JP2011085096A - Dpf regeneration control device - Google Patents

Dpf regeneration control device Download PDF

Info

Publication number
JP2011085096A
JP2011085096A JP2009239703A JP2009239703A JP2011085096A JP 2011085096 A JP2011085096 A JP 2011085096A JP 2009239703 A JP2009239703 A JP 2009239703A JP 2009239703 A JP2009239703 A JP 2009239703A JP 2011085096 A JP2011085096 A JP 2011085096A
Authority
JP
Japan
Prior art keywords
dpf
forced regeneration
regeneration
amount
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009239703A
Other languages
Japanese (ja)
Inventor
Yuki Ono
有樹 小野
Tomoaki Kizuka
智昭 木塚
Hideki Yoshikawa
英樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2009239703A priority Critical patent/JP2011085096A/en
Publication of JP2011085096A publication Critical patent/JP2011085096A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Instrument Panels (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To not only request regeneration for sharp increase of PM (Particulate Matter) generation quantity due to abnormality of an engine component or the like, but also execute necessary process at appropriate timing even when regeneration operation in response to the request is not executed in a DPF (Diesel Particulate Filter) regeneration control device for a vehicular diesel engine for travelling. <P>SOLUTION: This device includes: an operation corresponding PM accumulation quantity operation means 21 operating PM accumulation quantity on a DPF from an engine operation state; a differential pressure corresponding PM accumulation quantity operation means 22 operating PM accumulation quantity from differential pressure between an upstream side and a downstream side of the DPF; a forced regeneration request means 23 requesting forced regeneration which is done with a vehicle stopped when either of both PM accumulation quantities exceeds a reference value; and a limit process request means 24 requesting limit attainment process in case that PM accumulation quantity on the DPF reaches a limit if the PM accumulation quantity corresponding to differential pressure or a value according to the same reaches a limit value higher than the reference value, when it is determined that the forced regeneration is necessary since the PM accumulation quantity corresponding to differential pressure exceeds the reference value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ディーゼルエンジンの排気中の粒子状物質を捕集して除去するフィルタ(DPF)の再生と保護を行なうDPF再生制御装置に関する。   The present invention relates to a DPF regeneration control device that regenerates and protects a filter (DPF) that collects and removes particulate matter in exhaust gas from a diesel engine.

ディーゼルエンジンを搭載した車両では、通常、排出ガス中に煤等の粒子状物質(Particulate Matter、以下、PMと略称する)が含まれており、これが直接大気中に放出されるのを防ぐために、PMを捕集するパティキュレートフィルタ(Diesel Particulate Filter、以下、DPFと略称する)と呼ばれるフィルタがエンジンの排気通路に備えられたものがある(例えば、特許文献1参照)。   In a vehicle equipped with a diesel engine, particulate matter such as soot is usually contained in exhaust gas (Particulate Matter, hereinafter abbreviated as PM). In order to prevent this from being released directly into the atmosphere, There is one in which a filter called a particulate filter (Diesel Particulate Filter, hereinafter abbreviated as DPF) for collecting PM is provided in an exhaust passage of an engine (see, for example, Patent Document 1).

DPFはPM捕集量(PM堆積量)に限度があり、また、PM堆積量の増加に伴ってPMの捕集性能が低下するので、DPF再生処理を行なう。このDPFの再生処理手法としては、DPFの上流側に配設した酸化触媒により排気中のNOからNOを生成し、生成したNOの酸化還元反応を利用してPMを燃焼する連続再生と、排気管内に燃料を供給して、この燃料の燃焼により強制的にPMを燃焼させる強制再生とが知られている。 The DPF has a limit in the amount of PM collected (PM deposition amount), and the PM collection performance decreases as the PM deposition amount increases, so the DPF regeneration process is performed. This DPF regeneration treatment method includes continuous regeneration in which NO 2 is generated from NO in the exhaust by an oxidation catalyst disposed on the upstream side of the DPF, and PM is combusted using an oxidation-reduction reaction of the generated NO 2. Forcible regeneration is known in which fuel is supplied into an exhaust pipe and PM is forcibly burned by the combustion of the fuel.

エンジンの運転中に連続再生を行なえばその分だけはDPFのPM堆積量が減少するが、通常、この連続再生だけではDPFに堆積するPMを除去することは困難であり、強制再生が必要になる。
この強制再生には、自動再生と、手動再生とがある。自動再生では、車両の通常走行中に、排気通路に未燃の燃料を供給しDPFに堆積したPMを強制的に燃焼させて除去する。手動再生では、車両を停止させた状態で、排気通路に未燃の燃料を供給しDPFに堆積したPMを強制的に燃焼させて除去する。
If continuous regeneration is performed while the engine is running, the amount of PM accumulated in the DPF decreases by that amount. Normally, however, it is difficult to remove PM accumulated in the DPF only by this continuous regeneration, and forced regeneration is necessary. Become.
This forced regeneration includes automatic regeneration and manual regeneration. In the automatic regeneration, unburned fuel is supplied to the exhaust passage and PM accumulated in the DPF is forcibly burned and removed during normal traveling of the vehicle. In the manual regeneration, unburned fuel is supplied to the exhaust passage while the vehicle is stopped, and PM accumulated in the DPF is forcibly burned and removed.

自動再生は、車両の走行中に行なうので、エンジンの運転状態によってはこの自動再生を実施できない場合や実施しても完了できない場合もあり、PM堆積量が更に増加してしまうことがある。自動再生中、車両の走行状態に応じてエンジンの運転状態は大きく変化し、例えばアイドル運転を含む低負荷低回転域では、排気流量が極端に減少すると共に、排ガス中の酸素濃度が増加する現象が生じる。排気流量の減少は、放熱不足によりフィルタを昇温させる方向に作用し、酸素濃度の増加は、パティキュレートの燃焼促進により同じくフィルタを昇温させる方向に作用するため、PM堆積量が更に増加してしまった状態でこのような運転状態にエンジンが移行すると、DPFの温度が異常に上昇してしまい、この結果フィルタが破損することがある。   Since the automatic regeneration is performed while the vehicle is running, depending on the operating state of the engine, the automatic regeneration may not be performed or may not be completed, and the PM accumulation amount may further increase. During automatic regeneration, the operating state of the engine changes greatly according to the running state of the vehicle.For example, in a low load low rotation range including idle operation, the exhaust flow rate decreases extremely and the oxygen concentration in the exhaust gas increases. Occurs. A decrease in the exhaust flow rate acts in the direction of raising the temperature of the filter due to insufficient heat dissipation, and an increase in oxygen concentration also acts in the direction of raising the temperature of the filter due to accelerated combustion of particulates. If the engine shifts to such an operating state in a state where it has fallen, the temperature of the DPF will rise abnormally, and as a result, the filter may be damaged.

そこで、自動再生を実施したが完了できなかった場合や、PM堆積量が自動再生を実施する基準値よりも高い基準値(第2閾値)以上になったらドライバに手動再生を実施するように要求する制御も考えられている。この手動再生は、車両を停止させ安定した状態で行なうので、DPFの温度を過剰に昇温させることなくDPFを適温状態に昇温させて効率よくDPFに堆積したPMを燃焼除去することができる。ただし、ドライバが手動再生の操作をしない限りPMは除去されない。   Therefore, if automatic regeneration is performed but cannot be completed, or if the PM accumulation amount exceeds a reference value (second threshold) higher than the reference value for performing automatic regeneration, the driver is requested to perform manual regeneration. Control is also considered. Since the manual regeneration is performed in a stable state with the vehicle stopped, the PM deposited on the DPF can be efficiently burned and removed by raising the DPF to an appropriate temperature without excessively raising the temperature of the DPF. . However, PM is not removed unless the driver performs a manual regeneration operation.

なお、PMは、エンジンの運転状態、例えばエンジン回転数とエンジン負荷とに応じて排出するので、単位時間毎にエンジンの運転状態からPM排出量を求め、これを積算することでPMの総排出量を求めることができる。この一方で、排出されるPMの一部はDPFに到達するまでに燃焼するものや、連続再生によりDPFにおいて燃焼するものがある。DPFの再生が完了した時点からPMの排出量とPMの燃焼量とを累積的に加減算することで、DPFのPM堆積量を求めることができる。   Since PM is discharged according to the operating state of the engine, for example, the engine speed and the engine load, the PM emission amount is obtained from the operating state of the engine every unit time and integrated to obtain the total PM emission. The amount can be determined. On the other hand, some of the discharged PM burns before reaching the DPF, and some burns in the DPF by continuous regeneration. By accumulating and subtracting the PM emission amount and the PM combustion amount from the time when the regeneration of the DPF is completed, the PM accumulation amount of the DPF can be obtained.

