JP2011084611A - Fiber-reinforced wholly aromatic polyester resin molded product - Google Patents

Fiber-reinforced wholly aromatic polyester resin molded product Download PDF

Info

Publication number
JP2011084611A
JP2011084611A JP2009237058A JP2009237058A JP2011084611A JP 2011084611 A JP2011084611 A JP 2011084611A JP 2009237058 A JP2009237058 A JP 2009237058A JP 2009237058 A JP2009237058 A JP 2009237058A JP 2011084611 A JP2011084611 A JP 2011084611A
Authority
JP
Japan
Prior art keywords
fiber
woven fabric
aromatic polyester
wholly aromatic
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009237058A
Other languages
Japanese (ja)
Other versions
JP5695309B2 (en
Inventor
Shinya Inada
真也 稲田
Yoshinobu Omae
好信 大前
Takashi Katayama
隆 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009237058A priority Critical patent/JP5695309B2/en
Publication of JP2011084611A publication Critical patent/JP2011084611A/en
Application granted granted Critical
Publication of JP5695309B2 publication Critical patent/JP5695309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced resin molded product having strength, coefficient of elasticity, impact resistance, heat resistance and vibration damping at high dimensions. <P>SOLUTION: The wholly aromatic polyester resin molded product is substantially infusible at ≥400°C and reinforced with a high-tenacity fiber having a breaking strength of ≥10 cN/dtex. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、繊維補強樹脂成形体に関するものであり、特に強い衝撃を受けた場合であっても、衝撃吸収に優れ、材料の飛散を抑制する効果の高い成形体に関する。   The present invention relates to a fiber-reinforced resin molded body, and particularly to a molded body that is excellent in shock absorption and highly effective in suppressing material scattering even when subjected to a particularly strong impact.

自動車、鉄道、航空機などの高速移動物体は、その移動速度に由来した運動エネルギーによって、衝突の際には莫大な破壊力を発生し物体を破損させる。そして、物体の破損に伴って、破砕した破片が飛散し、その周囲に存在する物や人間などに甚大な被害を与える場合が少なくない。そのため、破壊に伴う物体の飛散を低減させることや、破損した破片などに飛来物の貫通を防ぐことは、安全上重要な課題である。   High-speed moving objects such as automobiles, railways, and airplanes generate enormous destructive force and break the objects at the time of collision by kinetic energy derived from the moving speed. In many cases, the broken pieces are scattered along with the breakage of the object, causing a great deal of damage to objects and humans existing around the broken pieces. For this reason, it is an important safety issue to reduce scattering of an object accompanying destruction and to prevent a flying object from penetrating a broken piece.

このような課題を解決するために、複数本の強化繊維束を一方向に引き揃えた強化繊維シートに熱可塑性樹脂繊維を不織状態で布帛とした熱可塑性樹脂不織布を重ね合わせて加熱しつつ加圧することにより、熱可塑性樹脂不織布を溶融させ強化繊維束中に熱可塑性樹脂を含浸させて、熱可塑性樹脂によるプリプレグ状態としてなる繊維強化熱可塑性樹脂シートが検討されている(例えば、特許文献1参照。)。しかしながら、特許文献1で記載の溶融させる熱可塑性樹脂不織布はその構造上、異方性が存在するため、溶融成形時に変形が生じ、均一な複合体が得られないため、安定した性能が得られないといった問題があった。   In order to solve such problems, a thermoplastic fiber nonwoven fabric in which a thermoplastic resin fiber is woven in a non-woven state is superposed and heated on a reinforcing fiber sheet in which a plurality of reinforcing fiber bundles are aligned in one direction. A fiber reinforced thermoplastic resin sheet in which a thermoplastic resin nonwoven fabric is melted by pressurization to impregnate a reinforced fiber bundle with a thermoplastic resin to form a prepreg state using the thermoplastic resin has been studied (for example, Patent Document 1). reference.). However, since the thermoplastic resin nonwoven fabric to be melted described in Patent Document 1 has anisotropy in its structure, deformation occurs during melt molding, and a uniform composite cannot be obtained, so that stable performance is obtained. There was no problem.

特開2003−165851号公報JP 2003-165851 A

本発明の目的は、強度、弾性率、耐衝撃性、耐熱性、および振動減衰性を高い次元で兼ね備える繊維補強樹脂成形体を提供することにある。   An object of the present invention is to provide a fiber-reinforced resin molded body having strength, elastic modulus, impact resistance, heat resistance, and vibration damping properties at a high level.

本発明者等は、上記性能を有する繊維補強樹脂成形体を得るべく鋭意検討した結果、高強力で耐熱性を有する繊維で補強された全芳香族ポリエステル樹脂成形体が強度、弾性率、耐衝撃性、耐熱性、および振動減衰性を高い次元で兼ね備えることを見出し、本発明に到達した。   As a result of intensive studies to obtain a fiber-reinforced resin molded article having the above-mentioned performance, the present inventors have found that a wholly aromatic polyester resin molded article reinforced with high-strength and heat-resistant fibers has strength, elastic modulus, and impact resistance. The present invention has been found by combining high performance, heat resistance, and vibration damping properties at a high level.

