JP2011077452A - Temperature control method and temperature control system for substrate mounting table - Google Patents

Temperature control method and temperature control system for substrate mounting table Download PDF

Info

Publication number
JP2011077452A
JP2011077452A JP2009229828A JP2009229828A JP2011077452A JP 2011077452 A JP2011077452 A JP 2011077452A JP 2009229828 A JP2009229828 A JP 2009229828A JP 2009229828 A JP2009229828 A JP 2009229828A JP 2011077452 A JP2011077452 A JP 2011077452A
Authority
JP
Japan
Prior art keywords
refrigerant
mounting table
temperature
temperature control
substrate mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009229828A
Other languages
Japanese (ja)
Inventor
Yasuharu Sasaki
康晴 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009229828A priority Critical patent/JP2011077452A/en
Priority to KR1020100094166A priority patent/KR20110036503A/en
Priority to CN2010105014089A priority patent/CN102031502A/en
Priority to TW099133181A priority patent/TW201131642A/en
Priority to US12/894,598 priority patent/US20110079367A1/en
Publication of JP2011077452A publication Critical patent/JP2011077452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature control method for a substrate placing table that can quickly raise the temperature of a substrate and reduce loss of thermal energy. <P>SOLUTION: In a susceptor 12 in which a heater unit 14, a refrigerant flow passage 15 and a refrigerant chamber 16 are incorporated and on which a wafer W to be subjected to plasma etching processing is mounted, a refrigerant flows in the refrigerant flow passage 15 and refrigerant chamber 16 and when the heater unit 14 generates heat, the refrigerant stops flowing in the refrigerant chamber 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラズマ処理が施される基板を載置する基板載置台の温度制御方法及び温度制御システムに関する。   The present invention relates to a temperature control method and a temperature control system for a substrate mounting table on which a substrate subjected to plasma processing is mounted.

基板としてのウエハにプラズマ処理を施す基板処理装置は、該ウエハを収容する減圧室としてのチャンバと、該チャンバ内に処理ガスを導入するシャワーヘッドと、チャンバ内においてシャワーヘッドと対向して配置され、ウエハを載置するとともにチャンバ内に高周波電力を印加するサセプタ(載置台)とを備える。チャンバ内に導入された処理ガスは高周波電力によって励起されてプラズマとなり、該プラズマ中の陽イオンやラジカルがウエハのプラズマ処理に用いられる。   A substrate processing apparatus that performs plasma processing on a wafer as a substrate is disposed so as to face a shower head in the chamber, a chamber as a decompression chamber that accommodates the wafer, a shower head that introduces a processing gas into the chamber. And a susceptor (mounting table) that places a wafer and applies high-frequency power to the chamber. The processing gas introduced into the chamber is excited by high frequency power to become plasma, and cations and radicals in the plasma are used for plasma processing of the wafer.

ウエハはプラズマ処理が施される間、該プラズマから熱を受けて温度が上昇する。ウエハの温度が上昇すると該ウエハ上のラジカルの分布が変わり、またウエハにおける化学反応の反応速度が変化する。したがって、プラズマ処理において所望の結果を得るためにはウエハの温度、より具体的にはウエハを載置するサセプタそのものの温度を制御する必要がある。   During the plasma processing, the wafer receives heat from the plasma and rises in temperature. When the temperature of the wafer rises, the distribution of radicals on the wafer changes, and the reaction rate of the chemical reaction on the wafer changes. Therefore, in order to obtain a desired result in the plasma processing, it is necessary to control the temperature of the wafer, more specifically, the temperature of the susceptor itself on which the wafer is placed.

そこで、近年の基板処理装置では、サセプタの温度を制御するためにサセプタがその内部に電熱ヒータと冷媒流路とを有する。電熱ヒータはサセプタを加熱し、冷媒流路を流れる冷媒はサセプタの熱を外部へ運び出すことによってサセプタを冷却する。ここで、冷媒の温度や流量を正確に制御するのは困難であるが、伝熱ヒータの発熱量は正確に制御することができるため、基板処理装置では冷媒流路に常時冷媒を流しておき、必要に応じて電熱ヒータを発熱させてサセプタの温度を正確に調整している(例えば、特許文献1参照。)。   Therefore, in recent substrate processing apparatuses, the susceptor has an electric heater and a coolant channel in the susceptor in order to control the temperature of the susceptor. The electric heater heats the susceptor, and the refrigerant flowing through the refrigerant channel cools the susceptor by carrying the heat of the susceptor to the outside. Here, although it is difficult to accurately control the temperature and flow rate of the refrigerant, since the amount of heat generated by the heat transfer heater can be accurately controlled, the substrate processing apparatus always allows the refrigerant to flow through the refrigerant flow path. If necessary, the electric heater is heated to accurately adjust the temperature of the susceptor (see, for example, Patent Document 1).

特開平7−183276号公報JP-A-7-183276

しかしながら、上述した基板処理装置では、冷媒流路を常時冷媒が流れるため、電熱ヒータを発熱させてサセプタの温度を上昇させる際、電熱ヒータからの熱の一部が冷媒流路を流れる冷媒によってサセプタの外部へ運び出されてサセプタの温度上昇、ひいてはウエハの温度上昇に時間を要するという問題がある。また、電熱ヒータからの熱が全てサセプタの温度上昇に使用される訳ではないので熱エネルギーのロスも大きいという問題がある。   However, in the substrate processing apparatus described above, since the refrigerant always flows through the refrigerant flow path, when the electric heater is heated to raise the temperature of the susceptor, a part of the heat from the electric heater is caused by the refrigerant flowing through the refrigerant flow path. There is a problem that it takes time to raise the temperature of the susceptor and, consequently, the temperature of the wafer. In addition, since not all the heat from the electric heater is used for increasing the temperature of the susceptor, there is a problem that the loss of heat energy is large.

本発明の目的は、基板の温度上昇を速やかに行うことができると共に、熱エネルギーのロスを低減することができる基板載置台の温度制御方法及び温度制御システムを提供することにある。   The objective of this invention is providing the temperature control method and temperature control system of a substrate mounting base which can perform the temperature rise of a board | substrate rapidly and can reduce the loss of thermal energy.

上記目的を達成するために、請求項1記載の基板載置台の温度制御方法は、加熱ユニットと冷媒流路とを内蔵し、所定の処理が施される基板を載置する基板載置台において、前記冷媒流路を冷媒が流れる基板載置台の温度制御方法であって、前記加熱ユニットが発熱する際に前記冷媒の流れが停止する冷媒流停止ステップを有することを特徴とする。   In order to achieve the above object, the substrate mounting table temperature control method according to claim 1 includes a heating unit and a coolant channel, and a substrate mounting table on which a substrate to be subjected to predetermined processing is mounted. A temperature control method for a substrate mounting table in which a refrigerant flows through the refrigerant flow path, characterized in that it includes a refrigerant flow stop step in which the flow of the refrigerant stops when the heating unit generates heat.

請求項2記載の基板載置台の温度制御方法は、請求項1記載の温度制御方法において、前記冷媒流停止ステップにおいて、前記冷媒流路へ前記冷媒よりも高温の媒体を流入させることを特徴とする。   The temperature control method for a substrate mounting table according to claim 2 is characterized in that, in the temperature control method according to claim 1, in the refrigerant flow stop step, a medium having a temperature higher than that of the refrigerant is caused to flow into the refrigerant flow path. To do.

請求項3記載の基板載置台の温度制御方法は、請求項1又は2記載の温度制御方法において、前記基板載置台の頂部には前記基板が載置される載置面が形成され、前記基板載置台は前記冷媒流路に連通する冷媒室をさらに内蔵し、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、前記冷媒流停止ステップにおいて、前記冷媒室内へ気体を流入させて該冷媒室内の上部に気体層を形成することを特徴とする。   The temperature control method for a substrate mounting table according to claim 3 is the temperature control method according to claim 1 or 2, wherein a mounting surface on which the substrate is mounted is formed on a top portion of the substrate mounting table, and the substrate The mounting table further incorporates a refrigerant chamber communicating with the refrigerant flow path, and the mounting surface, the heating unit, and the refrigerant chamber are arranged in this order from above, and in the refrigerant flow stopping step, gas is introduced into the refrigerant chamber. And a gas layer is formed in the upper part of the refrigerant chamber.

請求項4記載の基板載置台の温度制御方法は、請求項3記載の温度制御方法において、加圧された高温の気体によって前記気体層を形成することを特徴とする。   According to a fourth aspect of the present invention, in the temperature control method of the third aspect, the gas layer is formed by a pressurized high-temperature gas.

請求項5記載の基板載置台の温度制御方法は、請求項4記載の温度制御方法において、前記加圧された高温の気体は前記冷媒の蒸気からなることを特徴とする。   The temperature control method for a substrate mounting table according to claim 5 is the temperature control method according to claim 4, wherein the pressurized high-temperature gas is vapor of the refrigerant.

請求項6記載の基板載置台の温度制御方法は、請求項3記載の温度制御方法において、前記冷媒流停止ステップにおいて、前記冷媒室の冷媒を加熱沸騰させて生じる前記冷媒の蒸気によって前記気体層を形成することを特徴とする。   The temperature control method for a substrate mounting table according to claim 6 is the temperature control method according to claim 3, wherein in the refrigerant flow stop step, the gas layer is generated by the refrigerant vapor generated by heating and boiling the refrigerant in the refrigerant chamber. It is characterized by forming.