しかし、このエンジンの運転状態に基づくDPFのPM堆積量は、エンジが通常に作動している場合を想定して演算されるものなので、エンジン部品の異常等によって、実際のDPFのPM堆積量が、エンジンの運転状態から演算されるDPFのPM堆積量に比べて、大幅に多くなる場合がある。このような状態(所謂、早期目詰まり)の場合、エンジンの運転状態に基づくDPFのPM堆積量からDPFの再生を判断したのでは、再生処理が遅れてDPFに過剰にPMが堆積してしまう。   However, since the PM accumulation amount of the DPF based on the engine operating state is calculated assuming that the engine is operating normally, the actual PM accumulation amount of the DPF is caused by an abnormality of the engine component. In some cases, the amount of PM accumulated in the DPF calculated from the operating state of the engine is significantly increased. In such a state (so-called early clogging), if the regeneration of the DPF is judged from the PM accumulation amount of the DPF based on the operating state of the engine, the regeneration process is delayed and excessive PM is deposited on the DPF. .

そこで、DPFのPM堆積量が増大すると、所謂、目詰まり状態になって、DPFの上流側と下流側との差圧(フィルタ前後差圧)或いはDPFの上流側の圧力(フィルタ前圧)が増大することに着目して、これらの差圧(フィルタ前後差圧)或いは上流側圧力(フィルタ前圧)が設定値を越えたときにフィルタの強制再生時期を判定する技術が提案されている(例えば、特許文献2)。   Therefore, when the PM accumulation amount of the DPF increases, a so-called clogging state occurs, and the differential pressure between the upstream side and downstream side of the DPF (differential pressure before and after the filter) or the upstream side pressure of the DPF (prefilter pressure). Focusing on the increase, a technique for determining the forced regeneration timing of the filter when these differential pressure (filter differential pressure) or upstream pressure (filter pre-pressure) exceeds a set value has been proposed ( For example, Patent Document 2).

この技術では、差圧や上流側圧力に基づくフィルタの強制再生時期の判定と、これとは別の手法によるフィルタの強制再生時期の判定とを行なって、フィルタの強制再生時期が判定される再生間隔時間が閾値より短くなる再生頻繁時が連続して生じる連続再生回数が閾値を越えた場合にエンジンに起因したPM排出量の異常と判定している。   In this technique, the forced regeneration timing of the filter based on the differential pressure or the upstream pressure is determined, and the forced regeneration timing of the filter is determined by a different method, and the forced regeneration timing of the filter is determined. When the number of continuous regenerations in which the frequent regeneration time when the interval time is shorter than the threshold value exceeds the threshold value, it is determined that the PM emission amount is abnormal due to the engine.

特許第3925472号公報Japanese Patent No. 3925472 特開2005−54631号公報JP 2005-54631 A

ところで、前述のように、強制再生には走行時の強制再生である自動再生と停車時の強制再生である手動再生とがあるが、自動再生が正常に完了しない場合、最終的には手動再生に頼ることになる。しかし、手動再生の場合、ドライバが手動再生の操作をしない限りPMは除去されずに、DPFのPM堆積量が更に増加していくことになる。
こうして、DPFのPM堆積量が過剰な状態で車両の走行を続行すると、燃費の悪化やエンジン出力の低下などのエンジン性能低下を招くだけでなく、PM堆積量が過剰な状態でDPFの再生を実施すると、DPFの過昇温によるフィルタ破損等を招くおそれがある。この場合には、早急に、整備工場でDPFの処理を行なわなくてはならない。
By the way, as described above, forced regeneration includes automatic regeneration that is forced regeneration during driving and manual regeneration that is forced regeneration when the vehicle is stopped. Will rely on. However, in the case of manual regeneration, PM is not removed unless the driver performs an operation of manual regeneration, and the amount of accumulated PM in the DPF further increases.
Thus, if the vehicle continues to run with an excessive amount of PM accumulated in the DPF, not only will the engine performance deteriorate, such as a deterioration in fuel consumption or engine output, but also the regeneration of the DPF with an excessive amount of PM accumulated. If implemented, the filter may be damaged due to excessive temperature rise of the DPF. In this case, the DPF must be processed at the maintenance shop as soon as possible.

特に、エンジン部品の異常等によるPM発生量の増加によって、DPFのPM堆積量が通常よりも速く増加すると、手動再生の要求後すぐにPM堆積量が過剰な状態に至ってしまうことがあり、整備工場でのエンジン部品の異常等に対する処理と共にDPFの処理をより早急に行なわなくてはならない。
本発明は、かかる課題に鑑みて創案されたもので、エンジン部品の異常等によるPM発生量の急増に対しても、単に、再生を要求するだけでなく、再生要求に対してドライバが再生操作を実施しない場合に、適切なタイミングで必要な処理を行なうことができるようにした、DPF再生制御装置を提供することを目的とする。
In particular, if the amount of PM accumulated in the DPF increases faster than usual due to an increase in the amount of PM generated due to an abnormality in the engine parts, etc., the PM accumulated amount may become excessive immediately after the request for manual regeneration. The DPF processing must be performed more promptly together with the processing for abnormalities in engine parts at the factory.
The present invention was devised in view of such a problem, and the driver does not only request regeneration but also performs a regeneration operation in response to a regeneration request in response to a sudden increase in the amount of PM generated due to an abnormality in engine parts or the like. It is an object of the present invention to provide a DPF regeneration control device that can perform necessary processing at an appropriate timing when the operation is not performed.

上記の目的を達成するために、本発明のDPF再生制御装置は、車両に搭載される走行用のディーゼルエンジンの排気に含まれる粒子状物質(PM)を捕集するフィルタ(DPF)の前記PMを除去して再生するための制御を行なうDPF再生制御装置であって、前記ディーゼルエンジンの運転状態から前記DPFへのPM堆積量を演算する運転対応PM堆積量演算手段と、前記DPFの上流側と下流側との差圧から前記DPFへのPM堆積量を演算する差圧対応PM堆積量演算手段と、前記運転対応PM堆積量演算手段により演算された運転対応PM堆積量と、前記差圧対応PM堆積量演算手段により演算された差圧対応PM堆積量とに基づいて、前記両PM堆積量の何れかが基準値を超えたら、前記車両を停止させて行なう強制再生が必要であると判定し、強制再生を要求する強制再生要求手段と、前記強制再生要求手段が、前記差圧対応PM堆積量が前記基準値を超えたことで前記強制再生が必要であると判定した場合に、前記差圧対応PM堆積量又は該差圧対応PM堆積量の増加特性に応じた値が前記基準値よりも高い限界値に達したら前記DPFへのPM堆積量が限界に達したと判定し、限界到達時処理を要求する限界処理要求手段と、をそなえることを特徴としている。   In order to achieve the above object, the DPF regeneration control device of the present invention provides the PM of a filter (DPF) that collects particulate matter (PM) contained in exhaust gas of a traveling diesel engine mounted on a vehicle. A DPF regeneration control apparatus for performing control for removing and regenerating the engine, an operation corresponding PM accumulation amount calculating means for calculating the PM accumulation amount on the DPF from the operation state of the diesel engine, and an upstream side of the DPF Differential pressure corresponding PM deposition amount calculation means for calculating the PM deposition amount on the DPF from the differential pressure between the operation side and the downstream side, the operation corresponding PM deposition amount calculated by the operation correspondence PM deposition amount calculation means, and the differential pressure Based on the differential pressure-corresponding PM deposit amount calculated by the corresponding PM deposit amount calculation means, if any of the two PM deposit amounts exceeds a reference value, forced regeneration is required by stopping the vehicle. The forced regeneration requesting means for requesting forced regeneration and the forced regeneration requesting means determine that the forced regeneration is necessary because the amount of PM deposition corresponding to the differential pressure exceeds the reference value. In this case, if the value corresponding to the differential pressure corresponding PM deposition amount or the increase characteristic of the differential pressure corresponding PM deposition amount reaches a limit value higher than the reference value, the PM deposition amount on the DPF has reached the limit. And a limit processing requesting means for determining and requesting processing when the limit is reached.

前記限界到達時処理は、前記車両の走行制限の処理と、前記DPFの再生禁止処理とを含んでいることが好ましい。
前記強制再生要求手段は、前記差圧対応PM堆積量が前記基準値を超えたことで強制再生が必要であると判定した場合に、前記差圧対応PM堆積量又は該差圧対応PM堆積量の増加特性に応じた値が、前記基準値よりも高く前記限界値よりも低い限界前値に達したら、前記強制再生を督促することが好ましい。
It is preferable that the process at the time of reaching the limit includes a process for restricting travel of the vehicle and a process for prohibiting regeneration of the DPF.
When the forced regeneration requesting unit determines that the forced regeneration is necessary because the differential pressure corresponding PM deposition amount exceeds the reference value, the differential pressure corresponding PM deposition amount or the differential pressure corresponding PM deposition amount When the value corresponding to the increase characteristic reaches a pre-limit value that is higher than the reference value and lower than the limit value, the forced regeneration is preferably prompted.

この場合、前記強制再生要求手段は、前記強制再生の要求を強制再生要求ランプの点滅で行い、前記強制再生の督促を前記強制再生要求ランプの点滅速度の増加で行なうことが好ましい。
前記の差圧対応PM堆積量の増加特性に応じた値は、前記運転対応PM堆積量の基準値と、前記差圧対応PM堆積量が前記基準値を超えた時の前記運転対応PM堆積量の値との比の値を補正係数として、前記PM堆積量演算手段による演算される前記運転対応PM堆積量を補正した値であることが好ましい。
In this case, the forced regeneration requesting unit preferably performs the forced regeneration request by blinking the forced regeneration request lamp, and prompts the forced regeneration by increasing the blinking speed of the forced regeneration request lamp.
The value corresponding to the increase characteristic of the differential pressure-corresponding PM deposit amount is a reference value of the operation-corresponding PM deposit amount, and the operation-corresponding PM deposit amount when the differential pressure-corresponding PM deposit amount exceeds the reference value. Preferably, the value is a value obtained by correcting the operation-related PM deposition amount calculated by the PM deposition amount calculation means, using a ratio value to the correction value as a correction coefficient.