すなわち本発明は、400℃以上の温度で実質的に不融であり、かつ破断強度が10cN/dtex以上である高強力繊維により補強された全芳香族ポリエステル樹脂成形体であり、好ましくは高強力繊維が一方向性織物、二方向性織物、三軸織物、多軸織物のいずれかであり、その目付が10〜500g/m、厚みが0.03〜2mmである上記の樹脂成形体であり、さらに好ましくは全芳香族ポリエステル樹脂の含有量が高強力繊維の重量に対して5〜200%である上記の樹脂成形体である。 That is, the present invention is a wholly aromatic polyester resin molded body reinforced with high-strength fibers that are substantially infusible at a temperature of 400 ° C. or higher and have a breaking strength of 10 cN / dtex or higher, preferably high strength. In the above resin molded body, the fiber is any one of a unidirectional woven fabric, a bi-directional woven fabric, a triaxial woven fabric, and a multiaxial woven fabric, and has a basis weight of 10 to 500 g / m 2 and a thickness of 0.03 to 2 mm. More preferably, it is the above resin molded body in which the content of the wholly aromatic polyester resin is 5 to 200% with respect to the weight of the high strength fiber.

本発明によれば、強度、弾性率、耐衝撃性、耐熱性および振動減衰性を高い次元で兼ね備え、特に強い衝撃を受けた場合であっても、衝撃吸収に優れ、材料の飛散を抑制する効果の高い繊維補強樹脂成形体を得ることができる。   According to the present invention, strength, elastic modulus, impact resistance, heat resistance, and vibration damping properties are combined at a high level, and even when subjected to particularly strong impact, it is excellent in shock absorption and suppresses scattering of materials. A highly effective fiber-reinforced resin molded product can be obtained.

以下、本発明について詳細に説明する。本発明の樹脂成形体は、400℃以上温度で実質的に不融であり、かつ破断強度が10cN/dtex以上の高強力繊維により補強されていることが特徴である。
そのような本発明の高強力繊維としては、前記耐熱性及び破断強度を示す限り、金属繊維、無機繊維、有機繊維のいずれであってもよく、金属繊維としては、例えば、アルミニウム繊維、ステンレス繊維、チタン繊維などが例示でき、無機繊維としては、炭素繊維、セラミック繊維、石英繊維、ガラス繊維などが例示でき、有機繊維としては、アラミド繊維(例えば、メタ系アラミド繊維、パラ系アラミド繊維)、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリベンズイミダゾール繊維、ポリアミドイミド繊維、ポリイミド繊維などが挙げられる。これらの繊維は、単独で、または二種以上を組み合わせて用いてもよい。
Hereinafter, the present invention will be described in detail. The resin molded body of the present invention is characterized by being substantially infusible at a temperature of 400 ° C. or higher and reinforced with high strength fibers having a breaking strength of 10 cN / dtex or higher.
Such a high strength fiber of the present invention may be any of a metal fiber, an inorganic fiber, and an organic fiber as long as it exhibits the heat resistance and breaking strength. Examples of the metal fiber include an aluminum fiber and a stainless fiber. In addition, titanium fibers and the like can be exemplified, examples of the inorganic fibers include carbon fibers, ceramic fibers, quartz fibers, and glass fibers. Examples of the organic fibers include aramid fibers (for example, meta aramid fibers and para aramid fibers), Examples include polyparaphenylene benzobisoxazole (PBO) fiber, polybenzimidazole fiber, polyamideimide fiber, and polyimide fiber. These fibers may be used alone or in combination of two or more.

また本発明の繊維補強樹脂成形体において、高強力繊維は織物の状態で補強されていることが好ましい。織物の形態としては経糸または緯糸のいずれか一方向に配列した一方向性織物、経糸および緯糸の双方に配列した二方向性織物、縦、横、斜めの三方向に配列した三軸織物、四方向以上の多方向に配列した多軸織物、一方向に揃えられた繊維束を別の糸で留める一方向性ノンクリンプドファブリック、複数の方向(例えば、二方向)に揃えられた繊維束をそれぞれ積層して別の糸で留める多方向性ノンクリンプドファブリック等が挙げられるが、これらのうち、軽量化と耐衝撃性とを両立させる観点から一方向性織物、二方向性織物、三軸織物、多軸織物のいずれかであることが好ましい。   In the fiber-reinforced resin molded article of the present invention, the high strength fiber is preferably reinforced in a woven state. As for the form of the woven fabric, the unidirectional woven fabric arranged in one direction of warp or weft, the bi-directional woven fabric arranged in both the warp and the weft, the triaxial woven fabric arranged in the longitudinal, transverse and diagonal directions, four Multi-axis fabric arranged in multiple directions more than one direction, Unidirectional non-crimped fabric that fastens fiber bundles aligned in one direction with different yarns, Fiber bundles aligned in multiple directions (for example, two directions) Multi-directional non-crimped fabrics that are laminated and fastened with separate yarns are included. Among these, unidirectional fabrics, bi-directional fabrics, triaxials from the viewpoint of achieving both weight reduction and impact resistance It is preferably either a woven fabric or a multiaxial woven fabric.

上記した織物の目付は、軽量性と耐衝撃性とを両立する観点から、10〜500g/mであることが好ましく、50〜400g/mであることがより好ましい。目付が10g/m未満であるとハンドリング時に織物が破れる恐れがあり、一方500g/mより大きいと切断しにくい等加工性の問題がある。 The basis weight of the woven fabric described above is preferably 10 to 500 g / m 2 and more preferably 50 to 400 g / m 2 from the viewpoint of achieving both lightness and impact resistance. If the basis weight is less than 10 g / m 2 , the fabric may be broken at the time of handling. On the other hand, if the basis weight is more than 500 g / m 2 , there is a problem of workability such as difficulty in cutting.

