JP2011061052A - Method for manufacturing module having built-in component - Google Patents

Method for manufacturing module having built-in component Download PDF

Info

Publication number
JP2011061052A
JP2011061052A JP2009209990A JP2009209990A JP2011061052A JP 2011061052 A JP2011061052 A JP 2011061052A JP 2009209990 A JP2009209990 A JP 2009209990A JP 2009209990 A JP2009209990 A JP 2009209990A JP 2011061052 A JP2011061052 A JP 2011061052A
Authority
JP
Japan
Prior art keywords
resin layer
component
module
manufacturing
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009209990A
Other languages
Japanese (ja)
Inventor
Mayuko Nishihara
麻友子 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009209990A priority Critical patent/JP2011061052A/en
Publication of JP2011061052A publication Critical patent/JP2011061052A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoch-making method for manufacturing a module having a built-in component, achieving sufficient miniaturization of a module by forming an interlayer connection conductor of a resin layer of a substrate having a built-in component into a smaller diameter than a conventional one. <P>SOLUTION: A component 3a is temporarily fixed on a transfer plate 1, and an uncured (in B stage) resin layer 4 is provided on the transfer plate 1 so that the component 3a is embedded, and the substrate 5a having a built-in component is formed. Further, a through hole 7 for interlayer connection is formed at a predetermined position of the uncured resin layer 4 of the substrate 5a having a built-in component, thereby filling a conductive member into the through hole 7 so that the interlayer connection conductor 9 of the resin layer 4 can be formed to be sufficiently thin. The substrate 5a having a built-in component is pasted on a core substrate 8 and cured. Thus, the module 11a having a built-in component is formed to be smaller than a conventional module. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、部品内蔵モジュールの製造方法に関し、詳しくは、層間接続用のビアの小径化等の実現に関する。   The present invention relates to a method for manufacturing a component built-in module, and more particularly to the realization of a reduction in the diameter of vias for interlayer connection.

従来、樹脂層にコンデンサ、抵抗、半導体等の部品を内蔵した部品内蔵モジュールは、コア基板に部品内蔵基板を貼りつけた構造が一般的である。(例えば、特許文献1(段落[0022]−[0043]、図1、図3等)参照)。   2. Description of the Related Art Conventionally, a component built-in module in which components such as a capacitor, a resistor, and a semiconductor are built in a resin layer generally has a structure in which a component built-in substrate is attached to a core substrate. (For example, refer to Patent Document 1 (paragraphs [0022]-[0043], FIG. 1, FIG. 3, etc.)).

図3は特許文献1に記載の従来の部品内蔵モジュールの一例の構造を示す断面図であり、部品内蔵モジュール100の一部である部品内蔵基板110は、コア基板111の上にチップコンデンサなどの実装部品114を実装し、コア基板111の上面に実装部品114を覆うように樹脂層115を形成する。コア基板111の上面には面内電極112を形成し、樹脂層115には層間接続導体(ビア導体又はスルーホール導体)118を形成する。コア基板111は、樹脂層115の表面、裏面および内部に面内電極112,130、131それぞれを形成し、これらの面内電極112,130、131を層間接続導体132、133によって接続した樹脂基板構造である。   FIG. 3 is a cross-sectional view showing an example of the structure of a conventional component built-in module described in Patent Document 1. A component built-in substrate 110 which is a part of the component built-in module 100 is formed on a core substrate 111 such as a chip capacitor. The mounting component 114 is mounted, and a resin layer 115 is formed on the upper surface of the core substrate 111 so as to cover the mounting component 114. An in-plane electrode 112 is formed on the upper surface of the core substrate 111, and an interlayer connection conductor (via conductor or through-hole conductor) 118 is formed on the resin layer 115. The core substrate 111 includes in-plane electrodes 112, 130, 131 formed on the front surface, the back surface, and the inside of the resin layer 115, and the in-plane electrodes 112, 130, 131 are connected by interlayer connection conductors 132, 133. Structure.

部品内蔵基板110は、コア基板111に貼りつけられた面と反対側の上面に面内電極122、123、124を介して別の樹脂層120、121を積層した構造であり、面内電極122、123、124は層間接続導体125、126を介して接続されている。   The component-embedded substrate 110 has a structure in which another resin layer 120, 121 is laminated on the upper surface opposite to the surface attached to the core substrate 111 via in-plane electrodes 122, 123, 124. , 123 and 124 are connected via interlayer connection conductors 125 and 126.

図4(a)〜(c)は層間接続導体118の形成を説明する断面図であり、図4(a)工程では樹脂層115を硬化して部品内蔵基板を形成する。樹脂層115は、例えば熱硬化性樹脂と無機フイラーとからなり、コア基板111上の面内電極112に実装用導体(めっき導体)113を介して接続した実装部品114や、所定位置(層間接続導体118を形成する位置)の面内電極112に形成した光反射導体116を覆うように、コア基板111上に未硬化(半硬化)の樹脂層115を圧着し、加熱硬化する。   4A to 4C are cross-sectional views for explaining the formation of the interlayer connection conductor 118. In the step of FIG. 4A, the resin layer 115 is cured to form a component-embedded substrate. The resin layer 115 is made of, for example, a thermosetting resin and an inorganic filler. The resin layer 115 is connected to an in-plane electrode 112 on the core substrate 111 via a mounting conductor (plating conductor) 113 or a predetermined position (interlayer connection). An uncured (semi-cured) resin layer 115 is pressure-bonded on the core substrate 111 so as to cover the light reflecting conductor 116 formed on the in-plane electrode 112 at a position where the conductor 118 is formed), and is cured by heating.

図4(b)の工程では、光反射導体116上の樹脂層115をレーザ加工(レーザ照射)して層間接続導体118の有底孔117を形成する。   4B, the resin layer 115 on the light reflecting conductor 116 is laser processed (laser irradiation) to form the bottomed hole 117 of the interlayer connection conductor 118.

図4(c)の工程では、有底孔117に導体を充填して層間接続導体118を形成する。   In the step of FIG. 4C, the bottomed hole 117 is filled with a conductor to form an interlayer connection conductor 118.

ところで、この種の部品内蔵モジュールにおいては、部品実装密度の一層の高密度化を図るため、前記樹脂層115のような部品を内蔵した樹脂層において、コア基板が貼りつけられた面と反対側の面に形成した面内電極を介して別の部品(表面実装部品)を実装できるようにしたものがある。図5(a)〜(f)はそのような部品内蔵モジュールの一例の製造方法を説明する断面図である。   By the way, in this type of component built-in module, in order to further increase the component mounting density, in the resin layer incorporating the component such as the resin layer 115, the side opposite to the surface on which the core substrate is attached. Another component (surface mount component) can be mounted via an in-plane electrode formed on the surface. FIGS. 5A to 5F are cross-sectional views for explaining an example of a manufacturing method of such a component built-in module.

図5(a)の工程では、前記コア基板111に相当するコア基板201の上面に、面内電極202を介して部品203を実装する。コア基板201はプリント基板、LTCC(Low Temperature Co−fired Ceramics)基板等からなり、樹脂やセラミックの基材層204の上面、下面および内部に面内電極202,205、206それぞれが形成され、これらの面内電極202,205、206は複数の接続導体207によって接続されている。   5A, the component 203 is mounted on the upper surface of the core substrate 201 corresponding to the core substrate 111 via the in-plane electrodes 202. The core substrate 201 includes a printed circuit board, a LTCC (Low Temperature Co-fired Ceramics) substrate, and the like, and in-plane electrodes 202, 205, and 206 are respectively formed on the upper surface, the lower surface, and the inside of the resin or ceramic base material layer 204. The in-plane electrodes 202, 205, and 206 are connected by a plurality of connecting conductors 207.

