JP2011063724A - Sheet molding compound - Google Patents

Sheet molding compound Download PDF

Info

Publication number
JP2011063724A
JP2011063724A JP2009216093A JP2009216093A JP2011063724A JP 2011063724 A JP2011063724 A JP 2011063724A JP 2009216093 A JP2009216093 A JP 2009216093A JP 2009216093 A JP2009216093 A JP 2009216093A JP 2011063724 A JP2011063724 A JP 2011063724A
Authority
JP
Japan
Prior art keywords
acrylate
mass
meth
urethane
unsaturated polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009216093A
Other languages
Japanese (ja)
Other versions
JP5379622B2 (en
Inventor
Masahito Fujimoto
雅人 藤本
Yuichiro Nakagami
雄一朗 中上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009216093A priority Critical patent/JP5379622B2/en
Publication of JP2011063724A publication Critical patent/JP2011063724A/en
Application granted granted Critical
Publication of JP5379622B2 publication Critical patent/JP5379622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide sheet molding compound (SMC) which is excellent in molding fluidity and of which the molding has good appearance and excellent mechanical properties. <P>SOLUTION: SMC contains unsaturated polyester, urethane (meth)acrylate, a crosslinking agent, and a fibrous reinforcement. The urethane (meth)acrylate is represented by general formula in the figure, wherein R<SP>1</SP>is H or CH<SB>3</SB>; R<SP>2</SP>is a bivalent group derived from hydroxy group-containing (meth)acrylate; A is a structural unit derived from polyester polyol with a weight-average molecular weight of 500-4,000; R<SP>3</SP>is a bivalent group derived from a diisocyanate compound; and n which is a repeating unit is 1-6. The urethane (meth)acrylate is blended in the range of 10-100 pts.mass with 100 pts.mass of the unsaturated polyester. Also, the fibrous reinforcement is blended in the range of 40-70 mass% in the SMC. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、優れた機械的特性及び外観が要求される成形品に適したシートモールディングコンパウンドに関する。   The present invention relates to a sheet molding compound suitable for a molded product that requires excellent mechanical properties and appearance.

不飽和ポリエステル樹脂組成物と繊維強化材とからなるシートモールディングコンパウンド(以下、SMCと略記することがある)を成形して得られる部材は、機械的特性、成形性、表面光沢等に優れるため、様々な用途に使用されている(例えば、特許文献1を参照)。一般に、SMCには、優れた表面の成形品を得るという理由から、不飽和ポリエステルの合成における飽和酸と不飽和酸のモル数の合計に対する不飽和酸のモル数の割合、すなわち、不飽和度の高い不飽和ポリエステルを用いられることが多い。このような不飽和ポリエステルは、伸び率が比較的小さいために、靭性に優れたSMCを得ることが困難であった。   A member obtained by molding a sheet molding compound (hereinafter sometimes abbreviated as SMC) composed of an unsaturated polyester resin composition and a fiber reinforcing material is excellent in mechanical properties, moldability, surface gloss, etc. It is used for various purposes (see, for example, Patent Document 1). In general, for SMC, the ratio of the number of moles of unsaturated acid to the sum of the number of moles of saturated acid and unsaturated acid in the synthesis of unsaturated polyester, that is, the degree of unsaturation, is obtained because an excellent surface molded product is obtained. Highly unsaturated polyester is often used. Since such an unsaturated polyester has a relatively low elongation, it has been difficult to obtain an SMC having excellent toughness.

SMCの靭性を改善する方法として、例えば、アジピン酸やセバシン酸のような長い直鎖状の飽和二塩基酸を原料とした伸び率の大きい不飽和ポリエステルを用いる方法が挙げられる。しかし、このような不飽和ポリエステルは、不飽和度が低いために、SMC成形品の外観は、光沢度や平滑性が劣るという問題があった。   As a method for improving the toughness of SMC, for example, there is a method using an unsaturated polyester having a high elongation rate using a long linear saturated dibasic acid such as adipic acid or sebacic acid as a raw material. However, since such unsaturated polyester has a low degree of unsaturation, the appearance of the SMC molded product has a problem of poor glossiness and smoothness.

また、ゴム成分が配合された不飽和ポリエステル樹脂組成物を用いることで、成形品の耐衝撃性を向上させる技術が知られている(例えば、特許文献2を参照)。しかし、ゴム成分は一般的に、不飽和ポリエステルとの相溶性が低いために、成形時に分離してSMC成形品の表面を汚染する(スカミング現象)という問題があった。   Moreover, the technique which improves the impact resistance of a molded article by using the unsaturated polyester resin composition with which the rubber component was mix | blended is known (for example, refer patent document 2). However, since the rubber component generally has low compatibility with the unsaturated polyester, there is a problem that the rubber component is separated during molding and contaminates the surface of the SMC molded product (scumming phenomenon).

更に、不飽和ポリエステルの代わりにビニルエステル樹脂を用いた樹脂組成物或いは不飽和ポリエステルとビニルエステル樹脂とを併用した樹脂組成物が知られている。しかし、ビニルエステル樹脂を用いたSMC成形品は、耐食性や靭性に優れるものの、光沢度、平滑性や色調の均一性等が劣るという問題があった。また、このSMCでは、ウレタン増粘法が一般的であるために、成形流動性が悪いという問題もあった。そのため、ビニルエステル樹脂を用いたSMCは、外観が要求されず且つ成型流動性が乏しくても成型可能な一部の成形品に用途が限定されていた。   Furthermore, a resin composition using a vinyl ester resin instead of an unsaturated polyester or a resin composition using an unsaturated polyester and a vinyl ester resin in combination is known. However, although SMC molded products using vinyl ester resins are excellent in corrosion resistance and toughness, there are problems such as poor glossiness, smoothness and uniformity of color tone. Further, in this SMC, since the urethane thickening method is common, there is also a problem that the molding fluidity is poor. Therefore, the use of SMC using a vinyl ester resin is limited to some molded products that can be molded even if appearance is not required and molding fluidity is poor.

特開2006−131759号公報JP 2006-131759 A 特開2001−115000号公報JP 2001-115000 A

従って、本発明は、成形流動性に優れ、成形品の外観が良好であり且つ成形品の機械的特性が優れるシートモールディングコンパウンドを提供することを目的とする。   Accordingly, an object of the present invention is to provide a sheet molding compound having excellent molding fluidity, good appearance of a molded product, and excellent mechanical properties of the molded product.