さらに上記した織物の厚みは0.03〜2mmであることが好ましく、0.07〜1.5mm程度が好ましい。厚みが0.03mm未満であるとハンドリング時に織物が破れる恐れがあり、一方2mmより大きいと切断しにくい等加工性の問題がある。   Furthermore, the thickness of the woven fabric described above is preferably 0.03 to 2 mm, and preferably about 0.07 to 1.5 mm. If the thickness is less than 0.03 mm, the fabric may be broken during handling, while if it is more than 2 mm, there is a problem of workability such as difficulty in cutting.

本発明で用いられる全芳香族ポリエステル樹脂は、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシジカルボン酸等より重合して得られ、その中でも、溶融時に光学的異方性を示す溶融異方性ポリエステルが好ましい。本発明にいう溶融異方性ポリエステルとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を観察することにより認定できる。   The wholly aromatic polyester resin used in the present invention is obtained by polymerization from aromatic diol, aromatic dicarboxylic acid, aromatic hydroxydicarboxylic acid, etc. Among them, melt anisotropy showing optical anisotropy at the time of melting Polyester is preferred. The melt-anisotropic polyester referred to in the present invention is an aromatic polyester that exhibits optical anisotropy (liquid crystallinity) in the melt phase. For example, a sample is placed on a hot stage and heated in a nitrogen atmosphere, and the transmitted light of the sample It can be recognized by observing

例えば、本発明で用いられる全芳香族ポリエステル樹脂は、例えば、下記化1及び化2に示す構成単位の組合せで構成される。   For example, the wholly aromatic polyester resin used in the present invention includes, for example, a combination of structural units represented by the following chemical formulas 1 and 2.

Figure 2011084611
Figure 2011084611

Figure 2011084611
Figure 2011084611

これらのうち、好ましくは化1および化2に示される反復構成単位の組合せのうち(5)、(6)、(7)および(9)からなるポリマーである。 Of these, a polymer comprising (5), (6), (7) and (9) among the combinations of repeating structural units represented by Chemical Formula 1 and Chemical Formula 2 is preferred.

より好ましくは、下記化3に示す(A)および(B)の反復構成単位からなる部分が50モル%以上である芳香族ポリエステルが好ましい。
さらに(A)の反復構成単位に対する(B)の反復単位のモル比は(A):(B)=100:1〜50、好ましくは(A):(B)=100:1〜45、さらに好ましくは(A):(B)=100:1〜40である。
More preferably, an aromatic polyester in which a portion composed of repeating structural units (A) and (B) shown in the following chemical formula 3 is 50 mol% or more is preferable.
Furthermore, the molar ratio of the repeating unit of (B) to the repeating structural unit of (A) is (A) :( B) = 100: 1-50, preferably (A) :( B) = 100: 1-45, Preferably (A) :( B) = 100: 1-40.

Figure 2011084611
Figure 2011084611

本発明で好適に用いられる全芳香族ポリエステルの融点は250〜360℃の範囲であることが好ましく、より好ましくは260〜320℃である。なお、ここでいう融点とは、JIS K7121試験法に準拠し、示差走差熱量計(DSC;メトラー社製「TA3000」)で測定し、観察される主吸収ピーク温度である。   The melting point of the wholly aromatic polyester suitably used in the present invention is preferably in the range of 250 to 360 ° C, more preferably 260 to 320 ° C. The melting point referred to here is the main absorption peak temperature measured and observed with a differential scanning calorimeter (DSC; “TA3000” manufactured by METTLER) according to the JIS K7121 test method.

なお、前記全芳香族ポリエステルには、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。   The total aromatic polyester is added with a thermoplastic polymer such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyetheretherketone, and fluororesin as long as the effects of the present invention are not impaired. May be.

本発明の全芳香族ポリエステル樹脂を前記高強力繊維で補強する方法としては、溶融または溶解した全芳香族ポリエステル樹脂に高強力繊維からなる布帛を含浸することにより複合化してもよいし、該布帛と、布帛状またはシート状の全芳香族ポリエステル樹脂とを積層し、加熱して複合化してもよいし、または全芳香族ポリエステル樹脂を含むエマルジョンを該布帛に含浸、乾燥後、積層して加熱により複合化してもよい。この中で、簡便に積層体を製造するためには、布帛状またはシート状の全芳香族ポリエステル樹脂を用いるのが好ましい。更には、その布帛状またはシート状の全芳香族ポリエステル樹脂は、織物であることが好ましい。織物の場合、異方性が少ないため溶融成形時も変形が生じにくく、均一な複合体が得られやすいためである。   As a method of reinforcing the wholly aromatic polyester resin of the present invention with the high-strength fibers, the wholly aromatic polyester resin melted or dissolved may be impregnated with a cloth made of high-strength fibers, or the cloth may be combined. And a fabric-like or sheet-like wholly aromatic polyester resin may be laminated and heated to be combined, or an emulsion containing a wholly aromatic polyester resin is impregnated into the fabric, dried, then laminated and heated. May be combined. Among these, it is preferable to use a cloth-like or sheet-like wholly aromatic polyester resin in order to easily produce a laminate. Furthermore, the cloth-like or sheet-like wholly aromatic polyester resin is preferably a woven fabric. This is because in the case of a woven fabric, since there is little anisotropy, deformation hardly occurs even during melt molding, and a uniform composite is easily obtained.