請求項7記載の基板載置台の温度制御方法は、請求項1又は2記載の温度制御方法において、前記基板載置台の頂部には前記基板が載置される載置面が形成され、前記基板載置台は前記冷媒流路と連通する冷媒室をさらに内蔵し、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、前記冷媒流停止ステップにおいて、前記冷媒室内へ複数の断熱粒状物を流入させて該冷媒室の上部に断熱層を形成することを特徴とする。   The temperature control method for a substrate mounting table according to claim 7 is the temperature control method according to claim 1 or 2, wherein a mounting surface on which the substrate is mounted is formed on a top portion of the substrate mounting table, and the substrate The mounting table further incorporates a refrigerant chamber that communicates with the refrigerant flow path, and the mounting surface, the heating unit, and the refrigerant chamber are arranged from above in this order, and in the refrigerant flow stopping step, a plurality of refrigerant chambers are disposed in the refrigerant chamber. The heat insulating granular material is allowed to flow in to form a heat insulating layer in the upper part of the refrigerant chamber.

請求項8記載の基板載置台の温度制御方法は、請求項7記載の温度制御方法において、前記複数の断熱粒状物を加熱した後、該加熱された高温の前記断熱粒状物によって前記断熱層を形成することを特徴とする。   The temperature control method for a substrate mounting table according to claim 8 is the temperature control method according to claim 7, wherein after the plurality of heat insulating granules are heated, the heat insulating layer is formed by the heated high temperature heat insulating granules. It is characterized by forming.

上記目的を達成するために、請求項9記載の基板載置台の温度制御システムは、加熱ユニットと、冷媒流路と、該冷媒流路に連通する冷媒室とを内蔵し、頂部に所定の処理が施される基板が載置される載置面が形成される基板載置台であって、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、前記冷媒流路及び前記冷媒室を冷媒が流れる基板載置台の温度制御システムにおいて、前記加熱ユニットが発熱し、且つ前記冷媒の流れが停止する際に、前記冷媒室内へ気体を流入させて該冷媒室内の上部に気体層を形成する気体層形成装置を備えることを特徴とする。   In order to achieve the above object, a temperature control system for a substrate mounting table according to claim 9 incorporates a heating unit, a refrigerant flow path, and a refrigerant chamber communicating with the refrigerant flow path, and a predetermined process is performed at the top. The substrate mounting table on which the mounting surface on which the substrate to which the substrate is applied is formed is formed, wherein the mounting surface, the heating unit, and the refrigerant chamber are arranged in this order from above, the refrigerant flow path and In the temperature control system for the substrate mounting table in which the refrigerant flows through the refrigerant chamber, when the heating unit generates heat and the flow of the refrigerant stops, gas is introduced into the refrigerant chamber and gas is introduced into the upper portion of the refrigerant chamber. A gas layer forming apparatus for forming a layer is provided.

請求項10記載の基板載置台の温度制御システムは、請求項9記載の温度制御システムにおいて、前記気体層形成装置は前記気体を加熱する加熱装置を備え、該加熱された高温の前記気体によって前記気体層を形成することを特徴とする。   The temperature control system for a substrate mounting table according to claim 10 is the temperature control system according to claim 9, wherein the gas layer forming device includes a heating device that heats the gas, and the heated high-temperature gas is used as the gas layer forming device. A gas layer is formed.

上記目的を達成するために、請求項11記載の基板載置台の温度制御システムは、加熱ユニットと、冷媒流路と、該冷媒流路に連通する冷媒室とを内蔵し、頂部に所定の処理が施される基板が載置される載置面が形成される基板載置台であって、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、前記冷媒流路及び前記冷媒室を冷媒が流れる基板載置台の温度制御システムにおいて、前記加熱ユニットが発熱し、且つ前記冷媒の流れが停止する際に、前記冷媒室内へ複数の断熱粒状物を流入させて該冷媒室の上部に断熱層を形成する断熱層形成装置を備えることを特徴とする。   In order to achieve the above object, a temperature control system for a substrate mounting table according to claim 11 incorporates a heating unit, a refrigerant flow path, and a refrigerant chamber communicating with the refrigerant flow path, and a predetermined process is performed at the top. The substrate mounting table on which the mounting surface on which the substrate to which the substrate is applied is formed is formed, wherein the mounting surface, the heating unit, and the refrigerant chamber are arranged in this order from above, the refrigerant flow path and In the temperature control system of the substrate mounting table in which the refrigerant flows through the refrigerant chamber, when the heating unit generates heat and the flow of the refrigerant stops, a plurality of heat insulating granular materials are caused to flow into the refrigerant chamber. The heat insulation layer forming apparatus which forms a heat insulation layer in the upper part of is provided.

請求項12記載の基板載置台の温度制御システムは、請求項11記載の温度制御システムにおいて、前記断熱層形成装置は前記断熱粒状物を加熱する加熱装置を備え、該加熱された高温の前記断熱粒状物によって前記断熱層を形成することを特徴とする。   The temperature control system for a substrate mounting table according to claim 12, wherein the heat insulating layer forming device includes a heating device that heats the heat insulating granular material, and the heated high-temperature heat insulating system. The heat insulating layer is formed by a granular material.

請求項1記載の基板載置台の温度制御方法によれば、加熱ユニットが発熱する際に冷媒の流れが停止するので、加熱ユニットからの熱の一部が冷媒によって基板載置台の外部へ運び出されることがない。これにより、加熱ユニットからの熱を効率良く基板載置台の温度上昇に使用することができ、もって、基板の温度上昇を速やかに行うことができると共に、熱エネルギーのロスを低減することができる。   According to the temperature control method for the substrate mounting table according to claim 1, since the flow of the refrigerant stops when the heating unit generates heat, a part of the heat from the heating unit is carried out of the substrate mounting table by the refrigerant. There is nothing. As a result, the heat from the heating unit can be efficiently used to increase the temperature of the substrate mounting table, so that the temperature of the substrate can be increased quickly and the loss of thermal energy can be reduced.

請求項2記載の基板載置台の温度制御方法によれば、加熱ユニットが発熱し、且つ冷媒の流れが停止する際に、冷媒流路へ冷媒よりも高温の媒体が流入されるので、加熱ユニットからの熱だけでなく高温の媒体の熱によっても基板載置台を加熱することができ、且つ、媒体によって奪われる加熱ユニットからの熱を低減して加熱ユニットからの熱をより効率良く基板載置台の温度上昇に使用することができ、もって、基板の温度上昇をより速やかに行うことができる。   According to the temperature control method for a substrate mounting table according to claim 2, since the medium higher in temperature than the refrigerant flows into the refrigerant flow path when the heating unit generates heat and the flow of the refrigerant stops, the heating unit The substrate mounting table can be heated not only by the heat from the medium but also by the heat of the high-temperature medium, and the heat from the heating unit taken away by the medium is reduced to more efficiently use the heat from the heating unit. The temperature of the substrate can be increased more quickly.

請求項3記載の基板載置台の温度制御方法及び請求項9記載の基板載置台の温度制御システムによれば、加熱ユニットが発熱し、且つ冷媒の流れが停止する際に、冷媒室内の上部に気体層が形成される。該気体層は加熱ユニットと冷媒室の冷媒との間に存在し、加熱ユニットを冷媒から熱的に隔離するので、加熱ユニットからの熱をより効率良く基板載置台の温度上昇に使用することができる。   According to the temperature control method for the substrate mounting table according to claim 3 and the temperature control system for the substrate mounting table according to claim 9, when the heating unit generates heat and the flow of the refrigerant stops, A gas layer is formed. The gas layer exists between the heating unit and the refrigerant in the refrigerant chamber, and thermally isolates the heating unit from the refrigerant, so that the heat from the heating unit can be used more efficiently to raise the temperature of the substrate mounting table. it can.

請求項4記載の基板載置台の温度制御方法及び請求項10記載の基板載置台の温度制御システムによれば、高温の気体によって気体層が形成されるので、加熱ユニットからの熱だけでなく気体層の熱によっても基板載置台を加熱することができ、且つ、気体層によって奪われる加熱ユニットからの熱を低減して加熱ユニットからの熱をより効率良く基板載置台の温度上昇に使用することができ、もって、基板の温度上昇をより速やかに行うことができる。   According to the temperature control method for the substrate mounting table according to claim 4 and the temperature control system for the substrate mounting table according to claim 10, since the gas layer is formed by the high-temperature gas, not only the heat from the heating unit but also the gas The substrate mounting table can be heated also by the heat of the layer, and the heat from the heating unit taken away by the gas layer is reduced and the heat from the heating unit is used more efficiently for increasing the temperature of the substrate mounting table. Therefore, the temperature of the substrate can be increased more quickly.

請求項5記載の基板載置台の温度制御方法によれば、気体層を形成する加圧された高温の気体は冷媒の蒸気からなる。基板載置台に熱を奪われて温度が低下した蒸気は凝縮して冷媒となり、以前から冷媒流路に存在する冷媒と混合される。したがって、基板の温度上昇後、蒸気を回収する必要がなく、作業者等の手間を省くことができるとともに、冷媒の濃度等も変化しないので、冷媒による冷却性能が変化するのを防止することができる。   According to the temperature control method for a substrate mounting table according to claim 5, the pressurized high-temperature gas forming the gas layer is composed of a refrigerant vapor. The vapor whose temperature has dropped due to the heat deprived of the substrate mounting table is condensed and becomes a refrigerant, which is mixed with the refrigerant that has been present in the refrigerant flow path. Therefore, after the temperature of the substrate has risen, it is not necessary to recover the vapor, so that it is possible to save the labor of the operator and the like, and since the concentration of the refrigerant does not change, it is possible to prevent the cooling performance by the refrigerant from changing. it can.