本発明者らは、上記課題を解決すべく鋭意検討した結果、不飽和ポリエステル、架橋剤及び繊維補強材を含有するシートモールディングコンパウンドに、特定のウレタン(メタ)アクリレートを特定の質量割合で配合することで、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors blend a specific urethane (meth) acrylate with a specific mass ratio in a sheet molding compound containing an unsaturated polyester, a crosslinking agent and a fiber reinforcing material. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.

即ち、本発明は、不飽和ポリエステル、ウレタン(メタ)アクリレート、架橋剤及び繊維補強材を含有するシートモールディングコンパウンドであって、該ウレタン(メタ)アクリレートは、下記一般式   That is, the present invention is a sheet molding compound containing an unsaturated polyester, urethane (meth) acrylate, a crosslinking agent and a fiber reinforcing material, and the urethane (meth) acrylate has the following general formula:

Figure 2011063724
Figure 2011063724

(式中、R1は、H又はCH3であり、R2は、水酸基含有(メタ)アクリレート由来の2価の基であり、Aは、重量平均分子量が500〜4,000のポリエステルポリオール由来の構造単位であり、R3はジイソシアネート化合物由来の2価の基であり、繰り返し単位であるnは1〜6である)
で表されるものであり、該ウレタン(メタ)アクリレートが、該不飽和ポリエステル100質量部に対して、10質量部〜100質量部の範囲で配合され、且つ該繊維補強材が、該シートモールディングコンパウンド中に40質量%〜70質量%の範囲で配合されていることを特徴とするシートモールディングコンパウンドである。
(In the formula, R 1 is H or CH 3 , R 2 is a divalent group derived from a hydroxyl group-containing (meth) acrylate, and A is derived from a polyester polyol having a weight average molecular weight of 500 to 4,000. R 3 is a divalent group derived from a diisocyanate compound, and n, which is a repeating unit, is 1 to 6)
The urethane (meth) acrylate is blended in the range of 10 to 100 parts by mass with respect to 100 parts by mass of the unsaturated polyester, and the fiber reinforcement is the sheet molding. It is a sheet molding compound characterized in that it is blended in the range of 40 mass% to 70 mass% in the compound.

本発明によれば、成形流動性に優れ、成形品の外観が良好であり且つ成形品の機械的特性が優れるシートモールディングコンパウンドを提供することができる。   According to the present invention, it is possible to provide a sheet molding compound having excellent molding fluidity, good appearance of a molded product, and excellent mechanical properties of the molded product.

本発明のシートモールディングコンパウンドは、不飽和ポリエステル、ウレタン(メタ)アクリレート、架橋剤及び繊維補強材を必須成分として含有するものである。   The sheet molding compound of the present invention contains unsaturated polyester, urethane (meth) acrylate, a crosslinking agent and a fiber reinforcing material as essential components.

本発明で用いる不飽和ポリエステルは、多価アルコールと、飽和多塩基酸及び/又は不飽和多塩基酸とのエステル化反応により得られる。   The unsaturated polyester used in the present invention is obtained by an esterification reaction between a polyhydric alcohol and a saturated polybasic acid and / or an unsaturated polybasic acid.

不飽和ポリエステルの原料として用いられる多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、ビスフェノールA、グリセリン等が挙げられる。これらの多価アルコールは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the polyhydric alcohol used as the raw material for the unsaturated polyester include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, hydrogenated bisphenol A, Bisphenol A, glycerol, etc. are mentioned. These polyhydric alcohols may be used individually by 1 type, and may be used in combination of 2 or more type.

不飽和ポリエステルの原料として用いられる不飽和多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等が挙げられる。また、飽和多塩基酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等が挙げられる。   Examples of the unsaturated polybasic acid used as the raw material for the unsaturated polyester include maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like. Examples of the saturated polybasic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, hetic acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, endomethylenetetrahydro And phthalic anhydride.

不飽和ポリエステルの不飽和度は、優れた表面の成形品を得るという理由から、70モル%〜100モル%の範囲であることが好ましい。
また、不飽和ポリエステルの分子量は、特に限定されるものではないが、ポリスチレン換算の重量平均分子量で、好ましくは5,000〜40,000であり、より好ましくは10,000〜30,000である。重量平均分子量が大き過ぎると、粘度が上昇して不飽和ポリエステル樹脂組成物の粘度が高くなり、繊維補強材との含浸が困難となる場合があり、重量平均分子量が小さ過ぎると、物性が低下するとともに不飽和ポリエステル樹脂組成物を増粘させることが困難になる場合がある。
The degree of unsaturation of the unsaturated polyester is preferably in the range of 70 mol% to 100 mol% for the purpose of obtaining a molded article having an excellent surface.
The molecular weight of the unsaturated polyester is not particularly limited, but is preferably a weight average molecular weight in terms of polystyrene, preferably 5,000 to 40,000, more preferably 10,000 to 30,000. . If the weight average molecular weight is too large, the viscosity increases and the viscosity of the unsaturated polyester resin composition increases, and impregnation with the fiber reinforcing material may be difficult. If the weight average molecular weight is too small, the physical properties decrease. In addition, it may be difficult to thicken the unsaturated polyester resin composition.

不飽和ポリエステルの製造方法は、特に限定されることはなく、上記成分を用いて、公知の方法により製造することができる。例えば、窒素などの不活性ガス気流中で、140℃〜230℃の温度で所要の段階までエステル化させる方法で行なうことができる。エステル化反応では、必要に応じてエステル化触媒を使用することができる。その触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、酢酸コバルト等の公知の触媒が挙げられる。   The manufacturing method of unsaturated polyester is not specifically limited, It can manufacture by a well-known method using the said component. For example, it can be carried out by a method of esterification to a required stage at a temperature of 140 ° C. to 230 ° C. in an inert gas stream such as nitrogen. In the esterification reaction, an esterification catalyst can be used as necessary. Examples of the catalyst include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate.

