JP2011089275A - Construction method for asceismic reinforcement of existing reinforced concrete bridge pier - Google Patents

Construction method for asceismic reinforcement of existing reinforced concrete bridge pier Download PDF

Info

Publication number
JP2011089275A
JP2011089275A JP2009241978A JP2009241978A JP2011089275A JP 2011089275 A JP2011089275 A JP 2011089275A JP 2009241978 A JP2009241978 A JP 2009241978A JP 2009241978 A JP2009241978 A JP 2009241978A JP 2011089275 A JP2011089275 A JP 2011089275A
Authority
JP
Japan
Prior art keywords
reinforced concrete
pier
existing reinforced
existing
key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009241978A
Other languages
Japanese (ja)
Inventor
Kenichi Ishizuka
健一 石塚
Masao Nagura
政雄 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2009241978A priority Critical patent/JP2011089275A/en
Publication of JP2011089275A publication Critical patent/JP2011089275A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method for the asceismic reinforcement of an existing reinforced concrete bridge pier, which constructs a structure resisting to a shear stress caused on the boundary face between the existing bridge pier made of reinforced concrete and a new lined part when earthquake of so-called level 2 occurs, while remarkably reducing the construction term and costs. <P>SOLUTION: In this construction method for asceismic reinforcement of the existing reinforced concrete bridge pier by surrounding the outer peripheral face of the existing bridge pier made of reinforced concrete with reinforced concrete to be newly placed around it, a key forming face is formed on a side face of the existing bridge pier made of reinforced concrete to form a multilayer shear key toward the axial direction of the bridge pier, and the side face of the existing bridge pier made of reinforced concrete including the formed key forming face is surrounded with the newly placed reinforced concrete to connect the existing bridge pier made of reinforced concrete and the newly placed reinforced concrete mutually through the formed multilayer shear key without using anchor dowel reinforcing bars. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばRC橋脚につきRC巻立て補強して耐震構造とした既設鉄筋コンクリート橋脚耐震補強工法あるいは既設鉄筋コンクリート橋脚耐震補強構造に関するものである。
The present invention relates to an existing reinforced concrete pier seismic strengthening method or an existing reinforced concrete pier seismic strengthening structure in which, for example, an RC pier is reinforced by RC winding to make an earthquake resistant structure.

例えば、地震振動によって、高速道路の橋脚が折れてしまい、高速道路が横倒しになったことがあり、今でもその状況は多くの人の記憶に留められている。   For example, the pier of an expressway has been broken due to earthquake vibration, and the expressway has been laid down, and the situation is still remembered by many people.

そこで、近年では、特に、高速道路などの既設鉄筋コンクリート橋脚の耐震補強工事が要請されている。
しかして、従来は、いわゆるRC巻立て工法により既設鉄筋コンクリート橋脚の耐震補強工事を行っていた。ここで、いわゆるRC巻立て工法とは耐震補強工法の基本工法をなすものであり、RC(鉄筋コンクリート)の橋脚に、新規にRCを巻いて不足した強度を補強するものである。耐震補強のコストは比較的安価で行えるが、一方、巻き立て厚が厚くスペースが必要で重量も増えるとの意見もある。
In recent years, therefore, there has been a demand for seismic reinforcement work for existing reinforced concrete piers such as highways.
Conventionally, seismic reinforcement work for existing reinforced concrete piers has been performed by the so-called RC winding method. Here, the so-called RC winding method is a basic method of the seismic reinforcement method, in which RC is newly wound around an RC (steel reinforced concrete) pier to reinforce the insufficient strength. The cost of seismic reinforcement is relatively low, but there is an opinion that the winding thickness is thick and requires more space and weight.

また、RC巻立て工法では、RC巻立てした新設RC巻立て部と既設鉄筋コンクリート橋脚部とが、例えばレベル2地震時においてズレが生じず一体となって挙動するように、アンカージベル鉄筋30・・・で両者を連結するのが常とされている。   Also, in the RC winding method, the anchored gibber rebar 30 .. so that the newly wound RC winding part and the existing reinforced concrete bridge pier part behave together without any deviation in a level 2 earthquake, for example.・ It is usual to connect the two.

また、その他にもRC橋脚の耐震補強工法につき効率のよい耐震補強工事を意図して各種の提案がなされている。
In addition, various proposals have been made with the aim of efficient seismic reinforcement work for RC piers.