布帛状またはシート状の全芳香族ポリエステル樹脂が織物である場合、織物の形態としては経糸または緯糸のいずれか一方向に配列した一方向性織物、経糸および緯糸の双方に配列した二方向性織物、縦、横、斜めの三方向に配列した三軸織物、四方向以上の多方向に配列した多軸織物、一方向に揃えられた繊維束を別の糸で留める一方向性ノンクリンプドファブリック、複数の方向(例えば、二方向)に揃えられた繊維束をそれぞれ積層して別の糸で留める多方向性ノンクリンプドファブリック等が挙げられるが、これらのうち、軽量化と耐衝撃性とを両立させ、かつ溶融成形時の変形を抑える観点から、二方向性織物、三軸織物、多軸織物、多方向性ノンクリンプドファブリックのいずれかであることが好ましい。   When the fabric-like or sheet-like wholly aromatic polyester resin is a woven fabric, the woven fabric may be a unidirectional fabric arranged in one direction of warp or weft, or a bi-directional fabric arranged in both warp and weft. , Triaxial fabric arranged in three directions, vertical, horizontal and diagonal, multiaxial fabric arranged in more than four directions, unidirectional non-crimped fabric that fastens fiber bundles aligned in one direction with different yarns And multi-directional non-crimped fabrics in which fiber bundles aligned in a plurality of directions (for example, two directions) are stacked and fastened with different yarns. Among these, weight reduction and impact resistance From the viewpoints of satisfying the above and suppressing deformation at the time of melt molding, it is preferably any one of bi-directional woven fabric, triaxial woven fabric, multi-axial woven fabric, and multi-directional non-crimped fabric.

本発明において、全芳香族ポリエステルの含有量は高強力繊維の重量に対して5〜200%の範囲であることが好ましく、10〜180%の範囲であることがより好ましく、15〜160%の範囲であることがより好ましい。全芳香族ポリエステルの含有量が高強力繊維の重量に対して5%未満であると、高強力繊維同士を接着するだけの絶対量が不足するため均一な積層体を形成できないなどの問題があり、一方200%を越えると高強力繊維の存在比率が少なく、該繊維の性能が十分に顕在化できない等の問題がある。   In the present invention, the content of the wholly aromatic polyester is preferably in the range of 5 to 200%, more preferably in the range of 10 to 180%, and more preferably in the range of 15 to 160% with respect to the weight of the high strength fiber. A range is more preferable. If the total aromatic polyester content is less than 5% based on the weight of the high-strength fibers, there is a problem that a uniform laminate cannot be formed because the absolute amount for bonding the high-strength fibers is insufficient. On the other hand, if it exceeds 200%, there is a problem that the ratio of the high-strength fibers is small and the performance of the fibers cannot be sufficiently manifested.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお、以下の実施例において、繊維繊度、成形板の弾性率、耐衝撃性、耐熱性は下記の方法により測定したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following examples, fiber fineness, elastic modulus of molded plate, impact resistance, and heat resistance are those measured by the following methods.

[繊維強度 cN/dtex]
JIS L1013に準拠して測定した。
[Fiber strength cN / dtex]
Measurement was performed in accordance with JIS L1013.

[成形板の曲げ弾性率]
JIS K7017に準拠して測定を実施した。評価としては、曲げ弾性率が5GPa以上を○、1〜5GPaを△、1GPa未満を×として判定した。
[Bending elastic modulus of molded plate]
Measurement was performed in accordance with JIS K7017. As the evaluation, the flexural modulus was determined to be 5 GPa or more as ◯, 1 to 5 GPa as Δ, and less than 1 GPa as x.

[成形板の耐衝撃性]
100mm×100mm×2〜3mmの試験片に対して、落錘グラフィックインパクトテスター((株)東洋精機製作所製)を用い、JIS K−7211 プラスチック−硬質プラスチック パンクチャー衝撃試験方法に基づき、測定を実施した。測定条件としては、ストライカー径12.7mm、ホルダー径76mm、落下高さ100cm、ウェイト14.5kg、衝撃速度4.4m/秒にて実施した。評価としては、パンクチャーエネルギーが20J以上を○、5〜20Jを△、5J未満を×として判定した。
[Shock resistance of molded plate]
Using a falling weight graphic impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) for a test piece of 100 mm x 100 mm x 2 to 3 mm, measurement was performed based on the JIS K-7111 plastic-hard plastic puncture impact test method. did. The measurement conditions were a striker diameter of 12.7 mm, a holder diameter of 76 mm, a drop height of 100 cm, a weight of 14.5 kg, and an impact speed of 4.4 m / sec. As an evaluation, the puncture energy was determined as ◯ when the puncture energy was 20 J or more, Δ as 5-20 J, and X as less than 5 J.

[成形板の耐熱性]
示差熱熱重量同時測定装置(島津製作所株式会社製「DTG−50」)を使用して、試験片を、窒素雰囲気下、30℃から450℃まで10℃/分で加熱した。450℃に昇温した時点での試験片の重量保持率が90%以上である場合に耐熱性を○と評価し、90〜70%を△、70%未満を×と評価した。
[Heat resistance of molded plate]
The test piece was heated from 30 ° C. to 450 ° C. at 10 ° C./min under a nitrogen atmosphere using a differential thermothermal gravimetric simultaneous measurement device (“DTG-50” manufactured by Shimadzu Corporation). When the weight retention rate of the test piece when the temperature was raised to 450 ° C. was 90% or more, the heat resistance was evaluated as “good”, 90-70% was evaluated as “Δ”, and less than 70% was evaluated as “x”.

[振動減衰性]
動的粘弾性測定装置(オリエンテック社製バイブロンDDV−III)を用い、100Hz、23℃下において内部損失を測定した。内部損失が0.03以上である場合を○、0.01〜0.03である場合を△、0.01以下である場合を×として、振動減衰性を判定した。
[Vibration damping]
Using a dynamic viscoelasticity measuring apparatus (Orientec Vibron DDV-III), internal loss was measured at 100 Hz under 23 ° C. The vibration damping property was determined with ◯ when the internal loss was 0.03 or more, Δ when 0.01 to 0.03, and x when 0.01 or less.