本発明で用いられるウレタン(メタ)アクリレートは、下記一般式   The urethane (meth) acrylate used in the present invention has the following general formula:

Figure 2011063724
Figure 2011063724

(式中、R1は、H又はCH3であり、R2は、水酸基含有(メタ)アクリレート由来の2価の基であり、Aは、重量平均分子量が500〜4,000のポリエステルポリオール由来の構造単位であり、R3はジイソシアネート化合物由来の2価の基であり、繰り返し単位であるnは1〜6である)
で表されるものであり、(メタ)アクリロイル基をウレタン結合を介してベースとなるポリエステルポリオールに結合させた構造を有している。上記一般式におけるnの値は1〜6の範囲であることが重要である。nの値が6を超えた場合、ウレタン(メタ)アクリレートの粘度が高くなり、作業性が低下する。
(In the formula, R 1 is H or CH 3 , R 2 is a divalent group derived from a hydroxyl group-containing (meth) acrylate, and A is derived from a polyester polyol having a weight average molecular weight of 500 to 4,000. R 3 is a divalent group derived from a diisocyanate compound, and n, which is a repeating unit, is 1 to 6)
It has a structure in which a (meth) acryloyl group is bonded to a base polyester polyol via a urethane bond. It is important that the value of n in the above general formula is in the range of 1-6. When the value of n exceeds 6, the viscosity of urethane (meth) acrylate increases, and workability decreases.

ウレタン(メタ)アクリレートの原料として用いられるジイソシアネート化合物としては、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート等が挙げられる。これらのジイソシアネート化合物は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the diisocyanate compound used as a raw material for urethane (meth) acrylate include isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and hydrogenated xylylene diisocyanate. These diisocyanate compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

ウレタン(メタ)アクリレートの原料として用いられる水酸基含有(メタ)アクリレートとしては、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシブチルアクリレート、2−ヒドロキシブチルメタクリレート、フェノキシヒドロキシプロピルアクリレート、フェノキシヒドロキシプロピルメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、ジプロピレングリコールモノアクリレート、ジプロピレングリコールモノメタクリレート等が挙げられる。   The hydroxyl group-containing (meth) acrylate used as a raw material for urethane (meth) acrylate is hydroxyethyl acrylate, hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate. Phenoxyhydroxypropyl acrylate, phenoxyhydroxypropyl methacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, dipropylene glycol monoacrylate, dipropylene glycol monomethacrylate and the like.

ウレタン(メタ)アクリレートの原料として用いられるポリエステルポリオールは、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ヘキサンジオール等の脂肪族グリコールと、シュウ酸、フマル酸、コハク酸、アジピン酸、セバシン酸等の脂肪族二塩基酸との縮合反応により得られる。脂肪族以外のグリコール若しくは脂肪族以外の二塩基酸を用いた場合は、ウレタン(メタ)アクリレートの伸び率が小さくなり、SMC成形品の靭性を向上させる効果が得られない場合がある。ポリエステルポリオールの重量平均分子量は、500〜4,000であることが重要である。ポリエステルポリオールの重量平均分子量が500未満であると、ウレタン(メタ)アクリレートの伸び率が小さくなり、結果としてSMC成形品の靭性を向上させる効果が得られない。一方、ポリエステルポリオールの重量平均分子量が4,000を超えると、ウレタン(メタ)アクリレートの伸び率は大きくなるものの、強度が低下し、SMC成形品の靭性を向上させる効果が得られない。   Polyester polyols used as raw materials for urethane (meth) acrylates include aliphatic glycols such as ethylene glycol, propylene glycol, dipropylene glycol, and hexanediol, and fats such as oxalic acid, fumaric acid, succinic acid, adipic acid, and sebacic acid. It is obtained by a condensation reaction with a group 2 dibasic acid. When a non-aliphatic glycol or a non-aliphatic dibasic acid is used, the elongation of urethane (meth) acrylate decreases, and the effect of improving the toughness of the SMC molded product may not be obtained. It is important that the weight average molecular weight of the polyester polyol is 500 to 4,000. If the weight average molecular weight of the polyester polyol is less than 500, the elongation percentage of the urethane (meth) acrylate decreases, and as a result, the effect of improving the toughness of the SMC molded product cannot be obtained. On the other hand, when the weight average molecular weight of the polyester polyol exceeds 4,000, the elongation of the urethane (meth) acrylate increases, but the strength decreases and the effect of improving the toughness of the SMC molded product cannot be obtained.

ウレタン(メタ)アクリレートの製造方法は、特に限定されることはなく、上記成分を用いて、公知の方法により製造することができる。例えば、ジイソシアネート化合物と重量平均分子量が500〜4,000のポリエステルポリオールとを混合して反応させ、末端イソシアネート含有ウレタンプレポリマーを生成させ、次いで、かかるウレタンプレポリマーに、水酸基含有(メタ)アクリレートを反応させることによってウレタン(メタ)アクリレートを得ることができる。   The production method of urethane (meth) acrylate is not particularly limited, and can be produced by a known method using the above components. For example, a diisocyanate compound and a polyester polyol having a weight average molecular weight of 500 to 4,000 are mixed and reacted to form a terminal isocyanate-containing urethane prepolymer, and then a hydroxyl group-containing (meth) acrylate is added to the urethane prepolymer. By reacting, urethane (meth) acrylate can be obtained.

なお、上記反応においては、ジブチル錫ジラウレート、3級アミン類、フォスホン類等の触媒を添加することも可能である。また、反応温度や反応時間は適宜設定すればよいが、反応温度は、40℃〜120℃であることが好ましく、反応時間は、1時間〜24時間であることが好ましい。   In the above reaction, it is also possible to add a catalyst such as dibutyltin dilaurate, tertiary amines, and phosphones. Moreover, what is necessary is just to set reaction temperature and reaction time suitably, but it is preferable that reaction temperature is 40 to 120 degreeC, and it is preferable that reaction time is 1 to 24 hours.

本発明のシートモールディングコンパウンドにおいて、上記したウレタン(メタ)アクリレートの配合量は、不飽和ポリエステル100質量部に対して、10質量部〜100質量部であることが重要であり、好ましくは20質量部〜70質量部である。ウレタン(メタ)アクリレートの配合量が10質量部未満であると、SMC成形品の靭性を向上させる効果が得られない。一方、ウレタン(メタ)アクリレートの配合量が100質量部を超えると、SMC成形品の平滑性及び光沢度が低下する。   In the sheet molding compound of the present invention, the amount of the urethane (meth) acrylate described above is important to be 10 parts by mass to 100 parts by mass, preferably 20 parts by mass with respect to 100 parts by mass of the unsaturated polyester. -70 mass parts. The effect which improves the toughness of a SMC molded product is not acquired as the compounding quantity of a urethane (meth) acrylate is less than 10 mass parts. On the other hand, when the compounding quantity of urethane (meth) acrylate exceeds 100 mass parts, the smoothness and glossiness of a SMC molded product will fall.