特開2009−114824号公報JP 2009-1114824 A

しかしながら、前述した従来のアンカージベル筋を用いて、RC巻立てした新設RC巻立て部と既設鉄筋コンクリート橋脚部とをアンカージベル鉄筋30・・・で連結する方式は、施工本数が1橋脚あたり例えば、数100本にもおよび、そのアンカージベル鉄筋30・・・の敷設作業に長期間の施工期間を要するとともに作業コスト増の要因ともなっていた。
しかして本件発明者らは、上記のアンカージベル鉄筋30・・・での連結に代わる、いわゆるレベル2地震時においても既設鉄筋コンクリート橋脚と新設巻立て部の界面に生じるせん断応力に対し、抵抗しうる構造を創案するに至ったのである。
However, using the above-described conventional anchor gibber reinforcement, the method of connecting the newly installed RC hoisting part and the existing reinforced concrete pier with the anchor gibber reinforcement 30... The laying work of the anchor gibel rebars 30... Several hundreds of them required a long construction period and increased the work cost.
Therefore, the present inventors can resist the shear stress generated at the interface between the existing reinforced concrete bridge pier and the new winding part even in the case of a so-called level 2 earthquake in place of the connection with the anchor gibber reinforcing bar 30. It came to invent a structure.

かくして、本発明は、上述のごとく従来の課題を解消するために創案されたものであって、アンカージベル鉄筋30・・・での連結に代わる、いわゆるレベル2地震時に既設鉄筋コンクリート橋脚と新設巻立て部の界面に生じるせん断応力に対し、抵抗しうる構造を創案し、もって施工期間の飛躍的短縮と作業コスト低減化を達成できる既設鉄筋コンクリート橋脚耐震補強工法あるいは既設鉄筋コンクリート橋脚耐震補強構造を提供することを目的とするものである。
Thus, the present invention has been devised in order to solve the conventional problems as described above, and replaces the connection with the anchor gibel rebars 30. Providing an existing reinforced concrete pier seismic strengthening method or an existing reinforced concrete pier seismic strengthening structure that can dramatically reduce the construction period and reduce the work cost It is intended.

本発明による既設鉄筋コンクリート橋脚耐震補強工法あるいは既設鉄筋コンクリート橋脚耐震補強構造は、
既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強工法であり、
既設鉄筋コンクリート橋脚側面に、橋脚軸方向に向かう多段せん断キーを形成すべくキー形成面を形成し、
既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとをアンカージベル鉄筋を介することなく、前記キー形成面が形成された既設鉄筋コンクリート橋脚側面に新設鉄筋コンクリートを巻き、形成された多段せん断キーを介して既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとを連結した、
ことを特徴とし、
または、
既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造であり、
既設鉄筋コンクリート橋脚側面には、橋脚軸方向に向かう多段せん断キーを形成すべくキー形成面が形成され、
既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとをアンカージベル鉄筋を介することなく、前記キー形成面が形成された既設鉄筋コンクリート橋脚側面に新設鉄筋コンクリートを巻き、前記キー形成面に前記親切鉄筋コンクリートを固着せしめて多段せん断キーを構成し、該多段せん断キーを介して既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとを連結した、
ことを特徴とし、
または、
前記新設鉄筋コンクリートは膨張コンクリートである、
ことを特徴とし、
または、
前記キー形成面は、断面略台形状をなす山・谷の連続形状に形成された、
ことを特徴とし、
まやは、
前記キー形成面は、既設鉄筋コンクリート橋脚の橋脚基部から橋脚の短辺側側面幅以上の橋脚高さ箇所より形成された、
ことを特徴とするものである。
The existing reinforced concrete pier seismic reinforcement method or the existing reinforced concrete pier seismic reinforcement structure according to the present invention is:
It is an existing reinforced concrete pier seismic reinforcement method that wraps new reinforced concrete around the outer peripheral surface of an existing reinforced concrete pier and seismically reinforces the existing reinforced concrete pier.
On the side of the existing reinforced concrete pier, a key forming surface is formed to form a multi-stage shear key toward the pier axis direction,
The existing reinforced concrete pier and the new reinforced concrete are wound around the side of the existing reinforced concrete pier where the key forming surface is formed without using an anchor gibber reinforcing bar, and the existing reinforced concrete pier and the new reinforced concrete are formed via the formed multistage shear key. Concatenated,
It is characterized by
Or
It is an existing reinforced concrete pier seismic reinforcement structure that wraps new reinforced concrete around the outer peripheral surface of an existing reinforced concrete pier and seismically reinforces the existing reinforced concrete pier,
On the side of the existing reinforced concrete pier, a key forming surface is formed to form a multi-stage shear key toward the pier axis direction,
The existing reinforced concrete pier and new reinforced concrete are wound around the side of the existing reinforced concrete pier where the key forming surface is formed without using anchor gibber reinforcing bars, and the kind reinforced concrete is fixed to the key forming surface to fix the multi-stage shear key. Configured and connected the existing reinforced concrete pier and the newly reinforced concrete via the multi-stage shear key,
It is characterized by
Or
The new reinforced concrete is expanded concrete,
It is characterized by
Or
The key forming surface is formed in a continuous shape of peaks and valleys having a substantially trapezoidal cross section,
It is characterized by
Maya
The key forming surface is formed from a pier height location that is equal to or greater than the short side width of the pier from the pier base of the existing reinforced concrete pier,
It is characterized by this.

本発明による既設鉄筋コンクリート橋脚耐震補強工法あるいは既設鉄筋コンクリート橋脚耐震補強構造であれば、
既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強するに際し、アンカージベル鉄筋を用いての両者鉄筋コンクリートの連結がなくても、略同様の一体性が確保でき、また既設鉄筋コンクリート橋脚の耐震補強の施工期間も大幅に短縮でき、かつ作業コストも大幅に低減できるとの優れた効果を奏するものである。
If the existing reinforced concrete pier seismic reinforcement method or the existing reinforced concrete pier seismic reinforcement structure according to the present invention,
When reinforced concrete is wound around the outer peripheral surface of an existing reinforced concrete bridge pier and the existing reinforced concrete pier is seismically reinforced, even if there is no connection between the two reinforced concrete using anchor gibber reinforcing bars, substantially the same integrity can be secured. The construction period of seismic reinforcement of existing reinforced concrete bridge piers can be greatly shortened and the work cost can be greatly reduced.

本発明が適用された橋脚の概略構成を説明する側面図である。It is a side view explaining the schematic structure of the pier to which this invention was applied. 本発明が適用された橋脚の概略構成を説明する平面図である。It is a top view explaining the schematic structure of the pier to which this invention was applied. 本発明が適用された橋脚の概略断面図である。It is a schematic sectional drawing of the pier to which this invention was applied. 本発明の実施例を示す概略構成説明図(その1)である。It is schematic structure explanatory drawing (the 1) which shows the Example of this invention. 本発明の実施例を示す概略構成説明図(その2)である。It is schematic structure explanatory drawing (the 2) which shows the Example of this invention. 本発明の実施例を示す概略構成説明図(その3)である。It is schematic structure explanatory drawing (the 3) which shows the Example of this invention. 本発明の実施例を示す概略構成説明図(その4)である。It is schematic structure explanatory drawing (the 4) which shows the Example of this invention. 本発明の実施例を示す概略構成説明図(その5)である。It is schematic structure explanatory drawing (the 5) which shows the Example of this invention. 本発明の実施例を示す概略構成説明図(その6)である。It is schematic structure explanatory drawing (the 6) which shows the Example of this invention. 従来例の概略構成を説明する構成説明図である。It is a structure explanatory drawing explaining the schematic structure of a prior art example.

以下本発明を図に示す実施例に従って説明する。   The present invention will be described below with reference to embodiments shown in the drawings.

図1乃至図9は、本発明の実施例を説明する概略図であり、図1及び図2は、既設鉄筋コンクリート橋脚1の外周面に新設鉄筋コンクリート2を巻いて、既設鉄筋コンクリート橋脚1を耐震補強した概略を示したものである。 FIG. 1 to FIG. 9 are schematic diagrams for explaining an embodiment of the present invention. FIG. 1 and FIG. 2 show that the existing reinforced concrete pier 1 is reinforced with earthquake resistance by winding a new reinforced concrete 2 around the outer peripheral surface of the existing reinforced concrete pier 1. The outline is shown.

図1は既設鉄筋コンクリート橋脚1の側面図であり、図2はその正面図である。
ここで、例えば、既設鉄筋コンクリート橋脚1の側面外周面を切削して、多段せん断キーを形成するキー形成面4を、前記既設鉄筋コンクリート橋脚1の軸方向に向かい形成する。
なお、前記キー形成面4の形成は、前記切削に限定されるものではなく、如何なる手段によって形成したものでもかまわないものである。
FIG. 1 is a side view of an existing reinforced concrete pier 1 and FIG. 2 is a front view thereof.
Here, for example, the outer peripheral surface of the side surface of the existing reinforced concrete pier 1 is cut, and the key forming surface 4 that forms the multistage shear key is formed facing the axial direction of the existing reinforced concrete pier 1.
The formation of the key forming surface 4 is not limited to the cutting, and may be formed by any means.