図5(b)の工程では、コア基板201上に部品203が埋め込まれるように未硬化(Bステージ)の樹脂層208を形成し、この樹脂層208を例えば加熱により硬化する。   5B, an uncured (B stage) resin layer 208 is formed so that the component 203 is embedded on the core substrate 201, and the resin layer 208 is cured by heating, for example.

図5(c)の工程では、レーザ加工により樹脂層208の複数の所定位置(後述する層間接続導体の形成位置)に有底孔209を形成する。このとき、レーザ加工による面内電極202等の損傷を軽減するため、レーザ出力は抑えられ、有底孔209はレーザ光源に近い上部が下部より径大のテーパー状になる。さらに、形成した有底孔209に対してデスミア処理を施す。   In the step of FIG. 5C, bottomed holes 209 are formed at a plurality of predetermined positions (interlayer connection conductor formation positions described later) of the resin layer 208 by laser processing. At this time, in order to reduce damage to the in-plane electrode 202 and the like due to laser processing, the laser output is suppressed, and the bottomed hole 209 has a tapered shape in which the upper part near the laser light source is larger in diameter than the lower part. Further, desmear treatment is performed on the formed bottomed hole 209.

図5(d)の工程では、硬化した樹脂層208の上面に後述する面内電極210を貼りつけるため、転写板211上に、樹脂層208と同じ又は異なる樹脂の未硬化の薄層の接着層212を形成する。なお、接着層212の上面には保護フィルム213が貼りつけられる。さらに、接着層212の各有底孔209の位置にレーザ加工で貫通孔214を形成する。このとき、接着層212の貫通孔214は薄いのでレーザ光源に近い上部が下部より径大のテーパー状になる。   In the step of FIG. 5D, in order to attach an in-plane electrode 210 to be described later to the upper surface of the cured resin layer 208, an uncured thin layer of the same or different resin as the resin layer 208 is bonded onto the transfer plate 211. Layer 212 is formed. Note that a protective film 213 is attached to the upper surface of the adhesive layer 212. Further, a through hole 214 is formed at the position of each bottomed hole 209 of the adhesive layer 212 by laser processing. At this time, since the through hole 214 of the adhesive layer 212 is thin, the upper part close to the laser light source has a tapered shape having a diameter larger than that of the lower part.

図5(e)の工程では、硬化した樹脂層208の上面に、有底孔209に貫通孔214が連通するように転写板211から剥がした未硬化の接着層212を貼りつけ、貫通孔214の部分でくびれた形状の層間接続用の有底孔215を形成する。さらに、この有底孔215に導電性材料のペーストを充填して層間接続導体216を形成し、その後、保護フィルム213を剥がして接着層212の上面に面内電極210となる銅箔等の金属箔217を貼りつける。そして、全体を加熱等して接着層212等も硬化し、コア基板201上に部品内蔵基板218を形成する。   5E, an uncured adhesive layer 212 peeled off from the transfer plate 211 is attached to the upper surface of the cured resin layer 208 so that the through hole 214 communicates with the bottomed hole 209. The bottomed hole 215 for interlayer connection having a constricted shape is formed at the portion. Further, the bottomed hole 215 is filled with a paste of a conductive material to form an interlayer connection conductor 216, and then the protective film 213 is peeled off to form a metal such as a copper foil that becomes the in-plane electrode 210 on the upper surface of the adhesive layer 212. A foil 217 is attached. Then, the whole is heated to cure the adhesive layer 212 and the like, and the component-embedded substrate 218 is formed on the core substrate 201.

図5(f)の工程では、金属箔217をエッチング処理等でパターニングして部品内蔵基板218の上面の面内電極210を形成し、部品内蔵モジュール200を製造する。   5F, the metal foil 217 is patterned by etching or the like to form the in-plane electrode 210 on the upper surface of the component built-in substrate 218, and the component built-in module 200 is manufactured.

そして、部品内蔵モジュール200は面内電極210上にトランジスタやIC等の別の部品が実装可能である。   The component built-in module 200 can mount another component such as a transistor or an IC on the in-plane electrode 210.

国際公開WO2009/008217号International Publication WO2009 / 008217

図5の部品内蔵モジュール200の製造方法の場合、層間接続導体216を形成するためのコア基板201上の有底孔209は、図4の有底孔117と同様、面内電極202等が損傷しない程度のレーザ光によって形成されるため、加工時間が長くなって径大のテーパー構造になる。そのため、層間接続導体216は径大になり、部品内蔵モジュール200の十分な小型化が図られない問題がある。   In the manufacturing method of the component built-in module 200 of FIG. 5, the bottomed hole 209 on the core substrate 201 for forming the interlayer connection conductor 216 is damaged in the in-plane electrode 202 and the like, similar to the bottomed hole 117 of FIG. Since the laser beam is formed to such a degree that it does not, the processing time becomes long and a taper structure with a large diameter is obtained. Therefore, the interlayer connection conductor 216 has a large diameter, and there is a problem that the component built-in module 200 cannot be sufficiently reduced in size.

その他、部品内蔵モジュール200の製造方法の場合、以下のような不都合もある。   In addition, the method for manufacturing the component built-in module 200 has the following disadvantages.

すなわち、部品内蔵モジュール200の製造方法では、硬化した樹脂層208の上面に面内電極210を貼りつけるため、接着層212が必要になり、工程数が多くなる。しかも、層間接続導体216が接着層212でくびれた構造になり、そのくびれた部分で導通抵抗が大きくなりやすい。   That is, in the method for manufacturing the component built-in module 200, the in-plane electrode 210 is attached to the upper surface of the cured resin layer 208, so that the adhesive layer 212 is required, and the number of processes increases. In addition, the interlayer connection conductor 216 is constricted by the adhesive layer 212, and the conduction resistance tends to increase at the constricted portion.

また、有底孔209を形成するレーザ加工条件は、コア基板201の厚みや面内導体202の厚み等に応じて調整する必要があり、煩雑である。しかも、有底孔209の底面部となる面内導体202の金属箔の凹凸により、レーザ光が乱反射して良好な有底孔209を形成できなくなるおそれがあり、それを避けるため、図4の光反射導体116を形成する等の工夫が必要になり、一層煩雑であり、コストアップも招来する。   Further, the laser processing conditions for forming the bottomed hole 209 need to be adjusted according to the thickness of the core substrate 201, the thickness of the in-plane conductor 202, and the like, which is complicated. In addition, the unevenness of the metal foil of the in-plane conductor 202 serving as the bottom surface portion of the bottomed hole 209 may cause the laser beam to be irregularly reflected and fail to form a good bottomed hole 209. To avoid this, FIG. A device such as the formation of the light reflecting conductor 116 is required, which is more complicated and increases the cost.

さらに、有底孔209を形成する際、その内壁や底部に残存するスミアを除去するため、必ずデスミア処理の工程(ウエット工程)が必要になる。そして、デスミア処理の工程を実施するため、有底孔209のアスペクト比に制限があり、その面からも層間接続導体216は小径化が困難になる。また、層間接続導体216を小径化できなければ、それに接続される面内電極202のランド等も大面積になり、部品内蔵モジュール200が大型化する。   Further, when the bottomed hole 209 is formed, a desmear process (wet process) is necessarily required to remove smear remaining on the inner wall and bottom of the hole. Since the desmear process is performed, the aspect ratio of the bottomed hole 209 is limited, and it is difficult to reduce the diameter of the interlayer connection conductor 216 from the surface. Moreover, if the diameter of the interlayer connection conductor 216 cannot be reduced, the land of the in-plane electrode 202 connected to the interlayer connection conductor 216 also has a large area, and the component built-in module 200 increases in size.

さらに、樹脂層208の上面に接着層212を積層するため、部品内蔵モジュール200がその分嵩だかになって大型化する。また、樹脂層208を完全に加熱等して硬化した後、未硬化の接着層212を貼りつけて再びモジュール全体を硬化するため、工程数が煩雑になりやすい。   Furthermore, since the adhesive layer 212 is laminated on the upper surface of the resin layer 208, the component built-in module 200 becomes bulky and increases in size. In addition, after the resin layer 208 is completely heated and cured, the uncured adhesive layer 212 is attached and the entire module is cured again, so that the number of steps is likely to be complicated.