本発明では、上記した不飽和ポリエステル及びウレタン(メタ)アクレートを架橋剤に溶解させて用いる。このような架橋剤としては、不飽和ポリエステル及びウレタン(メタ)アクリレートと重合可能な重合性二重結合を有しているものであればよく、例えば、スチレンモノマー、ジアリルフタレートモノマー、ジアリルフタレートプレポリマー、メタクリル酸メチル、トリアリルイソシアヌレート等が挙げられる。架橋剤は、不飽和ポリエステル、ウレタン(メタ)アクリレート及び架橋剤の合計100質量部に対し、25質量部〜70質量部となる量で使用することが好ましく、35質量部〜65質量部となる量で使用することが更に好ましい。架橋剤の使用量が少な過ぎると、不飽和ポリエステル、ウレタン(メタ)アクレート及び架橋剤を含む不飽和ポリエステル樹脂組成物の粘度が高くなり、繊維補強材との含浸が困難となる場合がある。一方、架橋剤の使用量が多過ぎると、成形収縮率が大きくなりSMC成形品の平滑性が低下する場合がある。   In the present invention, the above unsaturated polyester and urethane (meth) acrylate are dissolved in a crosslinking agent and used. Such a crosslinking agent may be any one having a polymerizable double bond polymerizable with unsaturated polyester and urethane (meth) acrylate, such as styrene monomer, diallyl phthalate monomer, diallyl phthalate prepolymer. , Methyl methacrylate, triallyl isocyanurate and the like. The crosslinking agent is preferably used in an amount of 25 parts by mass to 70 parts by mass with respect to a total of 100 parts by mass of the unsaturated polyester, urethane (meth) acrylate, and crosslinking agent, and is 35 parts by mass to 65 parts by mass. More preferably, it is used in an amount. If the amount of the crosslinking agent used is too small, the viscosity of the unsaturated polyester resin composition containing unsaturated polyester, urethane (meth) acrylate and crosslinking agent increases, and impregnation with the fiber reinforcing material may be difficult. On the other hand, when the amount of the crosslinking agent used is too large, the molding shrinkage ratio increases and the smoothness of the SMC molded product may be lowered.

本発明で使用される繊維補強材としては、ガラス繊維、炭素繊維、有機繊維(例えば、アラミド繊維)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの繊維補強材は、通常のSMCと同様に、0.5インチ〜2インチ(12.7〜50.8mm)に切断されて、不飽和ポリエステル、ウレタン(メタ)アクレート及び架橋剤を含む不飽和ポリエステル樹脂組成物に含浸される。   Examples of the fiber reinforcing material used in the present invention include glass fiber, carbon fiber, organic fiber (for example, aramid fiber) and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. These fiber reinforcements are cut to 0.5 to 2 inches (12.7 to 50.8 mm) in the same manner as ordinary SMC, and contain non-saturated polyester, urethane (meth) acrylate, and a crosslinking agent. The saturated polyester resin composition is impregnated.

繊維補強材の配合量は、要求される強度により異なるが、SMCの総量に対して40質量〜70質量%であることが重要である。繊維補強材の配合量が40質量%未満であると、SMC成形品の強度が低下する。一方、繊維補強材の配合量が70質量%を超えると、不飽和ポリエステル樹脂組成物が繊維補強材に充分に含浸しなくなると共に、成形時の流動性が低下する。   The blending amount of the fiber reinforcing material varies depending on the required strength, but it is important that the amount is 40 mass% to 70 mass% with respect to the total amount of SMC. The intensity | strength of a SMC molded product falls that the compounding quantity of a fiber reinforcement is less than 40 mass%. On the other hand, when the blending amount of the fiber reinforcing material exceeds 70% by mass, the unsaturated polyester resin composition is not sufficiently impregnated into the fiber reinforcing material, and the fluidity during molding decreases.

また、本発明のシートモールディングコンパウンドには、本発明の効果を損なわない範囲で、無機充填材、硬化剤、低収縮剤、内部離型剤、重合禁止剤、着色剤、増粘剤等の公知の添加剤を添加してもよい。   In addition, the sheet molding compound of the present invention is publicly known such as an inorganic filler, a curing agent, a low shrinkage agent, an internal mold release agent, a polymerization inhibitor, a colorant, a thickener, etc., as long as the effects of the present invention are not impaired. These additives may be added.

無機充填材としては、例えば、シリカ、アルミナ、マイカ、水酸化アルミニウム、炭酸カルシウム、石こう、硫酸バリウム、クレー、タルク等の無機粉末が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。無機充填材の配合量は、SMCの総量に対して20質量%以下とすることが望ましい。無機充填材の配合量が20質量%を超えると、不飽和ポリエステル樹脂組成物の粘度が上昇するために、繊維補強材の含浸が困難となる場合がある。   Examples of the inorganic filler include inorganic powders such as silica, alumina, mica, aluminum hydroxide, calcium carbonate, gypsum, barium sulfate, clay, and talc. These may be used individually by 1 type and may be used in combination of 2 or more type. The blending amount of the inorganic filler is desirably 20% by mass or less with respect to the total amount of SMC. When the blending amount of the inorganic filler exceeds 20% by mass, the viscosity of the unsaturated polyester resin composition is increased, so that it may be difficult to impregnate the fiber reinforcing material.

硬化剤としては、例えば、t−ブチルパーオキシオクトエート、ベンゾイルパーオキサイド、1.1.ジ−t−ブチルパーオキシ3.3.5.トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the curing agent include t-butyl peroxyoctoate, benzoyl peroxide, 1.1. Di-t-butylperoxy 3.3.5. Examples thereof include trimethylcyclohexane, t-butyl peroxyisopropyl carbonate, t-butyl peroxybenzoate, dicumyl peroxide, and di-t-butyl peroxide. These may be used individually by 1 type and may be used in combination of 2 or more type.

低収縮剤としては、SMCにおいて一般に使用されているものを使用することができ、例えば、ポリスチレン、ポリエチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、ポリカプロラクトン等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。低収縮剤は、好ましくは、不飽和ポリエステル、ウレタン(メタ)アクリレート及び架橋剤の合計100質量部に対し、10質量部〜60質量部の範囲で添加することができる。   As the low shrinkage agent, those generally used in SMC can be used, and examples thereof include polystyrene, polyethylene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, polycaprolactone and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. The low shrinkage agent can be preferably added in the range of 10 parts by mass to 60 parts by mass with respect to 100 parts by mass in total of the unsaturated polyester, urethane (meth) acrylate and crosslinking agent.