請求項6記載の基板載置台の温度制御方法によれば、冷媒室の冷媒を加熱沸騰させて生じる冷媒の蒸気によって気体層を形成するので、外部から蒸気等を注入する必要がない。また、基板載置台に熱を奪われて温度が低下した蒸気は凝縮して元の冷媒に戻る。したがって、基板の温度上昇後、冷媒の蒸気を回収する必要がなく、作業者等の手間を省くことができるとともに、冷媒の濃度等も変化しないので、冷媒による冷却性能が変化するのを防止することができる。   According to the temperature control method of the substrate mounting table according to the sixth aspect, since the gas layer is formed by the vapor of the refrigerant generated by heating and boiling the refrigerant in the refrigerant chamber, it is not necessary to inject vapor or the like from the outside. In addition, the vapor whose temperature has dropped due to the substrate mounting table is condensed and returned to the original refrigerant. Therefore, it is not necessary to recover the vapor of the refrigerant after the temperature of the substrate is increased, so that the labor of the operator and the like can be saved and the concentration of the refrigerant does not change, thereby preventing the cooling performance by the refrigerant from changing. be able to.

請求項7記載の基板載置台の温度制御方法及び請求項11記載の基板載置台の温度制御システムによれば、加熱ユニットが発熱し、且つ冷媒の流れが停止する際に、冷媒室内の上部に複数の断熱粒状物からなる断熱層が形成される。該断熱層は加熱ユニットと冷媒室の冷媒との間に存在し、加熱ユニットを冷媒から熱的に隔離するので、加熱ユニットからの熱をより効率良く基板載置台の温度上昇に使用することができる。   According to the temperature control method for the substrate mounting table according to claim 7 and the temperature control system for the substrate mounting table according to claim 11, when the heating unit generates heat and the flow of the refrigerant stops, A heat insulating layer made of a plurality of heat insulating granules is formed. The heat insulating layer is present between the heating unit and the refrigerant in the refrigerant chamber, and thermally isolates the heating unit from the refrigerant. Therefore, the heat from the heating unit can be used more efficiently to raise the temperature of the substrate mounting table. it can.

請求項8記載の基板載置台の温度制御方法及び請求項12記載の基板載置台の温度制御システムによれば、加熱された高温の断熱粒状物によって断熱層が形成されるので、加熱ユニットからの熱だけでなく断熱層の熱によっても基板載置台を加熱することができ、且つ、断熱層によって奪われる加熱ユニットからの熱を低減して加熱ユニットからの熱をより効率良く基板載置台の温度上昇に使用することができ、もって、基板の温度上昇をより速やかに行うことができる。   According to the temperature control method of the substrate mounting table according to claim 8 and the temperature control system of the substrate mounting table according to claim 12, since the heat insulating layer is formed by the heated high temperature insulating granular material, The substrate mounting table can be heated not only by heat but also by the heat of the heat insulating layer, and the heat from the heating unit taken away by the heat insulating layer is reduced so that the heat from the heating unit can be more efficiently The temperature of the substrate can be increased more quickly.

本発明の第1の実施の形態に係る基板載置台の温度制御方法が適用される基板処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the substrate processing apparatus with which the temperature control method of the substrate mounting base concerning the 1st Embodiment of this invention is applied. 本実施の形態に係る基板載置台の温度制御方法を示す工程図である。It is process drawing which shows the temperature control method of the substrate mounting base concerning this Embodiment. 本発明の第2の実施の形態に係る基板載置台の温度制御方法が適用される基板処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the substrate processing apparatus with which the temperature control method of the substrate mounting base concerning the 2nd Embodiment of this invention is applied. 本実施の形態に係る基板載置台の温度制御方法を示す工程図である。It is process drawing which shows the temperature control method of the substrate mounting base concerning this Embodiment. 本発明の第3の実施の形態に係る基板載置台の温度制御方法が適用される基板処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the substrate processing apparatus with which the temperature control method of the substrate mounting base concerning the 3rd Embodiment of this invention is applied. 本実施の形態に係る基板載置台の温度制御方法を示す工程図である。It is process drawing which shows the temperature control method of the substrate mounting base concerning this Embodiment.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明の第1の実施の形態に係る基板載置台の温度制御方法について説明する。   First, the temperature control method for the substrate mounting table according to the first embodiment of the present invention will be described.

図1は、本実施の形態に係る基板載置台の温度制御方法が適用される基板処理装置の構成を概略的に示す断面図である。本基板処理装置は、基板としての半導体デバイス用のウエハ(以下、単に「ウエハ」という。)にプラズマエッチング処理を施す。   FIG. 1 is a cross-sectional view schematically showing a configuration of a substrate processing apparatus to which the substrate mounting table temperature control method according to the present embodiment is applied. This substrate processing apparatus performs a plasma etching process on a semiconductor device wafer (hereinafter simply referred to as “wafer”) as a substrate.

図1において、基板処理装置10は、半導体デバイス用のウエハWを収容するチャンバ11を有し、該チャンバ11内の下部には円柱状のサセプタ12(基板載置台)が配置され、また、チャンバ11内の上部にはサセプタ12に対向するように円板状のシャワーヘッド13が配置されている。   In FIG. 1, a substrate processing apparatus 10 has a chamber 11 that accommodates a semiconductor device wafer W, and a cylindrical susceptor 12 (substrate mounting table) is disposed in the lower part of the chamber 11. A disc-shaped shower head 13 is arranged at the upper part in 11 so as to face the susceptor 12.

サセプタ12は、静電チャック(図示しない)と、ヒータユニット14(加熱ユニット)と、冷媒流路15と、該冷媒流路15に連通する冷媒室16とを内蔵し、頂部にウエハWが載置される載置面17が形成される。サセプタ12において、載置面17、ヒータユニット14及び冷媒室16はこの順で上方から配置される。   The susceptor 12 incorporates an electrostatic chuck (not shown), a heater unit 14 (heating unit), a refrigerant flow path 15, and a refrigerant chamber 16 communicating with the refrigerant flow path 15, and a wafer W is mounted on the top. A placement surface 17 to be placed is formed. In the susceptor 12, the placement surface 17, the heater unit 14, and the refrigerant chamber 16 are arranged from above in this order.

静電チャックはクーロン力等によって載置されたウエハWを載置面へ静電吸着する。ヒータユニット14はサセプタ12の載置面のほぼ全域に対応して配置される抵抗からなり、電源18から印加された電圧によって発熱し、サセプタ12及び該サセプタ12を介してウエハWを加熱する。冷媒室16もサセプタ12の載置面のほぼ全域に対応して配置され、内部を流れる冷媒によってサセプタ12の熱及び該サセプタ12を介してウエハWの熱を吸収してサセプタ12の外部へ運び出すことによってサセプタ12やウエハWを冷却する。また、サセプタ12には高周波電源19が接続されるため、該サセプタ12はサセプタ12及びシャワーヘッド13の間の処理空間Sに高周波電力を印加する下部電極として機能する。このとき、シャワーヘッド13は上部電極として機能するが、シャワーヘッド13は接地電位に維持されていてもよいし、他の高周波電源が接続されていてもよい。   The electrostatic chuck electrostatically attracts the wafer W placed on the placement surface by Coulomb force or the like. The heater unit 14 is composed of a resistor arranged corresponding to almost the entire area of the mounting surface of the susceptor 12, generates heat by a voltage applied from the power supply 18, and heats the wafer W via the susceptor 12 and the susceptor 12. The refrigerant chamber 16 is also arranged corresponding to almost the entire area of the mounting surface of the susceptor 12, and absorbs the heat of the susceptor 12 and the heat of the wafer W through the susceptor 12 by the refrigerant flowing through the susceptor 12 and carries it out of the susceptor 12. As a result, the susceptor 12 and the wafer W are cooled. Further, since the high frequency power source 19 is connected to the susceptor 12, the susceptor 12 functions as a lower electrode that applies high frequency power to the processing space S between the susceptor 12 and the shower head 13. At this time, the shower head 13 functions as an upper electrode, but the shower head 13 may be maintained at a ground potential or may be connected to another high-frequency power source.

シャワーヘッド13は内部にバッファ室20と、該バッファ室20及び処理空間Sを連通させる複数のガス穴21とを有する。バッファ室20には外部の処理ガス供給装置(図示しない)から処理ガスが供給され、該供給された処理ガスは複数のガス穴21を介して処理空間Sへ導入される。基板処理装置10では、該処理空間Sへ高周波電力が印加されるので、処理空間Sへ導入された処理ガスが励起されてプラズマが生成される。そして、生成されたプラズマに含まれる陽イオンやラジカルを用いてウエハWにプラズマエッチング処理が施される。   The shower head 13 includes a buffer chamber 20 and a plurality of gas holes 21 that allow the buffer chamber 20 and the processing space S to communicate with each other. Processing gas is supplied to the buffer chamber 20 from an external processing gas supply device (not shown), and the supplied processing gas is introduced into the processing space S through the plurality of gas holes 21. In the substrate processing apparatus 10, since high frequency power is applied to the processing space S, the processing gas introduced into the processing space S is excited to generate plasma. Then, plasma etching is performed on the wafer W using cations and radicals contained in the generated plasma.

プラズマエッチング処理中、ウエハWはプラズマから熱を受け続けるため、サセプタ12の温度が上昇する虞がある。そこで、基板処理装置10はサセプタ12の温度上昇を防止するために冷媒循環システムを備える。   During the plasma etching process, since the wafer W continues to receive heat from the plasma, the temperature of the susceptor 12 may increase. Therefore, the substrate processing apparatus 10 includes a refrigerant circulation system to prevent the temperature of the susceptor 12 from increasing.

冷媒循環システムは、冷媒室16と、冷媒流路15と、チャンバ11外に配置されて冷媒流路15に接続される冷媒配管22と、該冷媒配管22の途中に設けられた冷媒供給装置23とを備える。該冷媒循環システムにおいて冷媒室16は該冷媒循環システムの最上方に位置する。   The refrigerant circulation system includes a refrigerant chamber 16, a refrigerant flow path 15, a refrigerant pipe 22 disposed outside the chamber 11 and connected to the refrigerant flow path 15, and a refrigerant supply device 23 provided in the middle of the refrigerant pipe 22. With. In the refrigerant circulation system, the refrigerant chamber 16 is located on the uppermost side of the refrigerant circulation system.