本発明は、部品内蔵モジュール200のようにコア基板上の部品内蔵基板の樹脂層の上面に面内電極を貼りつけた構造の部品内蔵モジュールの製造方法において、樹脂層の層間接続導体を従来より径小に形成して部品内蔵モジュールの十分な小型化を実現する画期的な部品内蔵モジュールの製造方法を提供することを目的とする。   The present invention provides a method for manufacturing a component built-in module having a structure in which an in-plane electrode is attached to the upper surface of a resin layer of a component built-in substrate on a core substrate as in the component built-in module 200. It is an object of the present invention to provide an epoch-making method for manufacturing a module with a built-in component that can be formed in a small diameter to realize a sufficiently small size of the module with a built-in component.

上記した目的を達成するために、本発明の部品内蔵モジュールの製造方法は、転写板に部品を仮固定する工程と、前記転写板に、前記部品が埋め込まれるように未硬化の樹脂層を設ける工程と、未硬化の前記樹脂層の所定位置に、前記樹脂層を貫通する層間接続用の貫通孔を形成する工程と、未硬化の前記樹脂層を、回路パターンが形成されたコア基板に貼りつける工程とを有することを特徴としている(請求項1)。   In order to achieve the above-described object, a method of manufacturing a component built-in module according to the present invention includes a step of temporarily fixing a component on a transfer plate, and an uncured resin layer is provided on the transfer plate so that the component is embedded. A step of forming a through hole for interlayer connection penetrating the resin layer at a predetermined position of the uncured resin layer, and affixing the uncured resin layer to the core substrate on which the circuit pattern is formed. And a step of attaching (claim 1).

また、本発明の部品内蔵モジュールの製造方法においては、前記樹脂層を前記コア基板に貼りつけた後、前記樹脂層を硬化する工程をさらに有することを特徴としている(請求項2)。   Moreover, in the manufacturing method of the component built-in module of this invention, after the said resin layer is affixed on the said core board | substrate, it further has the process of hardening the said resin layer (Claim 2), It is characterized by the above-mentioned.

また、本発明の部品内蔵モジュールの製造方法においては、前記樹脂層を前記コア基板に貼りつけた後、前記貫通孔に導電性材料を充填する工程をさらに有することを特徴としている(請求項3)。   In the method for manufacturing a component built-in module according to the present invention, the method further includes a step of filling the through hole with a conductive material after the resin layer is attached to the core substrate. ).

また、本発明の部品内蔵モジュールの製造方法においては、前記樹脂層を前記コア基板に貼りつける前に、前記貫通孔に導電性材料を充填する工程をさらに有することを特徴としている(請求項4)。   The method for manufacturing a component built-in module according to the present invention further includes a step of filling the through hole with a conductive material before the resin layer is attached to the core substrate. ).

また、本発明の部品内蔵モジュールの製造方法においては、前記貫通孔を形成する工程により、未硬化の前記樹脂層に埋め込まれた前記部品に達する接続導体用の有底孔も形成することを特徴としている(請求項5)。   In the method of manufacturing a component built-in module according to the present invention, a bottomed hole for a connecting conductor reaching the component embedded in the uncured resin layer is also formed by the step of forming the through hole. (Claim 5).

また、本発明の部品内蔵モジュールの製造方法においては、前記樹脂層を前記コア基板に貼りつける工程により、前記樹脂層の前記転写板側とは反対側の面を前記コア基板に貼りつけることを特徴としている(請求項6)。   Further, in the method for manufacturing a component built-in module according to the present invention, the step of attaching the resin layer to the core substrate includes attaching the surface of the resin layer opposite to the transfer plate side to the core substrate. It is characterized (claim 6).

また、本発明の部品内蔵モジュールの製造方法においては、前記樹脂層を前記コア基板に貼りつけてから前記転写板を取り除くことを特徴としている(請求項7)。   In the method for manufacturing a component built-in module according to the present invention, the transfer plate is removed after the resin layer is attached to the core substrate.

また、本発明の部品内蔵モジュールの製造方法においては、前記転写板は表面に回路パターンが形成され、前記転写板を取り除くことにより前記回路パターンが前記樹脂層に転写されることを特徴としている(請求項8)。   In the method for manufacturing a component built-in module according to the present invention, a circuit pattern is formed on a surface of the transfer plate, and the circuit pattern is transferred to the resin layer by removing the transfer plate ( Claim 8).

また、本発明の部品内蔵モジュールの製造方法においては、前記貫通孔を形成する工程により、前記貫通孔は前記転写板を貫通して前記樹脂層に形成されることを特徴としている(請求項9)。   In the method for manufacturing a component built-in module according to the present invention, the through hole is formed in the resin layer through the transfer plate by the step of forming the through hole. ).

請求項1の本発明の部品内蔵モジュールの製造方法によれば、転写板に部品を仮固定し、さらに、その部品が埋め込まれるように未硬化(Bステージ)の樹脂層を転写板に設けることにより、転写板上に、未硬化の樹脂層を有する部品内蔵基板を形成することができる。   According to the manufacturing method of the component built-in module of the first aspect of the present invention, the component is temporarily fixed to the transfer plate, and an uncured (B stage) resin layer is provided on the transfer plate so that the component is embedded. Thus, a component-embedded substrate having an uncured resin layer can be formed on the transfer plate.

さらに、転写板上に形成された部品内蔵基板の未硬化の樹脂層の所定位置に、層間接続用の貫通孔がレーザ加工やドリル加工で形成される。このとき、転写板は最終的には取り除かれるものであり、レーザ加工やドリル加工で損傷しても問題がない。そのため、レーザ加工であれば、前記貫通孔を十分なレーザ出力で短時間に形成することができ、前記貫通孔は従来モジュールの層間接続用の有底孔のような径大のテーパー状ではなく十分に径小に形成される。また、ドリル加工の場合も同様に十分に径小に貫通孔が形成される。   Further, through holes for interlayer connection are formed by laser processing or drilling at predetermined positions of the uncured resin layer of the component built-in substrate formed on the transfer plate. At this time, the transfer plate is finally removed, and there is no problem even if it is damaged by laser processing or drilling. Therefore, in the case of laser processing, the through hole can be formed in a short time with a sufficient laser output, and the through hole is not a tapered shape having a large diameter like a bottomed hole for interlayer connection of a conventional module. It is formed with a sufficiently small diameter. Similarly, in the case of drilling, a through hole is formed with a sufficiently small diameter.

そして、前記貫通孔を形成した部品内蔵基板をコア基板に貼りつけ、その樹脂層を硬化して部品内蔵モジュールが製造される。   Then, the component built-in substrate having the through hole formed thereon is attached to the core substrate, and the resin layer is cured to manufacture the component built-in module.

この場合、前記貫通孔に導電性部材を充填することにより、前記樹脂層の層間接続導体を十分に径小に形成することができる。また、層間接続導体を十分に径小に形成することで、それに接続されるランド等を小面積に形成することができる。そのため、従来モジュールより小型に部品内蔵モジュールを製造することができる。   In this case, the interlayer connection conductor of the resin layer can be formed sufficiently small in diameter by filling the through hole with a conductive member. Moreover, by forming the interlayer connection conductor sufficiently small in diameter, lands and the like connected to the interlayer connection conductor can be formed in a small area. Therefore, the component built-in module can be manufactured smaller than the conventional module.

なお、有底孔でなく貫通孔を形成するので、従来は必須であったデスミア処理(ウエット処理)が必ずしも必要ではなくなり、貫通孔はアスペクト比の制限がなく可能な限り径小に細くできるとともに、工程が簡素化する。さらに、ウエット処理が省けるので部品内蔵基板が吸温して不良を起こすことがなく、製造品質の向上が図られる等の利点もある。   In addition, since the through hole is formed instead of the bottomed hole, the desmear process (wet process), which has been essential in the past, is not necessarily required, and the through hole can be made as thin as possible without any aspect ratio limitation. , The process is simplified. Further, since the wet process can be omitted, there is an advantage that the component built-in substrate does not absorb the temperature and cause a defect, and the manufacturing quality can be improved.

つぎに、請求項2の本発明の部品内蔵モジュールの製造方法によれば、部品内蔵基板の未硬化の樹脂層をコア基板に貼りつけ、その後に前記樹脂層を硬化するため、従来モジュールの接着層を設けることなく、例えば転写板から未硬化の樹脂層の上面に回路パターンの面内電極を転写して樹脂層を硬化することができる。そのため、部品内蔵モジュールを低背化して一層小型に製造することができる。しかも、未硬化の樹脂層はコア基板の面内電極等の凹凸に沿ってコア基板に密着して貼りつく。そのため、部品内蔵基板をコア基板に強固に貼りつけて部品内蔵モジュールを製造することができる利点もある。さらに、請求項3、4の本発明の部品内蔵モジュールの製造方法によれば、樹脂層をコア基板に貼りつける前、後に貫通孔に導電性材料を充填して層間接続導体を形成することができる。   Next, according to the method for manufacturing a component built-in module according to the second aspect of the present invention, the uncured resin layer of the component built-in substrate is attached to the core substrate, and then the resin layer is cured. Without providing a layer, for example, the in-plane electrode of the circuit pattern can be transferred from the transfer plate to the upper surface of the uncured resin layer to cure the resin layer. Therefore, the component built-in module can be reduced in height and manufactured in a smaller size. Moreover, the uncured resin layer adheres to and adheres to the core substrate along irregularities such as in-plane electrodes of the core substrate. Therefore, there is an advantage that the component built-in module can be manufactured by firmly attaching the component built-in substrate to the core substrate. Furthermore, according to the method for manufacturing a component built-in module according to the third and fourth aspects of the present invention, before the resin layer is attached to the core substrate, the through hole is filled with a conductive material to form an interlayer connection conductor. it can.

つぎに、請求項5の本発明の部品内蔵モジュールの製造方法によれば、前記貫通孔を形成する工程により、同時に未硬化の樹脂層に埋め込まれた部品に達する接続導体用の有底孔も形成することができ、この有底孔に導電性材料を充填することにより、樹脂層の層間接続体を形成すると同時に部品のビア導体接続等が行なえ、製造工程が一層簡素化する等の利点もある。   Next, according to the manufacturing method of the component built-in module of the present invention according to claim 5, the bottomed hole for the connecting conductor which reaches the component embedded in the uncured resin layer at the same time by the step of forming the through hole is also provided. By filling the bottomed hole with a conductive material, it is possible to connect the via conductor of the component at the same time as forming the interlayer connection body of the resin layer, and the manufacturing process is further simplified. is there.

また、請求項6の本発明の部品内蔵モジュールの製造方法によれば、未硬化の樹脂層の転写板側とは反対側の面をコア基板に貼りつけることにより、樹脂層の転写板側の面を転写板を剥がしてコア基板に貼りつける場合より簡単に部品内蔵基板をコア基板に貼りつけることができる。同様に、請求項7の本発明の部品内蔵モジュールの製造方法によれば、未硬化の樹脂層をコア基板に貼りつけてから転写板を取り除くので、未硬化の樹脂層の転写板側とは反対側の面をコア基板に貼りつけることになり、請求項6の本発明の部品内蔵モジュールの製造方法と同様の効果を奏する。   According to the manufacturing method of the component built-in module of the present invention of claim 6, the surface of the resin layer on the transfer plate side of the resin layer is bonded to the core substrate on the opposite side of the uncured resin layer to the transfer plate side. The component-embedded substrate can be attached to the core substrate more easily than when the surface is peeled off and attached to the core substrate. Similarly, according to the manufacturing method of the component built-in module of the present invention of claim 7, since the transfer plate is removed after the uncured resin layer is attached to the core substrate, what is the transfer plate side of the uncured resin layer? The opposite side surface is affixed to the core substrate, and the same effect as in the method for manufacturing a component built-in module according to the sixth aspect of the present invention is achieved.

また、請求項8の本発明の部品内蔵モジュールの製造方法によれば、転写板の表面に回路パターンが形成され、転写板を取り除くことにより前記回路パターンの面内電極が未硬化の樹脂層の上面に転写されて簡単に形成されるため、前記回路パターンを形成する工程等を省くことができる。   According to the manufacturing method of the component built-in module of the present invention, the circuit pattern is formed on the surface of the transfer plate, and the in-plane electrodes of the circuit pattern are formed of the uncured resin layer by removing the transfer plate. Since it is easily formed by being transferred onto the upper surface, the step of forming the circuit pattern can be omitted.

また、請求項9の本発明の部品内蔵モジュールの製造方法によれば、前記貫通孔を形成する工程により、前記貫通孔を転写板側から形成して未硬化の記樹脂層に層間接続導体を形成することができる。なお、前記貫通孔は転写板側の反対側から形成してもよい。   According to the manufacturing method of the component built-in module of the present invention of claim 9, the through hole is formed from the transfer plate side by the step of forming the through hole, and the interlayer connection conductor is formed on the uncured recording resin layer. Can be formed. The through hole may be formed from the side opposite to the transfer plate side.

(a)〜(g)は本発明の一実施形態の部品内蔵モジュールの製造方法を説明する断面図である。(A)-(g) is sectional drawing explaining the manufacturing method of the component built-in module of one Embodiment of this invention. (a)〜(g)は本発明の他の実施形態の部品内蔵モジュールの製造方法を説明する断面図である。(A)-(g) is sectional drawing explaining the manufacturing method of the component built-in module of other embodiment of this invention. は従来モジュールの一例の断面図である。FIG. 6 is a cross-sectional view of an example of a conventional module. (a)〜(c)は図3の従来モジュールの一部の製造工程を説明する断面図である。(A)-(c) is sectional drawing explaining the one part manufacturing process of the conventional module of FIG. (a)〜(f)は従来モジュールの他の例の製造工程を説明する断面図である。(A)-(f) is sectional drawing explaining the manufacturing process of the other example of the conventional module.

本発明の実施形態について、図1、図2を参照して詳述する。   An embodiment of the present invention will be described in detail with reference to FIGS.

(一実施形態)
請求項1〜3、6〜8に対応する本発明の一実施形態について、図1を参照して説明する。
(One embodiment)
An embodiment of the present invention corresponding to claims 1 to 3 and 6 to 8 will be described with reference to FIG.

図1の(a)〜(g)は本実施形態の部品内蔵モジュールの順次実施される各製造工程を示し、図1(a)の工程では、ステンレスの薄板等からなる転写板1の上面に、所定回路パターンの銅箔等の金属箔の面内電極2の印刷を介して1つ又は複数の内蔵用の部品3aを載置して仮固定する。部品3aは種々の電子部品であってよく、例えばコンデンサ、コイル、トランジスタ、集積回路等のチップ部品であり、左右両端の電極31の端部がはんだリフローによって、はんだ(図示省略)を介して面内電極2に接続される。   FIGS. 1A to 1G show manufacturing steps of the component built-in module of the present embodiment sequentially performed. In the step of FIG. 1A, the upper surface of the transfer plate 1 made of a thin stainless steel plate or the like is used. Then, one or a plurality of built-in components 3a are placed and temporarily fixed through printing of the in-plane electrode 2 of a metal foil such as a copper foil having a predetermined circuit pattern. The component 3a may be various electronic components, for example, chip components such as a capacitor, a coil, a transistor, and an integrated circuit. The ends of the left and right electrodes 31 are surfaced via solder (not shown) by solder reflow. Connected to the inner electrode 2.

図1(b)の工程では、部品3aが仮固定された転写板1上に、部品3aが埋め込まれるように未硬化(Bステージ)の樹脂層4を所定の厚み(高さ)に設け、転写板1付きの未硬化の部品内蔵基板5aを形成する。この部品内蔵基板5aは転写板1に上下逆さまに形成され、転写板1側が上面、反対側が下面である。樹脂層4は、未硬化(半硬化を含む)の例えば熱硬化性樹脂又は、熱硬化性樹脂にフィラーを混在したものからなる。なお、熱硬化性樹脂の例としては、エポキシ樹脂、フェノール樹脂、シアネート樹脂などがあり、フイラーの例としては、シリカ粉末、アルミナ粉末などの無機粉末がある。樹脂層4は気泡が生じるのを防止するため、真空プレス環境下、上方から部品3aに被せるように設けられる。また、樹脂層4の上面はPET(Polyethylene Terephthalate)等のカバーフィルム6を貼りつけて保護される。   In the step of FIG. 1B, an uncured (B stage) resin layer 4 is provided in a predetermined thickness (height) so that the component 3a is embedded on the transfer plate 1 on which the component 3a is temporarily fixed. An uncured component-embedded substrate 5a with a transfer plate 1 is formed. The component-embedded substrate 5a is formed upside down on the transfer plate 1, with the transfer plate 1 side being an upper surface and the opposite side being a lower surface. The resin layer 4 is made of uncured (including semi-cured) thermosetting resin or a mixture of fillers in thermosetting resin. Examples of thermosetting resins include epoxy resins, phenol resins, cyanate resins, and examples of fillers include inorganic powders such as silica powder and alumina powder. In order to prevent bubbles from being generated, the resin layer 4 is provided so as to cover the component 3a from above in a vacuum press environment. Further, the upper surface of the resin layer 4 is protected by applying a cover film 6 such as PET (Polyethylene Terephthalate).

図1(c)の工程では、例えば上方からのレーザ加工又はドリル加工により、転写板1上に形成された未硬化の樹脂層4の所定位置(所定の電極2の位置)に、転写板1も貫通した層間接続用の貫通孔(スルーホール)7を形成する。ところで、転写板1は最終的には取り除かれるため、とくに微細加工に適したレーザ加工で形成する場合には、貫通孔7を十分なレーザ出力で短時間に形成することができる。この場合、貫通孔7は例えば図5の有底孔209のような径大のテーパー形状にはならず、アスペクト比が大きく、十分に径小になる。なお、レーザ加工には、樹脂層4に対する吸収率の高い炭酸ガスレーザ等を用いることが好ましい。   In the step of FIG. 1C, the transfer plate 1 is placed at a predetermined position (position of the predetermined electrode 2) of the uncured resin layer 4 formed on the transfer plate 1 by, for example, laser processing or drilling from above. A through-hole (through-hole) 7 for connecting the interlayer is also formed. By the way, since the transfer plate 1 is finally removed, the through hole 7 can be formed with a sufficient laser output in a short time when the transfer plate 1 is formed by laser processing particularly suitable for fine processing. In this case, the through hole 7 does not have a tapered shape with a large diameter like the bottomed hole 209 in FIG. 5, for example, and has a large aspect ratio and a sufficiently small diameter. For laser processing, it is preferable to use a carbon dioxide laser or the like having a high absorption rate for the resin layer 4.

図1(d)の工程では、用意したコア基板8の上方に、転写板1付きの部品内蔵基板5aを、カバーフィルム6を剥がして上下逆さまに、換言すれば、上下を本来の状態に戻して位置決めし、セットする。さらに、プレス機等により、図中の白抜きの矢印に示すように部品内蔵基板5aを押し下げ、未硬化の樹脂層4を回路パターンの面内電極82が形成されたコア基板8の上面に圧着し、樹脂層4の転写板1側とは反対側の面をコア基板8に貼りつける。   In the step of FIG. 1D, the component-embedded substrate 5a with the transfer plate 1 is removed from the prepared core substrate 8 by turning the cover film 6 upside down, in other words, returning the upper and lower sides to the original state. Position and set. Further, the component-embedded substrate 5a is pushed down by a press or the like as indicated by the white arrow in the figure, and the uncured resin layer 4 is pressure-bonded to the upper surface of the core substrate 8 on which the in-plane electrodes 82 of the circuit pattern are formed. Then, the surface of the resin layer 4 opposite to the transfer plate 1 side is attached to the core substrate 8.

コア基板8は、単層、多層の種々の基板であってよいが、本実施形態の場合、図5のコア基板201と同様のプリント基板、LTCC基板等からなり、樹脂やセラミックの基材層81の上面、下面および内部に面内電極82,83、84それぞれが形成され、これらの面内電極82〜84は複数の接続導体85によって接続されている。そして、前記の圧着により、未硬化の樹脂層4はコア基板8に確実に密着し、各貫通孔7は下端がコア基板8の所定の面内電極82に接着して有底の状態になる。   The core substrate 8 may be a single layer or various types of substrates. In the case of this embodiment, the core substrate 8 is composed of a printed circuit board, LTCC substrate, or the like similar to the core substrate 201 of FIG. In-plane electrodes 82, 83, and 84 are respectively formed on the upper surface, the lower surface, and the inside of 81, and these in-plane electrodes 82 to 84 are connected by a plurality of connection conductors 85. And by the said crimping | compression-bonding, the uncured resin layer 4 adheres firmly to the core substrate 8, and each through-hole 7 is bonded to a predetermined in-plane electrode 82 of the core substrate 8 to be in a bottomed state. .

図1(e)の工程では、コア基板8に貼りつけた部品内蔵基板5aを、例えば樹脂層4の樹脂が硬化する適当な温度に一定時間加熱し、部品内蔵基板5aの樹脂層4をコア基板8に貼りつけた後に加熱硬化する。   In the step of FIG. 1E, the component built-in substrate 5a attached to the core substrate 8 is heated for a certain time to an appropriate temperature at which the resin of the resin layer 4 is cured, for example, and the resin layer 4 of the component built-in substrate 5a is then cored. After being attached to the substrate 8, it is cured by heating.

図1(f)の工程では、加熱硬化した樹脂層4の貫通孔7に、転写板1の上から周知のビアフィルめっき又は導電性ペーストの充填処理を施して導電性材料を充填し、層間接続導体9を形成する。このとき、前記導電性材料は転写板1の上部に導電層10を形成する。なお、樹脂層4の貫通孔7への導電性材料の充填は、層間接続導体9を形成する前であってもよい。   In the step of FIG. 1 (f), the through hole 7 of the heat-cured resin layer 4 is filled with a conductive material by applying a known via fill plating or conductive paste filling from the top of the transfer plate 1 to provide interlayer connection. A conductor 9 is formed. At this time, the conductive material forms a conductive layer 10 on the transfer plate 1. The through hole 7 of the resin layer 4 may be filled with the conductive material before the interlayer connection conductor 9 is formed.

図1(g)の工程では、最後に転写板1を剥離して不要な転写板1および導電層10を取り除き、部品内蔵モジュール11aを製造する。   In the step of FIG. 1G, finally, the transfer plate 1 is peeled off, the unnecessary transfer plate 1 and the conductive layer 10 are removed, and the component built-in module 11a is manufactured.

部品内蔵モジュール11aは、部品内蔵基板5aを上下逆さまにしてコア基板8に貼りつけているので、部品3aは樹脂層4内で浮いているような構造になるが、なんら問題はない。   Since the component built-in module 11a is attached to the core substrate 8 with the component built-in substrate 5a turned upside down, the component 3a has a structure floating in the resin layer 4, but there is no problem.

そして、転写板1を取り除くことにより、ランドやパッドを含む所定回路パターンの面内電極2が樹脂層4の上面に転写されて形成され、面内電極2上に他の部品が実装される。   Then, by removing the transfer plate 1, the in-plane electrode 2 having a predetermined circuit pattern including lands and pads is transferred and formed on the upper surface of the resin layer 4, and other components are mounted on the in-plane electrode 2.

そのため、樹脂層4には図5の従来モジュールのような接着層212は形成されず、層間接続導体9に接着層212のくびれが存在しない。また、樹脂層4の上面に面内電極2を形成する工程を省くことができる。   Therefore, the adhesive layer 212 as in the conventional module of FIG. 5 is not formed on the resin layer 4, and the constriction of the adhesive layer 212 does not exist in the interlayer connection conductor 9. Further, the step of forming the in-plane electrode 2 on the upper surface of the resin layer 4 can be omitted.

そして、本実施形態の場合、以下の効果を奏する。   And in the case of this embodiment, there exist the following effects.

(1)部品内蔵基板5aをコア基板8に貼りつける前に、転写板1に部品内蔵基板5aを上下逆さまに仮固定した状態で、層間接続導体9となる貫通孔7を形成するため、層間接続導体9は、テーパー状の径大な形状にならず、アスペクト比が大きく、十分に径小に形成することができる。また、層間接続導体9を十分に径小に形成することで、それに接続される面内電極82のランド等を小面積に形成することができる。そのため、部品内蔵モジュール11aを従来モジュールより小型に製造することができる。さらに、有底孔でなく貫通孔7を形成するので、従来は必須であったデスミア処理(ウエット処理)を省くことが可能になり、貫通孔7はアスペクト比の制限がなく、この面からも可能な限り径小にできる。また、工程が簡素化する。さらに、ウエット処理が省けるので部品内蔵基板5aが吸湿して不良を起こすことがなく、製造品質の向上が図られる。   (1) Before the component-embedded substrate 5a is attached to the core substrate 8, the through-hole 7 to be the interlayer connection conductor 9 is formed with the component-embedded substrate 5a temporarily fixed upside down on the transfer plate 1; The connecting conductor 9 does not have a tapered shape with a large diameter, has a large aspect ratio, and can be formed with a sufficiently small diameter. Further, by forming the interlayer connection conductor 9 sufficiently small in diameter, the land of the in-plane electrode 82 connected to the interlayer connection conductor 9 can be formed in a small area. Therefore, the component built-in module 11a can be manufactured smaller than the conventional module. Furthermore, since the through-hole 7 is formed instead of the bottomed hole, it is possible to omit the desmear process (wet process) which has been essential in the past, and the through-hole 7 has no aspect ratio limitation. The diameter can be made as small as possible. Moreover, the process is simplified. Further, since the wet process can be omitted, the component-embedded substrate 5a does not absorb moisture and cause a defect, and the manufacturing quality can be improved.

(2)転写板1に仮固定した未硬化の樹脂層4において、部品内蔵基板5aをコア基板8に貼りつけたときに上面となる転写板1側の面に面内電極2を印刷の転写等によって形成し、転写板1を取り除いたときに樹脂層4の上面に面内電極2を形成することができるため、部品内蔵基板5aをコア基板8に貼りつけて樹脂層4を硬化した後、従来のように接着層212を介して所定回路パターンの電極を貼りつけたりする必要がない。そのため、部品内蔵モジュール11は層間接続導体9に接着層212のくびれがなく、低背化して小型に製造することができる。しかも、未硬化の樹脂層4は、コア基板8の面内電極82等の凹凸に沿ってコア基板8に密着して貼りつく。そのため、部品内蔵基板5aをコア基板8に強固に貼りつけて部品内蔵モジュール11aを製造することができる。   (2) In the uncured resin layer 4 temporarily fixed to the transfer plate 1, the in-plane electrode 2 is transferred to the surface on the transfer plate 1 side which becomes the upper surface when the component-embedded substrate 5a is attached to the core substrate 8. Since the in-plane electrode 2 can be formed on the upper surface of the resin layer 4 when the transfer plate 1 is removed, the component-embedded substrate 5a is attached to the core substrate 8 and the resin layer 4 is cured. There is no need to attach electrodes having a predetermined circuit pattern via the adhesive layer 212 as in the prior art. Therefore, the component built-in module 11 does not have the constriction of the adhesive layer 212 in the interlayer connection conductor 9, and can be manufactured in a small size with a low profile. In addition, the uncured resin layer 4 adheres to and adheres to the core substrate 8 along irregularities such as the in-plane electrodes 82 of the core substrate 8. Therefore, the component built-in module 11 a can be manufactured by firmly attaching the component built-in substrate 5 a to the core substrate 8.

(3)未硬化の樹脂層4の転写板1側とは反対側の面を樹脂層4が転写板1に貼りついた状態でコア基板8に貼りつけるため、樹脂層4の転写板1側の面を転写板1から剥離してコア基板8に貼りつける場合より簡単な作業で部品内蔵基板5aをコア基板8に貼りつけることができる。   (3) Since the surface opposite to the transfer plate 1 side of the uncured resin layer 4 is attached to the core substrate 8 in a state where the resin layer 4 is attached to the transfer plate 1, the transfer layer 1 side of the resin layer 4 The component-embedded substrate 5a can be attached to the core substrate 8 with a simpler work than when the surface is peeled off from the transfer plate 1 and attached to the core substrate 8.

(4)転写板1に部品3aを内蔵した樹脂層4を仮固定するので、部品3aを樹脂層4に内蔵する条件をコア基板8の厚み等に応じて調整する必要がなく、また、転写板1に仮固定した樹脂層4に有底孔でなく貫通孔7を形成するので、貫通孔7を形成する際のレーザ出力等のコア基板8毎の調整等も不要になり、製造作業が簡単になる。   (4) Since the resin layer 4 in which the component 3a is incorporated in the transfer plate 1 is temporarily fixed, it is not necessary to adjust the conditions for incorporating the component 3a in the resin layer 4 according to the thickness of the core substrate 8 or the like. Since the through hole 7 is formed in the resin layer 4 temporarily fixed to the plate 1 instead of the bottomed hole, adjustment of each core substrate 8 such as laser output when forming the through hole 7 becomes unnecessary, and the manufacturing work is reduced. It will be easy.

したがって、本実施形態の場合は、従来に比して極めて簡単で画期的な製造方法により、従来モジュールより小型化した部品内蔵モジュール11aを安価に製造することができる。   Therefore, in the case of the present embodiment, the component built-in module 11a that is smaller than the conventional module can be manufactured at a low cost by an extremely simple and epoch-making manufacturing method as compared with the conventional case.

(他の実施形態)
本発明の他の実施形態について、図2を参照して説明する。
(Other embodiments)
Another embodiment of the present invention will be described with reference to FIG.

図2の(a)〜(g)は本実施形態の部品内蔵モジュールの順次実施される各製造工程を示し、図2(a)の工程は図1(a)の工程に対応し、転写板1の上面に面内電極2の印刷を介して部品3aに対応する部品3bを載置して仮固定する。   2 (a) to 2 (g) show manufacturing steps of the component built-in module of the present embodiment sequentially performed. The process of FIG. 2 (a) corresponds to the process of FIG. The component 3b corresponding to the component 3a is placed on the upper surface of 1 through printing of the in-plane electrode 2 and temporarily fixed.

図2(b)の工程は図1(b)の工程に対応し、部品3bが仮固定された転写板1上に、部品3bが埋め込まれるように未硬化(Bステージ)の樹脂層4を所定の厚みに設け、図1(a)の部品内蔵基板5aと同様の転写板1付きの未硬化の部品内蔵基板5bを形成する。この部品内蔵基板5bも転写板1に上下逆さまに形成され、転写板1側が上面、反対側が下面である。また、樹脂層4の上面はPET等のカバーフィルム6を貼りつけて保護する。   The process of FIG. 2B corresponds to the process of FIG. 1B, and an uncured (B stage) resin layer 4 is formed on the transfer plate 1 on which the part 3b is temporarily fixed so that the part 3b is embedded. An uncured component-embedded substrate 5b with a transfer plate 1 similar to the component-embedded substrate 5a shown in FIG. This component built-in substrate 5b is also formed upside down on the transfer plate 1, with the transfer plate 1 side being the upper surface and the opposite side being the lower surface. The upper surface of the resin layer 4 is protected by attaching a cover film 6 such as PET.

図2(c)の工程は図1(c)の工程に対応するが、本実施形態の場合は部品3bの電極31をコア基板8の面内電極82にも接続するため、上方からのレーザ加工又はドリル加工により、転写板1上に形成された未硬化の樹脂層4の所定位置に層間接続用の貫通孔7を形成するとともに、部品3bの電極31の端面に達する直接ビア形成用の有底孔12も形成する。   The process of FIG. 2C corresponds to the process of FIG. 1C, but in the present embodiment, the electrode 31 of the component 3b is also connected to the in-plane electrode 82 of the core substrate 8, so that the laser from above is used. The through hole 7 for interlayer connection is formed at a predetermined position of the uncured resin layer 4 formed on the transfer plate 1 by processing or drilling, and for direct via formation reaching the end face of the electrode 31 of the component 3b. A bottomed hole 12 is also formed.

図2(d)の工程では、未硬化の樹脂層4をコア基板に貼りつける前に、樹脂層4の貫通孔7および有底孔12に、上方からビアフィルめっき又は導電性ペーストの充填処理を施して導電性材料を充填し、層間接続導体9を形成すると同時に接続導体用の有底のビア導体13を形成する。なお、層間接続導体9およびビア導体13は上端がPETフィルム6より若干突出している。   In the step of FIG. 2D, before the uncured resin layer 4 is attached to the core substrate, the via hole plating or the bottomed hole 12 of the resin layer 4 is filled with via fill plating or conductive paste from above. Then, the conductive material is filled to form the interlayer connection conductor 9, and simultaneously, the bottomed via conductor 13 for the connection conductor is formed. The upper ends of the interlayer connection conductor 9 and the via conductor 13 slightly protrude from the PET film 6.

図2(e)の工程は図1(d)の工程に対応し、コア基板8の上方に、硬化の樹脂層4に層間接続導体9およびビア導体13が形成された転写板1付きの部品内蔵基板5bを、PETフィルム6を剥がして上下逆さまにセットする。さらに、プレス機等により、図中の白抜きの矢印に示すように部品内蔵基板5bを押し下げ、樹脂層4の下面をコア基板8に圧着し、樹脂層4の転写板1側とは反対側の面を貼りつける。このとき、前記の圧着により、層間接続導体9およびビア導体13の端部が押しつぶされて未硬化の樹脂層4はコア基板8に確実に密着する。   The process of FIG. 2 (e) corresponds to the process of FIG. 1 (d), and the component with the transfer plate 1 in which the interlayer connection conductor 9 and the via conductor 13 are formed on the cured resin layer 4 above the core substrate 8. The internal substrate 5b is set upside down with the PET film 6 peeled off. Further, the component-embedded substrate 5b is pushed down by a press machine or the like as indicated by the white arrow in the figure, and the lower surface of the resin layer 4 is pressure-bonded to the core substrate 8 so that the resin layer 4 is opposite to the transfer plate 1 side. Paste the face. At this time, the end portions of the interlayer connection conductor 9 and the via conductor 13 are crushed by the above-described pressure bonding, and the uncured resin layer 4 is securely adhered to the core substrate 8.

図2(f)の工程では、コア基板8に貼りつけた部品内蔵基板5bを、例えば樹脂層4の樹脂や導電性材料を硬化する適当な温度に一定時間加熱し、部品内蔵基板5bの樹脂層4や層間接続導体9およびビア導体13の導電性材料等を加熱して硬化する。   In the process of FIG. 2F, the component-embedded substrate 5b attached to the core substrate 8 is heated for a certain time to an appropriate temperature for curing the resin of the resin layer 4 or the conductive material, for example, and the resin of the component-embedded substrate 5b. The conductive material of the layer 4, the interlayer connection conductor 9 and the via conductor 13 is heated and cured.

図2(g)の工程は図1(g)の工程に対応し、最後に転写板1を剥離して取り除き、必要に応じて層間接続導体9の端面の研磨等を施して部品内蔵モジュール11bを製造する。   The process of FIG. 2G corresponds to the process of FIG. 1G, and finally, the transfer plate 1 is peeled off and removed, and the end face of the interlayer connection conductor 9 is polished if necessary, and the component built-in module 11b. Manufacturing.

そして、部品内蔵モジュール11bの場合も、転写板1を取り除くことにより、ランドやパッドを含む所定回路パターンの面内電極2が樹脂層4の上面に転写されて形成され(請求項8対応)、面内電極2上に他の部品が実装されたりする。   In the case of the component built-in module 11b, the in-plane electrode 2 having a predetermined circuit pattern including lands and pads is transferred to the upper surface of the resin layer 4 by removing the transfer plate 1 (corresponding to claim 8). Other components may be mounted on the in-plane electrode 2.

したがって、本実施形態の場合、部品内蔵モジュール11bは、一実施形態の部品内蔵モジュール11aと同様に、部品内蔵基板5bを上下逆さまにしてコア基板8に貼りつけているので、部品3bは樹脂層4内で浮いているような構造になり、その製造方法は、前記部品内蔵モジュール11aの製造方法の場合と同様の効果を奏し、さらに、層間接続導体9を形成するのと同時に、部品3bに直接接続されるビア導体13も形成するため、部品3bに対して可能な配線構造が増える利点があり、また、樹脂層4の硬化と層間接続導体9およびビア導体13の導電性材料の硬化を同時に行なえる利点もある。   Therefore, in the case of this embodiment, the component built-in module 11b is attached to the core substrate 8 with the component built-in substrate 5b turned upside down in the same manner as the component built-in module 11a of one embodiment. 4, the manufacturing method has the same effect as the manufacturing method of the component built-in module 11 a, and at the same time as the formation of the interlayer connection conductor 9, Since the via conductor 13 that is directly connected is also formed, there is an advantage that the possible wiring structure for the component 3b is increased, and the resin layer 4 and the conductive material of the interlayer connection conductor 9 and the via conductor 13 are cured. There is also an advantage that can be done at the same time.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能であり、例えば、前記一実施形態において、レーザ加工、ドリル加工による貫通孔7の形成は下方(転写板1側)から行ってもよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. The formation of the through hole 7 by machining or drilling may be performed from below (transfer plate 1 side).

また、前記両実施形態において、転写板1はどのような種類のものであってもよいが、銅箔や未硬化(半硬化)の樹脂層4などの加工がし易いものであることが好ましい。   In both the embodiments, the transfer plate 1 may be of any kind, but it is preferable that the copper foil or the uncured (semi-cured) resin layer 4 is easily processed. .

さらに、転写板1の部品内蔵基板5a、5bをコア基板8に貼りつける際、場合によっては、転写板1から部品内蔵基板5a、5bを剥がし、部品内蔵基板5a、5bの転写板1側をコア基板8に貼りつけてもよい。   Further, when the component-embedded substrates 5a and 5b of the transfer plate 1 are attached to the core substrate 8, depending on the case, the component-embedded substrates 5a and 5b are peeled off from the transfer plate 1 and the component-embedded substrates 5a and 5b are placed on the transfer plate 1 side. You may affix on the core board | substrate 8. FIG.

また、未硬化の樹脂層4は熱可塑性樹脂や光硬化性樹脂等であってもよい。   The uncured resin layer 4 may be a thermoplastic resin or a photocurable resin.

そして、本発明は、種々の部品を内蔵する部品内蔵モジュールの製造に適用できる。   And this invention is applicable to manufacture of the component built-in module which incorporates various components.

1 転写板
3a、3b 部品
4 樹脂層
5a、5b 部品内蔵基板
7 貫通孔
8 コア基板
9 層間接続導体
11a、11b 部品内蔵モジュール
12 有底孔
13 ビア導体
DESCRIPTION OF SYMBOLS 1 Transfer board 3a, 3b Parts 4 Resin layer 5a, 5b Component built-in board 7 Through-hole 8 Core board 9 Interlayer connection conductor 11a, 11b Component built-in module 12 Bottomed hole 13 Via conductor

Claims (9)

転写板に部品を仮固定する工程と、
前記転写板に、前記部品が埋め込まれるように未硬化の樹脂層を設ける工程と、
未硬化の前記樹脂層の所定位置に、前記樹脂層を貫通する層間接続用の貫通孔を形成する工程と、
未硬化の前記樹脂層を、回路パターンが形成されたコア基板に貼りつける工程とを有することを特徴とする部品内蔵モジュールの製造方法。
A step of temporarily fixing the parts to the transfer plate;
Providing an uncured resin layer on the transfer plate so that the component is embedded;
Forming a through hole for interlayer connection penetrating the resin layer at a predetermined position of the uncured resin layer;
And a step of attaching the uncured resin layer to a core substrate on which a circuit pattern is formed.
請求項1に記載の部品内蔵モジュールの製造方法において、
前記樹脂層を前記コア基板に貼りつけた後、前記樹脂層を硬化する工程をさらに有することを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to claim 1,
A method of manufacturing a module with a built-in component, further comprising a step of curing the resin layer after the resin layer is attached to the core substrate.
請求項1又は2に記載の部品内蔵モジュールの製造方法において、
前記樹脂層を前記コア基板に貼りつけた後、前記貫通孔に導電性材料を充填する工程をさらに有することを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to claim 1 or 2,
A method of manufacturing a component built-in module, further comprising a step of filling the through hole with a conductive material after the resin layer is attached to the core substrate.
請求項1又は2に記載の部品内蔵モジュールの製造方法において、
前記樹脂層を前記コア基板に貼りつける前に、前記貫通孔に導電性材料を充填する工程をさらに有することを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to claim 1 or 2,
A method of manufacturing a component built-in module, further comprising a step of filling the through hole with a conductive material before the resin layer is attached to the core substrate.
請求項4に記載の部品内蔵モジュールの製造方法において、
前記貫通孔を形成する工程により、未硬化の前記樹脂層に埋め込まれた前記部品に達する接続導体用の有底孔も形成することを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to claim 4,
A method of manufacturing a module with a built-in component, wherein a bottomed hole for a connection conductor reaching the component embedded in the uncured resin layer is also formed by the step of forming the through hole.
請求項1〜5のいずれかに記載の部品内蔵モジュールの製造方法において、
前記樹脂層を前記コア基板に貼りつける工程により、前記樹脂層の前記転写板側とは反対側の面を前記コア基板に貼りつけることを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to any one of claims 1 to 5,
The method of manufacturing a module with a built-in component, wherein the surface of the resin layer opposite to the transfer plate side is attached to the core substrate by the step of attaching the resin layer to the core substrate.
請求項6に記載の部品内蔵モジュールの製造方法において、
前記樹脂層を前記コア基板に貼りつけてから、前記転写板を取り除くことを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to claim 6,
A method of manufacturing a component built-in module, wherein the transfer plate is removed after the resin layer is attached to the core substrate.
請求項7に記載の部品内蔵モジュールの製造方法において、
前記転写板は表面に回路パターンが形成され、前記転写板を取り除くことにより前記回路パターンが前記樹脂層に転写されることを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to claim 7,
A method of manufacturing a module with a built-in component, wherein a circuit pattern is formed on a surface of the transfer plate, and the circuit pattern is transferred to the resin layer by removing the transfer plate.
請求項1〜8のいずれかに記載の部品内蔵モジュールの製造方法において、
前記貫通孔を形成する工程により、前記貫通孔は前記転写板を貫通して前記樹脂層に形成されることを特徴とする部品内蔵モジュールの製造方法。
In the manufacturing method of the component built-in module according to any one of claims 1 to 8,
The method for manufacturing a component built-in module, wherein the through hole is formed in the resin layer through the transfer plate by the step of forming the through hole.
JP2009209990A 2009-09-11 2009-09-11 Method for manufacturing module having built-in component Withdrawn JP2011061052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209990A JP2011061052A (en) 2009-09-11 2009-09-11 Method for manufacturing module having built-in component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209990A JP2011061052A (en) 2009-09-11 2009-09-11 Method for manufacturing module having built-in component

Publications (1)

Publication Number Publication Date
JP2011061052A true JP2011061052A (en) 2011-03-24

Family

ID=43948327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209990A Withdrawn JP2011061052A (en) 2009-09-11 2009-09-11 Method for manufacturing module having built-in component

Country Status (1)

Country Link
JP (1) JP2011061052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115288A1 (en) * 2013-01-24 2014-07-31 株式会社メイコー Method for manufacturing component-embedded substrate
WO2014203718A1 (en) * 2013-06-18 2014-12-24 株式会社村田製作所 Method for manufacturing resin multi-layer board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115288A1 (en) * 2013-01-24 2014-07-31 株式会社メイコー Method for manufacturing component-embedded substrate
WO2014203718A1 (en) * 2013-06-18 2014-12-24 株式会社村田製作所 Method for manufacturing resin multi-layer board
CN105165129A (en) * 2013-06-18 2015-12-16 株式会社村田制作所 Method for manufacturing resin multi-layer board
US9961780B2 (en) 2013-06-18 2018-05-01 Murata Manufacturing Co., Ltd. Method for manufacturing resin multilayer board
CN105165129B (en) * 2013-06-18 2019-03-08 株式会社村田制作所 The manufacturing method of resin multilayer substrate

Similar Documents

Publication Publication Date Title
EP2164311B1 (en) Circuit board and method for manufacturing the same
US20060060960A1 (en) Printed circuit board having chip package mounted theron and method of fabricating same
JP7074409B2 (en) Built-in element type printed circuit board
JP2010157709A (en) Printed wiring board and method for manufacturing the same
US20090321118A1 (en) Printed circuit board embedded chip and manufacturing method thereof
JP2007214535A (en) Printed wiring board with built-in semiconductor element and method for manufacturing same
JP2006190953A (en) Printed circuit board with built-in chip by plating and its manufacturing method
JP2010171414A (en) Method of manufacturing wiring board with built-in component
JP2007158341A (en) Metal core, package substrate, and method of manufacturing same
US9185806B2 (en) Method for manufacturing printed wiring board and printed wiring board
WO2011030542A2 (en) Electronic part module and method for producing same
US20070267218A1 (en) Multilayer Electronic Component, Electronic Device, and Method for Manufacturing Multilayer Electronic Component
JP2007088475A (en) Method of manufacturing substrate provided with cavity
JP2011071417A (en) Manufacturing method of wiring substrate
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
JP2006210870A (en) Module with built-in component, and manufacturing method thereof
JP2007019516A (en) Method of manufacturing wiring board with built-in electronic component
JP2009016378A (en) Multilayer wiring board and multilayer wiring board manufacturing method
US20150156882A1 (en) Printed circuit board, manufacturing method thereof, and semiconductor package
JP2011061052A (en) Method for manufacturing module having built-in component
JPH0563112B2 (en)
KR100888561B1 (en) Manufacturing method of active device embedded printed circuit board
KR100699237B1 (en) Manufacturing Method for Embedded Printed Circuit Board
KR100661296B1 (en) Manufacturing method and jig apparatus of printed circuit board having electronic components within
JP2004055777A (en) Method for manufacturing compound multilayer wiring board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204