内部離型剤としては、例えば、ステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、カルナバワックス等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。内部離型剤は、好ましくは、不飽和ポリエステル、ウレタン(メタ)アクリレート及び架橋剤の合計100質量部に対し、2質量部〜10質量部の範囲で添加することができる。   Examples of the internal mold release agent include stearic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, carnauba wax and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. The internal mold release agent can be preferably added in the range of 2 to 10 parts by mass with respect to 100 parts by mass in total of the unsaturated polyester, urethane (meth) acrylate and crosslinking agent.

重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、P−ベンゾキノン、ナフトキノン、t−ブチルハイドロキノン、カテコール、p−t−ブチルカテコール、2,6−ジ−t−ブチル−4−メチルフェノール等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。重合禁止剤は、好ましくは、不飽和ポリエステル、ウレタン(メタ)アクリレート及び架橋剤の合計100質量部に対し、0.0001質量部〜1.0質量部の範囲で添加することができる。   Examples of the polymerization inhibitor include hydroquinone, trimethylhydroquinone, P-benzoquinone, naphthoquinone, t-butylhydroquinone, catechol, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. It is done. These may be used individually by 1 type and may be used in combination of 2 or more type. The polymerization inhibitor can be preferably added in the range of 0.0001 parts by mass to 1.0 part by mass with respect to 100 parts by mass in total of the unsaturated polyester, urethane (meth) acrylate and crosslinking agent.

着色剤は、SMC成形品を着色する必要のある場合に用いるものであり、通常使用されている各種の無機顔料や有機顔料を使用することができる。着色剤は、SMC成形品の着色度合いによって適宜その使用量を選択する必要があるが、好ましくは、不飽和ポリエステル、ウレタン(メタ)アクリレート及び架橋剤の合計100質量部に対し、20質量部以下の範囲で添加することができる。   The colorant is used when it is necessary to color the SMC molded product, and various inorganic pigments and organic pigments that are usually used can be used. The amount of the colorant needs to be appropriately selected depending on the degree of coloration of the SMC molded product, but is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the unsaturated polyester, urethane (meth) acrylate and crosslinking agent. It can be added in the range of.

増粘剤としては、例えば、酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、酸化カルシウム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。SMCにおいては、酸化マグネシウムが一般的に用いられる。増粘剤の配合量は、不飽和ポリエステル樹脂組成物の作業性によって決定されるが、不飽和ポリエステル及び架橋剤の総量に対して0.5質量%〜5質量%の範囲で添加することができる。増粘剤の配合量が少な過ぎると、不飽和ポリエステル樹脂組成物の粘度が上昇しない場合がある。一方、増粘剤の配合量が多過ぎると、不飽和ポリエステル樹脂組成物の粘度が上昇し過ぎてSMCの流動性を低下させる恐れがある。   Examples of the thickener include magnesium oxide, magnesium hydroxide, calcium hydroxide, calcium oxide and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. In SMC, magnesium oxide is generally used. The blending amount of the thickener is determined by the workability of the unsaturated polyester resin composition, but it may be added in the range of 0.5% by mass to 5% by mass with respect to the total amount of the unsaturated polyester and the crosslinking agent. it can. When there are too few compounding quantities of a thickener, the viscosity of an unsaturated polyester resin composition may not rise. On the other hand, when there is too much compounding quantity of a thickener, there exists a possibility that the viscosity of an unsaturated polyester resin composition may rise too much and may reduce the fluidity | liquidity of SMC.

本発明のシートモールディングコンパウンドは、通常のSMC製造装置を用いて、通常の方法により製造することができる。例えば、繊維補強材以外の上述したSMC原料を、上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、所定の長さにカットされた繊維補強材を、前記上下に設置されたキャリアフィルムの不飽和ポリエステル樹脂組成物に挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて繊維補強材を不飽和ポリエステル樹脂組成物に含浸させた後、ロール状に巻き取るか又はつづら折りに畳んでSMCが得られる。必要に応じて、この後に熟成等を行う。増粘剤を配合した場合は、室温〜60℃の温度に加温して熟成することが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等を用いることができる。   The sheet molding compound of the present invention can be manufactured by a normal method using a normal SMC manufacturing apparatus. For example, the above-mentioned SMC raw material other than the fiber reinforcing material is applied to the carrier film installed above and below so as to have a uniform thickness, and the fiber reinforcing material cut into a predetermined length is installed above and below the above. The carrier film is sandwiched between unsaturated polyester resin compositions, and then the whole is passed between impregnated rolls. After applying pressure, the unsaturated polyester resin composition is impregnated with the fiber reinforcement, and then wound into a roll. Or it can be folded into spells to obtain SMC. This is followed by aging as necessary. When a thickener is blended, it is preferable to ripen by heating to a temperature of room temperature to 60 ° C. As the carrier film, a polyethylene film, a polypropylene film, or the like can be used.

このようにして得られた本発明のSMCは、各種の成形手段に供することができる。例えば、圧縮成形、トランスファー成形、射出成形により成形され、広範囲な成形品を得ることができる。本発明のSMCは、従来のSMCと比較して、成形品の靭性を向上させることが可能であり、且つ成形流動性に優れているために、成形品の形状を限定されることが少ない。また、成形品外観も従来のSMCと遜色ないものが得られる。本発明のSMCを用いて得られる成形品は、自動車の構造部材、安全具、スポーツ用具等の優れた機械的特性及び外観が要求される用途において極めて有用である。   The SMC of the present invention thus obtained can be used for various molding means. For example, a wide range of molded products can be obtained by compression molding, transfer molding, or injection molding. Since the SMC of the present invention can improve the toughness of a molded product and is excellent in molding fluidity as compared with a conventional SMC, the shape of the molded product is rarely limited. Further, the appearance of the molded product is comparable to that of conventional SMC. The molded product obtained using the SMC of the present invention is extremely useful in applications requiring excellent mechanical properties and appearance, such as automobile structural members, safety equipment, and sports equipment.