冷媒供給装置23は圧送ポンプとして機能し、冷媒を冷媒配管22及び冷媒流路15を介して冷媒室16へ図中矢印の方向に沿って圧送する。また、冷媒供給装置23は熱交換器として機能し、サセプタ12の熱を吸収して高温となった冷媒を冷却し、該冷媒の温度を比較的低温、具体的には、プラズマエッチング処理中におけるサセプタ12の温度維持や温度下降に必要な温度、例えば、10℃まで低下させる。これにより、冷媒供給装置23から冷媒室16へ供給される冷媒の温度は比較的低温に維持される。なお、本実施の形態では、例えば、ガルデン(登録商標)やフロリナート(登録商標)が冷媒として用いられる。   The refrigerant supply device 23 functions as a pressure feed pump, and pressure-feeds the refrigerant along the direction of the arrow in the drawing to the refrigerant chamber 16 via the refrigerant pipe 22 and the refrigerant flow path 15. The refrigerant supply device 23 functions as a heat exchanger, cools the refrigerant that has become high temperature by absorbing the heat of the susceptor 12, and sets the temperature of the refrigerant to a relatively low temperature, specifically, during the plasma etching process. The temperature of the susceptor 12 is lowered to a temperature necessary for maintaining or lowering the temperature, for example, 10 ° C. As a result, the temperature of the refrigerant supplied from the refrigerant supply device 23 to the refrigerant chamber 16 is maintained at a relatively low temperature. In this embodiment, for example, Galden (registered trademark) or Fluorinert (registered trademark) is used as the refrigerant.

ところで、基板処理装置10ではウエハWにプラズマエッチング処理を施す際、該プラズマエッチング処理に適した温度までサセプタ12の温度をヒータユニット14からの熱を使用して上昇させる。このとき、ヒータユニット14からの熱の一部が冷媒流路15や冷媒室16を流れる冷媒によってサセプタ12の外部へ運び出されてサセプタ12の温度上昇を阻害する虞がある。本実施の形態では、これに対応して、ヒータユニット14を発熱させてサセプタ12の温度を上昇させる際、冷媒流路15や冷媒室16の冷媒の流れを停止させる。   By the way, when the substrate processing apparatus 10 performs a plasma etching process on the wafer W, the temperature of the susceptor 12 is increased to a temperature suitable for the plasma etching process using heat from the heater unit 14. At this time, a part of the heat from the heater unit 14 may be carried out of the susceptor 12 by the refrigerant flowing through the refrigerant flow path 15 or the refrigerant chamber 16 and hinder the temperature rise of the susceptor 12. In the present embodiment, in response to this, when the heater unit 14 generates heat to raise the temperature of the susceptor 12, the refrigerant flow in the refrigerant flow path 15 and the refrigerant chamber 16 is stopped.

図2は、本実施の形態に係る基板載置台の温度制御方法を示す工程図である。   FIG. 2 is a process diagram showing a temperature control method for the substrate mounting table according to the present embodiment.

図2において、まず、ヒータユニット14が発熱する前では、冷媒供給装置23が冷媒を冷媒室16へ圧送するので、冷媒は冷媒循環システムにおいて図中矢印に示すように循環する(図2(A))。   In FIG. 2, first, before the heater unit 14 generates heat, the refrigerant supply device 23 pumps the refrigerant to the refrigerant chamber 16, so that the refrigerant circulates in the refrigerant circulation system as indicated by an arrow in FIG. )).

次いで、ヒータユニット14が発熱する際、冷媒供給装置23が冷媒の圧送を停止する(図2(B))。これにより、冷媒循環システムにおいて冷媒の流れが停止する。特に、冷媒室16において冷媒の流れが停止すると、冷媒室16の冷媒はヒータユニット14からの熱の一部を吸収するが、吸収した熱をサセプタ12の外部へ運び出すことがない。また、ヒータユニット14は冷媒室16の上方に位置するため、ヒータユニット14からの熱の一部によって冷媒室16内の上部の冷媒しか温度が上昇しない。これにより、冷媒室16において冷媒の対流も発生しないため、冷媒室16の冷媒が吸収するヒータユニット14からの熱の量は僅かである。その結果、ヒータユニット14からの熱を効率良くサセプタ12の温度上昇に使用することができる。   Next, when the heater unit 14 generates heat, the refrigerant supply device 23 stops pumping the refrigerant (FIG. 2B). Thereby, the flow of the refrigerant stops in the refrigerant circulation system. In particular, when the flow of the refrigerant stops in the refrigerant chamber 16, the refrigerant in the refrigerant chamber 16 absorbs part of the heat from the heater unit 14, but does not carry the absorbed heat out of the susceptor 12. Further, since the heater unit 14 is located above the refrigerant chamber 16, the temperature of only the upper refrigerant in the refrigerant chamber 16 rises due to a part of the heat from the heater unit 14. Thereby, since convection of the refrigerant does not occur in the refrigerant chamber 16, the amount of heat from the heater unit 14 absorbed by the refrigerant in the refrigerant chamber 16 is small. As a result, the heat from the heater unit 14 can be efficiently used to increase the temperature of the susceptor 12.

次いで、サセプタ12の温度がプラズマエッチング処理に適した温度まで上昇すると、冷媒供給装置23が冷媒の圧送を再開し、冷媒は冷媒循環システムにおいて図中矢印に示すように循環する(図2(C))。これにより、サセプタ12の温度をプラズマエッチング処理に適した温度に維持することができる。   Next, when the temperature of the susceptor 12 rises to a temperature suitable for the plasma etching process, the refrigerant supply device 23 resumes the pumping of the refrigerant, and the refrigerant circulates in the refrigerant circulation system as indicated by arrows in FIG. )). Thereby, the temperature of the susceptor 12 can be maintained at a temperature suitable for the plasma etching process.

本実施の形態に係る基板載置台の温度制御方法によれば、ヒータユニット14が発熱する際に冷媒の流れが停止するので、ヒータユニット14からの熱の一部が冷媒によってサセプタ12の外部へ運び出されることがない。これにより、ヒータユニット14からの熱を効率良くサセプタ12の温度上昇に使用することができ、もって、ウエハWの温度上昇を速やかに行うことができると共に、熱エネルギーのロスを低減することができる。   According to the temperature control method for the substrate mounting table according to the present embodiment, the flow of the refrigerant stops when the heater unit 14 generates heat, so that part of the heat from the heater unit 14 is transferred to the outside of the susceptor 12 by the refrigerant. It will not be carried away. As a result, the heat from the heater unit 14 can be efficiently used to increase the temperature of the susceptor 12, and the temperature of the wafer W can be increased quickly, and the loss of thermal energy can be reduced. .

また、冷媒供給装置23による冷媒の圧送を停止するだけで冷媒の流れが停止するので、本実施の形態に係る基板載置台の温度制御方法を実現するために基板処理装置10における冷媒循環システムにおいて特殊な装置等を配置する必要がなく、もって、コストの大幅な上昇を防止することができる。   In addition, since the flow of the refrigerant is stopped only by stopping the pumping of the refrigerant by the refrigerant supply device 23, in the refrigerant circulation system in the substrate processing apparatus 10 in order to realize the temperature control method of the substrate mounting table according to the present embodiment. There is no need to arrange a special device or the like, so that a significant increase in cost can be prevented.

また、図2の温度制御方法においてヒータユニット14が発熱し、且つ冷媒循環システムにおいて冷媒の流れが停止する際、冷媒室16へ、直接又は冷媒流路15や冷媒配管22を介して、プラズマエッチング処理中におけるサセプタ12の温度維持に必要な冷媒の温度(10℃)よりも高温の媒体、例えば、80℃の高温媒体を流入させてもよい。これにより、ヒータユニット14からの熱だけでなく高温媒体の熱によってもサセプタ12を加熱することができ、且つ、媒体によって奪われるヒータユニット14からの熱を低減してヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができ、もって、ウエハWの温度上昇をより速やかに行うことができる。   In addition, when the heater unit 14 generates heat in the temperature control method of FIG. 2 and the refrigerant flow stops in the refrigerant circulation system, plasma etching is performed directly to the refrigerant chamber 16 or via the refrigerant flow path 15 or the refrigerant pipe 22. A medium having a temperature higher than the temperature of the refrigerant (10 ° C.) necessary for maintaining the temperature of the susceptor 12 during processing, for example, a high-temperature medium having a temperature of 80 ° C., may be introduced. Thus, the susceptor 12 can be heated not only by the heat from the heater unit 14 but also by the heat of the high-temperature medium, and the heat from the heater unit 14 taken away by the medium is reduced to reduce the heat from the heater unit 14. It can be used for increasing the temperature of the susceptor 12 more efficiently, so that the temperature of the wafer W can be increased more quickly.

上述した本実施の形態に係る基板載置台の温度制御方法では、冷媒循環システムにおいて冷媒の流れを停止させたが、冷媒の流れを通常の状態よりも遅くするのもよい。これにより、冷媒がサセプタ12の外へ運び出す熱の量を低減することができ、もって、ウエハWの温度上昇を通常の状態よりも速く行うことができる。   In the temperature control method for a substrate mounting table according to the present embodiment described above, the flow of the refrigerant is stopped in the refrigerant circulation system, but the flow of the refrigerant may be made slower than the normal state. As a result, the amount of heat that the refrigerant carries out of the susceptor 12 can be reduced, so that the temperature of the wafer W can be increased faster than in a normal state.