[実施例1]
(1)高強力繊維として、ヤーン強度23.9cN/dtexのカーボン繊維で構成される二方向性織物(東邦テナックス(株)製、「ベスファイト W−3101」平織、目付200g/m、厚み0.25mm)を用いた。
(2)次に全芳香族ポリエステル繊維(株式会社クラレ製「ベクトランHT」)フィラメント(1670dtex/600フィラメント)の二方向性織物を作製した。この織物の目付は170g/mであった。
(3)上記(1)、(2)の織物を交互に重ねて各8枚ずつ積層した後、温度340℃、圧力20kg/cmにて30秒間熱プレスを実施し、厚さ2.5mm、目付2870g/mの成形板を製造した。このとき、上記(2)の織物を溶融させ、樹脂化した後の樹脂含有量は44.3重量%であった。得られた成形板の弾性率は実用性に十分耐えるものであり、耐衝撃性、耐熱性、振動減衰性とも優れていた。結果を表1に示す。
[Example 1]
(1) Bidirectional woven fabric composed of carbon fiber having a yarn strength of 23.9 cN / dtex as a high-strength fiber (manufactured by Toho Tenax Co., Ltd., “Besfite W-3101” plain weave, basis weight 200 g / m 2 , thickness 0.25 mm) was used.
(2) Next, a bi-directional woven fabric of wholly aromatic polyester fibers (“Vectran HT” manufactured by Kuraray Co., Ltd.) filaments (1670 dtex / 600 filaments) was produced. The fabric weight of this woven fabric was 170 g / m 2 .
(3) The fabrics of the above (1) and (2) were alternately stacked and each 8 layers were stacked, and then hot pressing was performed at a temperature of 340 ° C. and a pressure of 20 kg / cm 2 for 30 seconds, and the thickness was 2.5 mm. A molded plate having a basis weight of 2870 g / m 2 was produced. At this time, the resin content after the woven fabric of (2) was melted and converted into a resin was 44.3% by weight. The elastic modulus of the obtained molded plate sufficiently withstands practicality, and was excellent in impact resistance, heat resistance, and vibration damping properties. The results are shown in Table 1.

[実施例2]
全芳香族ポリエステル繊維として株式会社クラレ製「ベクトランUM」フィラメント(1580dtex/200フィラメント)を用いて二方向性織物を作製し、該織物と、実施例1と同じカーボン繊維織物とを、実施例1と同様に交互に重ねて各8枚ずつ積層した後、温度370℃、圧力20kg/cmにて30秒間熱プレスを実施し、厚さ2.4mm、目付2930g/mの成形板を製造した。このとき、前記全芳香族ポリエステルの織物を溶融させ、樹脂化した後の樹脂含有量は45.4重量%であった。得られた成形板の弾性率は実用性に十分耐えるものであり、耐衝撃性、耐熱性、振動減衰性とも優れていた。結果を表1に示す。
[Example 2]
A bi-directional woven fabric was prepared using “Vectran UM” filament (1580 dtex / 200 filament) manufactured by Kuraray Co., Ltd. as a wholly aromatic polyester fiber, and the woven fabric and the same carbon fiber woven fabric as in Example 1 were prepared in Example 1. As shown in Fig. 8, after alternately stacking 8 sheets each, hot pressing is performed at a temperature of 370 ° C and a pressure of 20 kg / cm 2 for 30 seconds to produce a molded plate having a thickness of 2.4 mm and a basis weight of 2930 g / m 2. did. At this time, the resin content after melting and resinating the wholly aromatic polyester woven fabric was 45.4% by weight. The elastic modulus of the obtained molded plate sufficiently withstands practicality, and was excellent in impact resistance, heat resistance, and vibration damping properties. The results are shown in Table 1.

[実施例3]
全芳香族ポリエステル繊維として株式会社クラレ製「ベクトランNT」フィラメント(1670dtex/600フィラメント)を用いて二方向性織物を作製し、該織物と、実施例1と同じカーボン繊維織物とを、実施例1と同様に交互に重ねて各8枚ずつ積層した後、温度300℃、圧力20kg/cmにて30秒間熱プレスを実施し、厚さ2.4mm、目付2840g/mの成形板を製造した。このとき、前記全芳香族ポリエステルの織物を溶融させ、樹脂化した後の樹脂含有量は43.7重量%であった。得られた成形板の弾性率は実用性に十分耐えるものであり、耐衝撃性、耐熱性、振動減衰性とも優れていた。結果を表1に示す。
[Example 3]
A bi-directional woven fabric was prepared using “Vectran NT” filament (1670 dtex / 600 filament) manufactured by Kuraray Co., Ltd. as a wholly aromatic polyester fiber, and the woven fabric and the same carbon fiber woven fabric as in Example 1 were prepared in Example 1. As shown in Fig. 8, after alternately stacking 8 sheets each, heat press for 30 seconds at a temperature of 300 ° C and a pressure of 20 kg / cm 2 to produce a molded plate having a thickness of 2.4 mm and a basis weight of 2840 g / m 2. did. At this time, the resin content after the woven fabric of the wholly aromatic polyester was melted and converted into a resin was 43.7% by weight. The elastic modulus of the obtained molded plate sufficiently withstands practicality, and was excellent in impact resistance, heat resistance, and vibration damping properties. The results are shown in Table 1.

[実施例4]
(1)ガラス繊維(「日東紡株式会社製、「WF 230 100 BS6」、ヤーン強度13.1cN/dtex」を用いて、目付200g/m、厚み0.25mmの二方向性織物を作製した。
(2)上記(1)と、実施例1の(2)で作製した織物とを交互に重ねて各8枚ずつ積層した後、温度340℃、圧力20kg/cmにて30秒間熱プレスを実施し、厚さ2.4mm、目付2890g/mの成形板を製造した。このとき、上記(2)の織物を溶融させ、樹脂化した後の樹脂含有量は44.6重量%であった。得られた成形板の弾性率は実用性に十分耐えるものであり、耐衝撃性、耐熱性、振動減衰性とも優れていた。結果を表1に示す。
[Example 4]
(1) Using a glass fiber (“Nittobo Co., Ltd.,“ WF 230 100 BS6 ”, yarn strength 13.1 cN / dtex”), a bi-directional woven fabric having a basis weight of 200 g / m 2 and a thickness of 0.25 mm was produced. .
(2) The above fabric (1) and the fabric produced in (2) of Example 1 were alternately stacked and each 8 layers were stacked, and then hot pressed at a temperature of 340 ° C. and a pressure of 20 kg / cm 2 for 30 seconds. This was carried out to produce a molded plate having a thickness of 2.4 mm and a basis weight of 2890 g / m 2 . At this time, the resin content after the woven fabric (2) was melted and converted into a resin was 44.6% by weight. The elastic modulus of the obtained molded plate sufficiently withstands practicality, and was excellent in impact resistance, heat resistance, and vibration damping properties. The results are shown in Table 1.

[実施例5]
(1)アラミド繊維(「東レ・デュポン(株)製、「ケブラー49」、ヤーン強度20.8cN/dtex」を用いて、目付170g/m、厚み0.26mmの二方向性織物を作製した。
(2)上記(1)と、実施例1の(2)で作成した織物とを交互に重ねて各8枚ずつ積層した後、温度340℃、圧力20kg/cmにて30秒間熱プレスを実施し、厚さ2.3mm、目付2680g/mの成形板を製造した。このとき、上記(2)の織物を溶融させ、樹脂化した後の樹脂含有量は49.3重量%であった。得られた成形板の弾性率は実用性に十分耐えるものであり、耐衝撃性、耐熱性、振動減衰性とも優れていた。結果を表1に示す。
[Example 5]
(1) A bi-directional woven fabric having a basis weight of 170 g / m 2 and a thickness of 0.26 mm was prepared using an aramid fiber (“Kevlar 49” manufactured by Toray DuPont Co., Ltd., yarn strength 20.8 cN / dtex). .
(2) After the above (1) and the fabric prepared in (2) of Example 1 are alternately stacked, 8 sheets each are stacked, and then hot-pressed at a temperature of 340 ° C. and a pressure of 20 kg / cm 2 for 30 seconds. This was carried out to produce a molded plate having a thickness of 2.3 mm and a basis weight of 2680 g / m 2 . At this time, the resin content after the woven fabric of (2) was melted and converted into a resin was 49.3% by weight. The elastic modulus of the obtained molded plate sufficiently withstands practicality, and was excellent in impact resistance, heat resistance, and vibration damping properties. The results are shown in Table 1.

[比較例1]
実施例1において、全芳香族ポリエステル繊維の代わりに熱可塑性エラストマー(株式会社クラレ製「セプトン2002」)からなる不織布を用い、カーボン繊維からなる二方向性織物と、熱可塑性エラストマー不織布とを、平織物/不織布=1枚/6枚の割合で交互に積層し、総積層量を平織物/不織布=8枚/48枚とした後、温度200℃、圧力40kg/cmにて30秒間熱プレスを実施し、厚さ2.5mm、目付2350g/mの成形板を製造した。このとき、前記不織布を溶融させ、樹脂化した後の樹脂含有量は31.9重量%であった。得られた成形板は弾性率がやや低く、耐衝撃性、振動減衰性は優れていたが、耐熱性がやや劣るものであった。結果を表1に示す。
[Comparative Example 1]
In Example 1, a non-woven fabric made of a thermoplastic elastomer (“Septon 2002” manufactured by Kuraray Co., Ltd.) is used in place of the wholly aromatic polyester fiber, and a bidirectional fabric made of carbon fiber and a thermoplastic elastomer non-woven fabric are flattened. Fabric / nonwoven fabric = alternately laminated at a ratio of 1 sheet / 6 sheets, and the total amount of laminated sheets is plain woven fabric / nonwoven fabric = 8 sheets / 48 sheets, and then hot pressed at a temperature of 200 ° C. and a pressure of 40 kg / cm 2 for 30 seconds. Then, a molded plate having a thickness of 2.5 mm and a basis weight of 2350 g / m 2 was produced. At this time, the resin content after melting and converting the nonwoven fabric to resin was 31.9% by weight. The resulting molded plate had a slightly lower elastic modulus and was excellent in impact resistance and vibration damping properties, but was slightly inferior in heat resistance. The results are shown in Table 1.

[比較例2]
実施例1において、全芳香族ポリエステル繊維の代わりにアラミド繊維(「東レ・デュポン(株)製、「ケブラー49」」からなる二方向性織物を用い、各織物をそれぞれ8枚ずつ積層し、実施例1と同じ成形条件にて積層体の成形を試みたが、アラミド繊維が融解しないため、成形不能であった。結果を表1に示す。
[Comparative Example 2]
In Example 1, instead of a wholly aromatic polyester fiber, a bi-directional woven fabric made of aramid fibers (“Kevlar 49” manufactured by Toray DuPont Co., Ltd.) was used, and each of the woven fabrics was laminated by 8 pieces each. An attempt was made to mold the laminate under the same molding conditions as in Example 1. However, since the aramid fibers did not melt, molding was impossible, and the results are shown in Table 1.