以下、実施例及び比較例により本発明を具体的に説明する。
SMC製造装置を用い、ラインスピード8m/分、単位面積当たりのSMC質量が約3kg/m2となるような条件で、下記表1及び2に示す配合割合の実施例1〜4及び1〜5のSMCを得た。なお、実施例1〜4及び比較例1〜4では、製造上問題が無かったが、比較例5では、SMCの一部に含浸不良が見られた。
なお、ここで使用した不飽和ポリエステル樹脂A及びウレタンアクリレートA〜Cは、以下の方法により調製されたものである。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Examples 1 to 4 and 1 to 5 having the blending ratios shown in Tables 1 and 2 below using a SMC manufacturing apparatus under the conditions that the line speed is 8 m / min and the SMC mass per unit area is about 3 kg / m 2. SMC was obtained. In Examples 1 to 4 and Comparative Examples 1 to 4, there was no problem in manufacturing, but in Comparative Example 5, impregnation failure was observed in a part of SMC.
In addition, the unsaturated polyester resin A and urethane acrylate AC used here were prepared by the following method.

<不飽和ポリエステルAの調製>
温度計、攪拌機、不活性ガス導入口及び還流冷却器を備えた四口フラスコに、マレイン酸100モル、ジプロピレングリコール30モル及びプロピレングリコール70モルを仕込み、窒素気流下で加熱撹拌しながら210℃まで昇温して、常法手順によりエステル化反応を行なった。この不飽和ポリエステルの不飽和度は100モル%であり、重量平均分子量は20,000であった。
次に、この不飽和ポリエステルにハイドロキノン0.015質量部を添加し、これをスチレンに溶解させて、スチレン含量40質量%の不飽和ポリエステルAを調製した。
<Preparation of unsaturated polyester A>
A four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 100 moles of maleic acid, 30 moles of dipropylene glycol and 70 moles of propylene glycol and heated to 210 ° C. while stirring under a nitrogen stream. The esterification reaction was carried out by a conventional procedure. The degree of unsaturation of this unsaturated polyester was 100 mol%, and the weight average molecular weight was 20,000.
Next, 0.015 part by mass of hydroquinone was added to this unsaturated polyester, and this was dissolved in styrene to prepare unsaturated polyester A having a styrene content of 40% by mass.

<ウレタンアクリレートAの調製>
攪拌器、還流冷却管、気体導入管及び温度計を備えた1Lの4つ口フラスコに、アジピン酸とエチレングリコールとの縮合反応から得られた重量平均分子量1,500のポリエステルポリオール466g、スチレンモノマー566g、ハイドロキノン0.17gを仕込み、混合物を80℃まで昇温した。次いでイソホロンジイソシアネート80gを1.5時間かけて滴下しながら攪拌し、末端イソシアネート含有プレポリマーを生成させた。次いで2−ヒドロキシエチルアクリレート20gを0.5時間かけて滴下した後、赤外吸収スペクトルでイソシアネート基の吸収ピークの消失するまで反応させて、スチレン含量50質量%のウレタンアクリレートAを得た。このウレタンアクリレートのnは3.4であった。
<Preparation of urethane acrylate A>
Into a 1 L four-necked flask equipped with a stirrer, reflux condenser, gas inlet tube and thermometer, 466 g of a polyester polyol having a weight average molecular weight of 1,500 obtained from the condensation reaction of adipic acid and ethylene glycol, styrene monomer 566 g and hydroquinone 0.17 g were charged, and the mixture was heated to 80 ° C. Subsequently, 80 g of isophorone diisocyanate was stirred while being dropped over 1.5 hours to produce a terminal isocyanate-containing prepolymer. Subsequently, 20 g of 2-hydroxyethyl acrylate was added dropwise over 0.5 hour, and then reacted until the absorption peak of the isocyanate group disappeared in the infrared absorption spectrum to obtain urethane acrylate A having a styrene content of 50% by mass. The n of this urethane acrylate was 3.4.

<ウレタンアクリレートBの調製>
攪拌器、還流冷却管、気体導入管及び温度計を備えた1Lの4つ口フラスコに、アジピン酸とエチレングリコールとの縮合反応から得られた重量平均分子量400のポリエステルポリオール342g、スチレンモノマー589g、ハイドロキノン0.17gを仕込み、混合物を80℃まで昇温した。次いでイソホロンジイソシアネート212gを1.5時間かけて滴下しながら攪拌し、末端イソシアネート含有プレポリマーを生成させた。次いで2−ヒドロキシエチルアクリレート35gを0.5時間かけて滴下した後、赤外吸収スペクトルでイソシアネート基の吸収ピークの消失するまで反応させて、スチレン含量50質量%のウレタンアクリレートBを得た。このウレタンアクリレートのnは5.7であった。
<Preparation of urethane acrylate B>
In a 1 L four-necked flask equipped with a stirrer, a reflux condenser, a gas introduction tube and a thermometer, 342 g of a polyester polyol having a weight average molecular weight of 400 obtained from the condensation reaction of adipic acid and ethylene glycol, 589 g of a styrene monomer, 0.17 g of hydroquinone was charged, and the mixture was heated to 80 ° C. Subsequently, 212 g of isophorone diisocyanate was stirred while being dropped over 1.5 hours to produce a terminal isocyanate-containing prepolymer. Subsequently, 35 g of 2-hydroxyethyl acrylate was added dropwise over 0.5 hours, and then reacted until the absorption peak of the isocyanate group disappeared in the infrared absorption spectrum to obtain urethane acrylate B having a styrene content of 50% by mass. The n of this urethane acrylate was 5.7.

<ウレタンアクリレートCの調製>
攪拌器、還流冷却管、気体導入管及び温度計を備えた1Lの4つ口フラスコに、アジピン酸とエチレングリコールとの縮合反応から得られた重量平均分子量5,000のポリエステルポリオール551g、スチレンモノマー597g、ハイドロキノン0.17gを仕込み、混合物を80℃まで昇温した。次いでイソホロンジイソシアネート34gを1.5時間かけて滴下しながら攪拌し、末端イソシアネート含有プレポリマーを生成させた。次いで2−ヒドロキシエチルアクリレート12gを0.5時間かけて滴下した後、赤外吸収スペクトルでイソシアネート基の吸収ピークの消失するまで反応させて、スチレン含量50質量%のウレタンアクリレートCを得た。このウレタンアクリレートのnは2.2であった。
<Preparation of urethane acrylate C>
Into a 1 L four-necked flask equipped with a stirrer, reflux condenser, gas inlet tube and thermometer, 551 g of a polyester polyol having a weight average molecular weight of 5,000 obtained from the condensation reaction of adipic acid and ethylene glycol, styrene monomer 597 g and hydroquinone 0.17 g were charged, and the mixture was heated to 80 ° C. Next, 34 g of isophorone diisocyanate was stirred while being dropped over 1.5 hours to produce a terminal isocyanate-containing prepolymer. Next, 12 g of 2-hydroxyethyl acrylate was added dropwise over 0.5 hour, and then reacted until the absorption peak of the isocyanate group disappeared in the infrared absorption spectrum to obtain urethane acrylate C having a styrene content of 50% by mass. The n of this urethane acrylate was 2.2.

実施例1〜4及び比較例1〜5のSMCについて、成形流動性、成形品の外観及び成形品の機械的強度を下記の方法に従って評価した。   For the SMCs of Examples 1 to 4 and Comparative Examples 1 to 5, the molding fluidity, the appearance of the molded product, and the mechanical strength of the molded product were evaluated according to the following methods.

(1)成形流動性の評価
下記に示すような成形時のSMCの流動距離を比較的長くした成形条件により得られた成形品の端部への充填性により評価した。充填性の評価基準は、良好なものを○とし、端部に僅かに未充填あるものを△とし、部分的に明らかな未充填あるものを×とした。
成形品形状:320×220×2mmの寸法の平板
チャージ面積:150×100mm(チャージ率約20%)
金型温度:145℃(上型)/130℃(下型)
成形圧力:7MPa
成形時間:120秒
(1) Evaluation of molding fluidity It evaluated by the filling property to the edge part of the molded article obtained by the molding conditions which made the flow distance of SMC at the time of shaping | molding comparatively long as shown below. As the evaluation criteria for the filling property, a good one was marked with ◯, a slightly unfilled end portion was marked with Δ, and a partially clear unfilled piece was marked with ×.
Molded product shape: flat plate with dimensions of 320 × 220 × 2 mm Charge area: 150 × 100 mm (charge rate about 20%)
Mold temperature: 145 ° C (upper die) / 130 ° C (lower die)
Molding pressure: 7MPa
Molding time: 120 seconds

(2)成形品の外観評価
成形流動性の評価で得られた成形品の平滑性及び光沢を目視により評価した。評価基準は、良好なものを○とし、やや劣るものを△とし、劣るものを×とした。
(2) Appearance evaluation of molded product The smoothness and gloss of the molded product obtained by the evaluation of molding fluidity were visually evaluated. The evaluation criteria were “good” as “◯”, slightly inferior as “Δ”, and inferior as “poor”.

(3)機械的強度の評価
JIS K7171に準拠した方法で、曲げ強さ及び曲げ弾性率を測定した。また、得られた応力−ひずみ曲線から、破断点までのエネルギーを測定し、靭性を評価する指標とした。
(3) Evaluation of mechanical strength Bending strength and a bending elastic modulus were measured by the method based on JISK7171. In addition, energy from the obtained stress-strain curve to the breaking point was measured and used as an index for evaluating toughness.

Figure 2011063724
Figure 2011063724

Figure 2011063724
Figure 2011063724

表1及び2に示すように、実施例1〜4のSMCでは、SMCの充填性、成形品の外観はいずれも良好であった。また、靭性の指標となる破断点までのエネルギーは、ウレタンアクリレートを用いなかった比較例1と比較して約20%〜40%も向上しており、靭性の向上が確認できた。   As shown in Tables 1 and 2, in the SMCs of Examples 1 to 4, the SMC filling property and the appearance of the molded product were both good. In addition, the energy up to the breaking point, which is an index of toughness, was improved by about 20% to 40% as compared with Comparative Example 1 in which urethane acrylate was not used, and it was confirmed that the toughness was improved.

表2に示すように、比較例2のSMCは、ウレタンアクリレートを不飽和ポリエステル100質量部に対して101.8質量部配合したものであるが、成形品の光沢が低下し、満足できる成形品を得られなかった。比較例3及び4のSMCは、ウレタンアクリレートを構成するポリエステルポリオールの重量平均分子量が500〜4,000の範囲外のものを使用したものであるが、いずれも成形品の靭性の指標となる破断点までのエネルギーに大きな向上は見られなかった。比較例5のSMCは、ガラス繊維の含有量が70質量%を超えた場合であるが、成形時の流動性が低下したため、成形品に材料が完全に充填せず、また、ガラス繊維が成形品表面に浮き出し、光沢や平滑性が低下し、満足できる成形品が得られなかった。   As shown in Table 2, the SMC of Comparative Example 2 is a mixture of urethane acrylate and 101.8 parts by mass of 100 parts by mass of unsaturated polyester. Could not get. The SMCs of Comparative Examples 3 and 4 are those in which the weight average molecular weight of the polyester polyol constituting the urethane acrylate is outside the range of 500 to 4,000, both of which are fractures that are indicators of toughness of the molded product. There was no significant improvement in energy to the point. The SMC of Comparative Example 5 is a case where the glass fiber content exceeds 70% by mass, but the fluidity at the time of molding was lowered, so the material was not completely filled in the molded product, and the glass fiber was molded. The product surfaced, and the gloss and smoothness decreased, and a satisfactory molded product could not be obtained.

Claims (3)

不飽和ポリエステル、ウレタン(メタ)アクリレート、架橋剤及び繊維補強材を含有するシートモールディングコンパウンドであって、
該ウレタン(メタ)アクリレートは、下記一般式
Figure 2011063724
(式中、R1は、H又はCH3であり、R2は、水酸基含有(メタ)アクリレート由来の2価の基であり、Aは、重量平均分子量が500〜4,000のポリエステルポリオール由来の構造単位であり、R3はジイソシアネート化合物由来の2価の基であり、繰り返し単位であるnは1〜6である)
で表されるものであり、
該ウレタン(メタ)アクリレートが、該不飽和ポリエステル100質量部に対して、10質量部〜100質量部の範囲で配合され、且つ
該繊維補強材が、シートモールディングコンパウンド中に40質量%〜70質量%の範囲で配合されていることを特徴とするシートモールディングコンパウンド。
A sheet molding compound containing an unsaturated polyester, urethane (meth) acrylate, a crosslinking agent and a fiber reinforcement,
The urethane (meth) acrylate has the following general formula:
Figure 2011063724
(In the formula, R 1 is H or CH 3 , R 2 is a divalent group derived from a hydroxyl group-containing (meth) acrylate, and A is derived from a polyester polyol having a weight average molecular weight of 500 to 4,000. R 3 is a divalent group derived from a diisocyanate compound, and n, which is a repeating unit, is 1 to 6)
It is represented by
The urethane (meth) acrylate is blended in the range of 10 parts by mass to 100 parts by mass with respect to 100 parts by mass of the unsaturated polyester, and the fiber reinforcing material is 40% by mass to 70% by mass in the sheet molding compound. % Is a sheet molding compound characterized in that it is formulated in the range of%.
前記ポリエステルポリオールが、脂肪族グリコールと脂肪族二塩基酸とを縮合反応させたものである請求項1に記載のシートモールディングコンパウンド。   The sheet molding compound according to claim 1, wherein the polyester polyol is obtained by condensation reaction of an aliphatic glycol and an aliphatic dibasic acid. 前記不飽和ポリエステルの不飽和度が、70モル%〜100モル%の範囲である請求項1又は2に記載のシートモールディングコンパウンド。   The sheet molding compound according to claim 1 or 2, wherein the degree of unsaturation of the unsaturated polyester is in the range of 70 mol% to 100 mol%.
JP2009216093A 2009-09-17 2009-09-17 Seat molding compound Active JP5379622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216093A JP5379622B2 (en) 2009-09-17 2009-09-17 Seat molding compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216093A JP5379622B2 (en) 2009-09-17 2009-09-17 Seat molding compound

Publications (2)

Publication Number Publication Date
JP2011063724A true JP2011063724A (en) 2011-03-31
JP5379622B2 JP5379622B2 (en) 2013-12-25

Family

ID=43950299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216093A Active JP5379622B2 (en) 2009-09-17 2009-09-17 Seat molding compound

Country Status (1)

Country Link
JP (1) JP5379622B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113242A1 (en) * 2013-01-16 2014-07-24 Scott Lewit Co-cured gel coats, elastomeric coatings, structural layers, and in-mold processes for their use
JP2017105879A (en) * 2015-12-07 2017-06-15 昭和電工株式会社 Bulk molding compound
JP2018044117A (en) * 2016-09-16 2018-03-22 日本合成化学工業株式会社 Thermosetting resin composition, thermosetting adhesive composition, and thermosetting adhesive sheet and diaphragm for thin flat-plate speakers prepared therewith
US10239265B2 (en) 2013-03-15 2019-03-26 Composites Intellectual Holdings, Inc. Structural composite preform wet-out and curing system and method
US10550569B2 (en) 2016-02-24 2020-02-04 Wabash National, L.P. Composite floor structure and method of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586322A (en) * 1991-09-30 1993-04-06 Sekisui Chem Co Ltd Thermosetting resin composition for in-mold coating and in-mold coated molded article
JPH11240931A (en) * 1998-02-25 1999-09-07 Wakayama Prefecture Unsaturated polyester resin composition and its molding
JP2002293847A (en) * 2001-01-24 2002-10-09 Rp Topla Ltd Unsaturated resin composition and its molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586322A (en) * 1991-09-30 1993-04-06 Sekisui Chem Co Ltd Thermosetting resin composition for in-mold coating and in-mold coated molded article
JPH11240931A (en) * 1998-02-25 1999-09-07 Wakayama Prefecture Unsaturated polyester resin composition and its molding
JP2002293847A (en) * 2001-01-24 2002-10-09 Rp Topla Ltd Unsaturated resin composition and its molded article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113242A1 (en) * 2013-01-16 2014-07-24 Scott Lewit Co-cured gel coats, elastomeric coatings, structural layers, and in-mold processes for their use
US9371468B2 (en) 2013-01-16 2016-06-21 Composites Intellectual Holdings, Inc. Co-cured gel coats, elastomeric coatings, structural layers, and in-mold processes for their use
US10513100B2 (en) 2013-01-16 2019-12-24 Composites Intellectual Holdings, Inc. Co-cured gel coats, elastomeric coatings, structural layers, and in-mold processes for their use
US10596791B2 (en) 2013-01-16 2020-03-24 Composites Intellectual Holdings, Inc. Co-cured gel coats, elastomeric coatings, structural layers, and in-mold processes for their use
US10239265B2 (en) 2013-03-15 2019-03-26 Composites Intellectual Holdings, Inc. Structural composite preform wet-out and curing system and method
JP2017105879A (en) * 2015-12-07 2017-06-15 昭和電工株式会社 Bulk molding compound
US10550569B2 (en) 2016-02-24 2020-02-04 Wabash National, L.P. Composite floor structure and method of making the same
JP2018044117A (en) * 2016-09-16 2018-03-22 日本合成化学工業株式会社 Thermosetting resin composition, thermosetting adhesive composition, and thermosetting adhesive sheet and diaphragm for thin flat-plate speakers prepared therewith

Also Published As

Publication number Publication date
JP5379622B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5379622B2 (en) Seat molding compound
EP1358241A1 (en) Vinyl ether resins for structural applications
JP5003854B2 (en) Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof
US20040220340A1 (en) Styrene-free unsaturated polyester resin compositions for coating applications
JP2019536876A (en) Reinforced urethane acrylate composition
WO2006121769A2 (en) Low-density, class a sheet molding compounds from isophthalate-maleate thermoset resins
JP5057879B2 (en) Molding materials and molded products
JP2020531644A (en) Combination of synergistic inhibitors to extend shelf life of urethane acrylate composition
JP3674076B2 (en) Resin composition, civil engineering and building materials and covering materials
JP7173734B2 (en) Molding materials and their molded products
JP5131156B2 (en) Radical polymerizable resin composition
JP2008056823A (en) Radically polymerizable unsaturated resin composition, and molded article using the same
JP4780369B2 (en) RESIN COMPOSITION FOR SHEET MOLDING COMPOUND AND BULK MOLDING COMPOUND AND ITS APPLICATION
JP2003301020A (en) Curable resin composition and adhesive
JP3543385B2 (en) Urethane acrylate resin composition and method for producing the same
JP2562720B2 (en) Curable resin composition
JP2003048255A (en) Glass chopped strand mat and glass fiber-reinforced plastic molding
JP2017193599A (en) Sheet molding compound, method for producing the same, and molded article
JPH10120736A (en) Curable resin composition, frp molded material and coating material
JP6590338B2 (en) Bulk molding compound
JPH07268046A (en) Resin composition, and production of polybutadiene-containing ureethane acrylate resin
JP4299454B2 (en) Curable resin composition, molding material, and viscosity modifier
JP4392591B2 (en) Cast molding resin composition and cast molding product
JP2005015642A (en) Radically polymerizable resin composition
JP6932517B2 (en) Radical curable resin composition, resin cured material layer and construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350