上述した基板処理装置10では、サセプタ12が冷媒室16を有するが、サセプタ12が冷媒室16を有さずに冷媒流路15のみを有する場合であっても、ヒータユニット14が発熱する際に冷媒流路15における冷媒の流れを停止することによって同様の効果を奏することができる。   In the substrate processing apparatus 10 described above, the susceptor 12 has the refrigerant chamber 16, but even when the susceptor 12 does not have the refrigerant chamber 16 but only the refrigerant flow path 15, the heater unit 14 generates heat. The same effect can be obtained by stopping the flow of the refrigerant in the refrigerant flow path 15.

次に、本発明の第2の実施の形態に係る基板載置台の温度制御方法及び温度制御システムについて説明する。   Next, a temperature control method and a temperature control system for a substrate mounting table according to a second embodiment of the present invention will be described.

図3は、本実施の形態に係る基板載置台の温度制御方法が適用される基板処理装置の構成を概略的に示す断面図である。   FIG. 3 is a cross-sectional view schematically showing the configuration of the substrate processing apparatus to which the substrate mounting table temperature control method according to the present embodiment is applied.

本実施の形態は、その構成、作用が上述した第1の実施の形態と基本的に同じであるので、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。   Since the configuration and operation of this embodiment are basically the same as those of the first embodiment described above, the description of the overlapping configuration and operation will be omitted, and the description of the different configuration and operation will be described below. Do.

図3において、基板処理装置24は、冷媒配管22の途中に加圧タンク25(気体層形成装置)を備える。加圧タンク25は、比較的高圧であって比較的高温の気体、例えば、不活性ガスを貯蔵し、所定のタイミングで冷媒配管22及び冷媒流路15を介して貯蔵された不活性ガスを冷媒室16へ流入させる。ここで不活性ガスは冷媒配管22へ流入した際に凝縮しない程度の圧力、温度に設定される必要があり、圧力としては、例えば0.2MPa以上であり、温度としては、例えば、150℃以上に設定される。また、加圧タンク25は貯蔵する不活性ガスを比較的高温に維持するために、ヒータ(加熱装置)(図示しない)を有する。   In FIG. 3, the substrate processing apparatus 24 includes a pressurized tank 25 (gas layer forming apparatus) in the middle of the refrigerant pipe 22. The pressurized tank 25 stores a relatively high-pressure and relatively high-temperature gas, for example, an inert gas, and the inert gas stored through the refrigerant pipe 22 and the refrigerant channel 15 at a predetermined timing as a refrigerant. Flow into chamber 16. Here, it is necessary to set the pressure and temperature so that the inert gas does not condense when flowing into the refrigerant pipe 22. The pressure is, for example, 0.2 MPa or more, and the temperature is, for example, 150 ° C. or more. Set to The pressurized tank 25 has a heater (heating device) (not shown) in order to maintain the inert gas stored therein at a relatively high temperature.

図4は、本実施の形態に係る基板載置台の温度制御方法を示す工程図である。   FIG. 4 is a process diagram showing a temperature control method for the substrate mounting table according to the present embodiment.

図4において、まず、ヒータユニット14が発熱する前では、冷媒供給装置23が冷媒を冷媒室16へ圧送するので、冷媒は冷媒循環システムにおいて図中矢印に示すように循環する(図4(A))。   In FIG. 4, first, before the heater unit 14 generates heat, the refrigerant supply device 23 pumps the refrigerant to the refrigerant chamber 16, so that the refrigerant circulates in the refrigerant circulation system as indicated by an arrow in the drawing (FIG. )).

次いで、ヒータユニット14が発熱する際、冷媒供給装置23が冷媒の圧送を停止する。これにより、冷媒循環システムにおいて冷媒の流れが停止する。このとき、加圧タンク25は冷媒配管22及び冷媒流路15を介して貯蔵された比較的高温、高圧の不活性ガス26を冷媒室16へ流入させる(図4(B))。冷媒室16へ流入した不活性ガス26は、冷媒の流れが停止しており、且つ冷媒室16が冷媒循環システムの最上方に位置しているため、冷媒室16内の上部に溜まっていく。   Next, when the heater unit 14 generates heat, the refrigerant supply device 23 stops pumping the refrigerant. Thereby, the flow of the refrigerant stops in the refrigerant circulation system. At this time, the pressurized tank 25 allows the relatively high temperature and high pressure inert gas 26 stored via the refrigerant pipe 22 and the refrigerant flow path 15 to flow into the refrigerant chamber 16 (FIG. 4B). The inert gas 26 that has flowed into the refrigerant chamber 16 accumulates in the upper portion of the refrigerant chamber 16 because the flow of the refrigerant is stopped and the refrigerant chamber 16 is located at the uppermost position of the refrigerant circulation system.

次いで、溜まっていく不活性ガス26によって冷媒室16内の上部にガス層27(気体層)が形成される(図4(C))。ガス層27が冷媒室16内の上部全面に亘って形成され、冷媒室16の上部内壁面と冷媒室16の冷媒の液面とが離間すると、加圧タンク25は不活性ガス26の流入を停止する。このとき、ガス層27はヒータユニット14と冷媒室16の冷媒との間に存在するため、ヒータユニット14を冷媒室16の冷媒から熱的に隔離する。これにより、ヒータユニット14からの熱は冷媒室16の冷媒に吸収されることがない。その結果、ヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができる。   Next, a gas layer 27 (gas layer) is formed in the upper portion of the refrigerant chamber 16 by the accumulated inert gas 26 (FIG. 4C). When the gas layer 27 is formed over the entire upper surface of the refrigerant chamber 16 and the upper inner wall surface of the refrigerant chamber 16 is separated from the liquid level of the refrigerant in the refrigerant chamber 16, the pressurized tank 25 causes the inert gas 26 to flow in. Stop. At this time, since the gas layer 27 exists between the heater unit 14 and the refrigerant in the refrigerant chamber 16, the heater unit 14 is thermally isolated from the refrigerant in the refrigerant chamber 16. Thereby, the heat from the heater unit 14 is not absorbed by the refrigerant in the refrigerant chamber 16. As a result, the heat from the heater unit 14 can be used to increase the temperature of the susceptor 12 more efficiently.

次いで、サセプタ12の温度がプラズマエッチング処理に適した温度まで上昇すると、冷媒供給装置23が冷媒の圧送を再開し、冷媒は冷媒循環システムにおいて図中矢印に示すように循環する(図4(D))。このとき、冷媒室16の不活性ガス26は循環する冷媒によって冷媒室16の外部へ運び出され、ガス層27は消滅する。これにより、循環する冷媒によるサセプタ12の温度調整が開始され、サセプタ12の温度をプラズマエッチング処理に適した温度に維持することができる。   Next, when the temperature of the susceptor 12 rises to a temperature suitable for the plasma etching process, the refrigerant supply device 23 resumes the pumping of the refrigerant, and the refrigerant circulates in the refrigerant circulation system as indicated by the arrows in FIG. )). At this time, the inert gas 26 in the refrigerant chamber 16 is carried out of the refrigerant chamber 16 by the circulating refrigerant, and the gas layer 27 disappears. Thereby, temperature adjustment of the susceptor 12 by the circulating refrigerant is started, and the temperature of the susceptor 12 can be maintained at a temperature suitable for the plasma etching process.

本実施の形態に係る基板載置台の温度制御方法によれば、ヒータユニット14が発熱し、且つ冷媒循環システムにおいて冷媒の流れが停止する際に、冷媒室16内の上部にガス層27が形成される。該ガス層27はヒータユニット14と冷媒室16の冷媒との間に存在し、ヒータユニット14を冷媒室16の冷媒から熱的に隔離するので、ヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができる。   According to the temperature control method for the substrate mounting table according to the present embodiment, when the heater unit 14 generates heat and the refrigerant flow stops in the refrigerant circulation system, the gas layer 27 is formed in the upper part in the refrigerant chamber 16. Is done. The gas layer 27 exists between the heater unit 14 and the refrigerant in the refrigerant chamber 16, and thermally isolates the heater unit 14 from the refrigerant in the refrigerant chamber 16, so that the heat from the heater unit 14 can be more efficiently removed. Can be used to increase the temperature.

上述した本実施の形態に係る基板載置台の温度制御方法では、比較的高圧、高温の不活性ガス26によってガス層27が形成されるので、ヒータユニット14からの熱だけでなくガス層27の熱によってもサセプタ12を加熱することができ、且つ、ガス層27によって奪われるヒータユニット14からの熱を低減してヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができ、もって、ウエハWの温度上昇をより速やかに行うことができる。   In the temperature control method for the substrate mounting table according to the present embodiment described above, the gas layer 27 is formed by the relatively high pressure and high temperature inert gas 26. Therefore, not only the heat from the heater unit 14 but also the gas layer 27 The susceptor 12 can also be heated by heat, and the heat from the heater unit 14 taken away by the gas layer 27 can be reduced to more efficiently use the heat from the heater unit 14 for increasing the temperature of the susceptor 12. Thus, the temperature of the wafer W can be increased more quickly.

ガス層27が生じた際、該ガス層27の温度を比較的高温に維持するためには、冷媒配管22の途中に設けられたバルブ28(図3参照。)を閉弁して冷媒室16、冷媒流路15を外部から隔離した後、冷媒室16等を加圧するのが好ましい。このとき、ガス層27は断熱圧縮されて温度が上昇するので、該ガス層27の温度を容易に比較的高温に維持することができる。   When the gas layer 27 is generated, in order to maintain the temperature of the gas layer 27 at a relatively high temperature, the valve 28 (see FIG. 3) provided in the middle of the refrigerant pipe 22 is closed and the refrigerant chamber 16 is closed. It is preferable to pressurize the refrigerant chamber 16 and the like after isolating the refrigerant flow path 15 from the outside. At this time, since the gas layer 27 is adiabatically compressed and the temperature rises, the temperature of the gas layer 27 can be easily maintained at a relatively high temperature.

