JP2011060839A - Electrode film and glass substrate having the same, and method of manufacturing the glass substrate - Google Patents

Electrode film and glass substrate having the same, and method of manufacturing the glass substrate Download PDF

Info

Publication number
JP2011060839A
JP2011060839A JP2009206030A JP2009206030A JP2011060839A JP 2011060839 A JP2011060839 A JP 2011060839A JP 2009206030 A JP2009206030 A JP 2009206030A JP 2009206030 A JP2009206030 A JP 2009206030A JP 2011060839 A JP2011060839 A JP 2011060839A
Authority
JP
Japan
Prior art keywords
film
nitride
glass substrate
electrode
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009206030A
Other languages
Japanese (ja)
Other versions
JP5114683B2 (en
Inventor
Akiro Ando
彰朗 安藤
Hiroaki Sakamoto
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009206030A priority Critical patent/JP5114683B2/en
Publication of JP2011060839A publication Critical patent/JP2011060839A/en
Application granted granted Critical
Publication of JP5114683B2 publication Critical patent/JP5114683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an Mo electrode film from readily peeling off, and to prevent adverse effects to diffusion of Na from a glass substrate, when forming the Mo electrode film on the glass substrate. <P>SOLUTION: After forming a film including an Mo nitride on the glass substrate 1 as a relaxed layer 2 by a PVD method under an atmosphere that contains nitrogen gas, an Mo film is formed as the Mo electrode film 3 by the PVD method under an Ar gas atmosphere, thus reducing internal stresses of a film and preventing ready peeling. Also, inclusion of Mo in the relaxed layer 2 enables diffusion of Na from the glass substrate 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば太陽電池用の電極、特にカルコパイライト型構造の裏面電極として用いられるMo電極膜、当該電極膜付きのガラス基板、及びその製造方法に関する。   The present invention relates to an electrode for a solar cell, in particular, a Mo electrode film used as a back electrode of a chalcopyrite structure, a glass substrate with the electrode film, and a method for manufacturing the same.

カルコパイライト型構造の化合物(以下、必要に応じてカルコパイライト型と称する)を用いた薄膜太陽電池は、地上電力用の低コスト太陽電池の有力候補として注目され、化合物半導体部の成分や製法を検討することで、太陽電池の変換効率を向上させる研究が多くなされてきている。カルコパイライト型化合物の代表的な化合物としてはCuInSe2があり、この製法としては、セレン化法や三元同時蒸着法といった製法が有名である。セレン化法とは、基板にCuとInとの積層膜を形成した後、Se蒸気(例えば3〜15%のH2Se)を含有するAr雰囲気で400〜550℃の熱処理を施すことでCuInSe2薄膜を形成する方法である。
ここで用いる基板としては、ソーダライムガラス上にMo電極を形成したものが好適である。MoはスパッタやCVD法により1μm程度の薄膜を形成する。その後、電極回路を形成するためにレーザーアブレーション等の手法を用いて一部のMoを除去して、Mo電極回路を形成した後、カルコパイライト型化合物膜を形成し、さらにバッファー層、透明電極膜を形成し、薄膜太陽電池となる。ガラス基板から、Mo電極の上に形成されるカルコパイライト型化合物へNaが適度に拡散することから、Mo電極は、当該カルコパイライト型化合物の配向性が良好になる電極として多く使用されている。
Thin film solar cells using a chalcopyrite type compound (hereinafter referred to as a chalcopyrite type as needed) are attracting attention as potential candidates for low-cost solar cells for terrestrial power. Many studies have been made to improve the conversion efficiency of solar cells by studying them. A representative compound of the chalcopyrite type compound is CuInSe 2 , and as this production method, production methods such as a selenization method and a ternary co-evaporation method are well known. The selenization method is a process of forming a Cu and In laminated film on a substrate, followed by heat treatment at 400 to 550 ° C. in an Ar atmosphere containing Se vapor (for example, 3 to 15% H 2 Se). This is a method of forming two thin films.
As a board | substrate used here, what formed Mo electrode on soda-lime glass is suitable. Mo forms a thin film of about 1 μm by sputtering or CVD. After that, a part of Mo is removed by using a technique such as laser ablation to form an electrode circuit, a Mo electrode circuit is formed, a chalcopyrite type compound film is then formed, a buffer layer, a transparent electrode film To form a thin film solar cell. Since Na diffuses moderately from the glass substrate to the chalcopyrite type compound formed on the Mo electrode, the Mo electrode is often used as an electrode that improves the orientation of the chalcopyrite type compound.

このカルコパイライト型化合物を用いた薄膜太陽電池を形成するにあたり、セレン化処理といった熱処理の際に、ガラス板とMo電極との熱膨張係数の差によりMo膜の剥がれが生じたり、また、成膜方法によってはMo膜中の内部応力の影響によりMo膜が剥がれやすくなっていたりした。また、太陽電池の変換効率を向上させるため、テクスチャ構造を適用する試みも成されているが、Mo膜の剥がれやすさが問題となってきた。
そのため、特許文献1では、ガラス板とMo電極との間に、ガラス板とMo電極との中間の熱膨張係数を持つ材料の膜を緩衝層として設けて、Mo電極を剥がれ難くしている。
しかしながら、緩衝層としてTa、Cr、Nb、Ti等の金属膜を挟むことで、ガラス板から化合物へのNaの拡散状況が変わり、化合物の特性が安定しなくなることがあった。
When forming a thin-film solar cell using this chalcopyrite type compound, the Mo film peels off due to the difference in thermal expansion coefficient between the glass plate and the Mo electrode during heat treatment such as selenization treatment. Depending on the method, the Mo film was easily peeled off due to the internal stress in the Mo film. In addition, attempts have been made to apply a texture structure in order to improve the conversion efficiency of the solar cell, but the ease of peeling of the Mo film has become a problem.
Therefore, in Patent Document 1, a film of a material having a thermal expansion coefficient intermediate between the glass plate and the Mo electrode is provided as a buffer layer between the glass plate and the Mo electrode so that the Mo electrode is difficult to peel off.
However, by sandwiching a metal film of Ta, Cr, Nb, Ti or the like as the buffer layer, the diffusion state of Na from the glass plate to the compound may change, and the characteristics of the compound may not be stable.

特開平6−252433号公報JP-A-6-252433

本発明は、以上のような実情に鑑みてなされたものであり、ガラス基板上にMo電極膜を形成する際に、Mo電極膜を剥がれ難くし、かつガラス基板からのNaの拡散に悪影響を及ぼさないようにすることを目的とする。   The present invention has been made in view of the above situation, and when forming a Mo electrode film on a glass substrate, the Mo electrode film is hardly peeled off and has an adverse effect on the diffusion of Na from the glass substrate. The purpose is to prevent it from reaching.

上記課題を解決するために、本発明者らは以下の手段を創成した。
(1)ガラス基板の上に形成されるMo窒化物を含む膜と、前記Mo窒化物を含む膜の上に形成されたMo系膜と、からなることを特徴とする電極膜。
(2)前記Mo窒化物を含む膜の厚みが10nm〜50nmであることを特徴とする、(1)に記載の電極膜。
(3)前記Mo系膜の厚みが100nm〜4000nmであることを特徴とする、(1)または(2)に記載の電極膜。
(4)前記Mo窒化物を含む膜がMo窒化物とMoとの混合膜であることを特徴とする(1)〜(3)のいずれかに記載の電極膜。
(5)ガラス基板の上に形成された積層膜であり、Mo窒化物を含む膜とMo系膜とが順次積層された膜であることを特徴とする電極膜。
(6)前記積層膜において、前記Mo窒化物を含む膜の厚みの合計に対して前記Mo系膜の厚みの合計が10倍以上80倍以下であることを特徴とする、(5)に記載の電極膜。
(7)前記Mo窒化物を含む膜がMo窒化物とMoとの混合膜であることを特徴とする(5)または(6)に記載の電極膜。
(8)(1)〜(7)のいずれかに記載の電極膜がガラス基板上に形成されたことを特徴とする電極膜付きガラス基板。
(9)ガラス基板の上にMo窒化物を含む膜を形成した後、前記Mo窒化物を含む膜の上にMo膜を形成する電極膜付きガラス基板の製造方法であって、窒素ガスを含む雰囲気でMoターゲットを用いたPVD法により前記ガラス基板の上に前記Mo窒化物を含む膜を形成する工程と、Arガス雰囲気でMoターゲットを用いたPVD法により前記Mo窒化物を含む膜の上に前記Mo膜を形成する工程と、を有することを特徴とする、電極膜付きガラス基板の製造方法。
(10)ガラス基板の上にMo窒化物を含む膜を形成した後、前記Mo窒化物を含む膜の上にMo膜を形成する電極膜付きガラス基板の製造方法であって、窒素ガスを含む雰囲気でMoターゲットを用いたPVD法により前記ガラス基板の上に前記Mo窒化物を含む膜を形成する工程の後に、Arガス雰囲気でMoターゲットを用いたPVD法により前記Mo窒化物を含む膜の上に前記Mo膜を形成する工程と、窒素ガスを含む雰囲気でMoターゲットを用いたPVD法により前記Mo膜の上に前記Mo窒化物を含む膜を形成する工程の2つの工程を交互に繰り返すことにより、前記ガラス基板の上の前記Mo窒化物を含む膜の上に、前記Mo膜と前記Mo窒化物を含む膜とが前記Mo膜が最上層となるように交互に積層された積層膜を有する電極膜を形成することを特徴とする、電極膜付きガラス基板の製造方法。
In order to solve the above problems, the present inventors have created the following means.
(1) An electrode film comprising a film containing Mo nitride formed on a glass substrate and a Mo-based film formed on the film containing Mo nitride.
(2) The electrode film according to (1), wherein a thickness of the film containing Mo nitride is 10 nm to 50 nm.
(3) The electrode film according to (1) or (2), wherein the Mo-based film has a thickness of 100 nm to 4000 nm.
(4) The electrode film according to any one of (1) to (3), wherein the film containing Mo nitride is a mixed film of Mo nitride and Mo.
(5) An electrode film which is a laminated film formed on a glass substrate and is a film in which a film containing Mo nitride and a Mo-based film are sequentially laminated.
(6) In the laminated film, the total thickness of the Mo-based film is 10 to 80 times the total thickness of the Mo nitride-containing film. Electrode film.
(7) The electrode film according to (5) or (6), wherein the film containing Mo nitride is a mixed film of Mo nitride and Mo.
(8) A glass substrate with an electrode film, wherein the electrode film according to any one of (1) to (7) is formed on a glass substrate.
(9) A method of manufacturing a glass substrate with an electrode film, wherein a film containing Mo nitride is formed on a glass substrate and then a Mo film is formed on the film containing Mo nitride, which includes nitrogen gas Forming a film containing the Mo nitride on the glass substrate by a PVD method using a Mo target in an atmosphere; and over the film containing the Mo nitride by a PVD method using a Mo target in an Ar gas atmosphere. And a step of forming the Mo film. A method for producing a glass substrate with an electrode film.
(10) A method for manufacturing a glass substrate with an electrode film, wherein a film containing Mo nitride is formed on a glass substrate, and then a Mo film is formed on the film containing Mo nitride, which includes nitrogen gas After the step of forming the film containing Mo nitride on the glass substrate by the PVD method using an Mo target in an atmosphere, the film containing the Mo nitride by the PVD method using an Mo target in an Ar gas atmosphere Two steps of alternately forming the Mo film on the Mo film and forming the Mo nitride film on the Mo film by a PVD method using a Mo target in an atmosphere containing nitrogen gas are alternately repeated. Thus, a laminated film in which the Mo film and the Mo nitride-containing film are alternately laminated on the glass substrate on the glass substrate so that the Mo film is the uppermost layer. A glass substrate with an electrode film, characterized by forming an electrode film having The method of production.

本発明によれば、ガラス基板とMo電極膜との間にMo窒化物を含む膜を形成するようにしたので、ガラス基板上にMo電極膜を形成する際に、Mo電極膜を剥がれ難くし、かつ基板からのNaの拡散に悪影響を及ぼさないようにすることができる。   According to the present invention, a film containing Mo nitride is formed between the glass substrate and the Mo electrode film. Therefore, when forming the Mo electrode film on the glass substrate, the Mo electrode film is hardly peeled off. In addition, it is possible not to adversely affect the diffusion of Na from the substrate.

電極膜付きガラス基板の断面の第1の例を模式的に示した図である。It is the figure which showed typically the 1st example of the cross section of the glass substrate with an electrode film. 電極膜付きガラス基板の断面の第2の例を模式的に示した図である。It is the figure which showed typically the 2nd example of the cross section of the glass substrate with an electrode film. 実施例1〜2により形成された被膜の内部応力の絶対値を緩衝層の厚みに対してプロットした図である。It is the figure which plotted the absolute value of the internal stress of the film formed by Examples 1-2 with respect to the thickness of a buffer layer. 実施例3〜4により形成された被膜の内部応力の絶対値をMo膜の厚みに対してプロットした図である。It is the figure which plotted the absolute value of the internal stress of the film formed by Examples 3-4 with respect to the thickness of Mo film | membrane.

以下、図面を参照しながら、本発明の一実施形態を説明する。図1は、電極膜付きガラス基板の断面を模式的に示した図である。
Mo電極膜3を剥がれ難くするために、本発明者らは緩衝層2としてMo窒化物を含む膜を検討した。これは、本発明者らが窒素雰囲気でMoターゲットを用いてアーク式イオンプレーティング法によりMoの窒化膜を形成しようと試みた際に、窒素雰囲気の濃度によっては、全てがMo窒化物にならずに、Mo窒化物とMoとの混合状態となる膜が得られることがあったという知見に基づく。即ち、Mo窒化物とMoとの混合膜は、熱膨張がMoよりも小さくなり、かつNaがMo部を選択的に通ることでガラス基板1からNaの拡散も行うことが可能となるものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a cross section of a glass substrate with an electrode film.
In order to make it difficult for the Mo electrode film 3 to be peeled off, the inventors examined a film containing Mo nitride as the buffer layer 2. This is because, when the inventors tried to form a Mo nitride film by an arc ion plating method using a Mo target in a nitrogen atmosphere, depending on the concentration of the nitrogen atmosphere, all of the Mo nitride was changed. The film is based on the knowledge that a mixed film of Mo nitride and Mo may be obtained. That is, the mixed film of Mo nitride and Mo has a thermal expansion smaller than that of Mo, and Na can be diffused from the glass substrate 1 by selectively passing through the Mo portion. is there.

物理的気相成長(PVD)成膜を行なう際の雰囲気ガスを窒素100%のガスとすると、MoNもしくはMo2Nといった窒化物が形成されるが、窒素とアルゴンとの混合ガスや、窒素とメタン等の反応性ガスとの混合ガスを用いた場合には、窒素分圧によっては窒化しきれないMoがそのまま膜に入り込み、Mo窒化物とMoとの混合膜となる。この場合には、窒化物はMo2Nであることが殆どである。形成された窒化モリブデンがMoNとなるのは、雰囲気ガスが窒素100%のガスであり、かつ窒化反応に関るよりも過剰の窒素が雰囲気ガスに存在している場合に限るため、アルゴンとの混合雰囲気で成膜を行なう場合には、ごく一部でMoNができたとしても、殆どは窒素不足雰囲気となることから、Mo2NもしくはMoとなるのである。
本実施形態の場合には、窒素分圧を調整し、意図的にMo窒化物とMoとの混合膜を形成させるものであり、このMo窒化物を含む膜を緩衝層2として、ガラス基板1とMo電極膜3との界面に挟むことで、Mo電極膜3の密着性とNaの拡散との2つの効果を両立させるものである。
If the atmospheric gas for physical vapor deposition (PVD) film formation is 100% nitrogen, a nitride such as MoN or Mo 2 N is formed, but a mixed gas of nitrogen and argon, nitrogen and When a mixed gas with a reactive gas such as methane is used, Mo that cannot be nitrided due to the partial pressure of nitrogen enters the film as it is to form a mixed film of Mo nitride and Mo. In this case, the nitride is mostly Mo 2 N. The formed molybdenum nitride becomes MoN only when the atmosphere gas is 100% nitrogen gas and there is more nitrogen in the atmosphere gas than in the nitriding reaction. When film formation is performed in a mixed atmosphere, even if only a small amount of MoN is formed, the atmosphere is mostly nitrogen-deficient, so it becomes Mo 2 N or Mo.
In the case of this embodiment, the nitrogen partial pressure is adjusted to intentionally form a mixed film of Mo nitride and Mo. The film containing this Mo nitride is used as the buffer layer 2 and the glass substrate 1. By sandwiching it between the Mo electrode film 3 and the Mo electrode film 3, the two effects of adhesion of the Mo electrode film 3 and diffusion of Na can be achieved.

Mo窒化物とMoとの混合比については、雰囲気ガス中の窒素分圧で制御することが可能である。Arと窒素との混合ガスを用いた場合、窒素分圧が0%の場合には、得られた膜のX線回折のプロファイルではMoの回折ピークのみが得られる。窒素分圧を高くしていくと、X線回折のプロファイルにおいて、Moのピーク比が小さくなり、窒素分圧が低いときには低くてブロードであったMo2Nのピークが大きくなっていく。窒素分圧が100%になると、X線回折のプロファイルにMoのピークが検出されなくなり、Mo2NとMoNのピークが混在する。即ち、X線回折の結果から以下のことが分かった。窒素分圧が上がるに従い、Moの窒化が起こりMo2Nが形成され、窒化反応に十分な窒素が得られる窒素分圧100%の場合に、MoNが形成されるものの、窒素が過剰量まで至らないためMoNのみが形成されることにならず、Mo2NとMoNとの混合状態となる。
Mo窒化物を含む膜においては、MoとMo窒化物との混合状態が好ましいが、窒素分圧が10%以上90%以下の範囲でMoとMo窒化物との混合状態とするのが好ましい。窒素分圧が10%未満であるとMo窒化物の生成量が少ないため、緩衝層2とMo電極膜3との熱膨張係数(熱膨張率)の差が小さ過ぎて、緩衝層2が膜の密着性の向上に寄与できない。また、窒素分圧が90%超の場合には、ガラス基板1及びMo電極膜3の双方と熱膨張係数(熱膨張率)の差がある緩衝層2となり、緩衝層2が膜の密着性の向上に寄与し、かつ従来技術にあるような他の金属層を挟む場合に比べるとNaも拡散しやすいという効果を享受できるものの、やはりNaの拡散が不十分となってしまう。従って、窒素分圧が10%以上90%以下、特に、窒素分圧が30%以上70%以下の場合には、密着性・Na拡散ともに十分な効果が得られるため、より好ましい範囲となる。
The mixing ratio of Mo nitride and Mo can be controlled by the nitrogen partial pressure in the atmospheric gas. When a mixed gas of Ar and nitrogen is used, if the nitrogen partial pressure is 0%, only the Mo diffraction peak is obtained in the X-ray diffraction profile of the obtained film. When the nitrogen partial pressure is increased, the peak ratio of Mo in the X-ray diffraction profile decreases, and when the nitrogen partial pressure is low, the peak of Mo 2 N, which is low and broad, increases. When the nitrogen partial pressure reaches 100%, Mo peaks are not detected in the X-ray diffraction profile, and Mo 2 N and MoN peaks are mixed. That is, the following was found from the results of X-ray diffraction. As the nitrogen partial pressure rises, Mo nitridation occurs and Mo 2 N is formed. MoN is formed when the nitrogen partial pressure is 100% at which sufficient nitrogen is obtained for the nitriding reaction, but nitrogen reaches an excessive amount. Therefore, only MoN is not formed, and a mixed state of Mo 2 N and MoN is obtained.
In a film containing Mo nitride, a mixed state of Mo and Mo nitride is preferable, but a mixed state of Mo and Mo nitride is preferable when the nitrogen partial pressure is in the range of 10% to 90%. If the nitrogen partial pressure is less than 10%, the amount of Mo nitride produced is small, so the difference in thermal expansion coefficient (thermal expansion coefficient) between the buffer layer 2 and the Mo electrode film 3 is too small, and the buffer layer 2 is a film. It cannot contribute to the improvement of adhesion. When the nitrogen partial pressure is more than 90%, the buffer layer 2 has a difference in thermal expansion coefficient (thermal expansion coefficient) from both the glass substrate 1 and the Mo electrode film 3, and the buffer layer 2 is the adhesion of the film. As compared with the case of sandwiching another metal layer as in the prior art, Na can be easily diffused, but Na diffusion is still insufficient. Therefore, when the partial pressure of nitrogen is 10% or more and 90% or less, and particularly when the partial pressure of nitrogen is 30% or more and 70% or less, sufficient effects can be obtained in both adhesion and Na diffusion, which is a more preferable range.

また、Mo膜もPVD成膜法で形成されることが多いが、本実施形態では、そのPVD成膜法を用いて、雰囲気ガスを変化させるだけで、Mo窒化物を含む膜である緩衝層2とMo電極膜3とを作り分けることが可能であり、複数のターゲットを要するPVD装置は必要でなく、また、別のチャンバーに送り込んで別の成膜を行なうといった必要がなく、生産性に優れるという利点も享受できるものである。即ち、Mo窒化物を含む膜を成膜する際には、窒素とアルゴン、もしくは窒素とメタンのような他の反応性ガスとの混合ガス、といった窒素を含む雰囲気ガスを用いれば良く、Moを成膜する際には、アルゴンガスのみの雰囲気を用いれば良く、ガスバルブの調整のみでこれらの作り分けができるのである。
なお、Mo窒化物を形成する際に、窒素ガスのみを雰囲気ガスとして用いて窒化モリブデンのみを形成した場合でも、ガラス基板1及びMo電極膜3の双方と熱膨張の差がある緩衝層2として膜の密着性向上に寄与し、かつ従来技術にあるような他の金属層を挟む場合に比べるとNaも拡散しやすいという効果を享受できる。しかし、MoとMo窒化物との混合膜の方がNaが拡散しやすくなるため、緩衝層2として用いるにはより好適である。
Also, the Mo film is often formed by a PVD film forming method, but in this embodiment, the buffer layer, which is a film containing Mo nitride, is simply changed by using the PVD film forming method. 2 and Mo electrode film 3 can be created separately, and there is no need for a PVD apparatus that requires multiple targets, and there is no need to send it to another chamber to perform another film formation. The advantage of superiority can also be enjoyed. That is, when forming a film containing Mo nitride, an atmosphere gas containing nitrogen such as nitrogen and argon or a mixed gas of nitrogen and other reactive gas such as methane may be used. At the time of film formation, an atmosphere of only argon gas may be used, and these can be made separately only by adjusting the gas valve.
In addition, when forming Mo nitride, even when only nitrogen gas is used as the atmosphere gas and only molybdenum nitride is formed, the buffer layer 2 has a difference in thermal expansion from both the glass substrate 1 and the Mo electrode film 3. It contributes to improving the adhesion of the film, and can enjoy the effect that Na is also easily diffused as compared with the case of sandwiching another metal layer as in the prior art. However, a mixed film of Mo and Mo nitride is more suitable for use as the buffer layer 2 because Na diffuses more easily.

また、このMo窒化物を含む膜の厚みは、10nm〜50nm(10nm以上50nm以下、以下「〜」はこれと同じ意味で使用する)であることが好ましい。これは、Mo窒化物を含む膜の厚みが10nm未満であると、緩衝層2としての寄与が少なく、膜の密着性が十分に向上しない。また、Mo窒化物を含む膜の厚みが50nmを超えるとNaの拡散が不十分となり、カルコパイライト型構造の化合物を形成し得なくなってしまうからである。一方、Mo膜(Mo電極膜3)の厚みは、膜全体としての抵抗値や膜の密着性を考慮して、100nm〜4000nmであることが好ましい。   The thickness of the film containing Mo nitride is preferably 10 nm to 50 nm (10 nm to 50 nm, hereinafter “˜” is used in the same meaning as this). This is because when the thickness of the film containing Mo nitride is less than 10 nm, the contribution as the buffer layer 2 is small, and the adhesion of the film is not sufficiently improved. Further, if the thickness of the film containing Mo nitride exceeds 50 nm, the diffusion of Na becomes insufficient, and a chalcopyrite structure compound cannot be formed. On the other hand, the thickness of the Mo film (Mo electrode film 3) is preferably 100 nm to 4000 nm in consideration of the resistance value of the entire film and the adhesion of the film.

また、このような緩衝層は、Mo電極膜3(Mo膜)の内部に存在した際には、Mo電極膜3の内部応力を開放する働きを持つために、Mo電極膜3として厚い膜を成膜した際に剥がれ難くなるという利点を持つ。即ち、図2に示すように、ガラス基板1に緩衝層2とMo電極膜3とを、Mo電極膜3が最上層となるように交互に積層した積層膜を形成するようにしても良い。この積層膜は、PVD成膜中に所定時間毎に、アルゴンガスと窒素を含むガスとを切替えることで、容易に形成することが可能である。また、その積層膜の膜厚の比率は、Mo窒化物を含む膜(緩衝層2)の総厚みに対してMo膜(Mo電極膜3)の総厚みが10倍以上80倍以下であることが好ましい。これは、Mo膜(Mo電極膜3)の総厚みがMo窒化物を含む膜(緩衝層2)の総厚みの10倍未満であると、緩衝層2としての効果は十分にあるものの、膜全体としての抵抗値が大きくなり、電極材として使用し難くなってしまうからである。また、Mo膜(Mo電極膜3)の総厚みがMo窒化物を含む膜(緩衝層2)の総厚みの80倍を超えると、緩衝層2としての働きが不十分となるため、膜の密着性が悪くなるためである。なお、図2では、緩衝層2とMo電極膜3とを3層ずつ形成する場合を示しているが、形成する緩衝層2及びMo電極膜3は3層に限定されるものではない。また、ガラス基板1との界面のみに緩衝層2を持たせる場合には、Mo膜(Mo電極膜3)の膜厚が4000nmを超えても使用は可能であるが、密着性の点からは、Mo膜(Mo電極膜3)の膜厚は4000nm以下に抑え、それ以上厚い膜を形成する場合には、Mo膜が最上層となるようにMo膜とMo窒化物を含む膜とを交互に積層した積層膜をMo電極膜3とすることが好ましい。即ち、Mo電極膜3の厚みは4000nm以下にし、ガラス基板1とMo電極膜3との間に、Mo電極膜3の厚みの1/80以上1/10以下の厚みの緩衝層2を有する積層電極とするのが好ましい。
なお、ここで言うPVD成膜法とは、アーク式イオンプレーティングを含むイオンプレーティング、各種スパッタ、蒸着法等があるが、雰囲気ガスとしての窒素ガスとの反応を考慮すると、反応性スパッタやイオンプレーティング法を用いることが好ましい。
In addition, when such a buffer layer exists inside the Mo electrode film 3 (Mo film), it has a function of releasing the internal stress of the Mo electrode film 3, so that a thick film is used as the Mo electrode film 3. It has an advantage that it is difficult to peel off when the film is formed. That is, as shown in FIG. 2, a laminated film in which the buffer layer 2 and the Mo electrode film 3 are alternately laminated on the glass substrate 1 so that the Mo electrode film 3 is the uppermost layer may be formed. This laminated film can be easily formed by switching between an argon gas and a nitrogen-containing gas every predetermined time during the PVD film formation. Further, the ratio of the thickness of the laminated film is such that the total thickness of the Mo film (Mo electrode film 3) is not less than 10 times and not more than 80 times the total thickness of the film containing Mo nitride (buffer layer 2). Is preferred. This is because if the total thickness of the Mo film (Mo electrode film 3) is less than 10 times the total thickness of the film containing Mo nitride (buffer layer 2), the effect as the buffer layer 2 is sufficient. This is because the resistance value as a whole increases, making it difficult to use as an electrode material. If the total thickness of the Mo film (Mo electrode film 3) exceeds 80 times the total thickness of the Mo nitride-containing film (buffer layer 2), the function as the buffer layer 2 becomes insufficient. This is because the adhesion is deteriorated. FIG. 2 shows a case where the buffer layer 2 and the Mo electrode film 3 are formed in three layers, but the buffer layer 2 and the Mo electrode film 3 to be formed are not limited to three layers. In addition, when the buffer layer 2 is provided only at the interface with the glass substrate 1, it can be used even if the film thickness of the Mo film (Mo electrode film 3) exceeds 4000 nm. The film thickness of the Mo film (Mo electrode film 3) is limited to 4000 nm or less, and when a thicker film is formed, the Mo film and the film containing Mo nitride are alternately arranged so that the Mo film is the uppermost layer. It is preferable that the laminated film laminated on is the Mo electrode film 3. That is, the Mo electrode film 3 has a thickness of 4000 nm or less, and a buffer layer 2 having a thickness of 1/80 to 1/10 of the thickness of the Mo electrode film 3 between the glass substrate 1 and the Mo electrode film 3. It is preferable to use an electrode.
The PVD film forming method referred to here includes ion plating including arc type ion plating, various sputtering methods, vapor deposition methods, etc., but considering the reaction with nitrogen gas as an atmospheric gas, reactive sputtering and It is preferable to use an ion plating method.

以上のように本実施形態では、ガラス基板1上に、窒素ガスを含む雰囲気でPVD法によりMo窒化物を含む膜を緩衝層2として形成した後、Arガス雰囲気でPVD法によりMo膜(またはMo膜とMo窒化物との積層膜)をMo電極膜3として形成することで、被膜の内部応力を低減することができ、剥がれ難くできる。また、緩衝層2にMoが含まれることで、ガラス基板1からのNaの拡散も可能となる。したがって、カルコパイライト型構造の化合物を用いた薄膜太陽電池等の基板として、剥がれ難いMo電極をガラス基板1上に形成した基板を提供することが可能となる。また、FPD(フラットパネルディスプレイ)分野における電極や電極バリアとして用いられるMo膜にも本実施形態の電極膜を適用することが可能である。   As described above, in the present embodiment, a film containing Mo nitride is formed as the buffer layer 2 on the glass substrate 1 by the PVD method in an atmosphere containing nitrogen gas, and then the Mo film (or by the PVD method in an Ar gas atmosphere). By forming the Mo film and Mo nitride laminated film) as the Mo electrode film 3, the internal stress of the coating can be reduced and it is difficult to peel off. In addition, since Mo is contained in the buffer layer 2, it is possible to diffuse Na from the glass substrate 1. Accordingly, it is possible to provide a substrate in which a Mo electrode that is difficult to peel off is formed on the glass substrate 1 as a substrate for a thin film solar cell or the like using a compound having a chalcopyrite structure. The electrode film of this embodiment can also be applied to an Mo film used as an electrode or an electrode barrier in the field of FPD (flat panel display).

なお、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   It should be noted that the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

以下、アーク式イオンプレーティング法を使用して成膜する場合の実施例を記載するが、本発明が反応性スパッタ等の他のPVD法を使用して成膜することを除外するものではない。
(実施例1)
アーク式イオンプレーティング装置(日新電機製MAV-3204SPe)にて、カソードとして全てにMoを設置し、雰囲気ガスとしてArと窒素とを接続し、ガラス基板1の表面にMo窒化物を含む膜を形成した上に、Mo膜を形成した。先ず、Arと窒素とを50:50の比率としたガス雰囲気とし、Moカソードにアーク電流を流してMoをイオン化させてMo窒化物とMoとを含む混合膜を1分間成膜し、その後、ガス雰囲気をArのみのガス雰囲気に切り替え、Mo膜を30分間成膜した。
得られた電極膜の断面を電顕(電子顕微鏡)で観察し、Mo窒化物を含む膜が20nm、Mo膜が1.2μmの厚みであることを確認した。
この電極膜の内部応力を、X線回折の並傾法を用いた測定の結果から算出したところ、−1.5GPaであった。マイナスは内部応力が圧縮応力であることを示す。内部応力の大きさが2GPa以下であることから、この電極膜は実用上剥がれ難い被膜になっていることが分かった。
また、この電極膜の上に、CIS(CuInSn2)被膜を形成し、特性評価をしたところ、従来のMo金属膜上にCIS被膜を形成した場合と比較し、CIS化合物の特性は同等であり、Naの拡散が十分であったことを示唆された。
Hereinafter, although an example in the case of forming a film using the arc type ion plating method is described, it is not excluded that the present invention forms a film using another PVD method such as reactive sputtering. .
Example 1
A film containing Mo nitride on the surface of the glass substrate 1 with Mo as the cathode, connecting Ar and nitrogen as the atmospheric gas, with an arc ion plating apparatus (MAV-3204SPe manufactured by Nissin Electric) Then, a Mo film was formed. First, a gas atmosphere having a ratio of Ar and nitrogen of 50:50 is set, and an arc current is passed through the Mo cathode to ionize Mo to form a mixed film containing Mo nitride and Mo for 1 minute. The gas atmosphere was switched to a gas atmosphere containing only Ar, and a Mo film was formed for 30 minutes.
The cross section of the obtained electrode film was observed with an electron microscope (electron microscope), and it was confirmed that the film containing Mo nitride had a thickness of 20 nm and the Mo film had a thickness of 1.2 μm.
It was -1.5GPa when the internal stress of this electrode film was computed from the result of the measurement using the parallel tilt method of X-ray diffraction. A minus sign indicates that the internal stress is a compressive stress. Since the magnitude of the internal stress was 2 GPa or less, this electrode film was found to be a film that was practically difficult to peel off.
In addition, when a CIS (CuInSn 2 ) film was formed on this electrode film and its characteristics were evaluated, the characteristics of the CIS compound were comparable to those obtained when a CIS film was formed on a conventional Mo metal film. It was suggested that the diffusion of Na was sufficient.

(実施例2)
実施例1に対し、Mo窒化物を含む膜を形成するための成膜時間のみを変えて成膜を行なった。電顕で観察したMo窒化物を含む膜(緩衝層2)の厚みと、電極膜の内部応力の値を表1にまとめた(実施例1、比較例を含む)。表1には、併せて、Mo電極膜3の上に積層したCIS化合物の安定性も付記してある。
緩衝層2が10nm未満では、電極膜の内部応力の大きさは2GPaを超え膜の密着性が不安となった。また、緩衝層2の厚みが30nm程度で最も被膜の内部応力の大きさが小さくなり、特に、緩衝層2の厚みが20nmを超える範囲で1.5GPa以下となり、さらに好ましい範囲となった。この様子を図3に示す。
これらの電極膜の上にCIS被膜を形成したところ、Mo金属膜上にCIS被膜を形成した場合と比較し、層厚が60nmの緩衝層2を用いた場合を除きCIS化合物の特性は同等であり、かつNaの拡散は十分であったことが示唆された。緩衝層2の厚みが60nmの場合には、Naが不足している可能性が高かった。
(Example 2)
Compared to Example 1, film formation was performed by changing only the film formation time for forming a film containing Mo nitride. The thickness of the film containing Mo nitride (buffer layer 2) and the value of internal stress of the electrode film observed with an electron microscope are summarized in Table 1 (including Example 1 and Comparative Example). Table 1 also shows the stability of the CIS compound laminated on the Mo electrode film 3.
When the buffer layer 2 was less than 10 nm, the magnitude of the internal stress of the electrode film exceeded 2 GPa, and the film adhesion became uneasy. Further, when the thickness of the buffer layer 2 is about 30 nm, the magnitude of the internal stress of the coating becomes the smallest. In particular, when the thickness of the buffer layer 2 exceeds 20 nm, it becomes 1.5 GPa or less, which is more preferable. This is shown in FIG.
When a CIS film was formed on these electrode films, the characteristics of the CIS compound were the same as when a buffer layer 2 with a layer thickness of 60 nm was used, compared to the case where a CIS film was formed on the Mo metal film. It was suggested that the diffusion of Na was sufficient. When the thickness of the buffer layer 2 was 60 nm, there was a high possibility that Na was insufficient.

Figure 2011060839
Figure 2011060839

(実施例3)
実施例1と同様にして被膜を形成した後、再度Arと窒素とを50:50の比率としたガス雰囲気に切り替え、1分間成膜し、その後、Arのみのガス雰囲気に切り替え、Mo膜を30分間成膜した。
得られた膜の各層の膜厚を電顕で観察したところ、電極膜は、膜厚が30nmであるMo窒化物を含む膜と、膜厚が1.2μmであるMo膜と、膜厚が30nmであるMo窒化物を含む膜と、膜厚が1.2μmであるMo膜の4層の積層となっていた。即ち、Mo窒化物を含む膜である緩衝層2の厚みは30nmであり、Mo電極膜3は、膜厚が1.2μmのMo膜、膜厚が30nmのMo窒化物を含む膜(緩衝層と同様の機能を有する膜)、及び膜厚が1.2μmのMo膜の3層の積層であった。この電極膜の内部応力は、−1.2GPaであり、十分な膜の密着性が得られた。
また、この電極膜の上にCIS被膜を形成したところ、Mo金属膜上にCIS皮膜を形成した場合と比較して、CIS化合物の特性は同等であり、かつNaの拡散は十分であったことが示唆された。
(Example 3)
After forming a film in the same manner as in Example 1, the gas atmosphere was again switched to a gas atmosphere in which the ratio of Ar and nitrogen was 50:50, and the film was formed for 1 minute. The film was formed for 30 minutes.
When the film thickness of each layer of the obtained film was observed with an electron microscope, the electrode film was a film containing Mo nitride having a film thickness of 30 nm, a Mo film having a film thickness of 1.2 μm, and a film thickness of 30 nm. 4 layers of a film containing Mo nitride and a Mo film having a thickness of 1.2 μm. That is, the thickness of the buffer layer 2 which is a film containing Mo nitride is 30 nm, the Mo electrode film 3 is a Mo film having a thickness of 1.2 μm, and a film containing Mo nitride having a thickness of 30 nm (buffer layer and A film having the same function) and a Mo film having a film thickness of 1.2 μm. The internal stress of this electrode film was -1.2 GPa, and sufficient film adhesion was obtained.
In addition, when the CIS film was formed on this electrode film, the characteristics of the CIS compound were equivalent and the diffusion of Na was sufficient compared to the case where the CIS film was formed on the Mo metal film. Was suggested.

(実施例4)
実施例3と同様にして被膜を形成する際、Arのみのガス雰囲気でMo膜を成膜する時間を変化させて成膜を行なった。電顕で観察した、Mo膜の厚みの合計と、Mo膜の厚みの合計とMo窒化物を含む膜の厚みの合計との比と、電極膜の内部応力の値を表2にまとめる(実施例3及び比較例を含む)。表2には、併せて、Mo電極膜3の上に積層したCIS化合物の安定性も付記してある。
電極膜の内部応力の大きさは、Mo膜の厚みの合計が600nm未満と4800nm超の範囲では2GPaを超え、膜の密着性が不安となった。また、Mo膜の厚みの合計が2400nm程度で最も電極膜の内部応力の大きさが小さくなり、特に、Mo膜の厚みの合計が1200nmと3600nmの間では電極膜の内部応力は1.5GPa以下となり、さらに好ましい範囲となった。この様子を図4に示す。
これらの電極膜の上にCIS被膜を形成したところ、Mo金属膜上にCIS被膜を形成した場合と比較し、Mo膜の厚みの合計を480nmとしたた場合を除きCIS化合物の特性は同等であり、かつNaの拡散は十分であったことが示唆された。Mo膜の厚みの合計が480nmの場合には、Naが不足している可能性が高かった。
従って、Mo膜2層分の厚みを緩衝層2層分(=60nm)の厚みで割った値は、10〜80の範囲が好ましく、特に20〜60の範囲では、被膜の内部応力がさらに低下し、より好適な範囲となった。
Example 4
When forming a film in the same manner as in Example 3, the film was formed by changing the time for forming the Mo film in a gas atmosphere containing only Ar. Table 2 summarizes the ratio of the total thickness of the Mo film, the total thickness of the Mo film, and the total thickness of the film containing Mo nitride, and the value of the internal stress of the electrode film, as observed with an electron microscope. Example 3 and comparative examples included). Table 2 also shows the stability of the CIS compound laminated on the Mo electrode film 3.
The magnitude of the internal stress of the electrode film exceeded 2 GPa when the total thickness of the Mo film was less than 600 nm and more than 4800 nm, and the film adhesion became uneasy. In addition, when the total thickness of the Mo film is about 2400 nm, the magnitude of the internal stress of the electrode film becomes the smallest. Especially, when the total thickness of the Mo film is between 1200 nm and 3600 nm, the internal stress of the electrode film is 1.5 GPa or less. Further, a preferable range was obtained. This is shown in FIG.
When the CIS film was formed on these electrode films, the characteristics of the CIS compound were the same except when the total thickness of the Mo film was 480 nm, compared to the case where the CIS film was formed on the Mo metal film. It was suggested that the diffusion of Na was sufficient. When the total thickness of the Mo film was 480 nm, there was a high possibility that Na was insufficient.
Therefore, the value obtained by dividing the thickness of the two Mo films by the thickness of the two buffer layers (= 60 nm) is preferably in the range of 10 to 80, and particularly in the range of 20 to 60, the internal stress of the coating is further reduced. And it became a more suitable range.

Figure 2011060839
Figure 2011060839

1 ガラス基板
2 緩衝層
3 Mo電極膜
1 Glass substrate 2 Buffer layer 3 Mo electrode film

Claims (10)

ガラス基板の上に形成されるMo窒化物を含む膜と、前記Mo窒化物を含む膜の上に形成されたMo系膜と、からなることを特徴とする電極膜。   An electrode film comprising: a film containing Mo nitride formed on a glass substrate; and a Mo-based film formed on the film containing Mo nitride. 前記Mo窒化物を含む膜の厚みが10nm〜50nmであることを特徴とする、請求項1に記載の電極膜。   The electrode film according to claim 1, wherein a thickness of the film containing Mo nitride is 10 nm to 50 nm. 前記Mo系膜の厚みが100nm〜4000nmであることを特徴とする、請求項1または2に記載の電極膜。   The electrode film according to claim 1, wherein the Mo-based film has a thickness of 100 nm to 4000 nm. 前記Mo窒化物を含む膜がMo窒化物とMoとの混合膜であることを特徴とする請求項1〜3のいずれか1項に記載の電極膜。   4. The electrode film according to claim 1, wherein the film containing Mo nitride is a mixed film of Mo nitride and Mo. ガラス基板の上に形成された積層膜であり、Mo窒化物を含む膜とMo系膜とが順次積層された膜であることを特徴とする電極膜。   An electrode film, which is a laminated film formed on a glass substrate, wherein a film containing Mo nitride and a Mo-based film are sequentially laminated. 前記積層膜において、前記Mo窒化物を含む膜の厚みの合計に対して前記Mo系膜の厚みの合計が10倍以上80倍以下であることを特徴とする、請求項5に記載の電極膜。   6. The electrode film according to claim 5, wherein in the laminated film, the total thickness of the Mo-based film is 10 times or more and 80 times or less with respect to the total thickness of the films containing the Mo nitride. . 前記Mo窒化物を含む膜がMo窒化物とMoとの混合膜であることを特徴とする請求項5または6に記載の電極膜。   The electrode film according to claim 5 or 6, wherein the film containing Mo nitride is a mixed film of Mo nitride and Mo. 請求項1〜7のいずれか1項に記載の電極膜がガラス基板上に形成されたことを特徴とする電極膜付きガラス基板。   A glass substrate with an electrode film, wherein the electrode film according to claim 1 is formed on a glass substrate. ガラス基板の上にMo窒化物を含む膜を形成した後、前記Mo窒化物を含む膜の上にMo膜を形成する電極膜付きガラス基板の製造方法であって、
窒素ガスを含む雰囲気でMoターゲットを用いたPVD法により前記ガラス基板の上に前記Mo窒化物を含む膜を形成する工程と、
Arガス雰囲気でMoターゲットを用いたPVD法により前記Mo窒化物を含む膜の上に前記Mo膜を形成する工程と、を有することを特徴とする、電極膜付きガラス基板の製造方法。
After forming a film containing Mo nitride on a glass substrate, a method for producing a glass substrate with an electrode film, wherein a Mo film is formed on the film containing Mo nitride,
Forming a film containing the Mo nitride on the glass substrate by a PVD method using a Mo target in an atmosphere containing nitrogen gas;
Forming the Mo film on the Mo nitride-containing film by a PVD method using a Mo target in an Ar gas atmosphere.
ガラス基板の上にMo窒化物を含む膜を形成した後、前記Mo窒化物を含む膜の上にMo膜を形成する電極膜付きガラス基板の製造方法であって、
窒素ガスを含む雰囲気でMoターゲットを用いたPVD法により前記ガラス基板の上に前記Mo窒化物を含む膜を形成する工程の後に、Arガス雰囲気でMoターゲットを用いたPVD法により前記Mo窒化物を含む膜の上に前記Mo膜を形成する工程と、窒素ガスを含む雰囲気でMoターゲットを用いたPVD法により前記Mo膜の上に前記Mo窒化物を含む膜を形成する工程の2つの工程を交互に繰り返すことにより、前記ガラス基板の上の前記Mo窒化物を含む膜の上に、前記Mo膜と前記Mo窒化物を含む膜とが前記Mo膜が最上層となるように交互に積層された積層膜を有する電極膜を形成することを特徴とする、電極膜付きガラス基板の製造方法。
After forming a film containing Mo nitride on a glass substrate, a method for producing a glass substrate with an electrode film, wherein a Mo film is formed on the film containing Mo nitride,
After the step of forming the film containing the Mo nitride on the glass substrate by the PVD method using the Mo target in an atmosphere containing nitrogen gas, the Mo nitride by the PVD method using the Mo target in an Ar gas atmosphere Forming the Mo film on the Mo film and forming the Mo nitride film on the Mo film by a PVD method using a Mo target in an atmosphere containing nitrogen gas. By alternately repeating the above, the Mo film and the Mo nitride-containing film are alternately stacked on the glass substrate so that the Mo film is the uppermost layer. A method for producing a glass substrate with an electrode film, comprising forming an electrode film having the laminated film.
JP2009206030A 2009-09-07 2009-09-07 Back electrode of glass substrate for solar cell and manufacturing method thereof Expired - Fee Related JP5114683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206030A JP5114683B2 (en) 2009-09-07 2009-09-07 Back electrode of glass substrate for solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206030A JP5114683B2 (en) 2009-09-07 2009-09-07 Back electrode of glass substrate for solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011060839A true JP2011060839A (en) 2011-03-24
JP5114683B2 JP5114683B2 (en) 2013-01-09

Family

ID=43948173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206030A Expired - Fee Related JP5114683B2 (en) 2009-09-07 2009-09-07 Back electrode of glass substrate for solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5114683B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114413A (en) * 2010-11-02 2012-06-14 Fujifilm Corp Photoelectric conversion element and method for manufacturing the same
KR101215624B1 (en) 2011-03-08 2012-12-26 한국생산기술연구원 Cigs-based compound thin film solarcells and the method of manufacturing the same
JP2015505156A (en) * 2011-12-05 2015-02-16 エヌウイクスセーイエス Improved junction between a group I-III-VI2 layer and a back contact layer in a photovoltaic cell
JP2016517182A (en) * 2013-05-03 2016-06-09 サン−ゴバン グラス フランス Back contact substrate for photovoltaic cell or photovoltaic cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147424A (en) * 1999-11-19 2001-05-29 Hitachi Ltd Insulating substrate for forming conductive thin film and liquid crystal display device using the same
JP2001513264A (en) * 1997-02-24 2001-08-28 シーメンス アクチエンゲゼルシヤフト Layer structure with weather and corrosion resistance
JP2004047917A (en) * 2002-07-12 2004-02-12 Honda Motor Co Ltd Thin film solar battery and its manufacturing method
JP2004532501A (en) * 2001-01-31 2004-10-21 サン−ゴバン グラス フランス Transparent substrate with electrodes
JP2006165386A (en) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk Cis system thin film solar cell and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513264A (en) * 1997-02-24 2001-08-28 シーメンス アクチエンゲゼルシヤフト Layer structure with weather and corrosion resistance
JP2001147424A (en) * 1999-11-19 2001-05-29 Hitachi Ltd Insulating substrate for forming conductive thin film and liquid crystal display device using the same
JP2004532501A (en) * 2001-01-31 2004-10-21 サン−ゴバン グラス フランス Transparent substrate with electrodes
JP2004047917A (en) * 2002-07-12 2004-02-12 Honda Motor Co Ltd Thin film solar battery and its manufacturing method
JP2006165386A (en) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk Cis system thin film solar cell and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114413A (en) * 2010-11-02 2012-06-14 Fujifilm Corp Photoelectric conversion element and method for manufacturing the same
KR101215624B1 (en) 2011-03-08 2012-12-26 한국생산기술연구원 Cigs-based compound thin film solarcells and the method of manufacturing the same
JP2015505156A (en) * 2011-12-05 2015-02-16 エヌウイクスセーイエス Improved junction between a group I-III-VI2 layer and a back contact layer in a photovoltaic cell
JP2016517182A (en) * 2013-05-03 2016-06-09 サン−ゴバン グラス フランス Back contact substrate for photovoltaic cell or photovoltaic cell module

Also Published As

Publication number Publication date
JP5114683B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
KR101077046B1 (en) New metal strip product
US20100297835A1 (en) Methods for fabricating copper indium gallium diselenide (cigs) compound thin films
JP2006186200A (en) Precursor film and film formation method therefor
KR100922890B1 (en) CIGS absorber layer fabrication method and solar cell including CIGS absorber layer
Liu et al. Developing flexible CIGS solar cells on stainless steel substrates by using Ti/TiN composite structures as the diffusion barrier layer
JP2009283508A (en) Production process of cis-based thin film solar cell
CN101853900B (en) Method for producing chalcopyrite-type solar cell
JP2012523709A5 (en)
CN110137525A (en) A kind of fuel battery metal double polar plate coating and technology of preparing
CN111074223A (en) Physical vapor deposition preparation method of high-entropy alloy film with uniform and controllable components
WO2013099654A1 (en) Translucent gas barrier film, method for producing translucent gas barrier film, organic el element, solar cell, and thin-film cell
US20190245103A1 (en) Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
JP5114683B2 (en) Back electrode of glass substrate for solar cell and manufacturing method thereof
JP5602700B2 (en) Photoelectric conversion element and manufacturing method thereof
Kim et al. Plasma damage-free deposition of Al cathode on organic light-emitting devices by using mirror shape target sputtering
KR101047941B1 (en) Manufacturing method of CIS solar cell back electrode
CN112853281B (en) Carbon-based multilayer film and preparation method and application thereof
KR20100089897A (en) Method for manufacturing solar cell, and solar cell
WO2021169794A1 (en) Semiconductor structure manufacturing method and semiconductor structure
KR101421533B1 (en) The manufacturing method of back contact metal layer and contact metal layer
Lee et al. Two-step selenization of Cu-In-Ga precursors for CIGS thin-film solar cells by using a Se cracker
CN108193178B (en) A kind of crystalline state WC hard alloy film and its buffer layer technique room temperature growth method
KR101501742B1 (en) Method for fabricating a thin film solar cell with diffusion barrier and Thin film solar cell produced by the same
CN112885718B (en) Preparation method of composite conductive film
JP3960869B2 (en) Method for manufacturing amorphous iron silicide semiconductor thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5114683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees