JP2011060907A - Optical electronic component, mounting substrate component, writing device, and method for manufacturing optical electronic component - Google Patents

Optical electronic component, mounting substrate component, writing device, and method for manufacturing optical electronic component Download PDF

Info

Publication number
JP2011060907A
JP2011060907A JP2009207322A JP2009207322A JP2011060907A JP 2011060907 A JP2011060907 A JP 2011060907A JP 2009207322 A JP2009207322 A JP 2009207322A JP 2009207322 A JP2009207322 A JP 2009207322A JP 2011060907 A JP2011060907 A JP 2011060907A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
angle
optical
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009207322A
Other languages
Japanese (ja)
Other versions
JP5428672B2 (en
Inventor
Takashi Shimizu
敬司 清水
Toru Fujii
徹 藤居
Masahiro Igusa
正寛 井草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2009207322A priority Critical patent/JP5428672B2/en
Publication of JP2011060907A publication Critical patent/JP2011060907A/en
Application granted granted Critical
Publication of JP5428672B2 publication Critical patent/JP5428672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Heads (AREA)
  • Led Device Packages (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical electronic component, etc., for performing integration with high density and improving the light collection efficiency of light emitted from LEDs. <P>SOLUTION: The optical electronic component includes a substrate 41 with a plurality of LEDs 42 arrayed therein, and a micro lens 44 which is formed on the LEDs 42 and in which its end continuous to effective optical surface 44b is continuously arranged to the end of the substrate 41 and its slope 44a is inclined toward the outer side of the substrate 41 with respect to a normal line S1 of the surface 41a with the LEDs 42 arrayed therein. An angle made by the normal line S1 and the slope 44a is equal to or more than an angle θ<SB>1</SB>which is expressed by formula 1 in which D0 is a light reception effective width of a SELFOC lens array for receiving the light from the LEDs, L0 is a distance between the SELFOC lens array and the LEDs, and n is a refractive index of the micro lenses. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学電子部品、実装基板部品、書き込み装置および光学電子部品の製造方法に関するものである。   The present invention relates to an optical electronic component, a mounting substrate component, a writing device, and a method for manufacturing an optical electronic component.

発光素子の形成された光学電子部品を用いた書き込み装置においては、発光素子上にレンズを形成して光の利用効率を高めている。   In a writing apparatus using an optical electronic component in which a light emitting element is formed, a lens is formed on the light emitting element to increase the light use efficiency.

ここで、特開2005−039195号公報には、多数のLEDが形成された1枚のウエハ上にマイクロレンズアレイを一度に成形し、その後まとめて切断してチップ化する技術が開示されている。   Here, Japanese Patent Application Laid-Open No. 2005-039195 discloses a technique for forming a microlens array on a single wafer on which a large number of LEDs are formed, and then cutting them together into chips. .

また、特開2007−276183号公報には、マイクロレンズ付きLEDチップを一列に並べたときの隣接LED間の発光ドットピッチずれを、チップ端部における発光点位置とマイクロレンズ位置の最適化で回避する技術が開示されている。   Japanese Unexamined Patent Application Publication No. 2007-276183 avoids the deviation of the light emitting dot pitch between adjacent LEDs when LED chips with microlenses are arranged in a row by optimizing the light emitting point position and the microlens position at the chip end. Techniques to do this are disclosed.

特開2005−039195号公報Japanese Patent Laid-Open No. 2005-039195 特開2007−276183号公報JP 2007-276183 A

本発明は、本発明を採用しない場合に比べて、高い密度での集積化が可能で且つ発光素子から発光された光の集光効率の高い光学電子部品、実装基板部品、書き込み装置および光学電子部品の製造方法を提供することを目的とする。   The present invention is an optical electronic component, a mounting substrate component, a writing device, and an optical electronic device that can be integrated at a high density and has high light collection efficiency of light emitted from a light emitting element, compared to a case where the present invention is not adopted. It aims at providing the manufacturing method of components.

上記課題を解決するため、請求項1に記載の本発明の光学電子部品は、複数の発光素子が配列された基板と、前記発光素子上に形成され、有効光学面と連続した端部が前記基板の端部と連続し且つ前記複数の発光素子が配列された面の法線に対して前記基板の外側に向けて傾斜した傾斜面を成す光学素子とを有し、前記法線と前記傾斜面とでなす角度が、下記の数1で表される角度θ以上である、ことを特徴とする。

Figure 2011060907
In order to solve the above problems, an optical electronic component of the present invention according to claim 1 includes a substrate on which a plurality of light emitting elements are arranged, an end formed on the light emitting element, and continuous with an effective optical surface. An optical element that forms an inclined surface that is continuous with an edge of the substrate and is inclined toward the outside of the substrate with respect to a normal line of the surface on which the plurality of light emitting elements are arranged, and the normal line and the inclined line The angle formed with the surface is not less than the angle θ 1 represented by the following equation ( 1 ).
Figure 2011060907

但し、D0は前記発光素子からの光を受光し感光体上に結像させる結像光学系の受光有効幅、L0は前記結像光学系と前記発光素子との距離、nは前記光学素子の屈折率である。   However, D0 is the effective light receiving width of the imaging optical system that receives light from the light emitting element and forms an image on the photosensitive member, L0 is the distance between the imaging optical system and the light emitting element, and n is the optical element. Refractive index.

請求項2に記載の発明は、上記請求項1に記載の発明において、前記法線と前記傾斜面とでなす角度が、下記の数2で表される角度θ以下である、ことを特徴とする。

Figure 2011060907
The invention according to claim 2 is characterized in that, in the invention according to claim 1, an angle formed between the normal line and the inclined surface is not more than an angle θ 2 represented by the following formula 2. And
Figure 2011060907

但し、θNAは前記結像光学系の構造開口数(NA)より定まる受光角度(半角)、θは前記基板の前記複数の発光素子が配列された面の法線と前記光学素子の端面の法線とでなす角度、nは前記光学素子の屈折率である。 Where θ NA is a light receiving angle (half angle) determined by the structural numerical aperture (NA) of the imaging optical system, and θ L is a normal line of the surface of the substrate on which the plurality of light emitting elements are arranged, and an end surface of the optical element. The angle formed by the normal line, n is the refractive index of the optical element.

請求項3に記載の発明は、上記請求項1または2に記載の発明において、前記複数の発光素子からなる発光素子列の長手方向の端部に位置する前記光学素子の隅部が面取りされた形状をもつ、ことを特徴する。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein a corner of the optical element located at an end portion in a longitudinal direction of the light emitting element row composed of the plurality of light emitting elements is chamfered. It has a shape.