上述した基板載置台の温度制御方法では、加圧タンク25が不活性ガスを貯蔵し、冷媒室16へ不活性ガスが流入されてガス層27が形成されたが、加圧タンク25が比較的高圧、高温、例えば、0.2MPa以上、且つ、例えば、120℃以上の冷媒の蒸気を貯蔵し、該冷媒の蒸気が冷媒室16へ流入されてガス層27が形成されてもよい。これにより、比較的高圧、高温の冷媒の蒸気によってガス層27を形成することができる。そして、サセプタ12に熱を奪われて温度が低下した冷媒の蒸気は凝縮して冷媒となり、以前から冷媒室16や冷媒流路15に存在する冷媒と混合される。したがって、ウエハWの温度上昇後、冷媒の蒸気を回収する必要がなく、作業者等の手間を省くことができるとともに、冷媒の濃度等も変化しないので、冷媒による冷却性能が変化するのを防止することができる。   In the above-described temperature control method for the substrate mounting table, the pressurized tank 25 stores the inert gas, and the inert gas flows into the refrigerant chamber 16 to form the gas layer 27. The gas layer 27 may be formed by storing the vapor of the refrigerant at high pressure and high temperature, for example, 0.2 MPa or more and, for example, 120 ° C. or more, and flowing the refrigerant into the refrigerant chamber 16. Thereby, the gas layer 27 can be formed with the vapor | steam of a comparatively high pressure and high temperature refrigerant | coolant. Then, the vapor of the refrigerant whose temperature has been reduced due to heat being taken away by the susceptor 12 is condensed to become a refrigerant, and is mixed with the refrigerant existing in the refrigerant chamber 16 and the refrigerant flow path 15 from before. Therefore, it is not necessary to recover the vapor of the refrigerant after the temperature of the wafer W rises, and it is possible to save the labor of the operator and the like, and the refrigerant concentration does not change, so that the cooling performance by the refrigerant is prevented from changing. can do.

また、ガス層27を形成する際に、冷媒室16へ不活性ガス26や冷媒の蒸気を流入させることなく、冷媒室16の冷媒をヒータユニット14や他のヒータ(図示しない)によって加熱沸騰させて冷媒の蒸気を生じさせ、冷媒室16に生じた冷媒の蒸気によってガス層27を形成してもよい。この場合、冷媒循環システムにおいて冷媒室16へ不活性ガス26等を流入させる装置(加圧タンク25)を設ける必要を無くすことができ、装置構成を簡略化することができる。また、サセプタ12に熱を奪われて温度が低下した冷媒の蒸気は凝縮して元の冷媒に戻るので、冷媒の蒸気を冷媒室16へ流入させる場合と同様の効果を奏することができる。   Further, when the gas layer 27 is formed, the refrigerant in the refrigerant chamber 16 is heated and boiled by the heater unit 14 or another heater (not shown) without flowing the inert gas 26 or the vapor of the refrigerant into the refrigerant chamber 16. Alternatively, the vapor of the refrigerant may be generated, and the gas layer 27 may be formed by the vapor of the refrigerant generated in the refrigerant chamber 16. In this case, it is possible to eliminate the need to provide a device (pressurized tank 25) for allowing the inert gas 26 and the like to flow into the refrigerant chamber 16 in the refrigerant circulation system, and to simplify the device configuration. In addition, since the refrigerant vapor whose temperature has been reduced by the susceptor 12 is condensed and returned to the original refrigerant, the same effect as the case where the refrigerant vapor flows into the refrigerant chamber 16 can be obtained.

次に、本発明の第3の実施の形態に係る基板載置台の温度制御方法及び温度制御システムについて説明する。   Next, a substrate mounting table temperature control method and temperature control system according to a third embodiment of the present invention will be described.

図5は、本実施の形態に係る基板載置台の温度制御方法が適用される基板処理装置の構成を概略的に示す断面図である。   FIG. 5 is a cross-sectional view schematically showing a configuration of a substrate processing apparatus to which the temperature control method for the substrate mounting table according to the present embodiment is applied.

本実施の形態は、その構成、作用が上述した第1の実施の形態と基本的に同じであるので、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。   Since the configuration and operation of this embodiment are basically the same as those of the first embodiment described above, the description of the overlapping configuration and operation will be omitted, and the description of the different configuration and operation will be described below. Do.

図5において、基板処理装置29は、冷媒循環システムにおける冷媒室16の上流側の冷媒配管22の途中に断熱粒子タンク30(断熱層形成装置)を備える。断熱粒子タンク30は、冷媒よりも密度が小さい断熱材料、例えば、耐熱樹脂からなる球状の断熱粒子31(断熱粒状物)を多数貯蔵し、所定のタイミングで冷媒配管22及び冷媒流路15を介して貯蔵された多数の断熱粒子31を冷媒室16へ流入させる。ここで断熱粒子31は、比較的高温、例えば、90℃以上に設定される。また、断熱粒子タンク30は貯蔵する断熱粒子31を比較的高温に維持するために、ヒータ(加熱装置)(図示しない)を有する。   In FIG. 5, the substrate processing apparatus 29 includes a heat insulating particle tank 30 (heat insulating layer forming apparatus) in the middle of the refrigerant pipe 22 on the upstream side of the refrigerant chamber 16 in the refrigerant circulation system. The heat insulating particle tank 30 stores a large number of heat insulating materials having a density lower than that of the refrigerant, for example, spherical heat insulating particles 31 (heat insulating granular materials) made of heat resistant resin, and passes through the refrigerant pipe 22 and the refrigerant flow path 15 at a predetermined timing. A large number of the heat insulating particles 31 stored in this manner are caused to flow into the refrigerant chamber 16. Here, the heat insulating particles 31 are set to a relatively high temperature, for example, 90 ° C. or higher. The heat insulating particle tank 30 has a heater (heating device) (not shown) in order to maintain the heat insulating particles 31 to be stored at a relatively high temperature.

また、基板処理装置29は、冷媒循環システムにおける冷媒室16の下流側の冷媒配管22の途中に断熱粒子回収器32を備える。断熱粒子回収器32は、内部に所定の容積の空間33と、該空間33に配置された回収網34とを有する。回収網34は、冷媒室16から流れ出た多数の断熱粒子31を含む冷媒を空間33において濾過することにより、冷媒と断熱粒子31を分離する。分離された多数の断熱粒子31は回収網34ごと断熱粒子回収器32から取り出され、再度断熱粒子タンク30へ貯蔵される。   Further, the substrate processing apparatus 29 includes a heat insulating particle recovery device 32 in the middle of the refrigerant pipe 22 on the downstream side of the refrigerant chamber 16 in the refrigerant circulation system. The heat insulating particle recovery unit 32 includes a space 33 having a predetermined volume inside and a recovery net 34 disposed in the space 33. The collection network 34 separates the refrigerant and the heat insulating particles 31 by filtering the refrigerant including the large number of heat insulating particles 31 flowing out from the refrigerant chamber 16 in the space 33. A large number of the separated heat insulating particles 31 are taken out from the heat insulating particle recovery device 32 together with the recovery net 34 and stored in the heat insulating particle tank 30 again.

図6は、本実施の形態に係る基板載置台の温度制御方法を示す工程図である。   FIG. 6 is a process diagram showing the temperature control method for the substrate mounting table according to the present embodiment.

図6において、まず、ヒータユニット14が発熱する前では、冷媒供給装置23が冷媒を冷媒室16へ圧送するので、冷媒は冷媒循環システムにおいて図中矢印に示すように循環する(図6(A))。   In FIG. 6, first, before the heater unit 14 generates heat, the refrigerant supply device 23 pumps the refrigerant to the refrigerant chamber 16, so that the refrigerant circulates in the refrigerant circulation system as indicated by an arrow in the drawing (FIG. )).

次いで、ヒータユニット14が発熱する際、冷媒供給装置23が冷媒の圧送を停止する。これにより、冷媒循環システムにおいて冷媒の流れが停止する。このとき、断熱粒子タンク30は冷媒配管22及び冷媒流路15を介して貯蔵された比較的高温の断熱粒子31を冷媒室16へ流入させる(図6(B))。冷媒室16へ流入した断熱粒子31は、冷媒の流れが停止しており、且つ冷媒よりもその密度が小さいため、冷媒室16内の上部に溜まっていく。   Next, when the heater unit 14 generates heat, the refrigerant supply device 23 stops pumping the refrigerant. Thereby, the flow of the refrigerant stops in the refrigerant circulation system. At this time, the heat insulating particle tank 30 allows the relatively high temperature heat insulating particles 31 stored via the refrigerant pipe 22 and the refrigerant flow path 15 to flow into the refrigerant chamber 16 (FIG. 6B). The heat insulating particles 31 that have flowed into the refrigerant chamber 16 are stopped at the flow of the refrigerant and have a density lower than that of the refrigerant, and therefore accumulate in the upper part of the refrigerant chamber 16.

次いで、溜まっていく断熱粒子31によって冷媒室16内の上部に断熱粒子層35(断熱層)が形成される(図6(C))と、断熱粒子タンク30は断熱粒子31の流入を停止する。このとき、断熱粒子層35はヒータユニット14と冷媒室16の冷媒との間に存在するため、ヒータユニット14を冷媒室16の冷媒から熱的に隔離する。これにより、ヒータユニット14からの熱は冷媒室16の冷媒に吸収されることがない。その結果、ヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができる。   Next, when the heat insulating particle layer 35 (heat insulating layer) is formed in the upper part of the refrigerant chamber 16 by the heat insulating particles 31 accumulated (FIG. 6C), the heat insulating particle tank 30 stops the inflow of the heat insulating particles 31. . At this time, since the heat insulating particle layer 35 exists between the heater unit 14 and the refrigerant in the refrigerant chamber 16, the heater unit 14 is thermally isolated from the refrigerant in the refrigerant chamber 16. Thereby, the heat from the heater unit 14 is not absorbed by the refrigerant in the refrigerant chamber 16. As a result, the heat from the heater unit 14 can be used to increase the temperature of the susceptor 12 more efficiently.

次いで、サセプタ12の温度がプラズマエッチング処理に適した温度まで上昇すると、冷媒供給装置23が冷媒の圧送を再開し、冷媒は冷媒循環システムにおいて図中矢印に示すように循環する(図6(D))。これにより、冷媒室16の断熱粒子31は循環する冷媒によって冷媒室16の外部へ運び出され、断熱粒子層35は消滅する。これにより、循環する冷媒によるサセプタ12の温度調整が開始され、サセプタ12の温度をプラズマエッチング処理に適した温度に維持することができる。このとき、断熱粒子回収器32は、冷媒によって冷媒室16の外部へ運び出された多数の断熱粒子31を、空間33において回収網34によって回収する。   Next, when the temperature of the susceptor 12 rises to a temperature suitable for the plasma etching process, the refrigerant supply device 23 resumes the pumping of the refrigerant, and the refrigerant circulates in the refrigerant circulation system as indicated by the arrows in FIG. )). As a result, the heat insulating particles 31 in the refrigerant chamber 16 are carried out of the refrigerant chamber 16 by the circulating refrigerant, and the heat insulating particle layer 35 disappears. Thereby, temperature adjustment of the susceptor 12 by the circulating refrigerant is started, and the temperature of the susceptor 12 can be maintained at a temperature suitable for the plasma etching process. At this time, the heat insulating particle recovery device 32 recovers a large number of heat insulating particles 31 carried out of the refrigerant chamber 16 by the refrigerant by the recovery net 34 in the space 33.

本実施の形態に係る基板載置台の温度制御方法によれば、ヒータユニット14が発熱し、且つ冷媒循環システムにおいて冷媒の流れが停止する際に、冷媒室16内の上部に断熱粒子層35が形成される。該断熱粒子層35はヒータユニット14と冷媒室16の冷媒との間に存在し、ヒータユニット14を冷媒室16の冷媒から熱的に隔離するので、ヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができる。   According to the temperature control method of the substrate mounting table according to the present embodiment, when the heater unit 14 generates heat and the flow of the refrigerant stops in the refrigerant circulation system, the heat insulating particle layer 35 is formed on the upper part in the refrigerant chamber 16. It is formed. The heat insulating particle layer 35 exists between the heater unit 14 and the refrigerant in the refrigerant chamber 16 and thermally isolates the heater unit 14 from the refrigerant in the refrigerant chamber 16, so that the heat from the heater unit 14 can be more efficiently removed. Can be used for 12 temperature rises.

上述した本実施の形態に係る基板載置台の温度制御方法では、比較的高温の断熱粒子31によって断熱粒子層35が形成されるので、ヒータユニット14からの熱だけでなく断熱粒子層35の熱によってもサセプタ12を加熱することができ、且つ、断熱粒子層35によって奪われるヒータユニット14からの熱を低減してヒータユニット14からの熱をより効率良くサセプタ12の温度上昇に使用することができ、もって、ウエハWの温度上昇をより速やかに行うことができる。   In the temperature control method for the substrate mounting table according to the present embodiment described above, the heat insulating particle layer 35 is formed by the relatively high temperature heat insulating particles 31, so that not only the heat from the heater unit 14 but also the heat of the heat insulating particle layer 35 is obtained. The susceptor 12 can also be heated, and the heat from the heater unit 14 taken away by the heat insulating particle layer 35 can be reduced, and the heat from the heater unit 14 can be used for increasing the temperature of the susceptor 12 more efficiently. Thus, the temperature of the wafer W can be increased more quickly.

なお、上述した各実施の形態においてプラズマエッチング処理が施される基板は半導体デバイス用のウエハに限られず、LCD(Liquid Crystal Display)等を含むFPD(Flat Panel Display)等に用いる各種基板や、フォトマスク、CD基板、プリント基板等であってもよい。   Note that the substrate on which the plasma etching process is performed in each of the above-described embodiments is not limited to a wafer for a semiconductor device, but various substrates used for FPD (Flat Panel Display) including LCD (Liquid Crystal Display) and the like, photo It may be a mask, a CD substrate, a printed circuit board or the like.

W ウエハ
10,24,29 基板処理装置
12 サセプタ
14 ヒータユニット
15 冷媒流路
16 冷媒室
22 冷媒配管
25 加圧タンク
26 不活性ガス
27 不活性ガス層
30 断熱粒子タンク
31 断熱粒子
32 断熱粒子回収器
W Wafer 10, 24, 29 Substrate processing device 12 Susceptor 14 Heater unit 15 Refrigerant flow path 16 Refrigerant chamber 22 Refrigerant piping 25 Pressurized tank 26 Inert gas 27 Inert gas layer 30 Insulating particle tank 31 Insulating particle 32 Insulating particle collector

Claims (12)

加熱ユニットと冷媒流路とを内蔵し、所定の処理が施される基板を載置する基板載置台において、前記冷媒流路を冷媒が流れる基板載置台の温度制御方法であって、
前記加熱ユニットが発熱する際に前記冷媒の流れが停止する冷媒流停止ステップを有することを特徴とする温度制御方法。
A substrate mounting table that includes a heating unit and a coolant channel and mounts a substrate on which a predetermined process is performed, and is a temperature control method for a substrate platform in which a coolant flows through the coolant channel,
A temperature control method, comprising: a refrigerant flow stop step in which the flow of the refrigerant stops when the heating unit generates heat.
前記冷媒流停止ステップにおいて、前記冷媒流路へ前記冷媒よりも高温の媒体を流入させることを特徴とする請求項1記載の基板載置台の温度制御方法。   2. The temperature control method for a substrate mounting table according to claim 1, wherein in the refrigerant flow stop step, a medium having a temperature higher than that of the refrigerant is caused to flow into the refrigerant flow path. 前記基板載置台の頂部には前記基板が載置される載置面が形成され、前記基板載置台は前記冷媒流路に連通する冷媒室をさらに内蔵し、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、
前記冷媒流停止ステップにおいて、前記冷媒室内へ気体を流入させて該冷媒室内の上部に気体層を形成することを特徴とする請求項1又は2記載の基板載置台の温度制御方法。
A mounting surface on which the substrate is mounted is formed on the top of the substrate mounting table, and the substrate mounting table further includes a refrigerant chamber communicating with the refrigerant flow path, the mounting surface, the heating unit, and The refrigerant chambers are arranged from above in this order,
3. The temperature control method for a substrate mounting table according to claim 1, wherein in the refrigerant flow stop step, a gas layer is formed in an upper portion of the refrigerant chamber by flowing gas into the refrigerant chamber.
加圧された高温の気体によって前記気体層を形成することを特徴とする請求項3記載の基板載置台の温度制御方法。   4. The temperature control method for a substrate mounting table according to claim 3, wherein the gas layer is formed by a pressurized high-temperature gas. 前記加圧された高温の気体は前記冷媒の蒸気からなることを特徴とする請求項4記載の基板載置台の温度制御方法。   5. The temperature control method for a substrate mounting table according to claim 4, wherein the pressurized high-temperature gas is vapor of the refrigerant. 前記冷媒流停止ステップにおいて、前記冷媒室の冷媒を加熱沸騰させて生じる前記冷媒の蒸気によって前記気体層を形成することを特徴とする請求項3記載の基板載置台の温度制御方法。   4. The temperature control method for a substrate mounting table according to claim 3, wherein, in the refrigerant flow stopping step, the gas layer is formed by vapor of the refrigerant generated by heating and boiling the refrigerant in the refrigerant chamber. 前記基板載置台の頂部には前記基板が載置される載置面が形成され、前記基板載置台は前記冷媒流路と連通する冷媒室をさらに内蔵し、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、
前記冷媒流停止ステップにおいて、前記冷媒室内へ複数の断熱粒状物を流入させて該冷媒室の上部に断熱層を形成することを特徴とする請求項1又は2記載の基板載置台の温度制御方法。
A mounting surface on which the substrate is mounted is formed on the top of the substrate mounting table, and the substrate mounting table further includes a refrigerant chamber communicating with the refrigerant flow path, the mounting surface, the heating unit, and The refrigerant chambers are arranged from above in this order,
3. The temperature control method for a substrate mounting table according to claim 1, wherein, in the refrigerant flow stop step, a plurality of heat-insulating granular materials are caused to flow into the refrigerant chamber to form a heat insulating layer on an upper portion of the refrigerant chamber. .
前記複数の断熱粒状物を加熱した後、該加熱された高温の前記断熱粒状物によって前記断熱層を形成することを特徴とする請求項7記載の基板載置台の温度制御方法。   The temperature control method for a substrate mounting table according to claim 7, wherein the heat insulating layer is formed by the heated high temperature heat insulating granular material after the plurality of heat insulating granular materials are heated. 加熱ユニットと、冷媒流路と、該冷媒流路に連通する冷媒室とを内蔵し、頂部に所定の処理が施される基板が載置される載置面が形成される基板載置台であって、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、前記冷媒流路及び前記冷媒室を冷媒が流れる基板載置台の温度制御システムにおいて、
前記加熱ユニットが発熱し、且つ前記冷媒の流れが停止する際に、前記冷媒室内へ気体を流入させて該冷媒室内の上部に気体層を形成する気体層形成装置を備えることを特徴とする温度制御システム。
The substrate mounting table includes a heating unit, a coolant channel, and a coolant chamber that communicates with the coolant channel, and a mounting surface on which a substrate to be subjected to a predetermined process is mounted is formed at the top. In the temperature control system of the substrate mounting table, the placement surface, the heating unit, and the refrigerant chamber are arranged in this order from above, and the refrigerant flows through the refrigerant channel and the refrigerant chamber.
A temperature characterized by comprising a gas layer forming device for causing a gas to flow into the refrigerant chamber and forming a gas layer in the upper portion of the refrigerant chamber when the heating unit generates heat and the flow of the refrigerant stops. Control system.
前記気体層形成装置は前記気体を加熱する加熱装置を備え、該加熱された高温の前記気体によって前記気体層を形成することを特徴とする請求項9記載の基板載置台の温度制御システム。   10. The temperature control system for a substrate mounting table according to claim 9, wherein the gas layer forming device includes a heating device for heating the gas, and the gas layer is formed by the heated high temperature gas. 加熱ユニットと、冷媒流路と、該冷媒流路に連通する冷媒室とを内蔵し、頂部に所定の処理が施される基板が載置される載置面が形成される基板載置台であって、前記載置面、前記加熱ユニット及び前記冷媒室はこの順で上方から配置され、前記冷媒流路及び前記冷媒室を冷媒が流れる基板載置台の温度制御システムにおいて、
前記加熱ユニットが発熱し、且つ前記冷媒の流れが停止する際に、前記冷媒室内へ複数の断熱粒状物を流入させて該冷媒室の上部に断熱層を形成する断熱層形成装置を備えることを特徴とする温度制御システム。
The substrate mounting table includes a heating unit, a coolant channel, and a coolant chamber that communicates with the coolant channel, and a mounting surface on which a substrate to be subjected to a predetermined process is mounted is formed at the top. In the temperature control system of the substrate mounting table, the placement surface, the heating unit, and the refrigerant chamber are arranged in this order from above, and the refrigerant flows through the refrigerant channel and the refrigerant chamber.
When the heating unit generates heat and the flow of the refrigerant stops, a heat insulating layer forming device is provided that forms a heat insulating layer on the upper part of the refrigerant chamber by flowing a plurality of heat insulating granular materials into the refrigerant chamber. Characteristic temperature control system.
前記断熱層形成装置は前記断熱粒状物を加熱する加熱装置を備え、該加熱された高温の前記断熱粒状物によって前記断熱層を形成することを特徴とする請求項11記載の基板載置台の温度制御システム。   The temperature of the substrate mounting table according to claim 11, wherein the heat insulating layer forming device includes a heating device that heats the heat insulating granular material, and the heat insulating layer is formed by the heated high temperature heat insulating granular material. Control system.
JP2009229828A 2009-10-01 2009-10-01 Temperature control method and temperature control system for substrate mounting table Pending JP2011077452A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009229828A JP2011077452A (en) 2009-10-01 2009-10-01 Temperature control method and temperature control system for substrate mounting table
KR1020100094166A KR20110036503A (en) 2009-10-01 2010-09-29 Temperature control method and temperature control system for substrate mounting table
CN2010105014089A CN102031502A (en) 2009-10-01 2010-09-29 Temperature control method and temperature control system for substrate mounting table
TW099133181A TW201131642A (en) 2009-10-01 2010-09-30 Temperature control method and temperature control system for substrate mounting table
US12/894,598 US20110079367A1 (en) 2009-10-01 2010-09-30 Temperature control method and temperature control system for substrate mounting table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229828A JP2011077452A (en) 2009-10-01 2009-10-01 Temperature control method and temperature control system for substrate mounting table