そして、キー形成面4の形成は、既設鉄筋コンクリート橋脚1の橋脚基部3から既設鉄筋コンクリート橋脚1の短辺側側面幅D以上の橋脚高さ箇所から形成されるものとなる。
既設鉄筋コンクリート橋脚1の橋脚基部3から既設鉄筋コンクリート橋脚1の短辺側側面幅Dまでの橋脚高さ箇所では、いわゆるかぶりコンクリートの剥落の可能性が比較的少ないと考えられるからである。
And the formation of the key formation surface 4 is formed from the pier height part more than the short side width D of the existing reinforced concrete pier 1 from the pier base 3 of the existing reinforced concrete pier 1.
This is because it is considered that there is relatively little possibility of peeling of so-called cover concrete at the height of the pier height from the pier base 3 of the existing reinforced concrete pier 1 to the short side width D of the existing reinforced concrete pier 1.

次に、既設鉄筋コンクリート橋脚1の側面外周面を例えば切削して形成するキー形成面4の実施例につき説明する。
当該キー形成面4は、既設鉄筋コンクリート橋脚1の側面軸方向に向かって、その側面外周面を例えば切削して形成されるが、図4に示すように、その一例としては、断面略台形状をなす山・谷の連続形状として形成することが考えられる。
なお、図4に示す形状には限定されるものではなく、図5,図6,図7,図8、図9に示すような連続形状に形成しても構わないものである。
Next, an example of the key forming surface 4 formed by cutting the outer peripheral surface of the side surface of the existing reinforced concrete pier 1 will be described.
The key forming surface 4 is formed by, for example, cutting the outer peripheral surface of the side surface in the direction of the side surface axis of the existing reinforced concrete pier 1. As shown in FIG. 4, as an example, the key forming surface 4 has a substantially trapezoidal cross section. It may be possible to form a continuous shape of eggplants and valleys.
The shape shown in FIG. 4 is not limited, and the shape may be a continuous shape as shown in FIGS. 5, 6, 7, 8, and 9.

しかして、キー形成面4は、後述する新設鉄筋コンクリート2が前記季節鉄筋コンクリート橋脚1の側面外周面に密着する形状であることが望ましく、決して両者のコンクリートの間に空隙や空洞が生じない形状とすることが望ましい。すなわち、レベル2地震時に、既設鉄筋コンクリート橋脚1と新設鉄筋コンクリートとの界面に生じるせん断応力に対し、多段せん断キーで充分抗しうる形状とすることが切に望まれる。   Thus, it is desirable that the key-forming surface 4 has a shape in which a new reinforced concrete 2 to be described later is in close contact with the outer peripheral surface of the side surface of the seasonal reinforced concrete pier 1 so that no voids or cavities are formed between the two concretes. It is desirable. That is, it is highly desirable to have a shape that can sufficiently resist the shear stress generated at the interface between the existing reinforced concrete pier 1 and the newly reinforced concrete during a level 2 earthquake with a multistage shear key.

次に、多段せん断キーのせん断キー高さ(キー形成面4の高さ)について説明すると、「コンクリート標準示方書 設計編(2009年 土木学会)」P.250に示される様に、最小高さ(30mm)を満足し、かつ既設鉄筋コンクリート橋脚1の主鉄筋かぶりを確保するように50mmとするのが好ましいものである。   Next, the shear key height of the multi-stage shear key (the height of the key forming surface 4) will be explained. As shown in “Concrete Standard Specification Design (2009)”, page 250. (30 mm) is satisfied, and 50 mm is preferable so as to secure the main reinforcing bar cover of the existing reinforced concrete pier 1.

ここで、既設鉄筋コンクリート橋脚1の側面外周面につき、多段せん断キーを構成すべくキー形成面4の所定形状に、例えば切削形成した後、その側面外周面に対し、新設鉄筋コンクリート2を使用し、既設鉄筋コンクリート橋脚1を取り囲むようにして巻いて敷設し、前記既設鉄筋コンクリート橋脚1を耐震補強するものとする。   Here, after forming the key forming surface 4 into a predetermined shape to form a multi-stage shear key on the outer peripheral surface of the side surface of the existing reinforced concrete pier 1, for example, the new reinforced concrete 2 is used on the outer peripheral surface of the side surface. It is assumed that the existing reinforced concrete pier 1 is seismically reinforced by winding and laying so as to surround the reinforced concrete pier 1.