請求項4に記載の本発明の実装基板部品は、実装基板と、前記実装基板上に複数が連続して実装された請求項1〜3の何れかに記載の光学電子部品と、を有することを特徴とする。   The mounting board component according to a fourth aspect of the present invention includes a mounting board and the optical electronic component according to any one of the first to third aspects, wherein a plurality of the mounting board parts are continuously mounted on the mounting board. It is characterized by.

請求項5に記載の本発明の書き込み装置は、請求項4記載の実装基板部品と、結像光学系とを有し、前記発光素子に対応する発光像が前記結像光学系を介して感光体上に光学的に書き込まれる、ことを特徴とする。   According to a fifth aspect of the present invention, there is provided a writing apparatus comprising the mounting substrate component according to the fourth aspect and an imaging optical system, wherein a light emission image corresponding to the light emitting element is exposed via the imaging optical system. It is optically written on the body.

請求項6に記載の本発明の光学電子部品の製造方法は、切断線で区画されて複数の発光素子が配列された複数の光学電子部品の領域を基板に作製し、前記切断線まで有効光学面が張り出すようにして前記発光素子上に光学素子を作製し、前記基板の前記発光素子が配列された面の法線に対して外側に下記の数1で表される角度θ以上で下記の数2で表される角度θ以下となるように、前記光学素子と共に前記基板を前記切断線に沿って切断して光学電子部品を得る、ことを特徴とする。

Figure 2011060907
Figure 2011060907
According to a sixth aspect of the present invention, there is provided a method of manufacturing an optical electronic component according to the present invention, wherein a region of a plurality of optical electronic components in which a plurality of light emitting elements are arrayed is formed on a substrate. An optical element is formed on the light emitting element so that the surface protrudes, and an angle θ 1 or more expressed by the following formula 1 is formed on the outer side with respect to the normal line of the surface on which the light emitting element is arranged on the substrate The optical electronic component is obtained by cutting the substrate along the cutting line together with the optical element so that the angle θ 2 represented by the following formula 2 is not more than 2.
Figure 2011060907
Figure 2011060907

但し、D0は前記発光素子からの光を受光し感光体上に結像させる結像光学系の受光有効幅、L0は前記結像光学系と前記発光素子との距離、nは前記光学素子の屈折率、θNAは前記結像光学系の構造開口数(NA)より定まる受光角度(半角)、θは前記基板の前記複数の発光素子が配列された面の法線と前記光学素子の端面の法線とでなす角度である。 However, D0 is the effective light receiving width of the imaging optical system that receives light from the light emitting element and forms an image on the photosensitive member, L0 is the distance between the imaging optical system and the light emitting element, and n is the optical element. Refractive index, θ NA is a light receiving angle (half angle) determined by the structural numerical aperture (NA) of the imaging optical system, θ L is a normal of the surface of the substrate on which the light emitting elements are arranged, and the optical element This is the angle made with the normal of the end face.

請求項1記載の発明によれば、本発明を採用しない場合に比較して、高い密度での集積化が可能で且つ発光素子から発光された光の集光効率が高くなるという効果を有する。   According to the first aspect of the present invention, compared with the case where the present invention is not adopted, there is an effect that integration at a high density is possible and the light collection efficiency of the light emitted from the light emitting element is increased.

請求項2記載の発明によれば、本発明を採用しない場合に比較して、高い密度での集積化が可能で且つ発光素子から発光された光の集光効率が高い光学電子部品の製造が容易になるという効果を有する。   According to the second aspect of the present invention, compared with the case where the present invention is not adopted, it is possible to manufacture an optical electronic component that can be integrated at a high density and has a high concentration efficiency of light emitted from the light emitting element. It has the effect of becoming easy.

請求項3記載の発明によれば、複数の光学電子部品を相互に向きを違えて配置したときにおける隣接する光学電子部品の光学素子同士の干渉を回避することができる。   According to the third aspect of the present invention, it is possible to avoid interference between optical elements of adjacent optical electronic components when a plurality of optical electronic components are arranged in different directions.

請求項4記載の発明によれば、本発明を採用しない場合に比較して、高い密度での集積化が可能で且つ発光素子から発光された光の集光効率が高くなるという効果を有する。   According to the fourth aspect of the present invention, compared with the case where the present invention is not adopted, there is an effect that integration at a high density is possible and the light collection efficiency of the light emitted from the light emitting element is increased.

請求項5記載の発明によれば、本発明を採用しない場合に比較して、高い密度での集積化が可能で且つ発光素子から発光された光の集光効率が高くなるという効果を有する。   According to the fifth aspect of the present invention, compared to the case where the present invention is not adopted, it is possible to integrate at a high density and to have an effect that the light collection efficiency of the light emitted from the light emitting element is increased.

請求項6記載の発明によれば、本発明を採用しない場合に比較して、高い密度での集積化が可能で且つ発光素子から発光された光の集光効率が高くなるという効果を有する。   According to the sixth aspect of the invention, compared with the case where the present invention is not adopted, there is an effect that integration at a high density is possible and the light collection efficiency of the light emitted from the light emitting element is increased.

本発明の一実施の形態に係る画像形成装置の概念図である。1 is a conceptual diagram of an image forming apparatus according to an embodiment of the present invention. 図1の画像形成装置に用いられた書き込み装置の概念図である。FIG. 2 is a conceptual diagram of a writing device used in the image forming apparatus of FIG. 1. 図2の書き込み装置において千鳥配置された発光素子アレイチップを示す概念図である。FIG. 3 is a conceptual diagram showing light emitting element array chips arranged in a staggered manner in the writing device of FIG. 2. 発光素子アレイチップの要部を説明する断面図である。It is sectional drawing explaining the principal part of a light emitting element array chip. マイクロレンズに形成された傾斜面の角度を規定する数1を説明するための発光素子アレイチップとセルフォックレンズアレイとを側面から示した図である。It is the figure which showed the light emitting element array chip | tip and Selfoc lens array for demonstrating Formula 1 which prescribes | regulates the angle of the inclined surface formed in the micro lens from the side. マイクロレンズに形成された傾斜面の角度を規定する数1を説明するためのセルフォックレンズアレイを平面から示した図である。It is the figure which showed from the plane the selfoc lens array for demonstrating Formula 1 which prescribes | regulates the angle of the inclined surface formed in the microlens. マイクロレンズに形成された傾斜面の角度を規定する数2を説明するための図である。It is a figure for demonstrating number 2 which prescribes | regulates the angle of the inclined surface formed in the micro lens. 発光素子アレイチップのLED列の長手方向の端部に位置するマイクロレンズを示す図である。It is a figure which shows the micro lens located in the edge part of the longitudinal direction of LED row | line | column of a light emitting element array chip. 本実施の形態のチップ製造の一工程における基板を示す平面図である。It is a top view which shows the board | substrate in 1 process of the chip manufacture of this Embodiment. 図9のA−A’線に沿った断面図である。FIG. 10 is a cross-sectional view taken along line A-A ′ of FIG. 9. 本実施の形態のチップ製造の図10に続く工程での基板を示す平面図である。It is a top view which shows the board | substrate in the process following FIG. 10 of chip manufacture of this Embodiment. 図11のB−B’線に沿った断面図である。FIG. 12 is a cross-sectional view taken along line B-B ′ of FIG. 11. 本実施の形態のチップ製造の図12に続く工程での基板を示す平面図である。It is a top view which shows the board | substrate in the process following FIG. 12 of chip manufacture of this Embodiment. 図13のC−C’線に沿った断面図である。FIG. 14 is a cross-sectional view taken along line C-C ′ of FIG. 13.

以下、本発明の一例としての実施の形態について、図面に基づいて詳細に説明する。なお、実施の形態を説明するための図面において、同一の構成要素には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, an embodiment as an example of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

図1に示すように、本実施の形態の画像形成装置10は、矢印で示す方向に回転する像保持体としての感光体ドラム11を有している。   As shown in FIG. 1, an image forming apparatus 10 according to the present embodiment has a photosensitive drum 11 as an image carrier that rotates in a direction indicated by an arrow.

感光体ドラム11の周囲には、感光体ドラム11の表面を予め決められた電位に帯電する帯電器12、帯電された感光体ドラム11の表面に印字ドットイメージの光を照射して帯電を中和することにより静電潜像を書き込む書き込み装置13、静電潜像にトナーを供給して感光体ドラム11上にトナー像を形成する現像器14、給紙カセット15から搬送された用紙16にトナー像を転写する転写器17、感光体ドラム11から電荷を除去する除電器18、およびトナー像を転写した後に感光体ドラム11に残留したトナーを除去するクリーナ19が、順次配置されている。   Around the photosensitive drum 11, a charger 12 for charging the surface of the photosensitive drum 11 to a predetermined potential, and the charged surface of the photosensitive drum 11 is irradiated with light of a print dot image to be charged. A writing device 13 for writing an electrostatic latent image by summing, a developing device 14 for supplying toner to the electrostatic latent image to form a toner image on the photosensitive drum 11, and a sheet 16 conveyed from a paper feed cassette 15 A transfer device 17 for transferring the toner image, a charge eliminating device 18 for removing charges from the photosensitive drum 11, and a cleaner 19 for removing the toner remaining on the photosensitive drum 11 after transferring the toner image are sequentially arranged.

また、給紙カセット15から延びる搬送路20上には、用紙16を決められたタイミングで搬送するための搬送ローラ21が配置されており、さらに、転写器17よりも搬送方向下流側には、用紙16に転写されたトナー像を熱と圧力とで定着する定着器22が設けられている。さらに、搬送路20の終端には、トナー像の定着された用紙16が排出されるトレー23が設置されている。   A transport roller 21 for transporting the paper 16 at a predetermined timing is disposed on the transport path 20 extending from the paper feed cassette 15, and further on the downstream side in the transport direction from the transfer unit 17. A fixing device 22 for fixing the toner image transferred to the paper 16 with heat and pressure is provided. Further, a tray 23 is provided at the end of the conveyance path 20 to discharge the paper 16 on which the toner image is fixed.

図2は画像形成装置10の書き込み装置13を示す概念図、図3は書き込み装置13を構成する発光素子アレイチップを示す説明図である。   FIG. 2 is a conceptual diagram showing the writing device 13 of the image forming apparatus 10, and FIG. 3 is an explanatory view showing a light emitting element array chip constituting the writing device 13.

本実施の形態の書き込み装置13は、実装基板30上に、例えばIC(Integrated Circuit:集積回路)で駆動される自己走査型のLED(Light Emitting Diode:発光ダイオード)42(発光素子の一例)が基板41に列状に配置された発光素子アレイチップ31(光学電子部品の一例)が、主走査方向に長く延びるようにして複数個が連続して実装されている(図3参照)。   In the writing device 13 of the present embodiment, a self-scanning LED (Light Emitting Diode) 42 (an example of a light emitting diode) driven by, for example, an IC (Integrated Circuit) is provided on the mounting substrate 30. A plurality of light emitting element array chips 31 (an example of an optical electronic component) arranged in a row on the substrate 41 are continuously mounted so as to extend long in the main scanning direction (see FIG. 3).

この発光素子アレイチップ31に形成されたLED42が発光する光の光路上には、主走査方向に長尺となった結像光学系であるセルフォック(日本板硝子株式会社の登録商標)レンズアレイ32が、例えば樹脂製のハウジング33に保持されて配置されている。また、セルフォックレンズアレイ32上には、前述の感光体ドラム11が設けられている。また、実装基板30の下地として、発光素子アレイチップ31の熱を放出するためのヒートシンク34が設けられ、ハウジング33とヒートシンク34とは、実装基板30を間に挟んで止め具35により一体に固定されている。   A SELFOC (registered trademark of Nippon Sheet Glass Co., Ltd.) lens array 32, which is an imaging optical system elongated in the main scanning direction, is disposed on the optical path of light emitted from the LEDs 42 formed on the light emitting element array chip 31. For example, the resin housing 33 is held and disposed. Further, the above-described photosensitive drum 11 is provided on the Selfoc lens array 32. Further, a heat sink 34 for releasing heat of the light emitting element array chip 31 is provided as a base of the mounting substrate 30, and the housing 33 and the heat sink 34 are integrally fixed by a stopper 35 with the mounting substrate 30 interposed therebetween. Has been.

このような書き込み装置13により、LED42から発光された光がセルフォックレンズアレイ32を介して感光体ドラム11上に集光される。これにより、LED42に対応する発光像が感光体ドラム11上に潜像として光学的に書き込まれる。   With such a writing device 13, the light emitted from the LED 42 is condensed on the photosensitive drum 11 via the SELFOC lens array 32. As a result, the light emission image corresponding to the LED 42 is optically written as a latent image on the photosensitive drum 11.

次に、光学電子部品の一例としての本実施の形態の発光素子アレイチップ(以下、単に「チップ」という。)31について説明する。   Next, a light emitting element array chip (hereinafter simply referred to as “chip”) 31 according to the present embodiment as an example of an optical electronic component will be described.

図3において、チップ31は、例えばガリウムヒ素ウエハの基板41の面41aに複数のLED42が一列に配列された長尺状の形状を呈している。一列に配列されたLED42で構成されるLED列42L(発光素子列の一例)は基板41の一方の長辺側の端部に寄せて配置されている。そして、LED列42Lの一方端側には、ボンディングパッド43があり、チップ31に配置されたLED42すべてにこれを介して給電される。そのため、このチップ31ではその内部にLED42を駆動するための回路が作り込まれている。そして、複数のチップ31が、LED42のピッチが等間隔になるようにして実装基板30上に千鳥配置(隣接するチップ31の向きを互い違いにして両端が背中合わせになるようにした配置)されて、実装基板部品を構成している。このような千鳥配置により、本実施の形態では、LED42で構成される発光列は列L1と列L2の2列になっている。   In FIG. 3, a chip 31 has a long shape in which a plurality of LEDs 42 are arranged in a line on a surface 41a of a substrate 41 of a gallium arsenide wafer, for example. An LED array 42L (an example of a light emitting element array) composed of LEDs 42 arranged in a line is arranged close to one end of one long side of the substrate 41. A bonding pad 43 is provided on one end side of the LED row 42L, and power is supplied to all the LEDs 42 arranged on the chip 31 through this. Therefore, in this chip 31, a circuit for driving the LED 42 is built therein. Then, the plurality of chips 31 are staggered on the mounting substrate 30 so that the pitches of the LEDs 42 are equally spaced (arranged so that the adjacent chips 31 are staggered so that both ends are back to back), The mounting board component is configured. Due to such a staggered arrangement, in the present embodiment, the light-emitting columns composed of the LEDs 42 are two columns, a column L1 and a column L2.

なお、LED列42Lを端部に寄せて配置したのは、複数のチップ31を千鳥配置した場合に形成される2つの発光列(列L1と列L2)の間隔を極力狭くするためである。   The reason why the LED row 42L is arranged close to the end is to make the interval between the two light emitting rows (row L1 and row L2) formed when the plurality of chips 31 are arranged in a staggered manner as much as possible.

但し、チップ31はLED列42Lが主走査方向に等間隔に連続して配置されていれば足り、チップレイアウトを工夫することにより必ずしも千鳥配置にする必要はないが、コスト上から千鳥配置が最も有力である。また、基板41はガリウムヒ素ウエハに限定されるものではなく、シリコンウエハのような半導体基板はもちろん、LEDなどの発光素子が形成される様々な基板が適用される。   However, it is sufficient for the chips 31 to have the LED rows 42L arranged continuously at equal intervals in the main scanning direction, and it is not always necessary to make the staggered arrangement by devising the chip layout. Influential. Further, the substrate 41 is not limited to a gallium arsenide wafer, and various substrates on which light emitting elements such as LEDs are formed as well as a semiconductor substrate such as a silicon wafer are applied.

LED42上にはマイクロレンズ44(光学素子の一例)が相互に連結するようにしてアレイ状に配列されている。マイクロレンズ44は、本実施の形態では例えば球面レンズからなり、それぞれのLED42に対応して形成されている。   On the LED 42, microlenses 44 (an example of optical elements) are arranged in an array so as to be connected to each other. In the present embodiment, the microlens 44 is formed of a spherical lens, for example, and is formed corresponding to each LED 42.

なお、本実施の形態ではLED42上のマイクロレンズ44は球面レンズであるが、非球面レンズや複合レンズなど、球面レンズ以外であってもよい。   In the present embodiment, the micro lens 44 on the LED 42 is a spherical lens, but may be other than a spherical lens such as an aspheric lens or a compound lens.

ここで、LED42は、指向性が低く光が拡散する。そこで、図示するように、LED42上にマイクロレンズ44を形成することによって集光性をもたせ、利用効率を上げるようにしている。   Here, the LED 42 has low directivity and diffuses light. Therefore, as shown in the figure, a microlens 44 is formed on the LED 42 to provide light condensing performance and increase the utilization efficiency.

本実施の形態のようなLED42では発光部が数10μm角の面のために、LED42の近視野領域にマイクロレンズ44の光学面をおいても所望の集光性が得られない。つまり、発光部が点に仮定されるような集光性を得るためには、マイクロレンズ44の光学面をLED42(の発光面)からなるべく離して構成することが必要になる。これは、発光領域の遠方ならば、レンズ位置毎の光線方向が一様になるからである。よって、マイクロレンズ44はなるべく大きい方が望ましい。   In the LED 42 as in the present embodiment, the light emitting portion is a surface of several tens of μm square, so that even if the optical surface of the microlens 44 is placed in the near-field region of the LED 42, a desired light collecting property cannot be obtained. In other words, in order to obtain the light condensing property such that the light emitting portion is assumed to be a point, it is necessary to configure the optical surface of the micro lens 44 as far as possible from the LED 42 (the light emitting surface thereof). This is because the direction of the light beam at each lens position is uniform if it is far from the light emitting region. Therefore, it is desirable that the microlens 44 is as large as possible.

しかしながら、1枚のウエハからのチップ31の取れ数を増やそうとすると必然的にチップ31の面積は小さくなって十分な大きさのマイクロレンズ44を形成することは困難になる。また、前述した千鳥配置を実現するためにはLED42をチップ31の端部に配置する必要があるために、基板41はLED42になるべく近い位置で切断されることとなり、特に副走査方向に対しては大きなマイクロレンズ44を形成するための領域を形成することが困難である。   However, if an attempt is made to increase the number of chips 31 from a single wafer, the area of the chip 31 is inevitably reduced and it becomes difficult to form a sufficiently large microlens 44. Further, in order to realize the staggered arrangement described above, the LED 42 needs to be arranged at the end of the chip 31, so that the substrate 41 is cut as close as possible to the LED 42, particularly in the sub-scanning direction. It is difficult to form a region for forming a large microlens 44.

そこで、図4に示すように、本実施の形態では、LED42の上にマイクロレンズ44を形成した後に、基板41をマイクロレンズ44ごと斜めに切断することにより、基板41の外側に向けて傾斜した傾斜面44aを有するマイクロレンズ44を作製した。これにより、LED42を端部に配置しつつ所望の大きさのマイクロレンズ44を備えたチップが得られる。   Therefore, as shown in FIG. 4, in the present embodiment, after the microlens 44 is formed on the LED 42, the substrate 41 is tilted toward the outside of the substrate 41 by cutting the substrate 41 together with the microlens 44. A microlens 44 having an inclined surface 44a was produced. Thereby, the chip | tip provided with the micro lens 44 of a desired magnitude | size, arrange | positioning LED42 in an edge part is obtained.

ここで、LED42の上に形成されたマイクロレンズ44は、当該マイクロレンズ44の有効光学面44b(LED42からの光に対してマイクロレンズ44としての光学的な作用を及ぼす部分)と連続した傾斜面44aが基板41の端面と連続している。そして、この傾斜面44aが基板41の面41a(複数のLED42が配列された面41a)の法線S1に対して外側に向けて傾斜した傾斜面44aとなっており、法線S1と傾斜面44aとでなす角度θは次のように規定される。なお、マイクロレンズ44の傾斜面44aは、本実施の形態のようにLED列42Lが基板41の1辺に沿って形成されている場合には1つであるが、仮にLED列42Lが基板41の対向する2辺に沿って2列に形成されている場合には、各LED列42Lに対応して2つ存在することになる。   Here, the micro lens 44 formed on the LED 42 is an inclined surface that is continuous with the effective optical surface 44b of the micro lens 44 (the portion that exerts an optical action as the micro lens 44 on the light from the LED 42). 44 a is continuous with the end surface of the substrate 41. The inclined surface 44a is an inclined surface 44a inclined outward with respect to the normal S1 of the surface 41a of the substrate 41 (the surface 41a on which the plurality of LEDs 42 are arranged), and the normal S1 and the inclined surface The angle θ formed with 44a is defined as follows. The inclined surface 44a of the microlens 44 is one when the LED row 42L is formed along one side of the substrate 41 as in the present embodiment. Are formed in two rows along the two opposing sides, there are two corresponding to each LED row 42L.

すなわち、角度θは、次の数1で表される角度θ以上となっている。

Figure 2011060907
That is, the angle θ is equal to or larger than the angle θ 1 represented by the following expression 1 .
Figure 2011060907

ここで、D0はセルフォックレンズアレイ32の受光有効幅、L0はセルフォックレンズアレイ32とLED42との距離、nはマイクロレンズ44の屈折率である(図5および図6参照)。   Here, D0 is the effective light receiving width of the Selfoc lens array 32, L0 is the distance between the Selfoc lens array 32 and the LED 42, and n is the refractive index of the microlens 44 (see FIGS. 5 and 6).

なお、セルフォックレンズアレイ32は本発明における結像光学系の一例、LED42は本発明における発光素子の一例、マイクロレンズ44は本発明における光学素子の一例であることから、数1を本発明で説明すると、D0は発光素子からの光を受光する結像光学系の受光有効幅、L0は結像光学系と発光素子との距離、nは光学素子の屈折率である。   The SELFOC lens array 32 is an example of an imaging optical system in the present invention, the LED 42 is an example of a light emitting element in the present invention, and the microlens 44 is an example of an optical element in the present invention. To explain, D0 is the effective light receiving width of the imaging optical system that receives light from the light emitting element, L0 is the distance between the imaging optical system and the light emitting element, and n is the refractive index of the optical element.

数1で表される角度θは、発光点であるLED42から結像光学系であるセルフォックレンズアレイ32の受光有効幅を見たときの見込み半角をマイクロレンズ44の屈折率で割った角度である。この角度θは、マイクロレンズ44を介して照射されたLED42の光がセルフォックレンズアレイ32の受光有効幅で入射する限界角度である。したがって、法線S1と傾斜面44aとでなす角度θは、少なくとも角度θ以上という条件を満たしていればよい。 The angle θ 1 represented by Equation 1 is an angle obtained by dividing the expected half angle when the effective light receiving width of the SELFOC lens array 32 that is the imaging optical system is viewed from the LED 42 that is the light emitting point by the refractive index of the microlens 44. It is. This angle θ 1 is a limit angle at which the light of the LED 42 irradiated through the microlens 44 enters with the effective light receiving width of the selfoc lens array 32. Therefore, the angle theta which forms with the normal line S1 and the inclined surfaces 44a, it satisfies the condition that at least the angle theta 1 or more.

これにより、本実施の形態の構造を採用しない場合に比較して、高い密度で集積化されて且つLED42から発光された光の集光効率が高いチップ31が得られる。したがって、当該チップ31を書き込み装置13に適用すれば、副走査方向の集光効率が向上する。   Thereby, as compared with the case where the structure of the present embodiment is not adopted, the chip 31 that is integrated at a high density and has high light collection efficiency of the light emitted from the LED 42 is obtained. Therefore, if the chip 31 is applied to the writing device 13, the light collection efficiency in the sub-scanning direction is improved.

しかしながら、法線S1と傾斜面44aとでなす角度θが角度θ以上であったとしても、セルフォックレンズアレイ32の構造開口数に相当する角度をマイクロレンズ44の補正力で割った角度θを超えて角度を大きくしても集光効率はそれ以上上がらない。 However, even as the angle theta which forms with the normal line S1 and the inclined surface 44a is was the angle theta 1 or more, the angle theta divided by the angle corresponding to the structure numerical aperture of the SELFOC lens array 32 by the correction force of the microlens 44 Increasing the angle beyond 2 does not increase the light collection efficiency any further.

そこで、法線S1と傾斜面44aとでなす角度θは、上述した数1で表される角度θ以上であって、次の数2で表される角度θ以下となっていればよい。

Figure 2011060907
Therefore, the angle θ formed by the normal line S1 and the inclined surface 44a is not less than the angle θ1 expressed by the above-described equation 1 and not more than the angle θ2 expressed by the following equation 2. .
Figure 2011060907

ここで、θNAはセルフォックレンズアレイ32の構造開口数(NA)より定まる受光角度(半角)、θは基板41の面41a(複数のLED42が配列された面41a)の法線S1とマイクロレンズ44の端面の法線S2とでなす角度、nはマイクロレンズ44の屈折率である(図7参照)。 Here, θ NA is a light receiving angle (half angle) determined by the structural numerical aperture (NA) of the SELFOC lens array 32, and θ L is a normal line S1 of the surface 41a of the substrate 41 (the surface 41a on which the plurality of LEDs 42 are arranged). An angle formed by the normal S2 of the end surface of the microlens 44, n is a refractive index of the microlens 44 (see FIG. 7).

なお、同様にこの数2を本発明で説明すると、θNAは結像光学系の構造開口数(NA)より定まる受光角度(半角)、θは基板の複数の発光素子が配列された面の法線と端部における光学素子の有効光学面の法線とでなす角度、nは光学素子の屈折率である。 Similarly, when this number 2 is explained in the present invention, θ NA is a light receiving angle (half angle) determined by the structural numerical aperture (NA) of the imaging optical system, and θ L is a surface on which a plurality of light emitting elements of the substrate are arranged. The angle formed by the normal line and the normal line of the effective optical surface of the optical element at the end, n is the refractive index of the optical element.

これにより、傾斜面44aの最大傾斜角度が規定されて傾斜面44aをこれ以上の角度で作製する必要がない。したがって、高い密度で集積化されて且つLED42から発光された光の集光効率が高いチップ31の製造が容易になる。   Thereby, the maximum inclination angle of the inclined surface 44a is defined, and it is not necessary to produce the inclined surface 44a at an angle larger than this. Therefore, it is easy to manufacture the chip 31 that is integrated at a high density and has high light collection efficiency of the light emitted from the LED 42.

さて、図8に示すように、LED列42Lの長手方向の端部に位置するマイクロレンズ44−1には、その隅部47が面取りされた形状となっている。本実施の形態では、マイクロレンズ44−1の隅部47が基板41の約45°に切り欠かれている。これにより、複数のチップ31を千鳥配置したときに、相互に隣接するチップ31の端部に位置するマイクロレンズ44−1は、隅部47が面取りされているために干渉するおそれが減る。したがって、チップ31に形成されたLED42は所望の位置に配置される。   Now, as shown in FIG. 8, the corner 47 is chamfered in the microlens 44-1 located at the end of the LED row 42L in the longitudinal direction. In the present embodiment, the corner 47 of the microlens 44-1 is cut out at about 45 ° of the substrate 41. Thereby, when a plurality of chips 31 are arranged in a staggered manner, the microlenses 44-1 positioned at the ends of the chips 31 adjacent to each other are less likely to interfere with each other because the corners 47 are chamfered. Therefore, the LED 42 formed on the chip 31 is arranged at a desired position.

なお、面取りの角度は本実施の形態のような約45°に限定されるものではなく、チップ31を配置したときに隣接するチップ31の端部に位置するマイクロレンズ44−1同士が干渉しなければ、45°以下であっても、45°以上であってもよい。また、本実施の形態のように平面に面取りされていても、あるいは曲面に面取りされた形状となっていてもよい。   Note that the chamfering angle is not limited to about 45 ° as in the present embodiment, and when the chips 31 are arranged, the microlenses 44-1 located at the ends of the adjacent chips 31 interfere with each other. If not, it may be 45 ° or less or 45 ° or more. Further, it may be chamfered to a flat surface as in the present embodiment, or may be chamfered to a curved surface.

さらに、チップ31を千鳥配置しない場合、あるいはチップ31を千鳥配置してもマイクロレンズ44同士の干渉が発生しない場合には、隅部47の面取り形状は必要ない。   Further, if the chips 31 are not arranged in a staggered manner, or if the interference between the microlenses 44 does not occur even if the chips 31 are arranged in a staggered manner, the chamfered shape of the corner portion 47 is not necessary.

次に、以上の構造を有するチップ31の製造方法について、図9〜図14を用いて説明する。   Next, a manufacturing method of the chip 31 having the above structure will be described with reference to FIGS.

まず、基板41を用意し、この基板41の面41a上に、図9および図10に示すように、切断線48で区画され、複数のLED42が配列された複数のチップ領域131(光学電子部品の領域の一例)を作製する。なお、ここでの基板41はチップ31に切断される前の基板であるから、図示するように、チップ31に比べて広い面積となっている。   First, a substrate 41 is prepared, and a plurality of chip regions 131 (optical electronic components) in which a plurality of LEDs 42 are arranged on a surface 41a of the substrate 41, as shown in FIGS. An example of the region is prepared. Note that the substrate 41 here is a substrate before being cut into the chips 31, and therefore has a larger area than the chip 31 as shown in the figure.

次に、図11および図12に示すように、切断線48(図12では、矢印で示している。)まで有効光学面44b(すなわち、LED42からの光に対してマイクロレンズ44としての作用を及ぼす球面あるいは非球面部分)が張り出すようにしてLED42上にマイクロレンズ44を作製する。   Next, as shown in FIGS. 11 and 12, the effective optical surface 44b (that is, the action as the micro lens 44 with respect to the light from the LED 42) up to the cutting line 48 (indicated by an arrow in FIG. 12). The microlens 44 is formed on the LED 42 so that the spherical surface or the aspherical surface is projected.

そして、ダイシングブレード(図示せず)を用いて基板41を切断線48に沿って切断して、チップ31が得られる。ここで、図13および図14に示すように、マイクロレンズ44における有効光学面44bと連続し、基板41の面41a(複数のLED42が配列された面41a)の法線S1に対して外側に向けて傾斜した、傾斜面44aを成すように(図4参照)、且つ、法線S1と傾斜面44aとでなす角度が、前述した数1で表される角度θ以上で、同じく前述した数2で表される角度θ以下となる角度に切断する。 Then, the substrate 41 is cut along the cutting line 48 using a dicing blade (not shown), and the chip 31 is obtained. Here, as shown in FIG. 13 and FIG. 14, it is continuous with the effective optical surface 44 b of the microlens 44 and outwards with respect to the normal S 1 of the surface 41 a of the substrate 41 (the surface 41 a on which the plurality of LEDs 42 are arranged). inclined towards, so as to form an inclined surface 44a (see FIG. 4), and, the angle formed between the normal line S1 and the inclined surface 44a, an angle theta 1 or more represented by the number 1 above, were also described above Cutting is performed at an angle that is equal to or smaller than the angle θ 2 represented by Equation 2 .

図13において、ダイシングブレードの基板41上の切断軌跡を符号50で示す。また、図14において、ダイシングブレードの基板41に対する切断位置および切断角を符号51で示す。   In FIG. 13, a cutting locus on the substrate 41 of the dicing blade is indicated by reference numeral 50. In FIG. 14, a cutting position and a cutting angle of the dicing blade with respect to the substrate 41 are denoted by reference numeral 51.

なお、チップ31が得られた後、複数のチップ31を実装基板30上に千鳥状あるいは直線状などに配置して連続して実装することにより実装基板部品が得られる。そして、このような実装基板部品がセルフォックレンズアレイ32と光学的に結合して、感光体ドラム11上に潜像を形成する書き込み装置13が形成される。また、チップ31に形成されたマイクロレンズ44−1の面取りが必要な場合には、チップ31の実装基板30への実装に先立って行う。   In addition, after the chip 31 is obtained, a plurality of chips 31 are arranged on the mounting substrate 30 in a staggered pattern or a straight line and mounted continuously to obtain a mounting board component. Then, such a mounting board component is optically coupled to the SELFOC lens array 32 to form a writing device 13 that forms a latent image on the photosensitive drum 11. In addition, when it is necessary to chamfer the microlens 44-1 formed on the chip 31, it is performed prior to mounting the chip 31 on the mounting substrate 30.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって、開示された技術に限定されるものではないと考えるべきである。すなわち、本発明の技術的な範囲は、前記の実施の形態における説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載に従って解釈されるべきであり、特許請求の範囲の記載技術と均等な技術および特許請求の範囲の要旨を逸脱しない限りにおけるすべての変更が含まれる。   Although the invention made by the present inventor has been specifically described based on the embodiment, the embodiment disclosed in this specification is an example in all respects and is limited to the disclosed technology. Should not be considered. That is, the technical scope of the present invention should not be construed restrictively based on the description in the above-described embodiment, but should be construed according to the description of the scope of claims. All modifications are included without departing from the technical scope equivalent to the described technique and the gist of the claims.

たとえば、発光素子としては、例えばVCSEL(Vertical Cavity Surface Emitting LASER)など、LED以外を適用してもよい。また、発光素子は自己走査型ではなくてもよい。   For example, as the light emitting element, other than the LED such as VCSEL (Vertical Cavity Surface Emitting LASER) may be applied. Further, the light emitting element may not be a self-scanning type.

さらに、発光素子からの光を受光する結像光学系としては、例えばRMLA(Roof Mirror Lens Array)やホログラム素子など、セルフォックレンズアレイ以外を適用してもよい。   Furthermore, as the imaging optical system that receives light from the light emitting element, other than the Selfoc lens array, such as a RMLA (Roof Mirror Lens Array) or a hologram element, may be applied.

以上の説明では、本発明を画像形成装置の一例であるにプリンタ適用した場合が示されているが、例えばファクシミリやコピー機、あるいはこれらの機能が複合された複合機などの画像形成装置に適用してもよい。   In the above description, the present invention is applied to a printer as an example of an image forming apparatus. However, the present invention is applied to, for example, an image forming apparatus such as a facsimile, a copier, or a complex machine in which these functions are combined. May be.

10 画像形成装置
11 感光体ドラム
13 書き込み装置
30 実装基板
31 発光素子アレイチップ
32 セルフォックレンズアレイ
41 基板
41a 面
42L LED列
44,44−1 マイクロレンズ
44a 傾斜面
44b 有効光学面
47 隅部
48 切断線
131 チップ領域
S1 法線
S2 法線
DESCRIPTION OF SYMBOLS 10 Image forming apparatus 11 Photosensitive drum 13 Writing apparatus 30 Mounting board 31 Light emitting element array chip 32 Selfoc lens array 41 Board | substrate 41a surface 42L LED row 44,44-1 Micro lens 44a Inclined surface 44b Effective optical surface 47 Corner part 48 Cutting Line 131 Chip area S1 Normal S2 Normal

Claims (6)

複数の発光素子が配列された基板と、
前記発光素子上に形成され、有効光学面と連続した端部が前記基板の端部と連続し且つ前記複数の発光素子が配列された面の法線に対して前記基板の外側に向けて傾斜した傾斜面を成す光学素子とを有し、
前記法線と前記傾斜面とでなす角度が、下記の数1で表される角度θ以上である、
ことを特徴とする光学電子部品。
Figure 2011060907
但し、D0は前記発光素子からの光を受光し感光体上に結像させる結像光学系の受光有効幅、L0は前記結像光学系と前記発光素子との距離、nは前記光学素子の屈折率である。
A substrate on which a plurality of light emitting elements are arranged;
An end formed on the light emitting element, continuous with an effective optical surface, is continuous with an end of the substrate, and is inclined toward the outside of the substrate with respect to a normal line of the surface on which the plurality of light emitting elements are arranged. An optical element having an inclined surface,
The angle formed by the normal line and the inclined surface is not less than the angle θ 1 represented by the following formula 1.
An optical electronic component.
Figure 2011060907
However, D0 is the effective light receiving width of the imaging optical system that receives light from the light emitting element and forms an image on the photosensitive member, L0 is the distance between the imaging optical system and the light emitting element, and n is the optical element. Refractive index.
前記法線と前記傾斜面とでなす角度が、下記の数2で表される角度θ以下である、
ことを特徴とする請求項1記載の光学電子部品。
Figure 2011060907
但し、θNAは前記結像光学系の構造開口数(NA)より定まる受光角度(半角)、θは前記基板の前記複数の発光素子が配列された面の法線と前記光学素子の端面の法線とでなす角度、nは前記光学素子の屈折率である。
The angle formed by the normal line and the inclined surface is not more than an angle θ 2 represented by the following formula 2.
The optical electronic component according to claim 1.
Figure 2011060907
Where θ NA is a light receiving angle (half angle) determined by the structural numerical aperture (NA) of the imaging optical system, and θ L is a normal line of the surface of the substrate on which the plurality of light emitting elements are arranged, and an end surface of the optical element. The angle formed by the normal line, n is the refractive index of the optical element.
前記複数の発光素子からなる発光素子列の長手方向の端部に位置する前記光学素子の隅部が面取りされた形状をもつ、
ことを特徴する請求項1または2記載の光学電子部品。
The corner of the optical element located at the end in the longitudinal direction of the light emitting element row composed of the plurality of light emitting elements has a chamfered shape,
The optical electronic component according to claim 1, wherein the optical electronic component is an optical electronic component.
実装基板と、
前記実装基板上に複数が連続して実装された請求項1〜3の何れかに記載の光学電子部品と、
を有することを特徴とする実装基板部品。
A mounting board;
The optical electronic component according to any one of claims 1 to 3, wherein a plurality are continuously mounted on the mounting substrate.
A mounting board component comprising:
請求項4記載の実装基板部品と、結像光学系とを有し、
前記発光素子に対応する発光像が前記結像光学系を介して感光体上に光学的に書き込まれる、
ことを特徴とする書き込み装置。
The mounting board component according to claim 4 and an imaging optical system,
A light emission image corresponding to the light emitting element is optically written on a photoconductor via the imaging optical system.
A writing device.
切断線で区画されて複数の発光素子が配列された複数の光学電子部品の領域を基板に作製し、
前記切断線まで有効光学面が張り出すようにして前記発光素子上に光学素子を作製し、
前記基板の前記発光素子が配列された面の法線に対して外側に下記の数1で表される角度θ以上で下記の数2で表される角度θ以下となるように、前記光学素子と共に前記基板を前記切断線に沿って切断して光学電子部品を得る、
ことを特徴とする光学電子部品の製造方法。
Figure 2011060907
Figure 2011060907
但し、D0は前記発光素子からの光を受光し感光体上に結像させる結像光学系の受光有効幅、L0は前記結像光学系と前記発光素子との距離、nは前記光学素子の屈折率、θNAは前記結像光学系の構造開口数(NA)より定まる受光角度(半角)、θは前記基板の前記複数の発光素子が配列された面の法線と前記光学素子の端面の法線とでなす角度である。
A region of a plurality of optical electronic components that are partitioned by cutting lines and in which a plurality of light emitting elements are arranged is produced on a substrate,
An optical element is produced on the light emitting element so that an effective optical surface extends to the cutting line,
The angle θ 1 represented by the following equation 1 and the angle θ 2 represented by the following equation 2 are set to be outside the normal line of the surface on which the light emitting elements of the substrate are arranged. Cutting the substrate along the cutting line together with an optical element to obtain an optical electronic component;
An optical electronic component manufacturing method characterized by the above.
Figure 2011060907
Figure 2011060907
However, D0 is the effective light receiving width of the imaging optical system that receives light from the light emitting element and forms an image on the photosensitive member, L0 is the distance between the imaging optical system and the light emitting element, and n is the optical element. Refractive index, θ NA is a light receiving angle (half angle) determined by the structural numerical aperture (NA) of the imaging optical system, θ L is a normal of the surface of the substrate on which the light emitting elements are arranged, and the optical element This is the angle made with the normal of the end face.
JP2009207322A 2009-09-08 2009-09-08 WRITE APPARATUS, MOUNTED BOARD COMPONENT, AND MANUFACTURING METHOD FOR WRITE APPARATUS Expired - Fee Related JP5428672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207322A JP5428672B2 (en) 2009-09-08 2009-09-08 WRITE APPARATUS, MOUNTED BOARD COMPONENT, AND MANUFACTURING METHOD FOR WRITE APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207322A JP5428672B2 (en) 2009-09-08 2009-09-08 WRITE APPARATUS, MOUNTED BOARD COMPONENT, AND MANUFACTURING METHOD FOR WRITE APPARATUS

Publications (2)

Publication Number Publication Date
JP2011060907A true JP2011060907A (en) 2011-03-24
JP5428672B2 JP5428672B2 (en) 2014-02-26

Family

ID=43948229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207322A Expired - Fee Related JP5428672B2 (en) 2009-09-08 2009-09-08 WRITE APPARATUS, MOUNTED BOARD COMPONENT, AND MANUFACTURING METHOD FOR WRITE APPARATUS

Country Status (1)

Country Link
JP (1) JP5428672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112635A (en) * 2012-11-09 2014-06-19 Nichia Chem Ind Ltd Method for manufacturing light-emitting device, and light-emitting device
JP2016213364A (en) * 2015-05-12 2016-12-15 三菱電機株式会社 Light-emitting device and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538845A (en) * 1991-08-06 1993-02-19 Eastman Kodak Japan Kk Light-emitting diode array printer head
JP2004249626A (en) * 2003-02-21 2004-09-09 Nippon Sheet Glass Co Ltd Light emitting element array chip and optical writing head
WO2007113947A1 (en) * 2006-04-04 2007-10-11 Fuji Xerox Co., Ltd. Light emitting element array with micro-lens and optical writing head
JP2007266408A (en) * 2006-03-29 2007-10-11 Fuji Xerox Co Ltd Light emitting element array chip and optical write head
JP2007276183A (en) * 2006-04-04 2007-10-25 Fuji Xerox Co Ltd Light emitting element array chip with microlens, and optical writing head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538845A (en) * 1991-08-06 1993-02-19 Eastman Kodak Japan Kk Light-emitting diode array printer head
JP2004249626A (en) * 2003-02-21 2004-09-09 Nippon Sheet Glass Co Ltd Light emitting element array chip and optical writing head
JP2007266408A (en) * 2006-03-29 2007-10-11 Fuji Xerox Co Ltd Light emitting element array chip and optical write head
WO2007113947A1 (en) * 2006-04-04 2007-10-11 Fuji Xerox Co., Ltd. Light emitting element array with micro-lens and optical writing head
JP2007276183A (en) * 2006-04-04 2007-10-25 Fuji Xerox Co Ltd Light emitting element array chip with microlens, and optical writing head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112635A (en) * 2012-11-09 2014-06-19 Nichia Chem Ind Ltd Method for manufacturing light-emitting device, and light-emitting device
JP2016213364A (en) * 2015-05-12 2016-12-15 三菱電機株式会社 Light-emitting device and display device

Also Published As

Publication number Publication date
JP5428672B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP2005175417A (en) Light emitting element array, light writing unit, and image forming apparatus
JP5157896B2 (en) Light emitting element array with microlens and optical writing head
JP5428672B2 (en) WRITE APPARATUS, MOUNTED BOARD COMPONENT, AND MANUFACTURING METHOD FOR WRITE APPARATUS
JP4952028B2 (en) Light emitting element array chip with microlens and optical writing head
JP2006256201A (en) Writing unit and image forming apparatus
US8253767B2 (en) Line head and image forming apparatus
JP4992268B2 (en) Light emitting element array chip and optical writing head
JP2017152516A (en) Optical element chip, optical print head, image forming apparatus, and method for manufacturing optical element chip
JP4127533B2 (en) LIGHT EMITTING ELEMENT ARRAY, OPTICAL WRITE UNIT AND IMAGE FORMING APPARATUS PROVIDED WITH THE LIGHT EMITTING ELEMENT ARRAY, AND METHOD FOR PRODUCING THE LIGHT EMITTING ELEMENT ARRAY
JP5157339B2 (en) Line head and image forming apparatus using the line head
JP2013042009A (en) Light-emitting component, print head, and image forming apparatus
JP2009193060A (en) Lens array, exposure head, and image forming apparatus
JP2016047630A (en) Optical element apparatus, optical writing head, image formation apparatus, and manufacturing method of optical element chip
JP2006013441A (en) Optical write unit, image forming apparatus, and process cartridge
JP6123496B2 (en) Optical writing apparatus and image forming apparatus
JP6455175B2 (en) Optical writing apparatus and image forming apparatus
JP2012174810A (en) Light-emitting component, print head and image forming apparatus
JP2012247541A (en) Lens array, lens unit, led head, exposure device, image forming apparatus, and reading device
JP2009186981A (en) Line head and image forming apparatus
JP2017132163A (en) Light-emitting element unit, exposure device, image formation device, and manufacturing method for light-emitting element unit
JP2010274431A (en) Exposure device and image forming apparatus
JP5167872B2 (en) Light emitting element array chip, light emitting element array chip manufacturing method, light emitting element head, and image forming apparatus
JP2013042010A (en) Light-emitting component, print head, and image forming apparatus
JP2008227071A (en) Semiconductor light-emitting element array chip, its fabrication process, and exposure light source device,
JP2016105125A (en) Lens array unit, and image forming apparatus and image reading device including the lens array unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees