は、傾斜角φ13に起因する(すなわち、傾斜支持によって反力方向が変化することによる)成分であり、従来、ジャッキ15を操作することで吊りピン17を水平方向に移動させて、傾斜角φ13が0となるよう機械的に補正をしている。これに対し、本実施形態では、反力R13及び傾斜角sinφ13を演算処理によって算出し、傾斜角φ13の成分を含まないよう重心高さz´を演算処理により補正している。 In the above equation (22), the last term is a component resulting from the inclination angle φ 13 (that is, due to the reaction force direction changing due to the inclination support). Conventionally, the suspension pin is operated by operating the jack 15. 17 is moved in the horizontal direction, the inclination angle phi 13 is a 0 so as mechanically corrected. In contrast, in the present embodiment, a reaction force R 13 and the inclination angle sin [phi 13 calculates by the processing, is corrected by the arithmetic processor center of gravity height z'as containing no component of the tilt angle phi 13.

すなわち、まず、反力R13 ,R24 ,R13,R24、及び反力変化量R13 ,R24 の間に成立する関係から、下式(23)〜(25)の関係を求める。なお、下式(24)では、cosφ13=cosφ24≒1とする近似を適用している。

Figure 2011089958
That is, first, from the relationship established between the reaction forces R 13 0 , R 24 0 , R 13 , R 24 and the reaction force variation amounts R 13 * , R 24 * , the following equations (23) to (25) Seeking a relationship. In the following equation (24), an approximation that cos φ 13 = cos φ 24 ≈1 is applied.
Figure 2011089958

反力R13については、上式(8),(23)に基づき下式(26)を求め、これに上式(9)を代入し、下式(27)を求める。また、上式(11),(25)により下式(28)を求める。そして、下式(28)を用い、下式(27)から下式(29)を導出する。これにより、反力R13が、重心位置y´と重量W´と反力変化量ΔRとから求められることとなる。

Figure 2011089958
The reaction force R 13, the above equation (8), calculated under formula (26) based on (23), to which substitutes the above equation (9), obtaining the following equation (27). Further, the following equation (28) is obtained from the above equations (11) and (25). Then, using the following expression (28), the following expression (29) is derived from the following expression (27). Accordingly, the reaction force R 13 is, and thus obtained from the gravity center position y'and weight W'and the reaction force change amount [Delta] R.
Figure 2011089958

一方、傾斜角sinφ13については、上式(13)に上式(24)を用いて下式(30)を求める。この下式(30)を、傾斜支持状態で幾何学的に成立する下式(31)に代入することで、下式(32)を求める。そして、さらに上式(29)を代入することで、下式(33)を導出する。これにより、傾斜角sinφ13についても、重心位置y´と重量W´と反力変化量ΔRとから求められることとなる。

Figure 2011089958
On the other hand, the inclination angle sin [phi 13 is the following equation using the above equation (24) into equation (13) obtains the (30). By substituting the following equation (30) into the following equation (31) that is geometrically established in the inclined support state, the following equation (32) is obtained. Then, the following equation (33) is derived by further substituting the above equation (29). Accordingly, the inclination angle sin [phi 13 also and thus obtained from the gravity center position y'and weight W'and the reaction force change amount [Delta] R.
Figure 2011089958

従って、上式(29),(33)を上式(22)に代入することで、傾斜角φ13を含まない重心高さz´の演算式として、下式(34)を導出することができる。

Figure 2011089958
Therefore, the above equation (29), (33) By substituting the above equation (22), and a computing equation of the center of gravity height z'without the inclination angle phi 13, be derived the following equation (34) it can.
Figure 2011089958

これにより、重心高さz´を補正するための係数として補正係数ζを求める下式(36)が導出されると共に、この補正係数ζを用いて傾斜角φ13,φ24に関して補正された重心高さz´を求める下式(35)が導出されることとなる。この下式(35)においては、ζΔRは、重心高さ測定における反力変化量ΔRに対する補正量とみなすことができる。

Figure 2011089958
As a result, the following expression (36) for obtaining the correction coefficient ζ as a coefficient for correcting the center-of-gravity height z ′ is derived, and the center of gravity corrected with respect to the inclination angles φ 13 and φ 24 using the correction coefficient ζ. The following expression (35) for obtaining the height z ′ is derived. In the following equation (35), ζΔR can be regarded as a correction amount for the reaction force change amount ΔR in the measurement of the center of gravity height.
Figure 2011089958

ところで、上式(35)は、(1+ζ)ΔRがtanθに比例し、その比例定数mが(z´+h)W´/2aであることを意味している。よって、比例定数mを用いると、上式(35)が下式(37)に変換される。そこで、本実施形態では、以下のようにして重心高さz´を算出してもよい。

Figure 2011089958
By the way, the above equation (35) means that (1 + ζ) ΔR is proportional to tanθ, and the proportionality constant m is (z ′ + h) W ′ / 2a. Therefore, when the proportionality constant m is used, the above equation (35) is converted into the following equation (37). Therefore, in the present embodiment, the center-of-gravity height z ′ may be calculated as follows.
Figure 2011089958

すなわち、傾斜角θ=0°〜約10°の範囲で上記S4,5を複数回繰り返し実施し、反力変化量ΔRを複数測定して補正係数ζを複数算出する。続いて、図4に示すように、横軸をtanθとし縦軸を(1+ζ)ΔRとするグラフ上にて、かかる測定毎にプロットする。そして、これらプロット点Pについて最小自乗法を適用し、プロット点が通る直線Lの比例定数mを算出する。この比例定数mを上式(37)に代入することで、重心高さz´を算出してもよい。   That is, S4 and S5 are repeated a plurality of times in the range of the inclination angle θ = 0 ° to about 10 °, a plurality of reaction force change amounts ΔR are measured, and a plurality of correction coefficients ζ are calculated. Subsequently, as shown in FIG. 4, the measurement is plotted for each measurement on a graph in which the horizontal axis is tan θ and the vertical axis is (1 + ζ) ΔR. Then, the least square method is applied to these plot points P to calculate the proportionality constant m of the straight line L through which the plot points pass. The center of gravity height z ′ may be calculated by substituting this proportionality constant m into the above equation (37).

そして最後に、予め測定した支持はり12の重量及び重心高さに基づいて、重心高さz´から車体Tの重心高さを算出する。   Finally, the center of gravity height of the vehicle body T is calculated from the center of gravity height z ′ based on the weight and height of the center of gravity of the support beam 12 measured in advance.

以上、本実施形態では、支持はり12を傾斜支持したときに反力方向が支持はり12を水平支持した際の反力方向に対し傾斜する傾斜角度である傾斜角φ13,φ24に関して、車体Tの重心高さを演算処理により補正し算出する。つまり、反力方向が鉛直方向に保たれるよう(傾斜支持状態での反力方向が水平支持状態での反力方向と同じになるよう)吊りピン17を水平方向に移動させることが要されず、演算処理による補正のみでもって車体Tの重心高さを高精度に導出可能となる。 As described above, in the present embodiment, regarding the tilt angles φ 13 and φ 24 that are tilt angles with which the reaction force direction is tilted with respect to the reaction force direction when the support beam 12 is horizontally supported when the support beam 12 is tilted supported, The center of gravity height of T is corrected and calculated by calculation processing. That is, it is necessary to move the suspension pin 17 in the horizontal direction so that the reaction force direction is maintained in the vertical direction (so that the reaction force direction in the inclined support state is the same as the reaction force direction in the horizontal support state). In addition, the height of the center of gravity of the vehicle body T can be derived with high accuracy only by correction by arithmetic processing.

従って、本実施形態によれば、車体Tの重心高さを測定する際に費やされる時間と労力を低減することが可能となる。その結果、傾斜支持装置10の水平移動機構を省略することができる。また、吊り具14を極端に長くして傾斜角φ13,φ24の影響を抑制するという必要もなく、ひいては、吊り具14が長いことで車体Tの制振性が悪化するのを防止できる。 Therefore, according to the present embodiment, it is possible to reduce time and labor spent when measuring the height of the center of gravity of the vehicle body T. As a result, the horizontal movement mechanism of the inclined support device 10 can be omitted. Further, there is no need to suppress the influence of the inclination angles φ 13 and φ 24 by making the hanger 14 extremely long, and it is possible to prevent the vibration damping performance of the vehicle body T from deteriorating due to the longer hanger 14. .

また、本実施形態では、上述したように、いわゆる両吊り方式で重心高さz´を測定している。よって、重量W´及び重心位置y´を別途の装置を用いずに算出することができる。また、両吊り方式の場合、吊り具14l,14rが共に鉛直方向に対して傾斜することから、吊り具14l,14rのそれぞれ単独でみると、後述の片吊り方式に比べて傾斜角φが小さくなる。よって、傾斜角φ13,φ24に関する上記近似の精度が高まり、車体Tの重心高さを一層高精度に求めることができる。 In this embodiment, as described above, the center-of-gravity height z ′ is measured by a so-called both-hanging method. Therefore, the weight W ′ and the gravity center position y ′ can be calculated without using a separate device. In the case of the double suspension system, the suspension tools 14l and 14r are both inclined with respect to the vertical direction. Therefore, when each of the suspension tools 14l and 14r is viewed alone, the inclination angle φ is smaller than that of the single suspension system described later. Become. Therefore, the accuracy of the approximation regarding the tilt angles φ 13 and φ 24 is increased, and the height of the center of gravity of the vehicle body T can be obtained with higher accuracy.

また、本実施形態では、上述したように、ロードセル13を吊り具14に設けている。そのため、ロードセル13の荷重測定方向(ここでは、吊り具14の軸線方向)と交差する方向の荷重である横荷重がロードセル13に作用され難い。よって、横荷重による誤差、破損及び劣化を防止することができる。   In the present embodiment, the load cell 13 is provided on the hanger 14 as described above. Therefore, a lateral load that is a load that intersects with the load measurement direction of the load cell 13 (here, the axial direction of the hanger 14) is hardly applied to the load cell 13. Therefore, errors, breakage and deterioration due to lateral load can be prevented.

また、本実施形態では、上述したように、車体Tを直接支持せずに、車体Tが載置された支持はり12を支持することから、車体Tの重心高さを測定する際に車体Tが損傷するのを抑制することが可能となる。   Further, in the present embodiment, as described above, the support beam 12 on which the vehicle body T is placed is supported without directly supporting the vehicle body T. Therefore, when measuring the height of the center of gravity of the vehicle body T, the vehicle body T is measured. Can be prevented from being damaged.

また、鉄道車両については、他の車両と異なり、出荷する1編成の列車を構成する種別の異なる車両のそれぞれについて重心高さ測定を実施する場合があることから、費やされる時間と労力を低減する本実施形態の上記効果は顕著である。   Also, for rail vehicles, unlike other vehicles, the center-of-gravity height may be measured for each of the different types of vehicles that make up a single train to be shipped, reducing time and effort spent. The effect of this embodiment is remarkable.

なお、本実施形態では、上式(36)に示すように、補正係数ζが1に対して小さな量の自乗項(つまり、(y´/a−2ΔR/W´))を有していることから、この自乗項を省略する近似を適用することで、補正係数ζを下式(38)で表してもよい。

Figure 2011089958
In this embodiment, as shown in the above equation (36), the correction coefficient ζ has a square term with a small amount with respect to 1 (that is, (y ′ / a−2ΔR / W ′) 2 ). Therefore, the correction coefficient ζ may be expressed by the following equation (38) by applying an approximation that omits the square term.
Figure 2011089958

また、本実施形態では、吊り具14を4セット用いて前方の左右両側及び後方の左右両側にて車体Tを4点支持したが、車体Tを3点支持してもよく、車体Tを5点以上で支持してもよく、要は、測定された反力R,Rを右側と左側とで分けて演算できればよい。 Further, in the present embodiment, four sets of the suspenders 14 are used to support the vehicle body T at four points on the left and right sides of the front and both sides of the left and right sides, but three points of the vehicle body T may be supported. It may be supported at a point or more. In short, it is only necessary that the measured reaction forces R 0 and R can be calculated separately on the right side and the left side.

さらに、本実施形態では、支持はり12として左右方向に延在する梁部材を車体Tの前後に一対用いたが、単一の平板状の枠組み構造としてもよく、また、3本以上用いてもよく、要は、全体として3点以上の支持点(支持はりピン16)を有していればよい(以下の実施形態にて同じ)。但し、支持はり12は、車体Tを積載したときのたわみが過大にならないように、十分な剛性を有することが好ましい。   Furthermore, in this embodiment, a pair of beam members extending in the left-right direction as the support beam 12 are used in the front and rear of the vehicle body T. However, a single flat frame structure may be used, or three or more beam members may be used. In short, it is only necessary to have three or more support points (support beam pins 16) as a whole (the same applies to the following embodiments). However, it is preferable that the support beam 12 has sufficient rigidity so that the deflection when the vehicle body T is loaded is not excessive.

なお、支持はりピン16l及び支持はりピン16rがそれぞれ図1の投影面上で一点に重なるようにするため、また、特に4点以上の多点支持の場合に傾斜支持状態で車体が捩れるのを防止するため、支持はりピン16の全てが同一平面上に位置するようにジャッキ15を適切に調整して支持はり12を支持することが好ましい。   The support beam pin 16l and the support beam pin 16r are each overlapped at one point on the projection plane of FIG. 1, and the vehicle body is twisted in an inclined support state, particularly in the case of multipoint support of four or more points. Therefore, it is preferable to support the support beam 12 by appropriately adjusting the jack 15 so that all the support beam pins 16 are located on the same plane.

ちなみに、本実施形態においては、左側又は右側の何れか一方の吊り具14にのみロードセル13を設けてもよく、例えば、図5に示すように、左側の吊り具14lにのみロードセル13lを設けてもよい。この場合、まず、「車体T及び支持はり12」の重量W´と、「車体T及び支持はり12」の左右方向の重心位置y´とを、他の装置等によって予め求める。続いて、水平支持状態とし、ロードセル13lによって反力Rを測定する。このときに測定されたロードセル13lの反力Rをゼロとする(ゼロリセット)。続いて、傾斜支持状態とし、ロードセル13lによって、水平支持状態と傾斜支持状態との間での反力R,Rの変化量である反力変化量ΔRを測定する。そして、上式(35),(36)により、重心高さz´を算出する。 Incidentally, in this embodiment, the load cell 13 may be provided only on either the left side or the right side hanging tool 14, for example, as shown in FIG. 5, the load cell 13l is provided only on the left hanging tool 14l. Also good. In this case, first, the weight W ′ of the “vehicle body T and the support beam 12” and the center-of-gravity position y ′ of the “vehicle body T and the support beam 12” in the left-right direction are obtained in advance by another device or the like. Then, it is set as a horizontal support state, and reaction force R0 is measured with the load cell 13l. The reaction force R0 of the load cell 13l measured at this time is set to zero (zero reset). Subsequently, the inclined support state is set, and the reaction force change amount ΔR which is the change amount of the reaction forces R 0 and R between the horizontal support state and the inclined support state is measured by the load cell 13l. Then, the center-of-gravity height z ′ is calculated by the above equations (35) and (36).

ここで、本実施形態の重心高さ測定方法による車体Tの重心高さを、従来の重心高さ測定方法による車体Tの重心高さと比較検討した。その結果を下表1に示す。なお、ここでの従来の重心高さ測定方法としては、傾斜支持状態にて反力方向が鉛直方向に保たれるよう吊りピン17を水平方向にスライドさせる移動機構を有する傾斜支持装置を用い、スライドさせて重心高さを測定する場合と、スライドさせないで重心高さを測定する場合との2つの場合で重心高さを測定した。また、傾斜支持状態の傾斜角θは0°〜約10°とした。   Here, the center-of-gravity height of the vehicle body T according to the center-of-gravity height measurement method of the present embodiment was compared with the center-of-gravity height of the vehicle body T according to the conventional center-of-gravity height measurement method. The results are shown in Table 1 below. In addition, as a conventional center-of-gravity height measurement method here, an inclined support device having a moving mechanism that slides the suspension pin 17 in the horizontal direction so that the reaction force direction is maintained in the vertical direction in the inclined support state is used. The center of gravity height was measured in two cases: the case of measuring the center of gravity height by sliding and the case of measuring the center of gravity height without sliding. Further, the inclination angle θ in the inclined support state was set to 0 ° to about 10 °.

下表1に示すように、本実施形態では、傾斜支持状態に吊りピン17をスライドさせる従来の重心高さ測定方法と同様な精度で、重心高さを精度よく測定できることがわかる。また、従来の重心高さ測定方法においては、本実施形態のように傾斜支持状態に吊りピン17をスライドしないで測定すると、測定される重心高さは約36mm(約6.3%)も低く求められてしまうことがわかる。ちなみに、ここでは、本実施形態により算出された補正係数ζは4.56%となっている。

Figure 2011089958
As shown in Table 1 below, in this embodiment, it can be seen that the center of gravity height can be accurately measured with the same accuracy as the conventional center of gravity height measuring method in which the suspension pin 17 is slid in the inclined support state. Further, in the conventional center-of-gravity height measuring method, when the measurement is performed without sliding the suspension pin 17 in the inclined support state as in this embodiment, the measured center-of-gravity height is as low as about 36 mm (about 6.3%). It turns out that it is required. Incidentally, here, the correction coefficient ζ calculated according to the present embodiment is 4.56%.
Figure 2011089958

次に、本発明の第2実施形態について説明する。なお、本実施形態の説明では、上記第1実施形態と異なる点について主に説明する。   Next, a second embodiment of the present invention will be described. In the description of the present embodiment, differences from the first embodiment will be mainly described.

図6は、第2実施形態に係る重心高さ測定方法を実施する傾斜支持装置を後方から見たときの概略図である。図6(a)に示すように、本実施形態の傾斜支持装置30は、いわゆる片吊り支持方式のものであり、車体Tの左右方向一方側を吊り下げるように支持すると共に、左右方向他方側を傾動可能となるよう固定支持する。   FIG. 6 is a schematic view of an inclined support device that performs the center-of-gravity height measurement method according to the second embodiment when viewed from the rear. As shown in FIG. 6A, the tilt support device 30 of the present embodiment is of a so-called one-side suspension support system, and supports the vehicle body T so as to suspend one side in the left-right direction and the other side in the left-right direction. Is fixedly supported so that it can be tilted.

傾斜支持装置30は、支持はり12の他端部(ここでは、右側端部)に支持はりピン16rを介して取り付けられた支持具(傾動支持具)31を備えている。支持具31は、前後方向に2箇所に設けられており、水平方向及び鉛直方向に移動不能な状態で支持はり12の右側端部を回転可能に支持する。また、支持具31は、地面等のベース面33にロードセル32を介して固定されている。これにより、支持具31は、支持はりピン16rを支持点として、支持はり12の右側端部を支持はりピン16の軸回りに回転可能に固定支持する。   The tilt support device 30 includes a support tool (tilt support tool) 31 attached to the other end portion (here, the right end portion) of the support beam 12 via a support beam pin 16r. The support tool 31 is provided at two locations in the front-rear direction, and supports the right end of the support beam 12 so as to be rotatable in a state in which the support tool 31 cannot move in the horizontal direction and the vertical direction. The support 31 is fixed to a base surface 33 such as the ground via a load cell 32. Thereby, the support tool 31 fixedly supports the right end portion of the support beam 12 so as to be rotatable about the axis of the support beam pin 16 with the support beam pin 16r as a support point.

ロードセル32は、支持具31の下面側にそれぞれ取り付けられている。このロードセル32は、支持具31から鉛直方向に印加された荷重を、車体Tの反力として測定する。   The load cells 32 are respectively attached to the lower surface side of the support tool 31. The load cell 32 measures a load applied in the vertical direction from the support tool 31 as a reaction force of the vehicle body T.

このような傾斜支持装置30を用いた重心高さ測定方法では、まず、例えば他の装置による測定や設計値に基づく演算等により、車体T及び支持はり12の重量W´と、車体T及び支持はり12のy軸上(左右方向)の重心位置y´と、を予め求める。   In the center-of-gravity height measurement method using such an inclined support device 30, first, the weight W ′ of the vehicle body T and the support beam 12, the vehicle body T and the support T, by, for example, measurement by another device or calculation based on the design value. The barycentric position y ′ on the y-axis (left-right direction) of the beam 12 is obtained in advance.

次に、支持はり中心線Aが水平となるようジャッキ15を調整して支持はり12を水平支持し、この水平支持状態で、ロードセル32により反力Rを測定する。続いて、図6(b)に示すように、支持はり中心線Aが水平面に対し傾斜角θで傾斜するようジャッキ15を調整し、支持はり12を傾斜支持する。この傾斜支持状態で、ロードセル32により反力Rを測定する。なお、ここでの反力R,Rは、2つのロードセル32,32の合計を示している。傾斜支持状態では、吊り具14l(つまり、反力Rの反力方向)が鉛直方向に対して傾斜角φで傾斜している。 Next, the support beam 12 is horizontally supported by adjusting the jack 15 so that the support beam center line A is horizontal, and the reaction force R 0 is measured by the load cell 32 in this horizontal support state. Subsequently, as shown in FIG. 6B, the jack 15 is adjusted so that the support beam center line A is inclined at an inclination angle θ with respect to the horizontal plane, and the support beam 12 is inclined and supported. In this inclined support state, the reaction force R is measured by the load cell 32. Here, the reaction forces R 0 and R indicate the total of the two load cells 32 and 32. In the inclined support state, the hanger 141 (that is, the reaction force direction of the reaction force R) is inclined at an inclination angle φ with respect to the vertical direction.

次に、測定した反力R,Rに基づいて、水平支持状態と傾斜支持状態との間での反力R,Rの変化量である反力変化量ΔRを下式(39)により算出する。そして、下式(46),(47)に従って、重心高さz´を算出する。そして最後に、予め測定した支持はり12の重量及び重心高さに基づいて、重心高さz´から車体Tの重心高さを算出する。ここで、下式(46),(47)の導出について、具体的に説明する。

Figure 2011089958
Next, based on the measured reaction forces R 0 and R, a reaction force change amount ΔR, which is a change amount of the reaction forces R 0 and R between the horizontal support state and the inclined support state, is expressed by the following equation (39). calculate. Then, the center-of-gravity height z ′ is calculated according to the following equations (46) and (47). Finally, the center of gravity height of the vehicle body T is calculated from the center of gravity height z ′ based on the weight and height of the center of gravity of the support beam 12 measured in advance. Here, the derivation of the following expressions (46) and (47) will be specifically described.
Figure 2011089958

図5(b)に示すように、傾斜支持状態におけるy−z平面内でのx軸回りのモーメントの釣り合いにより下式(40)を導出し、これを整理して下式(41)を求める。

Figure 2011089958
As shown in FIG. 5 (b), the following equation (40) is derived from the balance of moments about the x axis in the yz plane in the inclined support state, and is arranged to obtain the following equation (41). .
Figure 2011089958

続いて、重心位置y´は(1−2R/W´)・aと表せるため、上式(39)から下式(42)を導出する。

Figure 2011089958
Subsequently, since the gravity center position y ′ can be expressed as (1-2R 0 / W ′) · a, the following equation (42) is derived from the above equation (39).
Figure 2011089958

続いて、上式(42)を上式(41)に代入することで、下式(43)を求め、これを変形して下式(44)を導出する。

Figure 2011089958
Subsequently, by substituting the above equation (42) into the above equation (41), the following equation (43) is obtained and modified to derive the following equation (44).
Figure 2011089958

ここで、傾斜角φについては、下式(45)の関係が成り立つ。よって、この下式(45)を上式(44)に適用する。これにより、重心高さz´を補正するための係数としての補正係数ζを求める下式(47)が導出されると共に、この補正係数ζを用いて傾斜角φに関して補正された重心高さz´を求める下式(46)が導出されることとなる。

Figure 2011089958

Figure 2011089958
Here, the relationship of the following formula (45) is established with respect to the inclination angle φ. Therefore, this lower equation (45) is applied to the upper equation (44). As a result, the following expression (47) for obtaining the correction coefficient ζ as a coefficient for correcting the center of gravity height z ′ is derived, and the center of gravity height z corrected with respect to the inclination angle φ using the correction coefficient ζ. The following expression (46) for obtaining ′ will be derived.
Figure 2011089958

Figure 2011089958

なお、傾斜角φは微小とみなすことができるため、tanφ≒sinφ=2a(1−cosθ)/cの関係が成り立つ。よって、この関係を上式(44)に適用することで、上式(47)の他の形として、下式(48)を導出してもよい。

Figure 2011089958
Note that since the inclination angle φ can be regarded as being minute, the relationship of tanφ≈sinφ = 2a (1−cosθ) / c is established. Therefore, by applying this relationship to the above equation (44), the following equation (48) may be derived as another form of the above equation (47).
Figure 2011089958

以上、本実施形態においても、支持はり12を傾斜支持したときの反力方向の傾斜角φに関して、車体Tの重心高さを演算処理により補正し算出する。よって、上記第1実施形態と同様な効果、すなわち、車体Tの重心高さを測定する際に費やされる時間と労力を低減するという効果を奏する。   As described above, also in this embodiment, the height of the center of gravity of the vehicle body T is corrected and calculated with respect to the inclination angle φ in the reaction force direction when the support beam 12 is inclined and supported. Therefore, the same effect as the first embodiment, that is, the effect of reducing the time and labor spent when measuring the height of the center of gravity of the vehicle body T is achieved.

また、本実施形態では、上述したように、傾斜角φを微小とみなして演算することができると共に、上式(45)が成り立つことから、傾斜角φに関する近似を省略して上式(46),(47)を導くことも可能となっている。この点において、本実施形態は、車体Tの重心高さを一層高精度に測定できるものといえる。   Further, in the present embodiment, as described above, the calculation can be performed by regarding the inclination angle φ as being minute, and since the above equation (45) holds, the approximation regarding the inclination angle φ is omitted and the above equation (46) is satisfied. ), (47) can also be derived. In this respect, it can be said that the present embodiment can measure the height of the center of gravity of the vehicle body T with higher accuracy.

なお、本実施形態では、ロードセル32を支持具31に設けて該支持具31における反力を測定したが、ロードセル32を吊り具14lに設けて該吊り具14lにおける反力を測定する場合もある。この場合、傾斜角φがcosφ=1とみなせる程度に小さいことを適用し、上式(44)を得ることができる。さらに、この場合、ロードセル32に横荷重が加わり難くなるため、横荷重による誤差、破損及び劣化を防止することができる。   In the present embodiment, the load cell 32 is provided on the support tool 31 and the reaction force at the support tool 31 is measured. However, the load cell 32 may be provided on the lifting tool 141 and the reaction force at the lifting tool 14l may be measured. . In this case, the above equation (44) can be obtained by applying that the inclination angle φ is small enough to be regarded as cos φ = 1. Further, in this case, since it is difficult to apply a lateral load to the load cell 32, errors, breakage and deterioration due to the lateral load can be prevented.

ちなみに、支持具31側と吊り具14l側との双方にロードセル32をそれぞれ設けてもよく、この場合には、他の装置を用いずに上記第1実施形態と同様にして(上記S1〜S3)、重量W´及び重心位置y´を算出できる。   Incidentally, the load cell 32 may be provided on both the support tool 31 side and the lifting tool 141 side, and in this case, the same operation as in the first embodiment is performed without using other devices (the above S1 to S3). ), The weight W ′ and the gravity center position y ′ can be calculated.

次に、本発明の第3実施形態について説明する。なお、本実施形態の説明では、上記第2実施形態と異なる点について主に説明する。   Next, a third embodiment of the present invention will be described. In the description of the present embodiment, differences from the second embodiment will be mainly described.

図7は、第3実施形態に係る重心高さ測定方法を実施する傾斜支持装置を後方から見たときの概略図である。図7(a)に示すように、本実施形態の傾斜支持装置40は、いわゆる片持上げ支持方式のものであり、車体Tの左右方向一方側を持ち上げ又は下げ可能となるよう支持すると共に、左右方向他方側を傾動可能となるよう支持する。   FIG. 7 is a schematic view of an inclined support device that performs the center-of-gravity height measurement method according to the third embodiment when viewed from the rear. As shown in FIG. 7 (a), the tilt support device 40 of the present embodiment is of a so-called cantilever support system, and supports the vehicle body T so that one side in the left-right direction can be lifted or lowered. The other side of the direction is supported so as to be tiltable.

傾斜支持装置40は、油圧シリンダ(伸縮装置)41と、支持具(傾動支持具)42と、を備えている。油圧シリンダ41は、長尺状を呈し、その長手方向に伸縮可能に構成されており、前後方向2箇所に設けられている。油圧シリンダ41の上端部は、支持はりピン16lを介して支持はり12,12の一端部(ここでは、左側端部)のそれぞれに取り付けられている。これにより、油圧シリンダ41は、その長手方向に伸縮することで、支持はり12の左側端部を下から持ち上げ又は下げつつ、該左側端部に対し支持はりピン16lの軸回りに相対回転する。また、この油圧シリンダ41には、上記制御盤19が接続されており、制御盤19が操作されることで、油圧シリンダ41が適宜伸縮される。   The tilt support device 40 includes a hydraulic cylinder (extension device) 41 and a support tool (tilt support tool) 42. The hydraulic cylinder 41 has a long shape and is configured to be extendable and contractable in the longitudinal direction, and is provided at two places in the front-rear direction. The upper end portion of the hydraulic cylinder 41 is attached to one end portion (here, the left end portion) of the support beams 12 and 12 via a support beam pin 16l. Thus, the hydraulic cylinder 41 expands and contracts in the longitudinal direction thereof, and rotates relative to the left end portion around the axis of the support beam pin 16l while lifting or lowering the left end portion of the support beam 12 from below. The control panel 19 is connected to the hydraulic cylinder 41, and the hydraulic cylinder 41 is appropriately expanded and contracted by operating the control panel 19.

支持具42は、前後方向2箇所に設けられており、支持はり12,12の一端部のそれぞれを油圧シリンダ41を介して回転可能に固定支持する。具体的には、支持具42は、前後方向に延びるピン43を介して、油圧シリンダ41の下端部に取り付けられていると共に、地面等のベース面44に固定されている。これにより、支持具42は、油圧シリンダ41の下端部をピン43の軸回りに回転可能に固定支持し、その結果、支持はり12の左側端部をピン43の軸回りに回転可能に固定支持する。   The support tool 42 is provided at two places in the front-rear direction, and each of one end portions of the support beams 12 and 12 is fixedly supported via the hydraulic cylinder 41 so as to be rotatable. Specifically, the support tool 42 is attached to a lower end portion of the hydraulic cylinder 41 via a pin 43 extending in the front-rear direction, and is fixed to a base surface 44 such as the ground. As a result, the support member 42 supports the lower end portion of the hydraulic cylinder 41 so as to be rotatable around the axis of the pin 43, and as a result, the left end portion of the support beam 12 is fixedly supported so as to be rotatable around the axis of the pin 43. To do.

このような傾斜支持装置40を用いた重心高さ測定方法では、まず、例えば他の装置による測定や設計値に基づく演算等により、重量W´と重心位置y´とを予め求める。次に、支持はり中心線Aが水平となるよう油圧シリンダ41の伸縮を調整して支持はり12を水平支持し、この水平支持状態でロードセル32により反力Rを測定する。続いて、図7(b)に示すように、支持はり中心線Aが水平面に対し傾斜角θで傾斜するよう油圧シリンダ41の伸縮を調整し、支持はり12を傾斜支持する。 In the center-of-gravity height measurement method using such an inclined support device 40, first, the weight W ′ and the center-of-gravity position y ′ are obtained in advance, for example, by measurement using another device or calculation based on a design value. Next, the expansion and contraction of the hydraulic cylinder 41 is adjusted so that the support beam center line A is horizontal to support the support beam 12 horizontally, and the reaction force R 0 is measured by the load cell 32 in this horizontal support state. Subsequently, as shown in FIG. 7B, the expansion and contraction of the hydraulic cylinder 41 is adjusted so that the support beam center line A is inclined at an inclination angle θ with respect to the horizontal plane, and the support beam 12 is inclined and supported.

この傾斜支持状態で、ロードセル32により反力Rを測定する。なお、ここでの反力R,Rは、2つのロードセル32,32の合計を示している。傾斜支持状態では、油圧シリンダ41の長手方向(つまり、反力Rの反力方向)が鉛直方向に対して傾斜角φで傾斜している。 In this inclined support state, the reaction force R is measured by the load cell 32. Here, the reaction forces R 0 and R indicate the total of the two load cells 32 and 32. In the inclined support state, the longitudinal direction of the hydraulic cylinder 41 (that is, the reaction force direction of the reaction force R) is inclined at an inclination angle φ with respect to the vertical direction.

次に、測定した反力R,Rに基づいて、水平支持状態と傾斜支持状態との間での反力R,Rの変化量である反力変化量ΔRを上式(39)により算出する。そして、下式(54),(55)に従って、重心高さz´を算出する。そして最後に、予め測定した支持はり12の重量及び重心高さに基づいて、重心高さz´から車体Tの重心高さを算出する。ここで、下式(54),(55)の導出について、具体的に説明する。 Next, based on the measured reaction forces R 0 and R, a reaction force change amount ΔR, which is a change amount of the reaction forces R 0 and R between the horizontal support state and the inclined support state, is expressed by the above equation (39). calculate. Then, the center-of-gravity height z ′ is calculated according to the following equations (54) and (55). Finally, the center of gravity height of the vehicle body T is calculated from the center of gravity height z ′ based on the weight and height of the center of gravity of the support beam 12 measured in advance. Here, the derivation of the following expressions (54) and (55) will be specifically described.

図7(b)に示すように、傾斜支持状態におけるy−z平面内でのx軸回りのモーメントの釣り合いにより下式(49)を導出し、これを整理して下式(50)を求める。

Figure 2011089958
As shown in FIG. 7B, the following formula (49) is derived by balancing the moments about the x-axis in the yz plane in the inclined support state, and this is arranged to obtain the following formula (50). .
Figure 2011089958

続いて、上式(42)を上式(50)に代入することで、下式(51)を求め、これを変形して下式(52)を導出する。

Figure 2011089958
Subsequently, by substituting the above equation (42) into the above equation (50), the following equation (51) is obtained, and this is modified to derive the following equation (52).
Figure 2011089958

ここで、傾斜角φについては、下式(53)の関係が成り立つ。よって、この下式(53)を上式(52)に適用する。これにより、重心高さz´を補正するための係数としての補正係数ζを求める下式(55)が導出されると共に、この補正係数ζを用いて傾斜角φに関して補正された重心高さz´を求める下式(54)が導出されることとなる。

Figure 2011089958

Figure 2011089958
Here, regarding the inclination angle φ, the relationship of the following equation (53) is established. Therefore, this lower equation (53) is applied to the upper equation (52). As a result, the following expression (55) for obtaining the correction coefficient ζ as a coefficient for correcting the centroid height z ′ is derived, and the centroid height z corrected with respect to the inclination angle φ using the correction coefficient ζ. The following formula (54) for obtaining 'will be derived.
Figure 2011089958

Figure 2011089958

以上、本実施形態においても、支持はり12を傾斜支持したときの反力方向の傾斜角φに関して、車体Tの重心高さを演算処理により補正し算出する。よって、上記第1実施形態と同様な効果、すなわち、車体Tの重心高さを測定する際に費やされる時間と労力を低減するという効果を奏する。   As described above, also in this embodiment, the height of the center of gravity of the vehicle body T is corrected and calculated with respect to the inclination angle φ in the reaction force direction when the support beam 12 is inclined and supported. Therefore, the same effect as the first embodiment, that is, the effect of reducing the time and labor spent when measuring the height of the center of gravity of the vehicle body T is achieved.

なお、本実施形態では、ロードセル32を支持具42側(例えば、油圧シリンダ41と支持具42との間、油圧シリンダ41と支持はり12との間)に設けて支持具42側の反力を測定する場合もある。この場合、傾斜角φがcosφ=1とみなせる程度に小さいことを適用し、上式(52)を得ることができる。さらに、この場合、ロードセル32に横荷重が加わり難くなるため、横荷重による誤差、破損及び劣化を防止することができる。   In the present embodiment, the load cell 32 is provided on the support tool 42 side (for example, between the hydraulic cylinder 41 and the support tool 42, and between the hydraulic cylinder 41 and the support beam 12), and the reaction force on the support tool 42 side is generated. Sometimes measured. In this case, the above equation (52) can be obtained by applying that the inclination angle φ is small enough to be regarded as cos φ = 1. Further, in this case, since it is difficult to apply a lateral load to the load cell 32, errors, breakage and deterioration due to the lateral load can be prevented.

ちなみに、支持具31側と支持具42側との双方にロードセル32をそれぞれ設けてもよく、この場合には、他の装置を用いずに上記第1実施形態と同様にして(上記S1〜S3)、重量W´及び重心位置y´を算出できる。   Incidentally, the load cells 32 may be provided on both the support tool 31 side and the support tool 42 side. In this case, the other devices are not used and the load cells 32 are used in the same manner as in the first embodiment (S1 to S3 above). ), The weight W ′ and the gravity center position y ′ can be calculated.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

例えば、上記第1,2実施形態では、吊り具14の上端を鉛直方向に吊り上げ又は下げるものとしてジャッキ15を用いたが、これに代えて、クレーン等を用いてもよい。つまり、吊り具14の上端(吊りピン17)を垂直方向に移動させることができれば、ジャッキ15に代えて種々のものを用いてもよい。同様に、上記第3実施形態では、支持はり12を持ち上げ又は下げるもの(伸縮装置)として油圧シリンダ41を用いたが、これに代えて、電動シリンダ、リニアアクチュエータ等を用いてもよい。つまり、吊り具14の下端を支持具42のピン43に、上端を支持はり12のピン16に回転可能に結合して、ピン16,16間の水平方向距離を変えることができれば、油圧シリンダ41に代えて種々のものを用いてもよい。   For example, in the first and second embodiments, the jack 15 is used to lift or lower the upper end of the hanging tool 14 in the vertical direction, but a crane or the like may be used instead. That is, as long as the upper end of the hanger 14 (the hanger pin 17) can be moved in the vertical direction, various types of jacks 15 may be used instead. Similarly, in the third embodiment, the hydraulic cylinder 41 is used as one that lifts or lowers the support beam 12 (extension device), but an electric cylinder, a linear actuator, or the like may be used instead. That is, if the lower end of the suspension tool 14 is rotatably coupled to the pin 43 of the support tool 42 and the upper end of the suspension tool 14 is rotatably coupled to the pin 16 of the support beam 12, the hydraulic cylinder 41 can be changed. Instead of these, various types may be used.

また、上記1,2実施形態では、吊り具14としてボルト等の棒状の部材を用いたが、これに限定されず、ワイヤ、チェーン、ロープ等を用いてもよく、吊り具14としては、棒状、線状若しくは帯状のもの等が用いることができる。また、上記実施形態は、鉄道車両の車体Tの重心高さを測定したが、トラック、ダンプ、トレーラ、バン等の車体の重心高さを測定してもよく、台車やコンテナ等の重心高さを測定してもよく、要は、物体の重心高さを測定すればよい。   Moreover, in the said 1 and 2 embodiment, although rod-shaped members, such as a bolt, were used as the hanging tool 14, it is not limited to this, You may use a wire, a chain, a rope, etc. A linear or belt-like material can be used. Moreover, although the said embodiment measured the gravity center height of the vehicle body T of a railway vehicle, you may measure the gravity center height of vehicle bodies, such as a truck, a dump truck, a trailer, and a van, and the gravity center height of a trolley | bogie, a container, etc. In short, what is necessary is just to measure the height of the center of gravity of the object.

12…支持はり、13,13l,13r,32…ロードセル、14,14l,14r…吊り具(支持部,第1吊り具,第2吊り具)、20…床板、31,42…支持具(支持部,第1傾動支持具,第2傾動支持具)、41…油圧シリンダ(伸縮装置)、R…反力(第1測定値)、R…反力(第2測定値)、T…車体(物体)、φ,φ13,φ24…傾斜角(支持部の反力方向の傾斜角度)。
DESCRIPTION OF SYMBOLS 12 ... Support beam, 13, 131, 13r, 32 ... Load cell, 14, 141, 14r ... Suspension tool (support part, 1st suspension tool, 2nd suspension tool), 20 ... Floor board, 31, 42 ... Support tool (support) Part, first tilt support tool, second tilt support tool, 41... Hydraulic cylinder (extension device), R 0 ... reaction force (first measurement value), R ... reaction force (second measurement value), T ... vehicle body (Object), φ, φ 13 , φ 24 ... Inclination angle (inclination angle in the reaction force direction of the support portion).

Claims (7)

物体を載せた支持はりを支持部で水平支持すると共に、前記支持部の反力を第1測定値として測定する第1測定工程と、
前記支持はりを前記第1測定工程における状態に対し傾斜するように前記支持部で傾斜支持すると共に、前記支持部の反力を第2測定値として測定する第2測定工程と、
前記第1測定工程で測定した前記第1測定値、及び前記第2測定工程で測定した前記第2測定値に基づいて、前記物体の重心高さを算出する算出工程と、を備え、
前記算出工程では、前記第2測定工程で前記支持はりを傾斜支持した際に前記支持部の反力方向が前記第1測定工程で前記支持はりを水平支持した際の反力方向に対し傾斜する傾斜角度に関して、前記物体の重心高さを演算処理により補正することを特徴とする重心高さ測定方法。
A first measurement step of horizontally supporting a support beam on which an object is placed with a support portion and measuring a reaction force of the support portion as a first measurement value;
A second measuring step in which the support beam is inclined and supported by the support portion so as to be inclined with respect to the state in the first measurement step, and a reaction force of the support portion is measured as a second measurement value;
A calculation step of calculating the height of the center of gravity of the object based on the first measurement value measured in the first measurement step and the second measurement value measured in the second measurement step;
In the calculation step, when the support beam is inclinedly supported in the second measurement step, the reaction force direction of the support portion is inclined with respect to the reaction force direction when the support beam is horizontally supported in the first measurement step. A center-of-gravity height measurement method, wherein the center-of-gravity height of the object is corrected by an arithmetic processing with respect to an inclination angle.
前記支持部は、前記支持はりにおいて一方側を吊下げ支持する第1吊り具と、前記支持はりにおいて前記一方側と前記物体に対して反対側の他方側を吊下げ支持する第2吊り具と、を含み、
前記第1測定工程では、前記第1及び第2吊り具の少なくとも一方に取り付けられたロードセルによって前記第1測定値を測定し、
前記第2測定工程では、前記第1及び第2吊り具の少なくとも一方を持ち上げる又は下げることによって前記支持はりを傾斜させると共に、前記ロードセルによって第2測定値を測定することを特徴とする請求項1記載の重心高さ測定方法。
The support portion includes a first suspension tool that supports one side of the support beam in a suspended manner, and a second suspension tool that supports the one side of the support beam and the other side opposite to the object. Including,
In the first measurement step, the first measurement value is measured by a load cell attached to at least one of the first and second suspension tools,
2. In the second measurement step, the support beam is tilted by lifting or lowering at least one of the first and second suspensions, and the second measurement value is measured by the load cell. The center of gravity height measurement method described.
前記第2測定工程において前記物体を傾斜させる際の回転における水平な回転軸の方向をx軸方向とし、
前記第1及び第2吊り具の長さは共通の所定長であり、
前記x軸方向に対して垂直な投影面を定義し、
前記第1吊り具による前記支持はりの支持点の前記投影面への投影は一点に重なり、該一点を第1支持点とし、
前記第2吊り具による前記支持はりの支持点の前記投影面への投影は一点に重なり、該一点を第2支持点とし、
前記第1支持点と前記第2支持点とを結ぶ線分を支持はり中心線とし、
前記投影面上での前記支持はり中心線の垂直二等分線をz軸とし、
前記支持はり中心線に対して前記物体と同じ側に前記z軸上に任意に定めた点を原点とし、
前記原点を前記z軸と共有し前記支持はり中心線に沿う方向の軸をy軸とし、
前記第1測定工程では、前記支持はり中心線は水平であり且つ前記支持部の反力方向は鉛直であり、
前記算出工程では、前記物体及び支持はりの重心高さを前記z軸上の重心位置z´として下式(1),(2)によって算出し、該重心高さに基づいて前記物体の重心高さを求めることを特徴とする請求項2記載の重心高さ測定方法。
Figure 2011089958

但し、
a :前記支持はり中心線の長さ/2
W´:前記物体及び前記支持はりの重量
ζ :補正係数
ΔR:前記第1及び第2測定工程間での前記支持部の反力変化量
θ :前記第2測定工程における前記支持はり中心線の水平面に対する傾斜角度
h :前記支持はり中心線と前記原点との間の前記z軸方向距離
c :前記第1及び第2吊り具の所定長
y´:前記物体及び前記支持はりの前記y軸上の重心位置
In the second measurement step, the direction of the horizontal rotation axis in the rotation when tilting the object is the x-axis direction,
The lengths of the first and second suspension tools are a common predetermined length,
Defining a projection plane perpendicular to the x-axis direction;
Projection of the support point of the support beam on the projection plane by the first hanging tool overlaps one point, and the one point is set as a first support point,
Projection of the support point of the support beam on the projection plane by the second lifting tool overlaps one point, and the one point is set as a second support point,
A line segment connecting the first support point and the second support point is a support beam center line,
The vertical bisector of the support beam center line on the projection plane is the z-axis,
A point arbitrarily determined on the z axis on the same side as the object with respect to the support beam center line is an origin,
The origin is shared with the z-axis, and the axis along the support beam center line is the y-axis,
In the first measurement step, the support beam center line is horizontal and the reaction force direction of the support portion is vertical,
In the calculating step, the center of gravity height of the object and the support beam is calculated as the center of gravity position z ′ on the z-axis by the following equations (1) and (2), and the center of gravity height of the object is calculated based on the center of gravity height. The center-of-gravity height measurement method according to claim 2, wherein the height is obtained.
Figure 2011089958

However,
a: Length of the support beam center line / 2
W ′: Weight of the object and the support beam ζ: Correction coefficient ΔR: Change amount of reaction force of the support part between the first and second measurement steps θ: The center line of the support beam in the second measurement step Inclination angle with respect to horizontal plane h: Distance in the z-axis direction between the support beam center line and the origin c: Predetermined length of the first and second suspensions y ′: On the y-axis of the object and the support beam Center of gravity position
前記支持部は、前記支持はりにおいて一方側を吊下げ支持する吊り具と、前記支持はりにおいて前記一方側と前記物体に対して反対側の他方側を傾動可能に固定支持する傾動支持具と、を含み、
前記第1測定工程では、前記吊り具及び前記傾動支持具の少なくとも一方に取り付けられたロードセルによって前記第1測定値を測定し、
前記第2測定工程では、前記吊り具を持ち上げる又は下げることによって前記支持はりを傾斜させると共に、前記ロードセルによって前記第2測定値を測定することを特徴とする請求項1記載の重心高さ測定方法。
The support portion is a suspension tool that supports one side of the support beam in a suspended manner, and a tilt support device that fixedly supports the one side of the support beam and the other side opposite to the object so as to be tiltable. Including
In the first measurement step, the first measurement value is measured by a load cell attached to at least one of the hanging tool and the tilting support tool,
2. The center-of-gravity height measurement method according to claim 1, wherein in the second measurement step, the support beam is tilted by lifting or lowering the lifting tool, and the second measurement value is measured by the load cell. .
前記第2測定工程において前記物体を傾斜させる際の回転における水平な回転軸の方向をx軸方向とし、
前記吊り具の長さは所定長であり、
前記x軸方向に対して垂直な投影面を定義し、
前記吊り具による前記支持はりの支持点の前記投影面への投影は一点に重なり、該一点を第1支持点とし、
前記傾動支持具による前記支持はりの支持点の前記投影面への投影は一点に重なり、該一点を第2支持点とし、
前記第1支持点と前記第2支持点とを結ぶ線分を支持はり中心線とし、
前記投影面上での前記支持はり中心線の垂直二等分線をz軸とし、
前記支持はり中心線に対して前記物体と同じ側に前記z軸上に任意に定めた点を原点とし、
前記原点を前記z軸と共有し前記支持はり中心線に沿う方向の軸をy軸とし、
前記第1測定工程では、前記支持はり中心線は水平であり且つ前記支持部の反力方向は鉛直であり、
前記算出工程では、前記物体及び支持はりの重心高さを前記z軸上の重心位置z´として下式(3),(4)によって算出し、該重心高さに基づいて前記物体の重心高さを求めることを特徴とする請求項4記載の重心高さ測定方法。
Figure 2011089958

但し、
a :前記支持はり中心線の長さ/2
W´:前記物体及び前記支持はりの重量
ζ :補正係数
ΔR:前記第1及び第2測定工程間での前記支持部の反力変化量
θ :前記第2測定工程における前記支持はり中心線の水平面に対する傾斜角度
h :前記支持はり中心線と前記原点との間の前記z軸方向距離
c :前記吊り具の所定長
y´:前記物体及び前記支持はりの前記y軸上の重心位置
In the second measurement step, the direction of the horizontal rotation axis in the rotation when tilting the object is the x-axis direction,
The length of the hanging tool is a predetermined length,
Defining a projection plane perpendicular to the x-axis direction;
Projection of the support point of the support beam by the lifting tool onto the projection plane overlaps one point, and the one point is a first support point,
Projection of the support point of the support beam by the tilting support tool onto the projection plane overlaps one point, and the one point is set as a second support point,
A line segment connecting the first support point and the second support point is a support beam center line,
The vertical bisector of the support beam center line on the projection plane is the z-axis,
A point arbitrarily determined on the z axis on the same side as the object with respect to the support beam center line is an origin,
The origin is shared with the z-axis, and the axis along the support beam center line is the y-axis,
In the first measurement step, the support beam center line is horizontal and the reaction force direction of the support portion is vertical,
In the calculating step, the center of gravity height of the object and the support beam is calculated as the center of gravity position z ′ on the z-axis by the following equations (3) and (4), and the center of gravity height of the object is calculated based on the center of gravity height. The center-of-gravity height measurement method according to claim 4, wherein the height is obtained.
Figure 2011089958

However,
a: Length of the support beam center line / 2
W ′: Weight of the object and the support beam ζ: Correction coefficient ΔR: Change amount of reaction force of the support portion between the first and second measurement processes θ: The center line of the support beam in the second measurement process Inclination angle with respect to a horizontal plane h: Z-axis direction distance between the support beam center line and the origin c: Predetermined length of the hanger y ': Position of the center of gravity of the object and the support beam on the y axis
前記支持部は、前記支持はりにおいて一方側を伸縮装置を介して傾動可能に固定支持する第1傾動支持具と、前記支持はりにおいて前記一方側と前記物体に対して反対側の他方側を傾動可能に固定支持する第2傾動支持具と、を含み、
前記第1測定工程では、前記第1及び第2傾動支持具の少なくとも一方に取り付けられたロードセルによって前記第1測定値を測定し、
前記第2測定工程では、前記伸縮装置を伸縮させることによって前記支持はりを傾斜させると共に、前記ロードセルによって前記第2測定値を測定することを特徴とする請求項1記載の重心高さ測定方法。
The support portion includes a first tilting support that fixes and supports one side of the support beam via a telescopic device so as to be tiltable, and tilts the one side of the support beam and the other side opposite to the object. A second tilting support that can be fixedly supported;
In the first measurement step, the first measurement value is measured by a load cell attached to at least one of the first and second tilting supports,
2. The center-of-gravity height measurement method according to claim 1, wherein, in the second measurement step, the support beam is tilted by extending and contracting the extension device, and the second measurement value is measured by the load cell.
前記第2測定工程において前記物体を傾斜させる際の回転における水平な回転軸の方向をx軸方向とし、
前記x軸方向に対して垂直な投影面を定義し、
前記第1傾動支持具による前記支持はりの支持点の前記投影面への投影は一点に重なり、該一点を第1支持点とし、
前記第2傾動支持具による前記支持はりの支持点の前記投影面への投影は一点に重なり、該一点を第2支持点とし、
前記第1支持点と前記第2支持点とを結ぶ線分を支持はり中心線とし、
前記投影面上での前記支持はり中心線の垂直二等分線をz軸とし、
前記支持はり中心線に対して前記物体と同じ側に前記z軸上に任意に定めた点を原点とし、
前記原点を前記z軸と共有し前記支持はり中心線に沿う方向の軸をy軸とし、
前記第1測定工程では、前記支持はり中心線は水平であり且つ前記支持部の反力方向は鉛直であり、
前記算出工程では、前記物体及び支持はりの重心高さを前記z軸上の重心位置z´として下式(5),(6)によって算出し、該重心高さに基づいて前記物体の重心高さを求めることを特徴とする請求項6記載の重心高さ測定方法。
Figure 2011089958

但し、
a :前記支持はり中心線の長さ/2
W´:前記物体及び前記支持はりの重量
ζ :補正係数
ΔR:前記第1及び第2測定工程間での前記支持部の反力変化量
θ :前記第2測定工程における前記支持はり中心線の水平面に対する傾斜角度
h :前記支持はり中心線と前記原点との間の前記z軸方向距離
c :前記第1測定工程における前記伸縮装置の鉛直方向長さ
y´:前記物体及び前記支持はりの前記y軸上の重心位置
In the second measurement step, the direction of the horizontal rotation axis in the rotation when tilting the object is the x-axis direction,
Defining a projection plane perpendicular to the x-axis direction;
Projection of the support point of the support beam by the first tilting support tool onto the projection plane overlaps one point, and the one point is set as a first support point,
Projection of the support point of the support beam by the second tilting support tool onto the projection plane overlaps one point, and the one point is set as a second support point,
A line segment connecting the first support point and the second support point is a support beam center line,
The vertical bisector of the support beam center line on the projection plane is the z-axis,
A point arbitrarily determined on the z axis on the same side as the object with respect to the support beam center line is an origin,
The origin is shared with the z-axis, and the axis along the support beam center line is the y-axis,
In the first measurement step, the support beam center line is horizontal and the reaction force direction of the support portion is vertical,
In the calculating step, the center of gravity height of the object and the support beam is calculated as the center of gravity position z ′ on the z axis by the following equations (5) and (6), and the center of gravity height of the object is calculated based on the center of gravity height. The center-of-gravity height measurement method according to claim 6, wherein the height is obtained.
Figure 2011089958

However,
a: Length of the support beam center line / 2
W ′: Weight of the object and the support beam ζ: Correction coefficient ΔR: Change amount of reaction force of the support portion between the first and second measurement processes θ: The center line of the support beam in the second measurement process Inclination angle with respect to a horizontal plane h: Z-axis direction distance between the support beam center line and the origin c: Vertical length of the telescopic device in the first measurement step y ′: The object and the support beam Center of gravity position on the y-axis
JP2009245511A 2009-10-26 2009-10-26 Method for measuring height of center of gravity Pending JP2011089958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245511A JP2011089958A (en) 2009-10-26 2009-10-26 Method for measuring height of center of gravity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245511A JP2011089958A (en) 2009-10-26 2009-10-26 Method for measuring height of center of gravity

Publications (1)

Publication Number Publication Date
JP2011089958A true JP2011089958A (en) 2011-05-06

Family

ID=44108328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245511A Pending JP2011089958A (en) 2009-10-26 2009-10-26 Method for measuring height of center of gravity

Country Status (1)

Country Link
JP (1) JP2011089958A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029266A1 (en) * 2011-09-01 2013-03-07 长沙中联重工科技发展股份有限公司 Method for measuring height of center of mass of tracked vehicle and measuring apparatus
CN103090945A (en) * 2013-01-29 2013-05-08 大连中远船务工程有限公司 Weighing method and independent weighing units of large ocean function module
KR101309897B1 (en) * 2012-05-24 2013-09-17 성균관대학교산학협력단 System for measuring the center of gravity of vehicles and method for measuring the center of gravity of vehicles using the same
JP2013221900A (en) * 2012-04-18 2013-10-28 Katsuzo Kawanishi Centroid position measuring instrument
CN103674422A (en) * 2012-08-30 2014-03-26 广州汽车集团股份有限公司 Test bench
CN103674581A (en) * 2013-11-29 2014-03-26 南车青岛四方机车车辆股份有限公司 Test loading device of fuel motor train unit under-train fuel tank
JP2014515492A (en) * 2011-05-31 2014-06-30 レゾニック ゲーエムベーハー System and method for determining inertial properties of rigid bodies
CN105806561A (en) * 2016-05-27 2016-07-27 北京汽车研究总院有限公司 Power assembly test clamping device
CN108827535A (en) * 2018-09-26 2018-11-16 长春理工大学 A kind of mass center testing stand
CN113701946A (en) * 2021-08-05 2021-11-26 中冶建筑研究总院有限公司 Gravity center measuring method for pottery figurines
KR20220006855A (en) * 2020-07-09 2022-01-18 한국생산기술연구원 Apparatus and method for detecting buoyancy center of object

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197468B2 (en) 2011-05-31 2019-02-05 Resonic Gmbh System and method for determining inertia properties of a rigid body
JP2014515492A (en) * 2011-05-31 2014-06-30 レゾニック ゲーエムベーハー System and method for determining inertial properties of rigid bodies
WO2013029266A1 (en) * 2011-09-01 2013-03-07 长沙中联重工科技发展股份有限公司 Method for measuring height of center of mass of tracked vehicle and measuring apparatus
JP2013221900A (en) * 2012-04-18 2013-10-28 Katsuzo Kawanishi Centroid position measuring instrument
KR101309897B1 (en) * 2012-05-24 2013-09-17 성균관대학교산학협력단 System for measuring the center of gravity of vehicles and method for measuring the center of gravity of vehicles using the same
CN103674422A (en) * 2012-08-30 2014-03-26 广州汽车集团股份有限公司 Test bench
CN103090945A (en) * 2013-01-29 2013-05-08 大连中远船务工程有限公司 Weighing method and independent weighing units of large ocean function module
CN103674581A (en) * 2013-11-29 2014-03-26 南车青岛四方机车车辆股份有限公司 Test loading device of fuel motor train unit under-train fuel tank
CN105806561A (en) * 2016-05-27 2016-07-27 北京汽车研究总院有限公司 Power assembly test clamping device
CN108827535A (en) * 2018-09-26 2018-11-16 长春理工大学 A kind of mass center testing stand
KR20220006855A (en) * 2020-07-09 2022-01-18 한국생산기술연구원 Apparatus and method for detecting buoyancy center of object
KR102451396B1 (en) * 2020-07-09 2022-10-06 한국생산기술연구원 Apparatus and method for detecting buoyancy center of object
CN113701946A (en) * 2021-08-05 2021-11-26 中冶建筑研究总院有限公司 Gravity center measuring method for pottery figurines

Similar Documents

Publication Publication Date Title
JP2011089958A (en) Method for measuring height of center of gravity
CN109341951B (en) Static measurement method and device for vehicle mass center position
CN109843751A (en) Overhead waggon and transportation system
JP5989367B2 (en) Center of gravity height measuring device
JPH1016730A (en) Working vehicle for railway
JPH1181244A (en) Bridge erecting device
JP2007015445A (en) Loading vehicle
JP2012058149A (en) Centroid position measuring apparatus
JP2001063954A (en) Body lifting jig for rolling stock
JP3231338U (en) Vehicle load weighing device
JP2016176761A (en) Hanger
JPH0967099A (en) Carrying load detecting device of vehicle for high lift work
JP6324265B2 (en) Railroad turntable
JP2012051687A (en) High-place work vehicle
JP5693838B2 (en) Weighing device
JP6814471B2 (en) Assembled crane
JP2010275034A (en) Crane rope fitting structure
JP3235416U (en) Tunnel inspection vehicle with multiple work tables arranged in a staircase pattern
JP2015202910A (en) Fork lift
JPH08297047A (en) Metric method, metric apparatus and garbage truck equipped with the metric apparatus
JP2019099064A (en) Heavy cargo carrying carriage and cargo handling method of heavy cargo
JP3428509B2 (en) Aerial work vehicle
CN113321120B (en) Suspension type weighing system and weighing method of suspension type air rail vehicle
JP6113696B2 (en) Loading platform tilting device
KR102606246B1 (en) Automatic horizontal transfer device and method when transporting large heavy objects

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120712