なお、新設鉄筋コンクリート2には、当該既設鉄筋コンクリート橋脚1における側面外周面に形成されたキー形成面4に密着する当該新設鉄筋コンクリート2部分の収縮抑制、並びに多段せん断キーに圧縮力を作用させることを目的として、いわゆる膨張コンクリートを使用することが望ましいものである。しかして、その膨張コンクリートの膨張率は別途試験により定めるのが好ましい。   The purpose of the new reinforced concrete 2 is to suppress the shrinkage of the newly reinforced concrete 2 portion in close contact with the key forming surface 4 formed on the outer peripheral surface of the side surface of the existing reinforced concrete pier 1 and to exert a compressive force on the multistage shear key. It is desirable to use so-called expanded concrete. Therefore, it is preferable to determine the expansion coefficient of the expanded concrete by a separate test.

前記したように、従来は図10に示すように、アンカージベル鉄筋30・・・を大量に用い、これにより既設鉄筋コンクリート橋脚1と新設鉄筋コンクリート2とを連結し、補強するものとしていた。
また、従来は、アンカージベル鉄筋30の配筋作業を行うに際し、既設鉄筋コンクリート橋脚1の鉄筋位置探査が必ず必要とされていた。
しかしながら、本発明によるせん断キー採用部位については、かかる既設鉄筋コンクリート橋脚1の鉄筋位置探査が省略でき、いわゆるかぶり確認のみでよいものとなっているのである。
As described above, conventionally, as shown in FIG. 10, anchor gibber reinforcing bars 30... Are used in large quantities, thereby connecting and reinforcing the existing reinforced concrete pier 1 and the newly reinforced concrete 2.
Conventionally, when performing the reinforcement work of the anchor gibber reinforcing bar 30, the reinforcing bar position search of the existing reinforced concrete bridge pier 1 is always required.
However, with respect to the site where the shear key is adopted according to the present invention, the rebar position exploration of the existing reinforced concrete pier 1 can be omitted, and only so-called fogging confirmation is required.

また、本発明の多段せん断キー構造により、前記のアンカージベル鉄筋30による効果とほぼ同様の効果が発揮できることが以下に示すように、認識されるに至った。   In addition, it has been recognized that the multistage shear key structure of the present invention can exhibit substantially the same effect as that of the anchor gibel rebar 30 as described below.

例えば、
1本のアンカージベル鉄筋30が負担するせん断力Vg は、
「鉄道土木構造物の耐震補強設計施工の手引き」より、考察すると、

Vg =Avf×fgy×μ
=286.5×345×0.7.
=69190N
=69.19kN
となる。

ここに、Avf;アンカージベル鉄筋の断面積(D19→286.5mm2
fgy;アンカージベルの引張降伏強度(SD345→345N/mm2
μ ;せん断摩擦理論による摩擦係数(=0.7)
For example,
The shearing force V g borne by one anchor gibel rebar 30 is
Considering from "Guide to seismic reinforcement design and construction of railway civil engineering structures",

V g = A vf × f gy × μ
= 286.5 x 345 x 0.7.
= 69190N
= 69.19kN
It becomes.

Here, A vf ; Cross-sectional area of anchor gibber rebar (D19 → 286.5mm 2 )
f gy ; Tensile yield strength of anchor gibber (SD345 → 345N / mm 2 )
μ: Coefficient of friction according to the shear friction theory (= 0.7)

次に、本発明による、せん断キーの設計せん断伝達耐力Vwcd は、

「コンクリート標準示方書 設計編(2009年 土木学会)」より
Vkd =0.1×Ak×f’cd/γb
=0.1×Ak×12.0/1.3
=0.92×Ak

ここに、Ak;せん断キーのせん断面における圧縮側の断面積(mm2)
f’cd;コンクリートの設計圧縮強度(=24/2.0=12.0N/mm2
※既設コンクリートの劣化による強度低下を考慮して材料係数は2.0 とした。

Vg=Vkdとすると
せん断キーの必要断面積Ak(図4の符号H(mm)で示すキー形成面の高さ×キー形成面の幅)は、
Ak =Vg×1000/0.92
=69190/0.92
≒75000mm2

よって、1本のアンカージベル鉄筋30は、せん断抵抗面積75000mm2以上の寸法を有するキー形成面4により構成されるせん断キー1箇所に置換できるものと考えられるのである。
Next, according to the present invention, the design shear transmission strength Vwcd of the shear key is

From “Concrete Standard Specification Design (2009)”
V kd = 0.1 × A k × f ' cd / γb
= 0.1 x A k x 12.0 / 1.3
= 0.92 x A k

Where, A k ; cross-sectional area of the shear side of the shear key on the compression side (mm 2 )
f 'cd; design compressive strength of concrete (= 24 / 2.0 ※ = 12.0N / mm 2)
* The material factor was set to 2.0 in consideration of strength reduction due to deterioration of existing concrete.