[比較例3]
(1)多官能エポキシ樹脂(ジャパンエポキシレジン社製「YL6046B80」)130質量部と、ノボラック型硬化剤(ジャパンエポキシレジン社製「YLH129B65」)70質量部と、イミダゾール型硬化促進剤「ジャパンエポキシレジン社製「EMI24」」0.3質量部、およびメチルエチルケトン130質量部を混合し、マトリックス樹脂(ワニス)を調製した。
(2)実施例1の(1)で用意したカーボン繊維製二方向性織物に対して、上記(1)のワニスを含浸させ、150℃で乾燥しプリプレグを作製した。このプリプレグを8枚重ね、40kgf/cm下の圧力で、170℃×60分間保持して、熱プレスし積層一体化させた。得られた成形板は弾性率は高いが、耐衝撃性及び耐熱性、振動減衰性がやや劣るものであった。結果を表1に示す。
[Comparative Example 3]
(1) 130 parts by mass of a polyfunctional epoxy resin (“YL6046B80” manufactured by Japan Epoxy Resin), 70 parts by mass of a novolak type curing agent (“YLH129B65” manufactured by Japan Epoxy Resin), and an imidazole type curing accelerator “Japan Epoxy Resin” A matrix resin (varnish) was prepared by mixing 0.3 part by mass of “EMI24” manufactured by the company and 130 parts by mass of methyl ethyl ketone.
(2) The carbon fiber bidirectional fabric prepared in (1) of Example 1 was impregnated with the varnish of (1) above and dried at 150 ° C. to prepare a prepreg. Eight prepregs were stacked, held at 170 ° C. for 60 minutes under a pressure of 40 kgf / cm 2 , hot pressed, and laminated and integrated. The obtained molded plate had a high elastic modulus, but was slightly inferior in impact resistance, heat resistance and vibration damping. The results are shown in Table 1.

Figure 2011084611
Figure 2011084611

本発明の繊維補強樹脂複合体は、強度、弾性率、耐衝撃性、耐熱性、および振動減衰性を高い次元で兼ね備え、特に強い衝撃を受けた場合であっても、衝撃吸収に優れ、材料の飛散を抑制する効果が高いので、衝撃板、自動車、鉄道、航空機などの高速移動物体や各種建造物などに付加される耐衝撃材料として好適に適用可能である。   The fiber reinforced resin composite of the present invention has high strength, elastic modulus, impact resistance, heat resistance, and vibration damping properties, and is excellent in shock absorption even when subjected to particularly strong impacts. Therefore, it can be suitably applied as an impact resistant material added to high-speed moving objects such as impact plates, automobiles, railways, and aircraft, and various buildings.

Claims (3)

400℃以上の温度で実質的に不融であり、かつ破断強度が10cN/dtex以上である高強力繊維により補強された全芳香族ポリエステル樹脂成形体。   A wholly aromatic polyester resin molded article reinforced with high-strength fibers that are substantially infusible at a temperature of 400 ° C. or higher and have a breaking strength of 10 cN / dtex or higher. 高強力繊維が一方向性織物、二方向性織物、三軸織物、多軸織物のいずれかであり、その目付が10〜500g/m、厚みが0.03〜2mmであることを特徴とする請求項1記載の樹脂成形体。 The high-strength fiber is any one of a unidirectional woven fabric, a bi-directional woven fabric, a triaxial woven fabric, and a multiaxial woven fabric, and has a basis weight of 10 to 500 g / m 2 and a thickness of 0.03 to 2 mm. The resin molded product according to claim 1. 全芳香族ポリエステル樹脂の含有量が高強力繊維の重量に対して5〜200%であることを特徴とする請求項1また2に記載の樹脂成形体。   The resin molded product according to claim 1 or 2, wherein the content of the wholly aromatic polyester resin is 5 to 200% based on the weight of the high-strength fiber.
JP2009237058A 2009-10-14 2009-10-14 Fiber reinforced wholly aromatic polyester resin molding Expired - Fee Related JP5695309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237058A JP5695309B2 (en) 2009-10-14 2009-10-14 Fiber reinforced wholly aromatic polyester resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237058A JP5695309B2 (en) 2009-10-14 2009-10-14 Fiber reinforced wholly aromatic polyester resin molding

Publications (2)

Publication Number Publication Date
JP2011084611A true JP2011084611A (en) 2011-04-28
JP5695309B2 JP5695309B2 (en) 2015-04-01

Family

ID=44077809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237058A Expired - Fee Related JP5695309B2 (en) 2009-10-14 2009-10-14 Fiber reinforced wholly aromatic polyester resin molding

Country Status (1)

Country Link
JP (1) JP5695309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113803A1 (en) 2020-11-25 2022-06-02 株式会社クラレ Liquid crystal polyester resin comosition, liquid crystal polyester fibers, fiber structure and melt molded body