Publications (1)

Publication Number Publication Date
JP2011077452A true JP2011077452A (en) 2011-04-14

Family

ID=43822288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229828A Pending JP2011077452A (en) 2009-10-01 2009-10-01 Temperature control method and temperature control system for substrate mounting table

Country Status (5)

Country Link
US (1) US20110079367A1 (en)
JP (1) JP2011077452A (en)
KR (1) KR20110036503A (en)
CN (1) CN102031502A (en)
TW (1) TW201131642A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105915A (en) * 2011-11-14 2013-05-30 Tokyo Electron Ltd Temperature control device, plasma processing device, processing device, and temperature control method
TWI587732B (en) * 2015-08-07 2017-06-11 日本發條股份有限公司 Heater unit
KR20180137408A (en) 2017-06-16 2018-12-27 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate loading mechanism, and substrate processing method
KR20190132236A (en) 2018-05-17 2019-11-27 도쿄엘렉트론가부시키가이샤 Method of processing substrate and substrate processing apparatus
CN111533461A (en) * 2020-05-25 2020-08-14 福建和达玻璃技术有限公司 High-precision temperature control device and method for metal-texture surface treatment of glass shell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789962B2 (en) * 2005-03-31 2010-09-07 Tokyo Electron Limited Device and method for controlling temperature of a mounting table, a program therefor, and a processing apparatus including same
US20130038196A1 (en) * 2010-04-30 2013-02-14 Agc Glass Europe Electrode for a dbd plasma process
JP5822578B2 (en) * 2011-07-20 2015-11-24 東京エレクトロン株式会社 Mounting table temperature control apparatus and substrate processing apparatus
CN102653166B (en) * 2012-05-24 2015-07-08 赵智民 Photogravure press
JP6224366B2 (en) * 2013-07-12 2017-11-01 東京エレクトロン株式会社 Support member and substrate processing apparatus
CN104952682A (en) * 2014-03-25 2015-09-30 中微半导体设备(上海)有限公司 Plasma treatment chamber and base station thereof
US9698041B2 (en) * 2014-06-09 2017-07-04 Applied Materials, Inc. Substrate temperature control apparatus including optical fiber heating, substrate temperature control systems, electronic device processing systems, and methods
US10431435B2 (en) * 2014-08-01 2019-10-01 Applied Materials, Inc. Wafer carrier with independent isolated heater zones

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945031B2 (en) * 2001-05-02 2012-06-06 アプライド マテリアルズ インコーポレイテッド Substrate heating apparatus and semiconductor manufacturing apparatus
US6992892B2 (en) * 2003-09-26 2006-01-31 Tokyo Electron Limited Method and apparatus for efficient temperature control using a contact volume
JP2006261541A (en) * 2005-03-18 2006-09-28 Tokyo Electron Ltd Substrate mounting board, substrate processor and method for processing substrate
US7789962B2 (en) * 2005-03-31 2010-09-07 Tokyo Electron Limited Device and method for controlling temperature of a mounting table, a program therefor, and a processing apparatus including same
JP4647401B2 (en) * 2005-06-06 2011-03-09 東京エレクトロン株式会社 Substrate holder, substrate temperature control apparatus, and substrate temperature control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105915A (en) * 2011-11-14 2013-05-30 Tokyo Electron Ltd Temperature control device, plasma processing device, processing device, and temperature control method
TWI584339B (en) * 2011-11-14 2017-05-21 Tokyo Electron Ltd A temperature control device, a plasma processing device, a processing device, and a temperature control method
US9791191B2 (en) 2011-11-14 2017-10-17 Tokyo Electron Limited Temperature control apparatus, processing apparatus, and temperature control method
US10591194B2 (en) 2011-11-14 2020-03-17 Tokyo Electron Limited Temperature control method
TWI587732B (en) * 2015-08-07 2017-06-11 日本發條股份有限公司 Heater unit
KR20180137408A (en) 2017-06-16 2018-12-27 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate loading mechanism, and substrate processing method
US10950417B2 (en) 2017-06-16 2021-03-16 Tokyo Electron Limited Substrate processing apparatus and substrate loading mechanism
KR20190132236A (en) 2018-05-17 2019-11-27 도쿄엘렉트론가부시키가이샤 Method of processing substrate and substrate processing apparatus
US10998204B2 (en) 2018-05-17 2021-05-04 Tokyo Electron Limited Method of processing substrate and substrate processing apparatus
CN111533461A (en) * 2020-05-25 2020-08-14 福建和达玻璃技术有限公司 High-precision temperature control device and method for metal-texture surface treatment of glass shell
CN111533461B (en) * 2020-05-25 2022-12-13 福建和达玻璃技术有限公司 High-precision temperature control device and method for surface treatment of metal texture of glass shell

Also Published As

Publication number Publication date
US20110079367A1 (en) 2011-04-07
KR20110036503A (en) 2011-04-07
TW201131642A (en) 2011-09-16
CN102031502A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP2011077452A (en) Temperature control method and temperature control system for substrate mounting table
KR101672859B1 (en) Temperature control system and temperature control method for substrate mounting table
CN109755128B (en) Annealing system and annealing method
US20190326138A1 (en) Ceramic wafer heater with integrated pressurized helium cooling
JP2010212425A (en) Shower head and plasma processing apparatus
JP2005079539A (en) Plasma treatment apparatus
CN106716608A (en) Wafer carrier with independent isolated heater zones
JPWO2010053173A1 (en) Semiconductor wafer temperature control apparatus and temperature control method
JP2011187758A (en) Temperature control system, temperature control method, plasma treatment device, and computer storage medium
JP2001044176A (en) Treatment apparatus and temperature control therefor
JP2005089864A (en) Plasma treatment device
US10537013B2 (en) Distributed electro-static chuck cooling
TWI574316B (en) Substrate processing apparatus and temperature adjustment method
US20190326139A1 (en) Ceramic wafer heater having cooling channels with minimum fluid drag
JP2004014642A (en) Cleaning method and cleaning equipment
JP2004014752A (en) Electrostatic chuck, work piece placement table, and plasma treating apparatus
JP2009283700A (en) Plasma processing device
JP2010225642A (en) Temperature control device, temperature control method, and substrate processing apparatus
JP2013232680A (en) Plasma processing apparatus
US20100032146A1 (en) Method and arrangement for heat treatment of substrates
JP2001313328A (en) Substrate thermal treatment apparatus
JP2005026422A (en) Device and method for heat treatment
JP2011165952A (en) Substrate laminating device, method of manufacturing laminated semiconductor device, and laminated semiconductor device
JP2011077145A (en) Substrate treatment apparatus
JP2010135447A (en) Cooling block and substrate treatment apparatus including the same