本発明のDPF再生制御装置によれば、運転対応PM堆積量と差圧対応PM堆積量との何れかが基準値を超えたら、車両を停止させて行なう強制再生が必要であると判定し、強制再生を要求するので、例えば、エンジン部品の異常等によって、DPFのPM堆積が通常よりも早まった場合には、運転対応PM堆積量は基準値に達しないが差圧対応PM堆積量は基準値に達することになるので、強制再生要求手段は遅れることなく強制再生を要求する。   According to the DPF regeneration control device of the present invention, if any of the operation corresponding PM accumulation amount and the differential pressure corresponding PM accumulation amount exceeds the reference value, it is determined that the forced regeneration performed by stopping the vehicle is necessary, Since forced regeneration is required, for example, if PM accumulation of DPF is accelerated earlier than usual due to an abnormality in engine parts, etc., the PM accumulation amount corresponding to operation does not reach the reference value, but the PM accumulation amount corresponding to differential pressure is the reference value. Since the value is reached, the forced regeneration request means requests forced regeneration without delay.

さらに、差圧対応PM堆積量により強制再生要求に対して強制再生処理が行なわれないと、DPFの実際のPM堆積量が更に増加し、特に、急増する場合が多いが、この場合、限界処理要求手段が差圧対応PM堆積量又は差圧対応PM堆積量の増加特性に応じた値が限界値に達したら、限界到達時処理を要求するので、DPFへのPM堆積量が限界に達した場合の処理、例えば、車両の走行制限の処理やDPFの再生禁止処理を適切に案内することができる。   Further, if the forced regeneration process is not performed in response to the forced regeneration request due to the PM deposition amount corresponding to the differential pressure, the actual PM deposition amount of the DPF further increases, and in particular, rapidly increases. When the request means reaches the limit value when the value corresponding to the differential pressure corresponding PM deposition amount or the increase characteristic of the differential pressure corresponding PM deposition amount reaches the limit value, the PM deposit amount on the DPF has reached the limit. In this case, for example, the vehicle travel restriction process and the DPF regeneration prohibition process can be appropriately guided.

また、強制再生要求手段が、差圧対応PM堆積量が前記基準値を超えたことで強制再生が必要であると判定した場合に、差圧対応PM堆積量又は差圧対応PM堆積量の増加特性に応じた値が、基準値よりも高く限界値よりも低い限界前値に達したら、強制再生を督促することにより、強制再生に従わないドライバにより強く強制再生を要求することができる。   Further, when the forced regeneration requesting unit determines that the forced regeneration is necessary because the differential pressure corresponding PM deposition amount exceeds the reference value, the differential pressure corresponding PM deposition amount or the differential pressure corresponding PM deposition amount increases. When the value corresponding to the characteristic reaches a pre-limit value that is higher than the reference value and lower than the limit value, the driver who does not follow the forced regeneration can be strongly requested to request the forced regeneration by prompting the forced regeneration.

この場合、強制再生の要求を強制再生要求ランプの点滅で行ない、強制再生の督促を強制再生要求ランプの点滅速度の増加で行なえば、強制再生に従わないドライバに強制再生の必要性をアピールすることができる。
なお、差圧対応PM堆積量の増加特性に応じた値は、前記運転対応PM堆積量の基準値と、運転対応PM堆積量の基準値差圧が基準値を超えた時の運転対応PM堆積量の値との比の値を補正係数として、演算される運転対応PM堆積量を補正した値とすれば、運転対応PM堆積量を容易に適正なものに補正することができ、補正した運転対応PM堆積量をも参照してより確実に限界到達時処理や強制再生の督促を判断することができる。
In this case, if the forced regeneration request is made by blinking the forced regeneration request lamp and the forced regeneration is prompted by increasing the blinking speed of the forced regeneration request lamp, the necessity of forced regeneration is appealed to a driver who does not follow the forced regeneration. be able to.
Note that the value corresponding to the increase characteristic of the differential pressure corresponding PM deposition amount is the reference value of the operation corresponding PM deposition amount and the operation corresponding PM deposition when the reference value differential pressure of the operation corresponding PM deposition amount exceeds the reference value. If the value corresponding to the amount value is used as a correction coefficient and the calculated operation-related PM deposition amount is corrected, the operation-related PM deposition amount can be easily corrected to an appropriate value. With reference to the corresponding PM accumulation amount, it is possible to more reliably determine the process when reaching the limit and the prompt for forced regeneration.

本発明の一実施形態にかかるDPF再生制御装置を説明する構成図である。It is a block diagram explaining the DPF regeneration control apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかるDPF再生制御装置におけるPM堆積量変化の例を説明するグラフである。It is a graph explaining the example of PM deposition amount change in the DPF reproduction | regeneration control apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかるDPF再生制御装置による再生制御を説明するフローチャートである。It is a flowchart explaining the regeneration control by the DPF regeneration control apparatus concerning one Embodiment of this invention.

以下、図面により本発明の実施の形態について説明する。
図1〜図3は本発明の一実施形態にかかるDPF再生制御装置を説明するもので、図1はその構成図、図2はPM堆積量変化の例を説明するグラフ、図3は再生制御を説明するフローチャートである。
まず、本実施形態にかかるDPF再生制御装置の構成を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 illustrate a DPF regeneration control apparatus according to an embodiment of the present invention. FIG. 1 is a configuration diagram thereof, FIG. 2 is a graph illustrating an example of a change in PM deposition amount, and FIG. 3 is a regeneration control. It is a flowchart explaining these.
First, the configuration of the DPF regeneration control device according to the present embodiment will be described.

図1に示すように、本実施形態にかかるディーゼルエンジン(単に、エンジンともいう)1は、各気筒2に形成される燃焼室3と、燃焼室3に吸入空気を送り込む吸気通路4と、燃焼室3での燃焼により生じた排気が排出される排気通路5とが備えられている。吸気通路4に吸入された空気は、燃焼室3に設けられた燃料噴射弁6により噴射された燃料と混合して混合気となり、燃焼室3で燃焼する。また、吸気通路4には、燃焼室3に吸入される空気量を検出するためのエアフローメータ7が設けられている。   As shown in FIG. 1, a diesel engine (also simply referred to as an engine) 1 according to the present embodiment includes a combustion chamber 3 formed in each cylinder 2, an intake passage 4 that feeds intake air into the combustion chamber 3, and a combustion And an exhaust passage 5 through which exhaust gas generated by combustion in the chamber 3 is discharged. The air sucked into the intake passage 4 is mixed with the fuel injected by the fuel injection valve 6 provided in the combustion chamber 3 to become an air-fuel mixture and burns in the combustion chamber 3. The intake passage 4 is provided with an air flow meter 7 for detecting the amount of air taken into the combustion chamber 3.

排気通路5には、排気中に含まれる有害なHC(炭化水素)及びCO(一酸化炭素)を酸化して浄化する酸化触媒コンバータ8とPM(Particulate Matter、粒子状物質)を捕集して処理するDPF(Diesel Particulate Filter、ディーゼルパティキュレートフィルタ)9とが排気流れ上流から順に配置され、燃焼室3での燃焼により生じた排気が送り込まれる。なお、本実施形態では、DPF9にも排気中のHCやCOを酸化する酸化触媒が担持されている。   The exhaust passage 5 collects an oxidation catalytic converter 8 that oxidizes and purifies harmful HC (hydrocarbon) and CO (carbon monoxide) contained in the exhaust, and PM (Particulate Matter). A DPF (Diesel Particulate Filter) 9 to be processed is sequentially arranged from the upstream side of the exhaust gas flow, and exhaust gas generated by the combustion in the combustion chamber 3 is fed into it. In the present embodiment, the DPF 9 also carries an oxidation catalyst that oxidizes HC and CO in the exhaust.

そして、燃料噴射弁6を用いて、燃焼室3内で燃焼しないタイミング(主に排気工程中)で燃料を噴射するポスト噴射等によってDPF9の上流の酸化触媒8に燃料を供給し、この燃料を酸化触媒8で酸化反応(燃焼)させることで排気温度を上昇させDPF9のPMを焼却除去することでDPF9の再生が実施されている。
また、排気通路5における酸化触媒コンバータ8とDPF9との間には、温度センサ10と圧力センサ11とが順に設けられている。温度センサ10は排気通路5に流れる排気の温度を検出するものであり、圧力センサ11は、DPF9の上流の圧力を検出するためのものである。
Then, using the fuel injection valve 6, fuel is supplied to the oxidation catalyst 8 upstream of the DPF 9 by post-injection or the like in which fuel is injected at a timing at which combustion does not occur in the combustion chamber 3 (mainly during the exhaust process). The regeneration of the DPF 9 is performed by raising the exhaust temperature by causing the oxidation catalyst 8 to oxidize (combust) and removing the PM of the DPF 9 by incineration.
Further, a temperature sensor 10 and a pressure sensor 11 are provided in this order between the oxidation catalytic converter 8 and the DPF 9 in the exhaust passage 5. The temperature sensor 10 is for detecting the temperature of the exhaust gas flowing through the exhaust passage 5, and the pressure sensor 11 is for detecting the pressure upstream of the DPF 9.

なお、本実施形態においては、DPF9の下流側は大気圧に対して一定の圧損分だけ高い一定の圧力値と考えられるので、DPF9の下流の圧力は検出せずにDPF9の上流の圧力のみを検出して、このDPF9の上流の圧力を上記の一定の圧力値で減算してDPF9の上流と下流との圧力差(DPF前後差圧)として用いている。もちろん、DPF9の上流と下流の両方の圧力を検出するよう圧力センサ11をそれぞれ設けて、これらの圧力差を直に求めてもよい。   In this embodiment, since the downstream side of the DPF 9 is considered to be a constant pressure value that is higher than the atmospheric pressure by a certain pressure loss, only the pressure upstream of the DPF 9 is detected without detecting the pressure downstream of the DPF 9. The pressure upstream of the DPF 9 is detected and subtracted by the above-mentioned constant pressure value and used as a pressure difference between the upstream and downstream of the DPF 9 (differential pressure across the DPF). Of course, a pressure sensor 11 may be provided to detect both upstream and downstream pressures of the DPF 9, and the pressure difference between them may be obtained directly.

また、DPF9の下流には、排気による騒音を低減させるためのマフラー12が設けられており、その先は大気に直接通じている。
こうしたディーゼルエンジン1の各種制御は、エンジン制御装置(以下、エンジンECUという)20により実施されている。エンジンECU20は、エンジン制御にかかる各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時的に記憶されるRAM、外部との間で信号を入出力するための入出力ポート等を備えて構成され、これらから下記の各機能要素が構成されている。
Further, a muffler 12 for reducing noise caused by exhaust is provided downstream of the DPF 9, and the tip thereof directly communicates with the atmosphere.
Various controls of the diesel engine 1 are performed by an engine control device (hereinafter referred to as an engine ECU) 20. The engine ECU 20 includes a CPU that executes various arithmetic processes related to engine control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU calculation results, and signals externally. Are provided with input / output ports and the like, and the following functional elements are constituted from these.

そして、エンジンECU20は、DPF9内に堆積したPMの量(PM堆積量)をエンジンの運転状態に基づいて演算する運転対応PM堆積量演算手段(以下、単に、PM堆積量演算手段ともいう)21としての機能要素と、かかるPM堆積量をDPF前後差圧に基づくレスフローの値(差圧対応PM堆積量)をDPF9の上流の検出圧力に基づいて演算するレスフロー演算手段(差圧対応PM堆積量演算手段)22としての機能要素と、を有している。   Then, the engine ECU 20 calculates the PM amount accumulated in the DPF 9 (PM accumulation amount) based on the operation state of the engine, and corresponds to an operation corresponding PM accumulation amount calculation means (hereinafter also simply referred to as PM accumulation amount calculation means) 21. And a non-flow calculation means (a differential pressure compatible PM) that calculates a value of a reflow based on a differential pressure across the DPF (a differential pressure compatible PM accumulated amount) based on a detected pressure upstream of the DPF 9. And a functional element as a deposit amount calculating means) 22.

エンジンECU20は、さらに、運転対応PM堆積量演算手段21で演算された運転対応PM堆積量と、レスフロー演算手段22で演算されたレスフロー(差圧対応PM堆積量)とに基づいて、車両を停止させて行なう強制再生(手動再生)が必要であるか否かを判定し、強制再生を要求する強制再生要求手段23と、PM堆積量が限界値に達したか否かを判定し、限界到達時処理を要求する限界処理要求手段24と、をそなえる。   The engine ECU 20 further determines the vehicle based on the driving-accepted PM deposit amount calculated by the driving-corresponding PM deposit amount calculating means 21 and the less flow (differential pressure-corresponding PM deposit amount) calculated by the less flow calculating means 22. Whether or not forced regeneration (manual regeneration) to be performed is required is determined, forced regeneration requesting means 23 for requesting forced regeneration, and whether or not the PM accumulation amount has reached a limit value, And limit processing requesting means 24 for requesting processing when the limit is reached.

本DPF再生制御装置は、このような運転対応PM堆積量演算手段21と、レスフロー演算手段22と、強制再生要求手段23と、限界処理要求手段24とから構成されている。
運転対応PM堆積量演算手段21には、種々の公知技術を適用することができ、例えば、エンジン1の運転状態情報としてエンジン回転数Neと燃料噴射量等のエンジン負荷Leとの情報を得て、エンジン回転数Neとエンジン負荷Leとに応じた単位時間当たりのPM排出量(mg/sec)を、例えば予め用意されたマップによって求め、DPF9の新品時または再生完了時点以後のエンジン運転時間における積算より、DPF9に堆積している運転対応PM堆積量(単に、PM堆積量ともいう)を推定することができるが、これに限定されるものではない。
The present DPF regeneration control device is composed of such an operation-compatible PM accumulation amount computing means 21, a less flow computing means 22, a forced regeneration requesting means 23, and a limit processing requesting means 24.
Various known techniques can be applied to the operation-related PM accumulation amount calculation means 21. For example, information on the engine speed Ne and the engine load Le such as the fuel injection amount is obtained as the operation state information of the engine 1. The PM emission amount (mg / sec) per unit time according to the engine rotational speed Ne and the engine load Le is obtained by, for example, a map prepared in advance, and the engine operating time after the DPF 9 is new or after completion of regeneration is obtained. From the integration, the operation-corresponding PM accumulation amount (also simply referred to as PM accumulation amount) accumulated in the DPF 9 can be estimated, but the present invention is not limited to this.

また、運転対応PM堆積量演算手段21では、強制再生が実施されている際には、PMの燃焼量を積算して演算する。なお、図示しないが、強制再生(ここでは、手動再生)は、ドライバが強制再生指令を行なった時点から、PMの燃焼量が目標値(例えば、図2に示すPM堆積量Aに相当する値)に達したら強制再生が完了したとして、強制再生を自動停止する手段がそなえられている。なお、PMの燃焼量は、排気通路を流通する酸素質量流量から求めることができ、強制再生を開始してからの酸素質量流量の積算値が目標値に達したら強制再生が完了したと判定することができる。もちろん、この強制再生の完了判定にも、種々の公知技術を適用することができる。   Further, the operation-corresponding PM accumulation amount calculation means 21 calculates the PM combustion amount by integrating when forced regeneration is being performed. Although not shown in the figure, forced regeneration (here, manual regeneration) is a value at which the PM combustion amount is a target value (for example, a value corresponding to the PM accumulation amount A shown in FIG. If the forced regeneration is completed, a means for automatically stopping the forced regeneration is provided. The PM combustion amount can be obtained from the oxygen mass flow rate flowing through the exhaust passage. When the integrated value of the oxygen mass flow rate after starting the forced regeneration reaches the target value, it is determined that the forced regeneration is completed. be able to. Of course, various known techniques can be applied to the completion determination of the forced regeneration.

また、レスフロー演算手段22は、ここでは、圧力センサ(DPF上流圧検出手段又はDPF前後圧検出手段)11により検出され圧力値から一定の圧力値を減算してDPF前後差圧を求め、このDPF前後差圧と、エアフローメータ7により検出された吸入空気量や温度センサ10により検出された排気温度、DPF9の上流圧力等から求めた排気流量(単位時間当たり流量)とから、差圧対応PM堆積量であるレスフロー(レスフロー係数ともいう)を算出する
ここで、レスフローについて説明する。DPF9のPM堆積量が増大すると、これに対応してDPF9に堆積したPMがDPF9の流路抵抗を増大させ圧力損失を招き、DPF9の上流側と下流側との差圧(前後差圧)Pdの増大となって現われる。このDPF9の前後差圧Pdは、排気流量Qexが大きい程大きくなる特性がある。したがって、DPF9の前後差圧Pdと排気流量Qexとから、一定の排気流量Qexに対するDPF9の前後差圧PdをレスフローLFとして導出する。
Further, the less flow calculation means 22 obtains the DPF front-rear differential pressure by subtracting a constant pressure value from the pressure value detected by the pressure sensor (DPF upstream pressure detection means or DPF front-rear pressure detection means) 11, Based on the differential pressure across the DPF, the amount of intake air detected by the air flow meter 7, the exhaust temperature detected by the temperature sensor 10, the exhaust flow rate (flow rate per unit time) determined from the upstream pressure of the DPF 9, etc. Calculate the flow of reflow (also referred to as the reflow coefficient), which is the amount of deposition. When the amount of PM deposited on the DPF 9 increases, the PM deposited on the DPF 9 correspondingly increases the flow resistance of the DPF 9 and causes a pressure loss, and the pressure difference (front-back differential pressure) Pd between the upstream side and the downstream side of the DPF 9 It appears as an increase. The front-rear differential pressure Pd of the DPF 9 has a characteristic that it increases as the exhaust flow rate Qex increases. Therefore, the front-rear differential pressure Pd of the DPF 9 with respect to the constant exhaust flow rate Qex is derived as the less flow LF from the front-rear differential pressure Pd of the DPF 9 and the exhaust flow rate Qex.

同一の流路抵抗状態に対する前後差圧Pdと排気流量Qexとの関係は、最もシンプルには線形と考えられるので、レスフローLFを最もシンプルに規定すれば、
LF=Pd/Qex となる。
ただし、より厳密には、前後差圧Pdと排気流量Qexとの関係は線形ではないので、レスフローLFを一般的に規定すれば、
LF=F(Pd,Qex) となる。
The relationship between the front-rear differential pressure Pd and the exhaust flow rate Qex with respect to the same flow path resistance state is considered to be linear in the simplest, so if the less flow LF is specified most simply,
LF = Pd / Qex.
However, more strictly, since the relationship between the front-rear differential pressure Pd and the exhaust flow rate Qex is not linear, if the less flow LF is generally defined,
LF = F (Pd, Qex)

なお、排気流量Qexが小さい場合前後差圧Pd自体が小さく、前後差圧Pd自体を評価し難いので、このレスフローLFは、排気流量Qexが予め設定された下限値Qexmin以上であることを条件に演算することが好ましい。
強制再生要求手段23では、運転対応PM堆積量演算手段21により演算された運転対応PM堆積量と、レスフロー演算手段22により演算されたレスフローとのうち、何れかが予め設定された基準値(強制再生判定値)を超えたら、車両を停止させて手動で行なう強制再生が必要であると判定し、この強制再生を要求表示手段25に表示して要求する。なお、要求表示手段25としては、ここでは、MIL(Malfunction Indicator Lamp、マルチファンクションインディケータランプ)を特定の点灯状態(例えば、点滅表示)として表示するが、専用のランプ等によって行なったり、ディスプレイへの文字表示としたりするなど、表示形態は限定されない。
Note that when the exhaust flow rate Qex is small, the front-rear differential pressure Pd itself is small and it is difficult to evaluate the front-rear differential pressure Pd itself. Therefore, the reflow LF requires that the exhaust flow rate Qex is equal to or greater than a preset lower limit value Qexmin. It is preferable to calculate to.
In the forced regeneration requesting means 23, a reference value in which one of the operation-related PM accumulation amount calculated by the operation-related PM accumulation amount calculating means 21 and the less flow calculated by the less flow calculating means 22 is set in advance. When (forced regeneration determination value) is exceeded, it is determined that the forced regeneration that is performed manually by stopping the vehicle is necessary, and this forced regeneration is displayed on the request display means 25 and requested. Here, as the request display means 25, MIL (Malfunction Indicator Lamp, multi-function indicator lamp) is displayed as a specific lighting state (for example, blinking display). The display form is not limited, such as displaying characters.

限界処理要求手段24では、強制再生要求手段23において、レスフロー(差圧対応PM堆積量)が基準値(強制再生判定値)を超えたことで強制再生が必要であると判定した場合に、このレスフロー(差圧対応PM堆積量)又はこのレスフローの増加特性に応じた値が強制再生判定の基準値よりも高い限界値(限界到達判定値)に達したか否かによってDPF9へのPM堆積量が限界に達したかを判定し、PM堆積量が限界に達したら限界到達時処理、つまり、要求表示手段(ここでは、MIL)25に表示(例えば、常時点灯表示)して要求すると共に、再生禁止の処理を行なう。この場合も、専用のランプ等によって行なったり、ディスプレイへの文字表示としたりするなど、表示形態は限定されない。   In the limit processing requesting unit 24, when the forced regeneration requesting unit 23 determines that the forced regeneration is necessary because the reflow (differential pressure corresponding PM deposition amount) exceeds the reference value (forced regeneration determination value), Depending on whether or not this less flow (PM deposition amount corresponding to differential pressure) or the increase characteristic of this less flow has reached a limit value (limit reached judgment value) higher than the reference value for forced regeneration judgment, It is determined whether or not the PM accumulation amount has reached the limit, and when the PM accumulation amount reaches the limit, processing at the time of reaching the limit, that is, a request is displayed on the request display means (here, MIL) 25 (for example, always lit display). At the same time, reproduction prohibition processing is performed. Also in this case, the display form is not limited, such as using a dedicated lamp or displaying characters on the display.

また、限界処理要求手段24では、強制再生要求手段23において、運転対応PM堆積量が強制再生判定値を超えたこと或いは再生後の走行量で強制再生が必要であると判定した場合には、運転対応PM堆積量とレスフロー(差圧対応PM堆積量)とのいずれかが強制再生判定の基準値よりも高い限界値(限界到達判定値)に達したか否かによってDPF9へのPM堆積量が限界に達したかを判定する。   Further, in the limit processing requesting unit 24, when the forced regeneration requesting unit 23 determines that the operation-supported PM accumulation amount exceeds the forced regeneration determination value or the forced regeneration is necessary with the travel amount after regeneration, PM deposition on the DPF 9 depends on whether or not either the operation-compatible PM deposition amount or the reflow (differential pressure-compatible PM deposition amount) has reached a limit value (limit reaching determination value) higher than the reference value for forced regeneration determination. Determine if the amount has reached the limit.

ここで、レスフローの増加特性に応じた値について、図2を参照しながら説明する。なお、図2はエンジン部品の異常等によるPM発生量が急増する場合のPM堆積量(運転対応PM堆積量),レスフロー(差圧対応PM堆積量),PM堆積量の補正値(運転対応PM堆積量補正値)の再生後の走行量(例えば、走行距離又は走行時間)の変化の一例をそれぞれ示す図である。   Here, a value corresponding to the increase characteristic of the less flow will be described with reference to FIG. Note that FIG. 2 shows a PM accumulation amount (operation-related PM deposition amount), a reflow (differential pressure-compatible PM deposition amount), and a PM deposition amount correction value (operation correspondence) when the PM generation amount increases rapidly due to an engine component abnormality or the like. It is a figure which respectively shows an example of the change of the travel amount (for example, travel distance or travel time) after reproduction | regeneration of (PM accumulation amount correction value).

図2に示すように、エンジン部品の異常等によるPM発生量が急増する場合、エンジン部品の異常等がない通常時には実際のPM堆積量よりも多めに演算されるPM堆積量(運転対応PM堆積量、細線で示す)に対して、実際のPM堆積量(一点鎖線で示すPM実堆積量)の方が大きく増加する場合がある。この場合には、運転対応PM堆積量は基準値(強制再生判定値)Aに達していないが、実際のPM堆積量は基準値(強制再生判定値)Aに達してしまう。   As shown in FIG. 2, when the amount of PM generated due to an abnormality in an engine component increases rapidly, the PM accumulation amount calculated more than the actual PM accumulation amount (normal operation accumulation PM accumulation) when there is no abnormality in the engine component. In some cases, the actual PM deposition amount (the PM actual deposition amount indicated by the alternate long and short dash line) greatly increases with respect to the amount and the thin line. In this case, the PM PM amount corresponding to the operation does not reach the reference value (forced regeneration determination value) A, but the actual PM accumulation amount reaches the reference value (forced regeneration determination value) A.

これに対して、レスフロー(差圧対応PM堆積量)は、実際のPM堆積量と略同様の特性で増加していくので、実際のPM堆積量は基準値(強制再生判定値)Aに達する付近でレスフローも基準値Aに達する。このため、強制再生要求手段23によるレスフローに基づく再生要求判定で強制再生が必要であると判定され、強制再生が要求される。
この再生要求判定時点で、運転対応PM堆積量も基準値Aに達しているものと補正すれば、その後、強制再生の要求に対して強制再生が実行されずにPM堆積量が更に増加し、その後のPM堆積量が限界値(限界到達判定値)Bに達したか否かの判定にこの補正した運転対応PM堆積量も利用することができる。
On the other hand, the reflow (differential pressure corresponding PM deposition amount) increases with substantially the same characteristics as the actual PM deposition amount, so the actual PM deposition amount becomes the reference value (forced regeneration determination value) A. In the vicinity of reaching, the reflow also reaches the reference value A. For this reason, the forced regeneration requesting means 23 determines that the forced regeneration is necessary in the regeneration request determination based on the less flow, and the forced regeneration is requested.
If it is corrected that the operation-relevant PM deposition amount has also reached the reference value A at the time of the regeneration request determination, the PM deposition amount further increases without performing the forced regeneration in response to the forced regeneration request, The corrected operation-corresponding PM deposition amount can also be used to determine whether or not the subsequent PM deposition amount has reached a limit value (limit reached determination value) B.

ただし、この運転対応PM堆積量の補正を、再生要求判定時点での運転対応PM堆積量が基準値Aに達しているものと、単にシフト(下駄を履かせる)だけでは、図2中に、粗い破線で示す補正値(PM堆積量の改良前補正値)のように、運転対応PM堆積量がその後の実際のPM堆積量の増加に追従できない。
そこで、この運転対応PM堆積量の補正を、上記のシフト操作に加えて、再生要求判定時点での運転対応PM堆積量Q1の基準値Aに対する比の値(=A/Q1)を係数として、その後の運転対応PM堆積量の演算値にこの係数(=A/Q1)を乗算して補正するようにしている。これは、運転対応PM堆積量は、レスフローに対して一定の比率で小さくなるものとの仮定に従っている。
However, in the correction of the operation-related PM accumulation amount, when the operation-response PM accumulation amount at the time of the regeneration request determination has reached the reference value A and simply shifting (putting on clogs), in FIG. Like the correction value indicated by the rough broken line (correction value before improvement of the PM accumulation amount), the operation-corresponding PM accumulation amount cannot follow the subsequent increase in the actual PM accumulation amount.
Therefore, in addition to the shift operation described above, the correction of the operation-related PM deposition amount is performed, and the ratio value (= A / Q1) with respect to the reference value A of the operation-related PM deposition amount Q1 at the regeneration request determination time is used as a coefficient. Subsequent corrections are made by multiplying this calculated value (= A / Q1) by the operation-calculated PM accumulation amount. This is based on the assumption that the operation-related PM accumulation amount becomes smaller at a constant ratio with respect to the less flow.

このように補正した運転対応PM堆積量(細かい破線で示すPM堆積量の改良後補正値)を用いれば、運転対応PM堆積量が実際のPM堆積量の増加に追従するようになり、強制再生の要求後のPM堆積量が限界値(限界到達判定値)Bに達したか否かの判定にこの補正した運転対応PM堆積量も判定材料になりうる。
本発明の一実施形態にかかるDPF再生制御装置は、上述のように構成されるので、例えば図3のフローチャートに示すように再生制御を行なうことができる。なお、図3に示すフローは所定の周期で繰り返されるものとする。
By using the corrected PM deposit amount corresponding to the operation (corrected correction value of the PM deposit amount indicated by a fine broken line) corrected in this way, the PM deposit amount corresponding to the operation follows the increase in the actual PM deposit amount, and the forced regeneration is performed. The corrected PM deposit amount corresponding to the operation can be used as a determination material for determining whether or not the PM deposition amount after the request has reached the limit value (limit reaching determination value) B.
Since the DPF regeneration control apparatus according to an embodiment of the present invention is configured as described above, regeneration control can be performed as shown in the flowchart of FIG. 3, for example. Note that the flow shown in FIG. 3 is repeated at a predetermined cycle.

図3に示すように、まず、エンジン回転数Ne、料噴射量等のエンジン負荷Le、DPF9の上流圧力、排気温度、吸入空気量等を検出する各種センサ値の取り込みを行ない(ステップS10)、強制再生フラグFが強制再生状態であるか(F=1)強制再生状態でないか(F=0)を判定する(ステップS20)。ここで、強制再生フラグFが強制再生状態である場合(F=1)にはステップS90に進み、強制再生状態でない場合(F=0)にはステップS30に進む。なお、排気流量は、これに対応する吸入空気量から検出することができる。   As shown in FIG. 3, first, various sensor values for detecting the engine speed Le such as the engine speed Ne, the fuel injection amount, the upstream pressure of the DPF 9, the exhaust temperature, the intake air amount, and the like are captured (step S10). It is determined whether the forced regeneration flag F is in the forced regeneration state (F = 1) or not in the forced regeneration state (F = 0) (step S20). Here, when the forced regeneration flag F is in the forced regeneration state (F = 1), the process proceeds to step S90, and when not in the forced regeneration state (F = 0), the process proceeds to step S30. The exhaust flow rate can be detected from the corresponding intake air amount.

ステップS30では、運転対応PM堆積量演算手段21によって演算されたエンジンの運転状態からDPFへのPM堆積量(運転対応PM堆積量)が予め設定された基準値(強制再生判定値)よりも大きいか否かを判定する。ここで、運転対応PM堆積量が強制再生判定値よりも大きければステップS70に進み、運転対応PM堆積量が強制再生判定値以下であればステップS40に進む。   In step S30, the PM accumulation amount (operation correspondence PM accumulation amount) from the engine operating state calculated by the operation correspondence PM accumulation amount calculating means 21 to the DPF is larger than a preset reference value (forced regeneration determination value). It is determined whether or not. If the operation-compatible PM accumulation amount is larger than the forced regeneration determination value, the process proceeds to step S70. If the operation-compatible PM accumulation amount is equal to or less than the forced regeneration determination value, the process proceeds to step S40.

ステップS40では、前回の再生完了後の車両の走行量が予め設定された基準値(所定値)よりも大きいか否かを判定する。この場合の走行量としては、例えば前回の再生完了時点からの走行距離又は走行時間を用いる。ここで、再生後の走行量が所定値よりも大きければステップS70に進み、再生後の走行量が所定値以下であればステップS50に進む。   In step S40, it is determined whether or not the travel amount of the vehicle after completion of the previous regeneration is greater than a preset reference value (predetermined value). As the travel amount in this case, for example, the travel distance or travel time from the previous regeneration completion time is used. If the travel amount after regeneration is larger than the predetermined value, the process proceeds to step S70, and if the travel amount after regeneration is equal to or less than the predetermined value, the process proceeds to step S50.

ステップS50では、差圧対応PM堆積量演算手段22によって演算されたDPFの前後差圧と排気流量とから求められるレスフロー(差圧対応PM堆積量)が予め設定された基準値(強制再生判定値)よりも大きいか否かを判定する。ここで、レスフローが強制再生判定値よりも大きければステップS60に進み、レスフロー運転対応PM堆積量が強制再生判定値以下であれば終了(リターン)する。   In step S50, a reference value (forced regeneration determination) in which a reflow (differential pressure-corresponding PM accumulation amount) obtained from the differential pressure corresponding to the front and rear pressure of the DPF calculated by the differential pressure-corresponding PM accumulation amount calculating means 22 and the exhaust flow rate is set. Value) is determined. Here, if the less flow is larger than the forced regeneration determination value, the process proceeds to step S60, and if the less flow operation-compatible PM deposition amount is less than or equal to the forced regeneration determination value, the process ends (returns).

運転対応PM堆積量や車両の走行量が各基準値に達する前にレスフローが基準値に達した場合には、図2に示すように、エンジン部品の異常等によるPM発生量が急増する場合が想定される。つまり、運転対応PM堆積量は、エンジン部品の異常等がない通常時には実際のPM堆積量よりも多めに演算されるように設定されているので、通常時には、運転対応PM堆積量が強制再生判定値に達するか又は車両の走行量が基準値に達することで、強制再生を判定する。したがって、はじめにレスフローが基準値に達した場合には、エンジン部品の異常等によるPM発生量が急増する場合を想定できるのである。   When the amount of PM generated due to an abnormality in the engine parts or the like rapidly increases as shown in FIG. 2 when the reflow reaches the reference value before the driving-acquired PM accumulation amount or the vehicle travel amount reaches each reference value. Is assumed. In other words, the operation-related PM accumulation amount is set to be calculated to be larger than the actual PM accumulation amount at the normal time when there is no abnormality in the engine parts, etc. Compulsory regeneration is determined when the value reaches or the vehicle travel reaches a reference value. Therefore, when the reflow reaches the reference value first, it can be assumed that the amount of PM generated rapidly increases due to an abnormality in the engine parts.

この場合には、ステップS60に進み、運転対応PM堆積量を補正する。つまり、図2中に細破線(PM堆積量の改良後補正値)で示すように、再生要求判定時点での運転対応PM堆積量が基準値Aに達しているものとシフト補正し、その後は、このシフト操作に加えて、再生要求判定時点での運転対応PM堆積量Q1の基準値Aに対する比の値(=A/Q1)を係数として、その後の運転対応PM堆積量の演算値にこの係数(=A/Q1)を乗算して補正する。   In this case, the process proceeds to step S60, and the operation corresponding PM accumulation amount is corrected. That is, as indicated by a thin broken line (correction value after improvement of the PM deposition amount) in FIG. 2, the shift correction is made so that the operation-corresponding PM deposition amount at the time of the regeneration request determination reaches the reference value A, and thereafter In addition to this shift operation, the value of the ratio (= A / Q1) of the operation-related PM deposition amount Q1 at the time of the regeneration request determination with respect to the reference value A is used as a coefficient, and the calculated value of the subsequent operation-related PM deposition amount Correction is performed by multiplying by a coefficient (= A / Q1).

ステップS70では、強制再生要求手段23による強制再生要求が行なわれる。ここでは、MILを点滅表示等の特定の点灯状態として表示する。
この強制再生要求が行なわれ、ドライバがこれに呼応して車両を停止させて強制再生を実施すると、強制再生フラグFが1に設定され、強制再生を実施しなければ、強制再生フラグFが0とされる。
In step S70, a forced regeneration request is made by the forced regeneration requesting means 23. Here, MIL is displayed as a specific lighting state such as blinking display.
When this forced regeneration request is made and the driver stops the vehicle in response to the forced regeneration, the forced regeneration flag F is set to 1. If the forced regeneration is not performed, the forced regeneration flag F is set to 0. It is said.

ステップS70に続くステップS80では、強制再生が実施されているか(強制再生フラグFが1である)否かを判定する。強制再生が実施されていれば(F=1)、続くステップS90で、強制再生を開始してからの酸素質量流量の積算値が目標値に達したか否かからPMの燃焼量が目標値に達したか否かを判定する。強制再生が実施されていると、ステップS10,S20を経て、このステップS90に進み、やがて、酸素質量流量の積算値が目標値に達して、ステップS100に進み、強制再生が自動終了される。   In step S80 following step S70, it is determined whether forced regeneration is being performed (forced regeneration flag F is 1). If forced regeneration has been carried out (F = 1), in the subsequent step S90, the PM combustion amount becomes the target value based on whether or not the integrated value of the oxygen mass flow rate from the start of forced regeneration has reached the target value. It is determined whether or not it has been reached. If the forced regeneration is performed, the process proceeds to step S90 through steps S10 and S20. Eventually, the integrated value of the oxygen mass flow rate reaches the target value, the process proceeds to step S100, and the forced regeneration is automatically terminated.

一方、強制再生が実施されなければ(F=0)、ステップS110に進み、限界処理要求手段24によりPM堆積量が限界値(限界到達判定値)に達したか否かを判定する。この判定は、強制再生要求手段23において、レスフロー(差圧対応PM堆積量)が基準値(強制再生判定値)を超えたことで強制再生が必要であると判定した場合に、このレスフローの増加特性に応じた運転対応PM堆積量の補正値が強制再生判定の基準値よりも高い限界値(限界到達判定値)に達したか否かを判定する。また、強制再生要求手段23において、運転対応PM堆積量が強制再生判定値を超えたこと或いは再生後の走行量で強制再生が必要であると判定した場合には、運転対応PM堆積量(補正なし)が強制再生判定の基準値よりも高い限界値(限界到達判定値)に達したか否かによってDPF9へのPM堆積量が限界に達したかを判定する。   On the other hand, if the forced regeneration is not performed (F = 0), the process proceeds to step S110, and the limit processing request unit 24 determines whether or not the PM deposition amount has reached a limit value (limit reached determination value). This determination is performed when the forced regeneration requesting unit 23 determines that the forced regeneration is necessary because the less flow (the pressure accumulation corresponding to the differential pressure) exceeds the reference value (the forced regeneration determination value). It is determined whether or not the correction value of the operation-related PM deposition amount corresponding to the increase characteristic of the engine reaches a limit value (limit determination value) higher than the reference value for forced regeneration determination. If the forced regeneration requesting means 23 determines that the operation-related PM deposition amount exceeds the forced regeneration determination value or the forced regeneration is necessary with the travel amount after regeneration, the operation-relevant PM deposition amount (correction) It is determined whether the amount of PM deposited on the DPF 9 has reached the limit depending on whether or not (No) has reached a limit value (limit determination value) higher than the reference value for forced regeneration determination.

ここで、運転対応PM堆積量またはその補正値が限界値に達したら、ステップS130に進み、限界到達時処理、つまり、要求表示手段(ここでは、MIL)25に表示(例えば、常時点灯表示)して要求すると共に、走行制限や再生禁止等の処理を行なう。
また、運転対応PM堆積量またはその補正値が限界値に達しない場合には、ステップS120に進み、レスフロー(差圧対応PM堆積量)が限界値(限界到達判定値)に達したか否かを判定する。
Here, if the operation-supported PM accumulation amount or the correction value thereof reaches the limit value, the process proceeds to step S130, and the process at the time of reaching the limit, that is, displayed on the request display means (here, MIL) 25 (for example, always lit display). Request, and processing such as travel restriction and prohibition of reproduction is performed.
If the operation-corresponding PM accumulation amount or the correction value thereof does not reach the limit value, the process proceeds to step S120, and whether or not the reflow (differential pressure-corresponding PM accumulation amount) has reached the limit value (limit reached determination value). Determine whether.

ここで、レスフローが限界値に達したら、ステップS130に進み、限界到達時処理、つまり、要求表示手段(ここでは、MIL)25に表示(例えば、常時点灯表示)して要求すると共に、走行制限や再生禁止等の処理を行なう。
レスフローが限界値に達しなければ終了(リターン)する。
このようにして、本DPF再生制御装置によれば、運転対応PM堆積量とレスフロー(差圧対応PM堆積量)との何れかが基準値を超えたら、車両を停止させて行なう強制再生が必要であると判定し、強制再生を要求するので、例えば、エンジン部品の異常等によって、DPFのPM堆積が通常よりも早まった場合には、運転対応PM堆積量は基準値に達しないが差圧対応PM堆積量は基準値に達することになるので、遅れることなく強制再生を要求する。
Here, when the less flow reaches the limit value, the process proceeds to step S130, and when the limit is reached, that is, the request display means (in this case, MIL) 25 displays (for example, always lights up) and requests it. Perform processing such as restriction and prohibition of playback.
If the reflow does not reach the limit value, the flow ends (returns).
Thus, according to this DPF regeneration control device, when either the operation-compatible PM accumulation amount or the reflow (differential pressure-compatible PM accumulation amount) exceeds the reference value, the forced regeneration that is performed by stopping the vehicle is performed. Since it is determined that it is necessary and forced regeneration is requested, for example, if PM accumulation of DPF is accelerated earlier than usual due to an abnormality in engine parts, the operation-related PM accumulation amount does not reach the reference value, but the difference Since the pressure-corresponding PM deposition amount reaches the reference value, the forced regeneration is requested without delay.

さらに、差圧対応PM堆積量により強制再生要求に対して強制再生処理が行なわれないと、DPFの実際のPM堆積量が更に増加し、特に、急増する場合が多いが、この場合、差圧対応PM堆積量又は差圧対応PM堆積量の増加特性に応じた値である運転対応PM堆積量の補正値とによって、より確実に限界到達時処理を判断することができる。   Further, if the forced regeneration process is not performed in response to the forced regeneration request due to the differential pressure corresponding PM deposition amount, the actual PM deposition amount of the DPF further increases, and in particular, rapidly increases. The process for reaching the limit can be more reliably determined by the correction value of the operation-corresponding PM deposition amount which is a value corresponding to the increase characteristic of the corresponding PM deposition amount or the differential pressure-corresponding PM deposition amount.

以上、本発明の実施形態を説明したが、本発明はその趣旨を逸脱しない範囲でかかる実施形態を変形したり、更なる構成を付加したりして実施することができる。
例えば、上記実施形態では、強制再生を要求した後、強制再生が行なわれない場合、限界処理要求が、運転対応PM堆積量やその補正値或いはレスフローが限界値に達したら、限界到達時処理を行なう構成になっているが、この限界値よりも小さく且つ停車時の強制再生判定値よりも大きい第2の基準値(強制再生督促判定値)を設けて、強制再生判定手段が、運転対応PM堆積量やその補正値或いはレスフローが第2の基準値(強制再生督促判定値)に達したら、強制再生を督促するようにしても良い。
Although the embodiments of the present invention have been described above, the present invention can be implemented by modifying such embodiments or adding further configurations without departing from the spirit of the present invention.
For example, in the above embodiment, if forced regeneration is not performed after requesting forced regeneration, if the limit processing request reaches the limit value for the operation-related PM deposition amount or its correction value or reflow, the process at the time of reaching the limit is performed. The second reference value (forced regeneration prompting judgment value) that is smaller than the limit value and larger than the forced regeneration judgment value at the time of stopping is provided, and the forced regeneration judgment means is adapted for driving. If the PM accumulation amount, its correction value, or the reflow reaches the second reference value (forced regeneration prompting determination value), forced regeneration may be prompted.

この場合、強制再生の要求をMIL若しくは強制再生要求ランプの点滅で行い、強制再生の督促をMIL若しくは強制再生要求ランプの点滅速度の増加で行なえば、強制再生に従わないドライバに強制再生の必要性をアピールすることができる。
また、強制再生を要求した後の運転対応PM堆積量やその補正値或いはレスフローの増大に応じて、これらが限界値に達するまで、より段階的に、又は、無段階に点滅速度の増加させるなど強制再生の要求を強めても良い。
In this case, if the forced regeneration is requested by blinking the MIL or forced regeneration request lamp and the forced regeneration is prompted by increasing the blinking speed of the MIL or forced regeneration request lamp, the forced regeneration is necessary for the driver who does not follow the forced regeneration. Can appeal sex.
In addition, the flashing speed is increased stepwise or steplessly until they reach the limit value according to the increase in the operation-supported PM deposition amount after the forced regeneration is requested, the correction value thereof, or the increase in the reflow. For example, the request for forced regeneration may be strengthened.

また、第1の基準値を停車時の強制再生判定値ではなく、走行時の強制再生判定値とし、以降、停車時の強制再生判定、強制再生督促判定、限界到達判定等を段階的に判定させて、各々に対応する処理を実施しても良い。   In addition, the first reference value is not the forced regeneration determination value when the vehicle is stopped, but the forced regeneration determination value when the vehicle is traveling. Thereafter, the forced regeneration determination, the forced regeneration reminder determination, the limit reaching determination, etc. when the vehicle is stopped are determined in stages. Then, the processing corresponding to each may be performed.

1 ディーゼルエンジン(エンジン)
2 気筒
3 燃焼室
4 吸気通路
5 排気通路
6 燃料噴射弁
7 エアフローメータ
8 酸化触媒コンバータ
9 ディーゼルパティキュレートフィルタ(DPF)
10 温度センサ
11 圧力センサ
12 マフラー
20 エンジン制御装置(エンジンECU)
21 運転対応PM堆積量演算手段
22 レスフロー演算手段(差圧対応PM堆積量演算手段)
23 強制再生要求手段
24 限界処理要求手段
1 Diesel engine (engine)
2 cylinder 3 combustion chamber 4 intake passage 5 exhaust passage 6 fuel injection valve 7 air flow meter 8 oxidation catalytic converter 9 diesel particulate filter (DPF)
DESCRIPTION OF SYMBOLS 10 Temperature sensor 11 Pressure sensor 12 Muffler 20 Engine control apparatus (engine ECU)
21 Operation corresponding PM accumulation amount calculating means 22 Less flow calculating means (differential pressure corresponding PM accumulation amount calculating means)
23 Forced regeneration request means 24 Limit processing request means

Claims (5)

車両に搭載される走行用のディーゼルエンジンの排気に含まれる粒子状物質(PM)を捕集するフィルタ(DPF)の前記PMを除去して再生するための制御を行なうDPF再生制御装置であって、
前記ディーゼルエンジンの運転状態から前記DPFへのPM堆積量を演算する運転対応PM堆積量演算手段と、
前記DPFの上流側と下流側との差圧から前記DPFへのPM堆積量を演算する差圧対応PM堆積量演算手段と、
前記運転対応PM堆積量演算手段により演算された運転対応PM堆積量と、前記差圧対応PM堆積量演算手段により演算された差圧対応PM堆積量とに基づいて、前記両PM堆積量の何れかが基準値を超えたら、前記車両を停止させて行なう強制再生が必要であると判定し、前記強制再生を要求する強制再生要求手段と、
前記強制再生判定手段が、前記差圧対応PM堆積量が前記基準値を超えたことで強制再生が必要であると判定した場合に、前記差圧対応PM堆積量又は該差圧対応PM堆積量の増加特性に応じた値が前記基準値よりも高い限界値に達したら前記DPFへのPM堆積量が限界に達したと判定し、限界到達時処理を要求する限界処理要求手段と、をそなえる
ことを特徴とする、DPF再生制御装置。
A DPF regeneration control device that performs control to remove and regenerate the PM of a filter (DPF) that collects particulate matter (PM) contained in exhaust gas of a traveling diesel engine mounted on a vehicle. ,
An operation corresponding PM accumulation amount calculating means for calculating the PM accumulation amount on the DPF from the operation state of the diesel engine;
Differential pressure corresponding PM deposition amount calculating means for calculating the PM deposition amount on the DPF from the differential pressure between the upstream side and the downstream side of the DPF;
Based on the operation-corresponding PM deposit amount calculated by the operation-corresponding PM deposit amount calculating means and the differential pressure-corresponding PM deposit amount calculated by the differential pressure-corresponding PM deposit amount calculating means, any one of the two PM deposit amounts is selected. If the vehicle exceeds a reference value, it is determined that forced regeneration to be performed by stopping the vehicle is necessary, and forced regeneration requesting means for requesting the forced regeneration,
When the forced regeneration determination unit determines that the forced regeneration is necessary because the differential pressure corresponding PM deposition amount exceeds the reference value, the differential pressure corresponding PM deposition amount or the differential pressure corresponding PM deposition amount And a limit processing requesting means for determining that the amount of PM deposited on the DPF has reached a limit when a value corresponding to the increase characteristic of the DPF reaches a limit value higher than the reference value, and requesting processing when the limit is reached. A DPF regeneration control device characterized by that.
前記限界到達時処理は、前記車両の走行制限の処理と、前記DPFの再生禁止処理とを含んでいる
ことを特徴とする、請求項1記載のDPF再生制御装置。
2. The DPF regeneration control apparatus according to claim 1, wherein the limit reaching process includes a travel restriction process of the vehicle and a regeneration prohibition process of the DPF.
前記強制再生判定手段は、前記差圧対応PM堆積量が前記基準値を超えたことで強制再生が必要であると判定した場合に、前記対応PM堆積量又は該対応PM堆積量の増加特性に応じた値が、前記基準値よりも高く前記限界値よりも低い限界前値に達したら、前記強制再生を督促する
ことを特徴とする、請求項1又は2記載のDPF再生制御装置。
When the forced regeneration determination unit determines that the forced regeneration is necessary because the differential pressure-corresponding PM deposition amount exceeds the reference value, the forced regeneration determination unit sets the corresponding PM deposition amount or the increase characteristic of the corresponding PM deposition amount. 3. The DPF regeneration control device according to claim 1, wherein the forced regeneration is urged when a corresponding value reaches a pre-limit value that is higher than the reference value and lower than the limit value. 4.
前記強制再生判定手段は、前記強制再生の要求を強制再生要求ランプの点滅で行い、前記強制再生の督促を前記強制再生要求ランプの点滅速度の増加で行なう
ことを特徴とする、請求項3記載のDPF再生制御装置。
4. The forced regeneration determination means performs the forced regeneration request by blinking a forced regeneration request lamp, and prompts the forced regeneration by increasing the blinking speed of the forced regeneration request lamp. DPF regeneration control device.
前記の差圧対応PM堆積量の増加特性に応じた値は、前記運転対応PM堆積量の基準値と、前記差圧対応PM堆積量が前記基準値を超えた時の前記運転対応PM堆積量の値との比の値を補正係数として、前記運転対応PM堆積量演算手段による演算される前記運転対応PM堆積量を補正した値である
ことを特徴とする、請求項1〜4の何れか1項に記載のDPF再生制御装置。
The value corresponding to the increase characteristic of the differential pressure-corresponding PM deposit amount is a reference value of the operation-corresponding PM deposit amount, and the operation-corresponding PM deposit amount when the differential pressure-corresponding PM deposit amount exceeds the reference value. 5. The value according to claim 1, wherein the operation-corresponding PM deposit amount calculated by the operation-corresponding PM deposit amount calculation means is corrected using a ratio value to the correction value as a correction coefficient. 2. The DPF regeneration control device according to item 1.
JP2009239703A 2009-10-16 2009-10-16 Dpf regeneration control device Withdrawn JP2011085096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239703A JP2011085096A (en) 2009-10-16 2009-10-16 Dpf regeneration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239703A JP2011085096A (en) 2009-10-16 2009-10-16 Dpf regeneration control device

Publications (1)

Publication Number Publication Date
JP2011085096A true JP2011085096A (en) 2011-04-28

Family

ID=44078218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239703A Withdrawn JP2011085096A (en) 2009-10-16 2009-10-16 Dpf regeneration control device

Country Status (1)

Country Link
JP (1) JP2011085096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035807A (en) * 2013-05-22 2018-03-08 株式会社日立建機ティエラ Construction machine
JP2021008863A (en) * 2019-07-02 2021-01-28 いすゞ自動車株式会社 Exhaust emission control device of internal combustion engine
CN112682191A (en) * 2020-12-25 2021-04-20 潍柴动力股份有限公司 Parking regeneration control method and device and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035807A (en) * 2013-05-22 2018-03-08 株式会社日立建機ティエラ Construction machine
JP2021008863A (en) * 2019-07-02 2021-01-28 いすゞ自動車株式会社 Exhaust emission control device of internal combustion engine
CN112682191A (en) * 2020-12-25 2021-04-20 潍柴动力股份有限公司 Parking regeneration control method and device and vehicle

Similar Documents

Publication Publication Date Title
JP5034536B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
US6622480B2 (en) Diesel particulate filter unit and regeneration control method of the same
JP3988785B2 (en) Exhaust gas purification system control method and exhaust gas purification system
EP1905991A1 (en) Control method of exhaust gas purification system and exhaust gas purification system
JP4591389B2 (en) Exhaust purification device for internal combustion engine
JP2006226119A (en) Exhaust emission control device for internal combustion engine
JP2005291198A (en) Exhaust emission control device for internal combustion engine
JP4935983B2 (en) Exhaust gas purification device for internal combustion engine
WO2007086253A1 (en) Exhaust gas purification method and exhaust gas purification system
JP2005299418A (en) Exhaust emission control system and method for controlling the same
JP4609662B2 (en) Limp home control equipment
JP2011089466A (en) Exhaust emission control device for diesel engine
JP2015010470A (en) Exhaust emission control device for internal combustion engine
JP2011256845A (en) Dpf system
JP2005291036A (en) Regeneration processing device for particulate filter
JP2011085096A (en) Dpf regeneration control device
JP4466158B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2011089479A (en) Dpf regeneration control device
JP4636278B2 (en) Exhaust gas purification device for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
KR101180948B1 (en) Exhaust gas post processing system and control method thereof
JP5736759B2 (en) Exhaust gas purification device for internal combustion engine
JP2008138547A (en) Exhaust emission control device for internal combustion engine
JP2007032553A (en) Exhaust emission control device for internal combustion engine
JP5286672B2 (en) Exhaust gas purification device for in-vehicle diesel engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108