If Vg = Vkd
The required cross-sectional area Ak of the shear key (the height of the key forming surface indicated by the symbol H (mm) in FIG. 4 × the width of the key forming surface) is:
A k = V g × 1000 / 0.92
= 69190 / 0.92
≒ 75000mm 2

Therefore, it is considered that one anchor gibel rebar 30 can be replaced with one shear key constituted by the key forming surface 4 having a dimension of a shear resistance area of 75000 mm 2 or more.

次に、多段せん断キーの経済性について考察すると、

検討条件:アンカージベル鉄筋 3.5本/m2(平成20年度土木技術センター新幹線単注補強B(試験施工)

アンカージベル鉄筋の工事単価 3.5本×3,950円/本=13,825円

これに対し、多段せん断キー形成の工事単価

既設鉄筋コンクリート橋脚はつり(端部コンクリート切断45°含)
0.075m2×4×29,000円/m2 = 8,700円

コンクリートの増加分
0.075m2×4×0.050mX13,900円/m3 = 209円

膨張材
(0.075m2×4X0.050m+0.200m3)×3,000円/m3 = 645円

樹脂系ネット(補強コンクリート厚変化点に設置)
4.000m×360円/m = 1,440円

組立鉄筋用アンカー(0.3本/m2
0.3本/m2×1,290円/本 = 387円


計 11,381円

よって、 11,381(円/m)/13,825(円/m)=82%(18%のコスト削減)

であり、かなりの経済性が立証されている。
Next, considering the economics of multi-stage shear keys,

Examination conditions: Anchor gibber rebar 3.5 / m2 (2008 Civil Engineering Center Shinkansen single-note reinforcement B (test construction)

Anchor Giber Reinforcement construction unit price 3.5 x 3,950 yen / piece = 13,825 yen

On the other hand, the construction unit cost of multi-stage shear key formation

Existing reinforced concrete pier is suspended (including end concrete cutting 45 °)
0.075m 2 × 4 × 29,000 yen / m 2 = 8,700 yen

Increase in concrete
0.075m 2 × 4 × 0.050m × 13,900 yen / m 3 = 209 yen

Expansion material
(0.075m 2 × 4X0.050m + 0.200m 3) × 3,000 yen / m 3 = 645 yen

Resin net (installed at reinforced concrete thickness change point)
4.000m × 360yen / m = 1440yen

Reinforced bar anchor (0.3 / m 2 )
0.3 / m 2 × 1,290 yen / book = 387 yen


Total 11,381 yen

Therefore, 11,381 (yen / m 2 ) / 13,825 (yen / m 2 ) = 82% (18% cost reduction)

It has been proven to be quite economical.

1 既設鉄筋コンクリート橋脚
2 新設鉄筋コンクリート
3 橋脚基部
4 キー形成面
D 端辺側側面幅
H キー形成面の高さ
1 Existing reinforced concrete pier 2 New reinforced concrete 3 Pier base 4 Key forming surface D Side side width H Height of key forming surface

Claims (5)

既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強工法であり、
既設鉄筋コンクリート橋脚側面に、橋脚軸方向に向かう多段せん断キーを形成すべくキー形成面を形成し、
既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとをアンカージベル鉄筋を介することなく、前記キー形成面が形成された既設鉄筋コンクリート橋脚側面に新設鉄筋コンクリートを巻き、形成された多段せん断キーを介して既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとを連結した、
ことを特徴とする既設鉄筋コンクリート橋脚耐震補強工法。
It is an existing reinforced concrete pier seismic reinforcement method that wraps new reinforced concrete around the outer peripheral surface of an existing reinforced concrete pier and seismically reinforces the existing reinforced concrete pier.
On the side of the existing reinforced concrete pier, a key forming surface is formed to form a multi-stage shear key toward the pier axis direction,
The existing reinforced concrete pier and the new reinforced concrete are wound around the side of the existing reinforced concrete pier where the key forming surface is formed without using an anchor gibber reinforcing bar, and the existing reinforced concrete pier and the new reinforced concrete are formed via the formed multistage shear key. Concatenated,
A seismic reinforcement method for existing reinforced concrete piers.
既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造であり、
既設鉄筋コンクリート橋脚側面には、橋脚軸方向に向かう多段せん断キーを形成すべくキー形成面が形成され、
既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとをアンカージベル鉄筋を介することなく、前記キー形成面が形成された既設鉄筋コンクリート橋脚側面に新設鉄筋コンクリートを巻き、前記キー形成面に前記親切鉄筋コンクリートを固着せしめて多段せん断キーを構成し、該多段せん断キーを介して既設鉄筋コンクリート橋脚と新設鉄筋コンクリートとを連結した、
ことを特徴とする既設鉄筋コンクリート橋脚耐震補強構造。
It is an existing reinforced concrete pier seismic reinforcement structure that wraps new reinforced concrete around the outer peripheral surface of an existing reinforced concrete pier and seismically reinforces the existing reinforced concrete pier,
On the side of the existing reinforced concrete pier, a key forming surface is formed to form a multi-stage shear key toward the pier axis direction,
The existing reinforced concrete pier and new reinforced concrete are wound around the side of the existing reinforced concrete pier where the key forming surface is formed without using anchor gibber reinforcing bars, and the kind reinforced concrete is fixed to the key forming surface to fix the multi-stage shear key. Configured and connected the existing reinforced concrete pier and the newly reinforced concrete via the multi-stage shear key,
The existing reinforced concrete pier seismic reinforcement structure characterized by that.
前記新設鉄筋コンクリートは膨張コンクリートである、
ことを特徴とする請求項2記載の既設鉄筋コンクリート橋脚耐震補強構造。
The new reinforced concrete is expanded concrete,
The existing reinforced concrete bridge pier seismic reinforcement structure according to claim 2.
前記キー形成面は、断面略台形状をなす山・谷の連続形状に形成された、
ことを特徴とする請求項2または請求項3記載の既設鉄筋コンクリート橋脚耐震補強構造。
The key forming surface is formed in a continuous shape of peaks and valleys having a substantially trapezoidal cross section,
The existing reinforced concrete bridge pier seismic reinforcement structure according to claim 2 or claim 3, wherein
前記キー形成面は、既設鉄筋コンクリート橋脚の橋脚基部から橋脚の短辺側側面幅以上の橋脚高さ箇所より形成された、
ことを特徴とする請求項2、請求項3または請求項4記載の既設鉄筋コンクリート橋脚耐震補強構造。
The key forming surface is formed from a pier height location that is equal to or greater than the short side width of the pier from the pier base of the existing reinforced concrete pier,
The existing reinforced concrete bridge pier seismic reinforcement structure according to claim 2, 3 or 4.
JP2009241978A 2009-10-21 2009-10-21 Construction method for asceismic reinforcement of existing reinforced concrete bridge pier Pending JP2011089275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241978A JP2011089275A (en) 2009-10-21 2009-10-21 Construction method for asceismic reinforcement of existing reinforced concrete bridge pier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241978A JP2011089275A (en) 2009-10-21 2009-10-21 Construction method for asceismic reinforcement of existing reinforced concrete bridge pier

Publications (1)

Publication Number Publication Date
JP2011089275A true JP2011089275A (en) 2011-05-06

Family

ID=44107759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241978A Pending JP2011089275A (en) 2009-10-21 2009-10-21 Construction method for asceismic reinforcement of existing reinforced concrete bridge pier

Country Status (1)

Country Link
JP (1) JP2011089275A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587296A (en) * 2012-02-21 2012-07-18 朔黄铁路发展有限责任公司 Self-balancing external prestressing strengthening method for bridge structure
CN103590324A (en) * 2013-10-29 2014-02-19 清华大学 Transverse shear resisting section type self-resetting pier and construction method thereof
JP2014051825A (en) * 2012-09-07 2014-03-20 Ohbayashi Corp Aseismic reinforcement structure for reinforced concrete
JP2014051826A (en) * 2012-09-07 2014-03-20 Ohbayashi Corp Aseismic reinforcement structure for reinforced concrete
JP2015158106A (en) * 2014-02-25 2015-09-03 靖弘 井上 Fixture mounting structure of bridge
CN105544381A (en) * 2015-11-30 2016-05-04 中铁二十四局集团安徽工程有限公司 Connection structure of precast pier with annular section and bearing platform and construction method of connection structure
CN109488099A (en) * 2018-12-27 2019-03-19 ***通信集团甘肃有限公司 It is a kind of for communicating the fender pier of overhead transmission line engineering construction
CN110258312A (en) * 2019-07-16 2019-09-20 中铁二院工程集团有限责任公司 The structure linkage section and its design method, construction method of segment assembled pier stud

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306950A (en) * 2002-04-18 2003-10-31 Ps Mitsubishi Construction Co Ltd Pc well head connection structure
JP2005232821A (en) * 2004-02-20 2005-09-02 East Japan Railway Co Reinforcing method of reinforced concrete member
JP2009062710A (en) * 2007-09-05 2009-03-26 Aatekku:Kk Reinforcing method for concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306950A (en) * 2002-04-18 2003-10-31 Ps Mitsubishi Construction Co Ltd Pc well head connection structure
JP2005232821A (en) * 2004-02-20 2005-09-02 East Japan Railway Co Reinforcing method of reinforced concrete member
JP2009062710A (en) * 2007-09-05 2009-03-26 Aatekku:Kk Reinforcing method for concrete structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587296A (en) * 2012-02-21 2012-07-18 朔黄铁路发展有限责任公司 Self-balancing external prestressing strengthening method for bridge structure
CN102587296B (en) * 2012-02-21 2013-12-25 朔黄铁路发展有限责任公司 Self-balancing external prestressing strengthening method for bridge structure
JP2014051825A (en) * 2012-09-07 2014-03-20 Ohbayashi Corp Aseismic reinforcement structure for reinforced concrete
JP2014051826A (en) * 2012-09-07 2014-03-20 Ohbayashi Corp Aseismic reinforcement structure for reinforced concrete
CN103590324A (en) * 2013-10-29 2014-02-19 清华大学 Transverse shear resisting section type self-resetting pier and construction method thereof
CN103590324B (en) * 2013-10-29 2015-06-17 清华大学 Transverse shear resisting section type self-resetting pier and construction method thereof
JP2015158106A (en) * 2014-02-25 2015-09-03 靖弘 井上 Fixture mounting structure of bridge
CN105544381A (en) * 2015-11-30 2016-05-04 中铁二十四局集团安徽工程有限公司 Connection structure of precast pier with annular section and bearing platform and construction method of connection structure
CN109488099A (en) * 2018-12-27 2019-03-19 ***通信集团甘肃有限公司 It is a kind of for communicating the fender pier of overhead transmission line engineering construction
CN110258312A (en) * 2019-07-16 2019-09-20 中铁二院工程集团有限责任公司 The structure linkage section and its design method, construction method of segment assembled pier stud
CN110258312B (en) * 2019-07-16 2024-03-22 中铁二院工程集团有限责任公司 Structure connecting section of section assembly pier column, design method and construction method thereof

Similar Documents

Publication Publication Date Title
JP2011089275A (en) Construction method for asceismic reinforcement of existing reinforced concrete bridge pier
Ibrahim et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements
Bousias et al. Seismic retrofitting of columns with lap spliced smooth bars through FRP or concrete jackets
US10378208B2 (en) Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
Motaref et al. Shake table studies of energy-dissipating segmental bridge columns
Sulaiman et al. A review on bond and anchorage of confined high-strength concrete
Mohamed et al. Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load
Fakharifar et al. Rapid repair of earthquake-damaged RC columns with prestressed steel jackets
JP5239190B2 (en) Reinforcing method for existing RC member and panel for reinforcing existing RC member
Röhm et al. Behaviour of fibre reinforced beam-column sub-assemblages under reversed cyclic loading
US10227786B2 (en) Elongate member reinforcement with a studded collar
Balendran et al. Application of FRP bars as reinforcement in civil engineering structures
Elsanadedy New moment-resisting beam-column joints to increase progressive collapse resistance of precast concrete buildings
He et al. Seismic behaviour of steel-jacket retrofitted reinforced concrete columns with recycled aggregate concrete
Fakharifar et al. Hybrid jacketing for rapid repair of seismically damaged reinforced concrete columns
Rehmat et al. Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete
Moehle et al. Seismic design of reinforced concrete special moment frames
WO2016181669A1 (en) Rigid connection structure for bottom end of pillar and concrete pile
JP5308012B2 (en) Reinforcement structure for wall column members
Liu et al. Experimental study on effect of length of service hole on seismic behavior of exterior precast beam–column connections
JP6646206B2 (en) Joint structure of RC members
KR101358878B1 (en) Reinforcement member and girder using the same
JP2000017615A (en) Prestressed concrete bridge pier
Narayanan et al. Seismic retrofit of beams in buildings for flexure using concrete jacket
JP5922993B2 (en) Structure and lining method using multiple fine crack type fiber reinforced cement composites

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120927