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176020A (en) * 1983-02-07 1984-10-05 ヘキスト・セラニーズ・コーポレーション Composite article consisting of thermotropic liquid crystalline polymer and manufacture thereof
JPS6310624A (en) * 1986-03-14 1988-01-18 Mitsui Petrochem Ind Ltd Melt-moldable fully aromatic polyester
JPH01270493A (en) * 1988-04-22 1989-10-27 Foster Electric Co Ltd Diaphragm for heat resisting speaker
JPH01270490A (en) * 1988-04-22 1989-10-27 Foster Electric Co Ltd Diaphragm for heat resisting speaker and manufacture thereof
JPH0433807A (en) * 1990-05-30 1992-02-05 Kuraray Co Ltd Production equipment of reinforced resin forming material
JPH06107920A (en) * 1992-09-28 1994-04-19 Teijin Ltd Totally aromatic polyester resin composition
JP2002069275A (en) * 2000-09-01 2002-03-08 Teijin Ltd Aromatic polyester carbonate resin composition
JP2003025456A (en) * 2001-07-17 2003-01-29 Daicel Chem Ind Ltd Window frame or door frame made of long fiber- reinforced thermoplastic resin
JP2003128895A (en) * 2001-10-30 2003-05-08 Dainippon Ink & Chem Inc Liquid crystal polyester resin composition
JP2003171538A (en) * 2001-12-07 2003-06-20 Dainippon Ink & Chem Inc Liquid crystal polyester resin composition
JP2004345355A (en) * 2004-06-25 2004-12-09 Sumitomo Chemical Co Ltd Manufacturing method of laminate
JP2005007674A (en) * 2003-06-18 2005-01-13 Kanbo Pras Corp Prepreg article of fibrilated yarn fabric and its manufacturing method
JP2005052987A (en) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material
JP2007283758A (en) * 2006-03-24 2007-11-01 Du Pont Toray Co Ltd High-functionality composite

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176020A (en) * 1983-02-07 1984-10-05 ヘキスト・セラニーズ・コーポレーション Composite article consisting of thermotropic liquid crystalline polymer and manufacture thereof
JPS6310624A (en) * 1986-03-14 1988-01-18 Mitsui Petrochem Ind Ltd Melt-moldable fully aromatic polyester
JPH01270493A (en) * 1988-04-22 1989-10-27 Foster Electric Co Ltd Diaphragm for heat resisting speaker
JPH01270490A (en) * 1988-04-22 1989-10-27 Foster Electric Co Ltd Diaphragm for heat resisting speaker and manufacture thereof
JPH0433807A (en) * 1990-05-30 1992-02-05 Kuraray Co Ltd Production equipment of reinforced resin forming material
JPH06107920A (en) * 1992-09-28 1994-04-19 Teijin Ltd Totally aromatic polyester resin composition
JP2002069275A (en) * 2000-09-01 2002-03-08 Teijin Ltd Aromatic polyester carbonate resin composition
JP2003025456A (en) * 2001-07-17 2003-01-29 Daicel Chem Ind Ltd Window frame or door frame made of long fiber- reinforced thermoplastic resin
JP2003128895A (en) * 2001-10-30 2003-05-08 Dainippon Ink & Chem Inc Liquid crystal polyester resin composition
JP2003171538A (en) * 2001-12-07 2003-06-20 Dainippon Ink & Chem Inc Liquid crystal polyester resin composition
JP2005007674A (en) * 2003-06-18 2005-01-13 Kanbo Pras Corp Prepreg article of fibrilated yarn fabric and its manufacturing method
JP2005052987A (en) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material
JP2004345355A (en) * 2004-06-25 2004-12-09 Sumitomo Chemical Co Ltd Manufacturing method of laminate
JP2007283758A (en) * 2006-03-24 2007-11-01 Du Pont Toray Co Ltd High-functionality composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113803A1 (en) 2020-11-25 2022-06-02 株式会社クラレ Liquid crystal polyester resin comosition, liquid crystal polyester fibers, fiber structure and melt molded body
KR20230101908A (en) 2020-11-25 2023-07-06 주식회사 쿠라레 Liquid-crystal polyester resin composition, liquid-crystal polyester fiber, fiber structure, and molten molded article

Also Published As

Publication number Publication date
JP5695309B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
Beylergil et al. Effect of polyamide-6, 6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites
Ravandi et al. Low velocity impact performance of stitched flax/epoxy composite laminates
KR101959771B1 (en) Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
Saghafi et al. The effect of interleaved composite nanofibrous mats on delamination behavior of polymeric composite materials
US9770844B2 (en) Fibre reinforced composites
JP6627756B2 (en) Resin supply material, preform, and method for producing fiber reinforced resin
JP5117779B2 (en) Composite material
KR20140079819A (en) Composite laminate having improved impact strength and the use thereof
JP5638940B2 (en) Fiber reinforced resin composite material
US20140057096A1 (en) Prepreg materials
WO2018203552A1 (en) Layered body including fiber-reinforced resin, fiber-reinforced composite resin material, and method for manufacturing same
JP2003136550A (en) Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
Saghafi et al. Impact response of glass/epoxy laminate interleaved with nanofibrous mats
Gideon et al. Characterizations of basalt unsaturated polyester laminates under static three‐point bending and low‐velocity impact loadings
Bajpai Update on carbon fibre
JP4517483B2 (en) Composite reinforcing fiber substrate and preform
JP5695309B2 (en) Fiber reinforced wholly aromatic polyester resin molding
JP7489335B2 (en) Fiber-reinforced resin molding and method for manufacturing carbon fiber sheet used therein
JP2002113802A (en) Composite reinforced fiber base and preform
CN114746237A (en) Composite prepreg and fiber-reinforced resin molded body
JP6499029B2 (en) Sheet material for manufacturing vibration damping member, vibration damping member using the sheet material, and method for manufacturing the same
JP5385734B2 (en) Impact resistant composite
GB2508078A (en) Non-woven moulding reinforcement material
JP2014062143A (en) Fiber-reinforced plastic
Shen et al. Investigation of Hybrid Natural Fibre Reinforced Composite for Impact Energy Absorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees