JP2011042090A - Method for producing tire and apparatus for producing tire - Google Patents

Method for producing tire and apparatus for producing tire Download PDF

Info

Publication number
JP2011042090A
JP2011042090A JP2009191197A JP2009191197A JP2011042090A JP 2011042090 A JP2011042090 A JP 2011042090A JP 2009191197 A JP2009191197 A JP 2009191197A JP 2009191197 A JP2009191197 A JP 2009191197A JP 2011042090 A JP2011042090 A JP 2011042090A
Authority
JP
Japan
Prior art keywords
tire
constituent member
welding
holder
tire constituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009191197A
Other languages
Japanese (ja)
Inventor
Yoshihide Kono
好秀 河野
Chikashi Kon
誓志 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009191197A priority Critical patent/JP2011042090A/en
Publication of JP2011042090A publication Critical patent/JP2011042090A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a tire which secures the enough strength of the welded part of a tire component member made of a thermoplastic material by a simple apparatus. <P>SOLUTION: A lower side tire half 17A made of the thermoplastic material is held by inserting a first holder 78 into an annular groove formed close to a welding surface, and an upper side tire half 17A is held by inserting a second holder 82 into an annular groove formed in the vicinity of the welding surface. After a welding margin 25 formed on the welding surface is melted, the first holder 78 and the second holder 82 are made to approach each other, and the tire halves 17A are welded together. Since the vicinity of the welding surface of the tire half 17A is pressed by the holder, pressure from the holder can efficiently be applied to the welding surface, and the welding surfaces can surely be welded together. Since the tire halves 17A are supported without using a bladder etc., the structure of the apparatus is simplified. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リムに装着するタイヤを製造するためのタイヤの製造方法、及びタイヤの製造装置にかかり、特には、少なくとも一部が熱可塑性材料で形成されたタイヤを製造するためのタイヤの製造方法、及びタイヤの製造装置に関する。   The present invention relates to a tire manufacturing method and a tire manufacturing apparatus for manufacturing a tire to be attached to a rim, and in particular, manufacturing a tire for manufacturing a tire at least partially formed of a thermoplastic material. The present invention relates to a method and a tire manufacturing apparatus.

従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材等から構成された空気入りタイヤが用いられている。
しかしながら、使用後のゴムはリサイクルの用途に制限があり、焼却してサーマルリサイクルする、破砕して道路の舗装材料として用いる等して処分することが行われていた。
Conventionally, pneumatic tires made of rubber, organic fiber materials, steel members, and the like are used in vehicles such as passenger cars.
However, there is a limit to the use of recycled rubber after use, and it has been disposed of by incineration and thermal recycling, crushing it and using it as road pavement material.

近年では、軽量化やリサイクルのし易さから、熱可塑性樹脂、熱可塑性エラストマー等をタイヤ材料として用いることが求められている。
例えば、特許文献1には、熱可塑性の高分子材料を用いて成形された空気入りタイヤが開示されている。
In recent years, it is required to use a thermoplastic resin, a thermoplastic elastomer, or the like as a tire material because of weight reduction and ease of recycling.
For example, Patent Document 1 discloses a pneumatic tire formed using a thermoplastic polymer material.

特開平02−223430号公報Japanese Patent Laid-Open No. 02-223430

熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤ対比で製造が容易で、低コストである。
ところで、タイヤを金型で成形するにあたり、中子でタイヤ内腔部を形成すると、成形後のタイヤから中子を取り出せなくなる問題がある。そのため、特許文献1では、タイヤを軸方向に分割した半環状タイヤを一対成形し、一対の半環状タイヤを互いに向かい合わせてタイヤ赤道面部分で溶着することでタイヤ本体を得ている。
A tire using a thermoplastic polymer material is easy to manufacture and low in cost as compared with a conventional rubber tire.
By the way, when the tire is molded by a mold, if the tire lumen is formed by the core, there is a problem that the core cannot be taken out from the molded tire. Therefore, in Patent Document 1, a tire body is obtained by forming a pair of semi-annular tires obtained by dividing the tire in the axial direction and welding the pair of semi-annular tires facing each other at the tire equatorial plane.

そして、一対の半環状タイヤの溶着は、一対の半環状タイヤを一対の保持金型に形成された凹部に嵌合させて保持し、各半環状タイヤのタイヤ赤道面側の端部(以後、途切れ部という)に熱板を当接させて溶融させ、途切れ部が溶融した後に一対の保持金型を近づけることにより溶融部を互いに押付け溶着する。   Then, the welding of the pair of semi-annular tires is performed by fitting and holding the pair of semi-annular tires in the recesses formed in the pair of holding molds. A hot plate is brought into contact with and melted at a discontinuous portion), and after the discontinuous portion is melted, the pair of holding dies are brought close together to press and weld the melted portions to each other.

また、この溶融に際して、途切れ部近傍内面は、気密なゴム状のシート状材からなるトロイド状に拡径するブラダーで支持される。ブラダーは、空気圧によって拡径され、半環状タイヤを保持金型に均一に押圧して半環状タイヤを保持している。   Further, at the time of melting, the inner surface in the vicinity of the interrupted portion is supported by a bladder that expands in a toroidal shape made of an airtight rubber-like sheet material. The diameter of the bladder is increased by air pressure, and the semi-annular tire is uniformly pressed against the holding mold to hold the semi-annular tire.

しかしながら、この従来技術では、半環状タイヤの外周面に対応した凹部の形成された保持金型以外に、ブラダー、及びブラダーを拡径させるための空気供給装置(エアコンプレッサー、レギュレーター、電磁弁、配管等)が必要となっており、装置構成が複雑化しており改良の余地がある。   However, in this prior art, in addition to the holding mold in which the concave portion corresponding to the outer peripheral surface of the semi-annular tire is formed, the bladder and the air supply device for expanding the diameter of the bladder (air compressor, regulator, solenoid valve, piping) Etc.), the device configuration is complicated, and there is room for improvement.

本発明は、上記問題を解決すべく成されたもので、熱可塑性材料で形成されるタイヤを製造するにあたり、確実な溶着が行え、かつ簡単な装置で効率的にタイヤを製造することのできるタイヤの製造方法、及びタイヤの製造装置を提供することが目的である。   The present invention has been made to solve the above-described problems. In manufacturing a tire formed of a thermoplastic material, the tire can be reliably welded and efficiently manufactured with a simple apparatus. It is an object to provide a tire manufacturing method and a tire manufacturing apparatus.

請求項1に記載の発明は、熱可塑性材料を含んで形成されたタイヤ構成部材を互いに接合する工程を含むタイヤの製造方法であって、溶着前の一方のタイヤ構成部材には、前記一方のタイヤ構成部材を支持する第1保持具が係合される第1係合部が形成されており、前記一方のタイヤ構成部材に溶着する溶着前の他方のタイヤ構成部材には、前記他方のタイヤ構成部材を支持する第2保持具が係合される第2係合部が形成されており、前記一方のタイヤ構成部材の第1溶着面及び前記第2のタイヤ構成部材の第2溶着面の少なくとも一方を溶融する溶融工程と、前記第1係合部に前記第1保持具を係合させた前記一方のタイヤ構成部材の前記第1溶着面と、前記第2係合部に前記第2保持具を係合させた前記他方のタイヤ構成部材の前記第2溶着面とを互いに対向させ、前記第1保持具と前記第2保持具とを互いに接近させて前記第1溶着面と前記第2溶着面とを互いに接触させて溶着する接合工程と、を有する。   The invention according to claim 1 is a method for manufacturing a tire including a step of joining tire constituent members formed including a thermoplastic material to each other, and the one tire constituent member before welding includes the one of the tire constituent members. A first engaging portion to which a first holding tool for supporting the tire constituent member is engaged is formed, and the other tire constituent member before welding that is welded to the one tire constituent member is the other tire. A second engaging portion is formed to which a second holding tool for supporting the component member is engaged, and the first welding surface of the one tire component member and the second welding surface of the second tire component member are formed. A melting step of melting at least one, the first welding surface of the one tire constituent member in which the first retainer is engaged with the first engagement portion, and the second engagement portion with the second engagement portion. The second of the other tire constituent member engaged with the holder A bonding step in which welding surfaces are opposed to each other, the first holding tool and the second holding tool are brought close to each other, and the first welding surface and the second welding surface are brought into contact with each other. .

請求項1に記載のタイヤの製造方法では、先ず、溶融工程では、一方のタイヤ構成部材の第1溶着面及び第2のタイヤ構成部材の第2溶着面の少なくとも一方が溶融される。
次の接合工程では、第1係合部に第1保持具が係合されることで一方のタイヤ構成部材が第1保持具で支持され、第2係合部に第2保持具が係合されることで他方のタイヤ構成部材が第2保持具で支持される。
そして、第1係合部に第1保持具を係合させた一方のタイヤ構成部材の第1溶着面と、第2係合部に第2保持具を係合させた他方のタイヤ構成部材の第2溶着面とが互いに対向され、第1保持具と第2保持具とが互いに接近されて、第1溶着面と第2溶着面とが互いに接触されて溶着され、これにより、熱可塑性材料で形成されるタイヤ構成部材を互いに溶着することで構成されるタイヤを効率的に製造できる。なお、第1溶着面と第2溶着面とを互いに接触するのみならず、互いに押圧することが好ましい。
In the tire manufacturing method according to the first aspect, first, in the melting step, at least one of the first welding surface of one tire constituent member and the second welding surface of the second tire constituent member is melted.
In the next joining step, the first holding member is engaged with the first engaging portion, whereby one tire constituent member is supported by the first holding member, and the second holding portion is engaged with the second engaging portion. As a result, the other tire component is supported by the second holder.
And the 1st welding surface of one tire constituent member which engaged the 1st holder with the 1st engaging part, and the other tire constituent member which engaged the 2nd holder with the 2nd engaging part The second welding surface is opposed to each other, the first holding tool and the second holding tool are brought close to each other, and the first welding surface and the second welding surface are brought into contact with each other to be welded. The tire comprised by welding each tire structural member formed by can be manufactured efficiently. In addition, it is preferable not only to mutually contact a 1st welding surface and a 2nd welding surface but to mutually press.

請求項1に記載のタイヤの製造方法では、一方のタイヤ構成部材を保持した第1保持具と、他方のタイヤ構成部材を保持した第2保持具の何れか一方を、例えば、互いに接離する方向に移動する移動手段を用いて相手側へ移動するだけで溶着を行うことができ、部材を保持するためのブラダー、空気供給装置等を必要とせず、装置構成も簡略化できる。   In the tire manufacturing method according to claim 1, for example, one of the first holder holding one tire constituent member and the second holder holding the other tire constituent member is brought into contact with and separated from each other. Welding can be performed simply by moving to the other side using a moving means that moves in the direction, and a bladder, an air supply device and the like for holding the member are not required, and the device configuration can be simplified.

請求項2に記載の発明は、請求項1に記載のタイヤの製造方法において、前記一方のタイヤ構成部材及び前記他方のタイヤ構成部材は、各々ビード部からトレッドのタイヤ赤道面まで連続したタイヤ半体形状とされ、前記第1係合部は、前記一方のタイヤ構成部材のタイヤ赤道面側に形成され、前記第2係合部は、前記他方のタイヤ構成部材のタイヤ赤道面側に形成され、前記第1溶着面は、前記一方のタイヤ構成部材のタイヤ赤道面側端面とされ、前記第2溶着面は、前記他方のタイヤ構成部材のタイヤ赤道面側端面とされている。   According to a second aspect of the present invention, in the tire manufacturing method according to the first aspect, the one tire constituent member and the other tire constituent member are each a tire half continuous from the bead portion to the tire equatorial plane of the tread. The first engaging portion is formed on the tire equatorial plane side of the one tire constituent member, and the second engaging portion is formed on the tire equatorial plane side of the other tire constituent member. The first welding surface is a tire equatorial plane side end surface of the one tire constituent member, and the second welding surface is a tire equatorial plane side end surface of the other tire constituent member.

請求項2に記載のタイヤの製造方法では、タイヤ半体形状とされた一方のタイヤ構成部材のタイヤ赤道面側端部と、同じくタイヤ半体形状とされた他方のタイヤ構成部材のタイヤ赤道面側端部とが溶着され、タイヤが製造される。
また、第1係合部は一方のタイヤ構成部材のタイヤ赤道面側に形成され、第2係合部は他方のタイヤ構成部材のタイヤ赤道面側に形成されているので、第1保持具及び第2保持具は、各々溶着部分に近い部分を押圧することができ、第1溶着面及び第2溶着面に対して第1保持具及び第2保持具からの押圧力を効率的に付与することができ、第1溶着面と第2溶着面とを確実に溶着させることができる。
In the tire manufacturing method according to claim 2, the tire equatorial plane side end portion of one tire constituent member having a tire half body shape and the tire equatorial plane of the other tire constituent member having the same tire half body shape. The side ends are welded together to produce a tire.
In addition, since the first engagement portion is formed on the tire equatorial plane side of one tire constituent member and the second engagement portion is formed on the tire equatorial plane side of the other tire constituent member, the first holding tool and Each of the second holding tools can press a portion close to the welding portion, and efficiently applies a pressing force from the first holding tool and the second holding tool to the first welding surface and the second welding surface. The first welding surface and the second welding surface can be reliably welded.

請求項3に記載の発明は、請求項2に記載のタイヤの製造方法において、前記第1係合部及び前記第2係合部は、タイヤ構成部材外周面からタイヤ径方向外側へ突出する突起部を備え、前記接合工程では、筒状に形成された前記第1保持具の内周面を前記一方のタイヤ構成部材の外周面に接触させて保持すると共に、筒状に形成された前記第2保持具の内周面を前記他方のタイヤ構成部材の外周面に接触させて保持し、前記第1保持具で前記一方のタイヤ構成部材の前記突起部を押圧し、前記第2保持具で前記他方のタイヤ構成部材の前記突起部を押圧することで前記溶着を行う。   According to a third aspect of the present invention, in the tire manufacturing method according to the second aspect, the first engaging portion and the second engaging portion are protrusions that protrude outward in the tire radial direction from the outer peripheral surface of the tire constituent member. In the joining step, the inner peripheral surface of the first holder formed in a cylindrical shape is held in contact with the outer peripheral surface of the one tire constituent member, and the cylindrically formed first 2 The inner peripheral surface of the holder is held in contact with the outer peripheral surface of the other tire constituent member, the projection of the one tire constituent member is pressed by the first holder, and the second holder The welding is performed by pressing the projection of the other tire constituent member.

請求項3に記載のタイヤの製造方法では、接合工程で、第1保持具で一方のタイヤ構成部材の突起部を押圧し、第2保持具で他方のタイヤ構成部材の突起部を押圧することで、一方のタイヤ構成部材と他方のタイヤ構成部材との溶着が行われる。
また、筒状に形成された第1保持具の内周面を一方のタイヤ構成部材の外周面に接触させて一方のタイヤ構成部材を保持すると共に、筒状に形成された第2保持具の内周面を他方のタイヤ構成部材の外周面に接触させて他方のタイヤ構成部材を保持するので、溶着時に、一方のタイヤ構成部材及び他方のタイヤ構成部材が各々真円状(軸方向から見て)に保持されるため、タイヤ周方向に渡って均一に溶着が行われる。
In the tire manufacturing method according to claim 3, in the joining step, the projection of one tire constituent member is pressed by the first holder and the projection of the other tire constituent member is pressed by the second holder. Thus, welding of one tire constituent member and the other tire constituent member is performed.
In addition, the inner peripheral surface of the first holder formed in a cylindrical shape is brought into contact with the outer peripheral surface of one tire constituent member to hold one tire constituent member, and the second holder formed in a cylindrical shape Since the inner peripheral surface is brought into contact with the outer peripheral surface of the other tire constituent member and the other tire constituent member is held, one tire constituent member and the other tire constituent member are each formed into a perfect circle (as viewed from the axial direction) during welding. Therefore, welding is performed uniformly in the tire circumferential direction.

請求項4に記載の発明は、請求項2に記載のタイヤの製造方法において、前記第1係合部及び前記第2係合部は、各々タイヤ構成部材外周面からタイヤ径方向外側へ突出し、タイヤ周方向に沿って連続して延びる環形状に形成された環状突起を備え、前記環形突起には、タイヤ周方向に沿って連続して形成され、タイヤ赤道面側が溝底とされタイヤ赤道面側とは反対側に開口する環状溝が形成され、前記接合工程では、前記第1保持具を前記第1係合部の前記環状溝に挿入して前記一方のタイヤ構成部材を保持し、前記第2保持具を前記第2係合部の前記環状溝に挿入して前記他方のタイヤ構成部材を保持し、前記第1保持具で前記一方のタイヤ構成部材の前記環状突起を押圧し、前記第2保持具で前記他方のタイヤ構成部材の前記環状突起を押圧することで前記溶着を行う。   According to a fourth aspect of the present invention, in the method for manufacturing a tire according to the second aspect, the first engaging portion and the second engaging portion each protrude outward from the outer peripheral surface of the tire component member in the tire radial direction, An annular protrusion formed in an annular shape continuously extending along the tire circumferential direction is provided, and the annular protrusion is formed continuously along the tire circumferential direction, and the tire equatorial plane side is a groove bottom, and the tire equatorial plane An annular groove that is open on the opposite side to the side is formed, and in the joining step, the first holder is inserted into the annular groove of the first engagement portion to hold the one tire component member, Inserting the second holder into the annular groove of the second engaging portion to hold the other tire constituent member, pressing the annular protrusion of the one tire constituent member with the first holder, The annular protrusion of the other tire constituent member by the second holder Performing said welding by pressing.

請求項4に記載のタイヤの製造方法では、接合工程で、第1保持具で一方のタイヤ構成部材の環状突起を押圧し、第2保持具で他方のタイヤ構成部材の環状突起を押圧することで、一方のタイヤ構成部材と他方のタイヤ構成部材との溶着が行われる。
また、筒状に形成された第1保持具を一方のタイヤ構成部材の環状溝に挿入して一方のタイヤ構成部材を保持すると共に、筒状に形成された第2保持具を他方のタイヤ構成部材の環状溝に挿入してタイヤ構成部材を保持するので、溶着時に、一方のタイヤ構成部材及び他方のタイヤ構成部材が各々真円状(軸方向から見て)に保持されるため、タイヤ周方向に渡って均一に溶着が行われる。
In the tire manufacturing method according to claim 4, in the joining step, the annular protrusion of one tire constituent member is pressed by the first holder, and the annular protrusion of the other tire constituent member is pressed by the second holder. Thus, welding of one tire constituent member and the other tire constituent member is performed.
Further, the first holder formed in a cylindrical shape is inserted into the annular groove of one tire component member to hold one tire component member, and the second holder formed in a cylindrical shape is configured as the other tire configuration. Since the tire constituent member is held by being inserted into the annular groove of the member, one tire constituent member and the other tire constituent member are each held in a perfect circle shape (as viewed in the axial direction) at the time of welding. Welding is performed uniformly in the direction.

請求項5に記載の発明は、請求項4に記載のタイヤの製造方法において、前記環状溝の溝底と溝側壁との隅部分の断面形状は円弧形状とされている。   According to a fifth aspect of the present invention, in the tire manufacturing method according to the fourth aspect, the cross-sectional shape of the corner portion between the groove bottom and the groove side wall of the annular groove is an arc shape.

請求項5に記載のタイヤの製造方法では、例えば、環状溝に挿入された第1保持具からの押圧力が、環状突起の環状溝の溝底に作用することとなるため、環状溝の溝底と溝側との隅部分が断面で見て角張っていると、応力集中を招き易い。請求項5に記載のタイヤの製造方法では、環状溝の溝底と溝側壁との隅部分の断面形状が円弧形状となっているため、該応力集中を抑えることが出来る。   In the tire manufacturing method according to claim 5, for example, the pressing force from the first holder inserted into the annular groove acts on the groove bottom of the annular groove of the annular protrusion. If the corner portions of the bottom and the groove side are angular when viewed in cross section, stress concentration tends to be caused. In the tire manufacturing method according to the fifth aspect, since the cross-sectional shape of the corner portion between the groove bottom and the groove side wall of the annular groove is an arc shape, the stress concentration can be suppressed.

請求項6に記載の発明は、請求項1〜請求項5の何れか1項に記載のタイヤの製造方法において、前記第1溶着面及び前記第2溶着面の少なくとも一方には、前記溶融工程で溶融される溶融しろが設けられている。   The invention according to claim 6 is the tire manufacturing method according to any one of claims 1 to 5, wherein at least one of the first welding surface and the second welding surface has the melting step. A melting margin is provided which is melted at

請求項6に記載のタイヤの製造方法では、溶融工程において、第1溶着面及び第2溶着面の少なくとも一方に設けられた溶融しろが溶融される。溶融しろを設けることで、溶融させる部位が明確となり、溶融する必要の無い部分との区別が付きやすくなる。このため、必要の無い部分の溶融を防止することが可能となる。   In the tire manufacturing method according to the sixth aspect, in the melting step, the melting margin provided on at least one of the first welding surface and the second welding surface is melted. By providing the melting margin, the part to be melted becomes clear, and it becomes easy to distinguish from the part that does not need to be melted. For this reason, it is possible to prevent melting of unnecessary portions.

請求項7に記載の発明は、請求項6に記載のタイヤの製造方法において、前記溶融しろは、前記第1溶着面と前記第2溶着面との押圧方向の寸法が0.5〜5mmの範囲内に設定されている。   The invention according to claim 7 is the tire manufacturing method according to claim 6, wherein the melt margin has a dimension in a pressing direction between the first welding surface and the second welding surface of 0.5 to 5 mm. It is set within the range.

溶融しろが少なすぎると、第1溶着面と第2溶着面との溶着が不確実になる虞があり、溶融しろが多すぎると、タイヤ表面へのはみ出し量が多くなり過ぎ、はみ出し部分を除去することを考えると、材料の無駄となる。よって、溶融しろの第1溶着面と第2溶着面との押圧方向の寸法を0.5〜5mmの範囲内とすることが、材料の無駄を抑えつつ、確実な溶着を行う上で好ましい範囲となる。
なお、「溶融しろ」とは、溶融させる部分のみを意味する。
If the melting margin is too small, there is a risk that the welding between the first welding surface and the second welding surface may be uncertain, and if there is too much melting margin, the amount of protrusion to the tire surface will increase and the protruding portion will be removed. If you think about doing it, it will be a waste of material. Accordingly, it is preferable that the dimension in the pressing direction between the first welding surface and the second welding surface of the melting margin be within a range of 0.5 to 5 mm in order to perform reliable welding while suppressing waste of materials. It becomes.
“Melting margin” means only the part to be melted.

請求項8に記載の発明は、請求項1〜請求項7の何れか1項に記載のタイヤの製造方法において、前記第1溶着面、及び前記第2溶着面の何れか一方が上向となり、何れか他方が下向きとなるように前記一方のタイヤ構成部材及び前記他方のタイヤ構成部材を配置し、前記第1溶着面、及び前記第2溶着面の内で上向きとされた方を溶融する。   According to an eighth aspect of the present invention, in the tire manufacturing method according to any one of the first to seventh aspects, any one of the first welding surface and the second welding surface is upward. The one tire constituent member and the other tire constituent member are arranged so that one of the other is facing downward, and the one facing upward among the first welding surface and the second welding surface is melted. .

ところで、第1溶着面、及び第2溶着面の何れか一方を溶融した場合、溶融した部分が縦に配置されていると、溶融した熱可塑性材料が下方へ流れ、溶着面における溶融した熱可塑性材料の厚みが周方向に不均一になる(例えば、上側では溶融した熱可塑性材料が下方へ流れるため溶融した熱可塑性材料の厚みが薄くなってしまい、下側では上方から流れた熱可塑性材料によって厚みが厚くなる傾向となる。また、溶融した熱可塑性材料が垂落ちる場合も想定される。)。   By the way, when either one of the first welding surface and the second welding surface is melted, if the melted portion is arranged vertically, the molten thermoplastic material flows downward, and the molten thermoplastic on the welding surface. The thickness of the material becomes uneven in the circumferential direction (for example, the molten thermoplastic material flows downward on the upper side, so that the thickness of the molten thermoplastic material decreases, and on the lower side, the thermoplastic material that flows from above The thickness tends to increase, and the molten thermoplastic material may be drooped.)

請求項8に記載のタイヤの製造方法では、第1溶着面、及び第2溶着面の内で上向きとされた方を溶融するので、溶融された熱可塑性材料の厚みが周方向に不均一になることを抑制でき、周方向に渡って確実な溶着を行うことができる。   In the method for manufacturing a tire according to claim 8, since the upwardly oriented one of the first welding surface and the second welding surface is melted, the thickness of the molten thermoplastic material is uneven in the circumferential direction. It can be suppressed, and reliable welding can be performed in the circumferential direction.

請求項9に記載の発明は、請求項1〜請求項8の何れか1項に記載のタイヤの製造方法において、前記熱可塑性材料の溶融は、前記熱可塑性材料の融点よりも高温に加熱した加熱部材を接近または接触させることで行われる。   The invention according to claim 9 is the tire manufacturing method according to any one of claims 1 to 8, wherein the melting of the thermoplastic material is heated to a temperature higher than the melting point of the thermoplastic material. This is done by bringing the heating member close or in contact.

請求項9に記載のタイヤの製造方法では、熱可塑性材料の融点よりも高温に加熱した加熱部材を第1溶着面、及び第2溶着面の少なくとも一方に接近または接触させることで、接近または接触した部分が加熱部材からの熱を受けて溶融する。   In the tire manufacturing method according to claim 9, the heating member heated to a temperature higher than the melting point of the thermoplastic material approaches or comes into contact with at least one of the first welding surface and the second welding surface. The part that has received the heat from the heating member melts.

熱風や赤外線を照射する場合、必要部位以外も加熱されることになるが、高温に加熱した加熱部材を第1溶着面、及び第2溶着面の少なくとも一方に接近または接触させるようにすれば、加熱部位は限定的となり、必要の無い部位まで加熱してしまうことが無い。必要の無い部位まで加熱すると、タイヤ構成部材を変形させてしまう虞がある。   When irradiating with hot air or infrared rays, other than the necessary part will be heated, but if the heating member heated to high temperature is made to approach or contact at least one of the first welding surface and the second welding surface, A heating part becomes limited and does not heat to a part which is not necessary. If it is heated to an unnecessary part, the tire constituent member may be deformed.

請求項10に記載の発明は、請求項9に記載のタイヤの製造方法において、前記加熱部材の表面には、フッ素樹脂層が設けられている。   A tenth aspect of the present invention is the tire manufacturing method according to the ninth aspect, wherein a fluororesin layer is provided on a surface of the heating member.

請求項10に記載のタイヤの製造方法では、加熱部材の表面にフッ素樹脂層が設けられているため、溶融した熱可塑性材料が加熱部材に接触しても、加熱部材表面に熱可塑性材料が付着したまま残ることを抑制できる。   In the tire manufacturing method according to claim 10, since the fluororesin layer is provided on the surface of the heating member, the thermoplastic material adheres to the surface of the heating member even when the molten thermoplastic material contacts the heating member. It can be suppressed to remain.

請求項11に記載の発明は、請求項1〜請求項10の何れか1項に記載のタイヤの製造方法において、外周部から突出する凸状部分を除去する除去工程を有する。   Invention of Claim 11 has the removal process which removes the convex-shaped part which protrudes from an outer peripheral part in the manufacturing method of the tire of any one of Claims 1-10.

請求項11に記載のタイヤの製造方法では、除去工程において、外周部から突出する凸状部分が除去される。凸状部分としては、突起部、環状突起、溶融した熱可塑性樹脂が溶着時に外周部からはみ出て固化したもの等である。外周部からはみ出て固化した熱可塑性樹脂は、切削、研削等の機械加工で簡単に除去することができる。   In the tire manufacturing method according to the eleventh aspect, the protruding portion protruding from the outer peripheral portion is removed in the removing step. Examples of the convex portion include a protrusion, an annular protrusion, and a molten thermoplastic resin that protrudes from the outer peripheral portion during welding and is solidified. The thermoplastic resin protruding from the outer periphery and solidified can be easily removed by machining such as cutting and grinding.

請求項12に記載の発明は、請求項1〜請求項11の何れか1項に記載のタイヤの製造方法において、前記タイヤ構成部材はタイヤ径方向内側にリムのビードシート、及びリムフランジに接触するビード部を備え、前記ビード部に環状のビードコアが埋設されている。   A twelfth aspect of the present invention is the tire manufacturing method according to any one of the first to eleventh aspects, wherein the tire constituent member contacts a rim bead sheet and a rim flange on the inner side in the tire radial direction. A bead portion is provided, and an annular bead core is embedded in the bead portion.

請求項12に記載のタイヤの製造方法で得られるタイヤは、リムとの嵌合部位であるビード部に、環状のビードコアが埋設されているので、従来のゴム製の空気入りタイヤと同様に、リムに対してタイヤを強固に保持することが出来る。ビードコアは、金属製が好ましいが、合成樹脂製であっても良い。   Since the tire obtained by the tire manufacturing method according to claim 12 has an annular bead core embedded in a bead portion that is a fitting portion with a rim, like a conventional rubber pneumatic tire, The tire can be firmly held against the rim. The bead core is preferably made of metal, but may be made of synthetic resin.

請求項13に記載の発明は、請求項1〜請求項12の何れか1項に記載のタイヤの製造方法において、前記一方のタイヤ構成部材と前記第2のタイヤ構成部材とを溶着した後、外周部に前記熱可塑性材料よりも剛性の高いコードを螺旋状に巻回することで補強層を形成する。   The invention according to claim 13 is the tire manufacturing method according to any one of claims 1 to 12, wherein the one tire constituent member and the second tire constituent member are welded, A reinforcing layer is formed by spirally winding a cord having higher rigidity than the thermoplastic material around the outer periphery.

請求項13に記載のタイヤの製造方法では、熱可塑性材料よりも剛性の高いコードを螺旋状に巻回することで形成された補強層をタイヤ外周部に設けることで、タイヤの路面と接地する側が補強されたタイヤが得られる。なお、この補強層は、ゴム製の空気入りタイヤのベルトに相当する役目をする。タイヤの外周部に補強層を設けることで、補強層を設け無い場合に比較して耐パンク性、耐破壊性、周方向剛性、クリープ防止効果等が向上する。   In the tire manufacturing method according to claim 13, the reinforcing layer formed by spirally winding a cord having higher rigidity than the thermoplastic material is provided on the outer periphery of the tire, whereby the tire is in contact with the road surface of the tire. A tire with reinforced sides is obtained. The reinforcing layer serves as a belt for a rubber pneumatic tire. By providing the reinforcing layer on the outer peripheral portion of the tire, the puncture resistance, the fracture resistance, the circumferential rigidity, the creep preventing effect, and the like are improved as compared with the case where the reinforcing layer is not provided.

請求項14に記載の発明は、請求項1〜請求項13の何れか1項に記載のタイヤの製造方法において、前記一方のタイヤ構成部材と前記第2のタイヤ構成部材とを溶着した後、路面と接触する部分に、前記熱可塑性材料よりも耐摩耗性に優れたゴムからなるトレッドゴム層を接着する。   Invention of Claim 14 WHEREIN: In the manufacturing method of the tire of any one of Claims 1-13, after welding one said tire structural member and a said 2nd tire structural member, A tread rubber layer made of rubber having higher wear resistance than the thermoplastic material is bonded to a portion in contact with the road surface.

請求項14に記載のタイヤの製造方法では、路面と接触する部分に、熱可塑性材料よりも耐摩耗性に優れたゴムからなるトレッドゴム層を設けることで、路面と接触する部分にゴムからなるトレッドゴム層を設けない場合に比較して、耐摩耗性、耐破壊性等が向上したタイヤが得られる。   In the tire manufacturing method according to claim 14, a tread rubber layer made of rubber having higher wear resistance than a thermoplastic material is provided in a portion in contact with the road surface, and the portion in contact with the road surface is made of rubber. A tire having improved wear resistance, breakage resistance, and the like can be obtained as compared with a case where no tread rubber layer is provided.

請求項15に記載の発明は、請求項1〜請求項14の何れか1項に記載のタイヤの製造方法において、前記一方のタイヤ構成部材と前記第2のタイヤ構成部材に対して、タイヤ内の空気が外部へ漏れないように、リムと接触する部分に前記熱可塑性材料よりもシール性に優れたゴムからなるシール部を貼り付ける。   The invention according to claim 15 is the tire manufacturing method according to any one of claims 1 to 14, wherein the one tire constituent member and the second tire constituent member are in the tire. In order to prevent the air from leaking to the outside, a seal portion made of rubber having a sealing property superior to that of the thermoplastic material is attached to a portion in contact with the rim.

請求項15に記載のタイヤの製造方法では、リムと接触する部分に、熱可塑性材料よりもシール性に優れたゴムからなるシール部を設けることで、タイヤとリムとの間のシール性が向上したタイヤが得られる。このため、タイヤは、リムと熱可塑性材料とでシールする場合に比較して、タイヤ内の空気の漏れをより一層抑えることができる。また、シール部を設けることで、リムフィット性も向上する。   In the tire manufacturing method according to claim 15, the sealability between the tire and the rim is improved by providing a seal portion made of rubber having better sealability than the thermoplastic material at a portion in contact with the rim. Tire is obtained. For this reason, compared with the case where a tire seals with a rim | limb and a thermoplastic material, the leak of the air in a tire can be suppressed further. Moreover, rim fit property is also improved by providing a seal part.

請求項16に記載の発明は、熱可塑性材料を含んで形成されたタイヤ構成部材を互いに接合するタイヤの製造装置であって、溶着前の一方のタイヤ構成部材に形成された第1係合部に係合して前記一方のタイヤ構成部材を支持する第1保持具と、溶着前の他方のタイヤ構成部材に形成された第2係合部に係合して前記他方のタイヤ構成部材を支持する第2保持具と、前記一方のタイヤ構成部材の第1溶着面、及び前記第2のタイヤ構成部材の第2溶着面の少なくとも一方を溶融する加熱手段と、前記第1保持具と前記第2保持具とを互いに接離する方向に移動させる移動手段と、を有する。   The invention according to claim 16 is a tire manufacturing apparatus for joining tire constituent members formed including a thermoplastic material to each other, wherein the first engaging portion is formed on one tire constituent member before welding. A first holder that supports the one tire constituent member by engaging with the second tire, and a second engaging portion formed on the other tire constituent member before welding to support the other tire constituent member A second holding tool, heating means for melting at least one of the first welding surface of the one tire constituent member and the second welding surface of the second tire constituent member, the first holding tool and the first And a moving means for moving the two holding tools in the direction of approaching and separating from each other.

次に、請求項16に記載のタイヤの製造装置の作用を説明する。
請求項16に記載のタイヤの製造装置では、第1保持具を溶着前の一方のタイヤ構成部材に形成された第1係合部に係合させることで、一方のタイヤ構成部材が第1保持具に支持される。また、第2保持具を溶着前の他方のタイヤ構成部材に形成された第2係合部に係合させることで、他方のタイヤ構成部材が第2保持具に支持する。また、加熱手段は、一方のタイヤ構成部材の第1溶着面、及び他方のタイヤ構成部材の第2溶着面の少なくとも一方を溶融する。
Next, the operation of the tire manufacturing apparatus according to the sixteenth aspect will be described.
In the tire manufacturing apparatus according to claim 16, the first holding member is engaged with the first engaging portion formed on the one tire constituent member before welding, so that the one tire constituent member holds the first holding. Supported by tools. Further, by engaging the second holder with the second engaging portion formed on the other tire constituent member before welding, the other tire constituent member is supported by the second holder. The heating means melts at least one of the first welding surface of one tire constituent member and the second welding surface of the other tire constituent member.

第1溶着面、及び第2溶着面の少なくとも一方を溶融した後、移動手段で第1保持具と第2保持具とを互いに接離する方向に移動させることで、一方のタイヤ構成部材と他方の構成部材とを互いに接近し、第1溶着面と第2溶着面とが互いに押付けられて溶着する。これにより、熱可塑性材料で形成されるタイヤ構成部材を互いに溶着することで構成されるタイヤを効率的に製造できる。   After melting at least one of the first welding surface and the second welding surface, the first holding tool and the second holding tool are moved toward and away from each other by the moving means, so that one tire constituent member and the other And the first welding surface and the second welding surface are pressed against each other and welded together. Thereby, the tire comprised by mutually welding the tire structural member formed with a thermoplastic material can be manufactured efficiently.

請求項16記載のタイヤの製造装置では、一方のタイヤ構成部材を保持した第1保持具と、他方のタイヤ構成部材を保持した第2保持具を移動手段を用いて互いに接近させることで溶着を行うことができ、部材を保持するためのブラダー、空気供給装置等を必要とせず、装置構成も簡略化できる。   In the tire manufacturing apparatus according to claim 16, welding is performed by moving the first holder holding one tire constituent member and the second holder holding the other tire constituent member close to each other using a moving unit. This can be performed, and a bladder, an air supply device and the like for holding the member are not required, and the device configuration can be simplified.

請求項17に記載の発明は、請求項16に記載のタイヤの製造装置において、前記加熱部材の表面には、フッ素樹脂層が設けられている。   According to a seventeenth aspect of the present invention, in the tire manufacturing apparatus according to the sixteenth aspect, a fluororesin layer is provided on the surface of the heating member.

次に、請求項17に記載のタイヤの製造装置の作用を説明する。
請求項17に記載のタイヤの製造方法では、加熱部材の表面にフッ素樹脂層が設けられているため、溶融した熱可塑性材料が加熱部材に接触しても、加熱部材表面に熱可塑性材料が付着したまま残ることを抑制できる。
Next, the operation of the tire manufacturing apparatus according to claim 17 will be described.
In the tire manufacturing method according to claim 17, since the fluororesin layer is provided on the surface of the heating member, the thermoplastic material adheres to the surface of the heating member even when the molten thermoplastic material contacts the heating member. It can be suppressed to remain.

以上説明したように請求項1に記載のタイヤの製造方法によれば、熱可塑性材料からなるタイヤ構成部材の溶着部分の強度を十分確保したタイヤを、簡単な装置で効率的に製造することができる。
請求項2に記載のタイヤの製造方法によれば、第1溶着面と第2溶着面とを確実に溶着させることができ、溶着の信頼性が向上する。
請求項3に記載のタイヤの製造方法によれば、タイヤ周方向に渡って均一に溶着を行うことができ、溶着の信頼性が向上する。
請求項4に記載のタイヤの製造方法によれば、タイヤ周方向に渡って均一に溶着を行うことができ、溶着の信頼性が向上する。
As described above, according to the method for manufacturing a tire according to claim 1, it is possible to efficiently manufacture a tire in which the strength of a welded portion of a tire constituent member made of a thermoplastic material is sufficiently secured with a simple device. it can.
According to the tire manufacturing method of the second aspect, the first welding surface and the second welding surface can be reliably welded, and the welding reliability is improved.
According to the tire manufacturing method of the third aspect, welding can be performed uniformly in the tire circumferential direction, and the welding reliability is improved.
According to the tire manufacturing method of the fourth aspect, welding can be performed uniformly in the tire circumferential direction, and the reliability of welding is improved.

請求項5に記載のタイヤの製造方法によれば、環状溝の溝底と溝側壁との隅部分の応力集中を抑えることができる。
請求項6に記載のタイヤの製造方法によれば、溶融させる部位が明確となり、必要の無い部分の溶融を防止することが可能となる。
請求項7に記載のタイヤの製造方法によれば、材料の無駄を抑えつつ、溶着の信頼性が向上する。
請求項8に記載のタイヤの製造方法によれば、周方向に渡って確実な溶着を行うことができ、溶着の信頼性が向上する。
According to the tire manufacturing method of the fifth aspect, it is possible to suppress stress concentration at the corner portions of the groove bottom and the groove side wall of the annular groove.
According to the tire manufacturing method of the sixth aspect, the part to be melted is clarified, and it becomes possible to prevent melting of an unnecessary part.
According to the tire manufacturing method of the seventh aspect, the reliability of welding is improved while suppressing waste of materials.
According to the tire manufacturing method of the eighth aspect, reliable welding can be performed in the circumferential direction, and the reliability of welding is improved.

請求項9に記載のタイヤの製造方法によれば、加熱部位を限定的とし、必要の無い部位まで加熱して変形させてしまうことが無い。
請求項10に記載のタイヤの製造方法によれば、加熱部材表面に熱可塑性材料が付着したまま残ることを抑制できる。
請求項11に記載のタイヤの製造方法によれば、タイヤ表面が平滑になり、トレッド等、他の部材をタイヤ表面に貼り付ける場合等に都合が良くなる。
請求項12に記載のタイヤの製造方法によれば、リムに対して強固に保持することが出来るタイヤが得られる。
According to the tire manufacturing method of the ninth aspect, the heating part is limited, and no unnecessary part is heated and deformed.
According to the tire manufacturing method of the tenth aspect, it is possible to suppress the thermoplastic material from remaining on the surface of the heating member.
According to the tire manufacturing method of the eleventh aspect, the tire surface becomes smooth, which is convenient when attaching other members such as a tread to the tire surface.
According to the tire manufacturing method of the twelfth aspect, a tire that can be firmly held against the rim is obtained.

請求項13に記載のタイヤの製造方法によれば、耐パンク性、耐破壊性、周方向剛性、クリープ防止効果等に優れたタイヤが得られる。
請求項14に記載のタイヤの製造方法によれば、耐摩耗性、及び耐破壊性を向上したタイヤが得られる。
請求項15に記載のタイヤの製造方法によれば、タイヤ内の空気の漏れをより一層抑えることができ、また、リムフィット性を向上することができるタイヤが得られる。
According to the tire manufacturing method of the thirteenth aspect, a tire excellent in puncture resistance, fracture resistance, circumferential rigidity, creep prevention effect, and the like can be obtained.
According to the tire manufacturing method of the fourteenth aspect, a tire having improved wear resistance and fracture resistance can be obtained.
According to the tire manufacturing method of the fifteenth aspect, it is possible to obtain a tire capable of further suppressing air leakage in the tire and improving the rim fit.

請求項16に記載のタイヤの製造装置によれば、熱可塑性材料からなるタイヤ構成部材の溶着部分の強度を十分確保したタイヤを、簡単な装置で効率的に製造することができる。
請求項17に記載のタイヤの製造装置によれば、加熱部材表面に熱可塑性材料が付着したまま残ることを抑制できる。
According to the tire manufacturing apparatus of the sixteenth aspect, a tire in which the strength of the welded portion of the tire constituent member made of a thermoplastic material is sufficiently secured can be efficiently manufactured with a simple apparatus.
According to the tire manufacturing apparatus of the seventeenth aspect, the thermoplastic material can be prevented from remaining attached to the surface of the heating member.

(A)は本発明の一実施形態に係るタイヤの一部を断面にした斜視図であり、(B)は、リムに装着したビード部の断面図である。(A) is the perspective view which made some tires the section concerning one embodiment of the present invention in section, and (B) is the sectional view of the bead part with which the rim was equipped. 成形機の斜視図である。It is a perspective view of a molding machine. (A)は最小径としたタイヤ支持部の斜視図であり、(B)は最大径としたタイヤ支持部の斜視図である。(A) is a perspective view of the tire support part made into the minimum diameter, (B) is a perspective view of the tire support part made into the maximum diameter. コード供給装置の要部を示す斜視図である。It is a perspective view which shows the principal part of a cord supply apparatus. (A)はタイヤ半体の溶着部分の斜視図であり、(B)はタイヤ半体の溶着部分の拡大断面図である。(A) is a perspective view of the welding part of a tire half body, (B) is an expanded sectional view of the welding part of a tire half body. (A)、(B)はタイヤの製造工程を示す説明図である。(A), (B) is explanatory drawing which shows the manufacturing process of a tire. (A)、(B)は図6に続くタイヤの製造工程を示す説明図である。(A), (B) is explanatory drawing which shows the manufacturing process of the tire following FIG. 図7に続くタイヤの製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the tire following FIG. (A)は2つのタイヤ半体を溶着して得られたタイヤケースの一部断面図であり、(B)は溶着部分の拡大断面図である。(A) is a partial cross-sectional view of a tire case obtained by welding two tire halves, and (B) is an enlarged cross-sectional view of a welded portion. タイヤケースを支持したタイヤ支持部の斜視図である。It is a perspective view of the tire support part which supported the tire case. 他の実施形態に係るタイヤ半体の端部を示す断面図である。It is sectional drawing which shows the edge part of the tire half body which concerns on other embodiment. (A)は他の実施形態に係るタイヤ半体の端部を示す断面図であり、(B)は図12(A)に示すタイヤ半体を溶着した後の溶着部分の断面図である。(A) is sectional drawing which shows the edge part of the tire half body which concerns on other embodiment, (B) is sectional drawing of the welding part after welding the tire half body shown to FIG. 12 (A). 他の実施形態に係るタイヤの断面図である。It is sectional drawing of the tire which concerns on other embodiment. チューブ半体を溶着したチューブの断面図である。It is sectional drawing of the tube which welded the tube half body. チューブタイプのタイヤの断面図である。It is sectional drawing of a tube type tire.

以下に、図面にしたがって本発明のタイヤの一実施形態に係るタイヤを説明する。
図1に示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
タイヤ10は、リム20のビードシート部21、及びリムフランジ22に接触する1対のビード部12、ビード部12からタイヤ径方向外側に延びるサイド部14、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16からなるタイヤケース(タイヤ骨格部材)17を備えている。
Below, the tire concerning one embodiment of the tire of the present invention is explained according to a drawing.
As shown in FIG. 1, the tire 10 of the present embodiment has a cross-sectional shape that is substantially the same as a conventional general rubber pneumatic tire.
The tire 10 includes a bead seat portion 21 of the rim 20, a pair of bead portions 12 that contact the rim flange 22, a side portion 14 that extends outward from the bead portion 12 in the tire radial direction, and an outer side in the tire radial direction of one side portion 14. A tire case (tire frame member) 17 including a crown portion 16 that connects the end and an outer end in the tire radial direction of the other side portion 14 is provided.

本実施形態のタイヤケース17は、熱可塑性材料で形成されている。
本実施形態のタイヤケース17は、一つのビード部12、一つのサイド部14、及び半幅のクラウン部16が一体としてモールド等で成形された同一形状とされた円環状の、タイヤ構成部材としてのタイヤ半体17Aを互いに向かい合わせてタイヤ赤道面部分で溶着することで形成されており、リムとの間で空気室を形成する。なお、タイヤケース17は、2つの部材を溶着して形成するものに限らず、例えば、一方のビード部12とサイド部14と一体とした第1の部材、トレッド部(タイヤ外周部)に対応する第2の部材、及び他方のビード部12とサイド部14とを一体とした第3の部材等、3以上の部材を溶着して形成しても良く、1対のビード部12、1対のサイド部14、及びクラウン部16を一体で成形したものであっても良い。
また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強しても良い。
The tire case 17 of this embodiment is formed of a thermoplastic material.
The tire case 17 according to the present embodiment is an annular, tire-constituting member in which one bead portion 12, one side portion 14, and a half-width crown portion 16 are integrally formed by molding or the like. The tire halves 17A face each other and are welded at the tire equatorial plane, and form an air chamber with the rim. The tire case 17 is not limited to one formed by welding two members, and corresponds to, for example, a first member integrated with one bead portion 12 and the side portion 14 and a tread portion (tire outer peripheral portion). It is also possible to form three or more members such as a second member, a third member in which the other bead portion 12 and the side portion 14 are integrated, and a pair of bead portions 12, one pair. The side part 14 and the crown part 16 may be integrally formed.
Further, a reinforcing material (polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.) is embedded in the tire case 17 (for example, the bead portion 12, the side portion 14, the crown portion 16 and the like), and the reinforcing material is provided. The tire case 17 may be reinforced.

熱可塑性材料としては、熱可塑性樹脂、熱可塑性エラストマー(TPE)等を用いることができるが、走行時に必要とされる弾性と製造時の成形性等を考慮すると熱可塑性エラストマーを用いることが好ましい。   As the thermoplastic material, a thermoplastic resin, a thermoplastic elastomer (TPE), or the like can be used. However, it is preferable to use a thermoplastic elastomer in consideration of elasticity required at the time of traveling and moldability at the time of manufacture.

熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるアミド系熱可塑性エラストマー(TPA)、エステル系熱可塑性エラストマー(TPC)、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、ウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が上げられる。特に、一部ゴム系の樹脂が混錬されているTPVが好ましい。   Examples of the thermoplastic elastomer include amide-based thermoplastic elastomer (TPA), ester-based thermoplastic elastomer (TPC), olefin-based thermoplastic elastomer (TPO), styrene-based thermoplastic elastomer (TPS) specified in JIS K6418, Urethane thermoplastic elastomer (TPU), crosslinked thermoplastic rubber (TPV), other thermoplastic elastomer (TPZ), etc. are raised. In particular, TPV partially kneaded with rubber-based resin is preferable.

また、熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が上げられる。   Examples of the thermoplastic resin include urethane resin, olefin resin, vinyl chloride resin, polyamide resin, and the like.

熱可塑性材料からなるタイヤ半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができ、ゴムで成形(加硫)する場合に比較して、製造工程を大幅に簡略化でき、成形時間も短くて済む。   The tire half body 17A made of a thermoplastic material can be molded by, for example, vacuum molding, pressure molding, injection molding, melt casting, etc., and the manufacturing process is significantly larger than that of molding (vulcanizing) with rubber. The molding time can be shortened.

また、本実施形態では、タイヤ半体17Aは左右対称形状、即ち、一方のタイヤ半体17Aと他方のタイヤ半体17Aとが同一形状とされているので、タイヤ半体17Aを成形する金型が1種類で済むメリットがある。   In the present embodiment, the tire half body 17A has a bilaterally symmetric shape, that is, one tire half body 17A and the other tire half body 17A have the same shape, and therefore a mold for molding the tire half body 17A. There is an advantage that only one type is required.

本実施形態のビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されているが、ビード部12の剛性が確保され、リム20との嵌合に問題なければビードコア18は省略しても良い。なお、ビードコア18は、有機繊維コード等、スチール以外のコードで形成されていても良く、合成樹脂で形成されていても良い。   An annular bead core 18 made of a steel cord is embedded in the bead portion 12 of the present embodiment, as is the case with conventional general pneumatic tires, but the rigidity of the bead portion 12 is ensured and fits with the rim 20. If there is no problem, the bead core 18 may be omitted. The bead core 18 may be formed of a cord other than steel, such as an organic fiber cord, or may be formed of a synthetic resin.

本実施形態では、ビード部12のリム20との接触部分、少なくともリム20のリムフランジ22と接触する部分に、熱可塑性樹脂よりもシール性に優れたゴムからなる円環状のシール層24が形成されている。このシール層24はビードシートと接触する部分にも形成されていても良い。シール層24を形成するゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。熱可塑性樹脂のみでリム20との間のシール性が確保できれば、ゴムのシール層24は省略しても良く、サイド部14を形成している熱可塑性樹脂よりもシール性に優れる他の種類の熱可塑性樹脂を用いても良い。   In the present embodiment, an annular sealing layer 24 made of rubber having a sealing property superior to that of a thermoplastic resin is formed on the contact portion of the bead portion 12 with the rim 20 and at least the portion of the rim 20 that contacts the rim flange 22. Has been. This sealing layer 24 may also be formed in a portion that contacts the bead sheet. As the rubber forming the seal layer 24, it is preferable to use the same type of rubber as that used on the outer surface of the bead portion of a conventional general rubber pneumatic tire. If the sealing property between the rim 20 can be secured only with the thermoplastic resin, the rubber sealing layer 24 may be omitted, and other types of sealing properties that are superior to the thermoplastic resin forming the side portion 14 may be used. A thermoplastic resin may be used.

クラウン部16には、螺旋状に巻回されたスチールの補強コード26からなるクラウン部補強層28が埋設されている。なお、補強コード26は、全体がクラウン部16に埋設されていても良く、一部分がクラウン部16に埋設されていても良い。このクラウン部補強層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。   A crown portion reinforcing layer 28 made of a steel reinforcing cord 26 wound in a spiral shape is embedded in the crown portion 16. Note that the entire reinforcing cord 26 may be embedded in the crown portion 16, or a part thereof may be embedded in the crown portion 16. The crown portion reinforcing layer 28 corresponds to a belt disposed on the outer peripheral surface of the carcass of a conventional rubber pneumatic tire.

なお、補強コード26の埋設量は、補強コード26の直径の1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量が、補強コード26の直径の1/2を超えると、補強コード26が寸法上、表面から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面がフラットになり、上に部材の載ってもエア入りし難くなる。   The embedment amount of the reinforcing cord 26 is preferably 1/5 or more of the diameter of the reinforcing cord 26, and more preferably more than 1/2. Most preferably, the entire reinforcing cord 26 is embedded in the crown portion 16. When the embedment amount of the reinforcing cord 26 exceeds 1/2 of the diameter of the reinforcing cord 26, the reinforcing cord 26 is difficult to jump out of the surface due to its size. Further, when the entire reinforcing cord 26 is embedded in the crown portion 16, the surface becomes flat and it is difficult for air to enter even if a member is placed thereon.

クラウン部補強層28の外周側には、サイド部14を形成している熱可塑性材料よりも耐摩耗性に優れたゴムからなるトレッドゴム層30が配置されている。トレッドゴム層30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、サイド部14を形成している熱可塑性材料よりも耐摩耗性に優れる他の種類の熱可塑性材料からなるトレッド層を外周部に設けても良い。   A tread rubber layer 30 made of rubber having higher abrasion resistance than the thermoplastic material forming the side portion 14 is disposed on the outer peripheral side of the crown portion reinforcing layer 28. The rubber used for the tread rubber layer 30 is preferably the same type of rubber as that used for conventional rubber pneumatic tires. In addition, you may provide the tread layer which consists of another kind of thermoplastic material which is more excellent in abrasion resistance than the thermoplastic material which forms the side part 14 in an outer peripheral part.

(タイヤの製造装置)
次に、本実施形態のタイヤ10の製造装置を説明する。
図2には、タイヤ10を形成する際に用いる成形機32の要部が斜視図にて示されている。成形機32は、床面に接地された台座34の上部に、水平に配置された軸36を回転させるギヤ付きモータ37が取り付けられている。
(Tire manufacturing equipment)
Next, the manufacturing apparatus of the tire 10 of this embodiment is demonstrated.
FIG. 2 is a perspective view showing the main part of the molding machine 32 used when forming the tire 10. In the molding machine 32, a geared motor 37 that rotates a horizontally disposed shaft 36 is attached to an upper portion of a pedestal 34 that is grounded to a floor surface.

軸36の端部側には、タイヤ支持部40が設けられている。タイヤ支持部40は、軸36に固定されたシリンダブロック38を備え、シリンダブロック38には径方向外側に延びる複数のシリンダロッド41が周方向に等間隔に設けられている。
シリンダロッド41の先端には、外面がタイヤ内面の曲率半径と略同等に設定された円弧曲面42Aを有するタイヤ支持片42が設けられている。
A tire support portion 40 is provided on the end portion side of the shaft 36. The tire support 40 includes a cylinder block 38 fixed to the shaft 36, and a plurality of cylinder rods 41 extending radially outward are provided at equal intervals in the circumferential direction.
A tire support piece 42 having an arcuate curved surface 42A whose outer surface is set substantially equal to the radius of curvature of the tire inner surface is provided at the tip of the cylinder rod 41.

図2、及び図3(A)は、シリンダロッド41の突出量が最も小さい状態(タイヤ支持部40が最小径の状態)を示しており、図3(B)はシリンダロッド41の突出量が最も大きい状態(タイヤ支持部40が最大径の状態)を示している。
各シリンダロッド41は連動して同一方向に同一量移動可能となっている。
2 and 3A show a state where the protruding amount of the cylinder rod 41 is the smallest (the tire support portion 40 has a minimum diameter), and FIG. 3B shows the protruding amount of the cylinder rod 41. The largest state (the state where the tire support portion 40 has the maximum diameter) is shown.
Each cylinder rod 41 can move in the same direction in the same direction.

また、成形機32の近傍には、図4に示すコード供給装置56が配置されている。コード供給装置56は、補強コード26を巻き付けたリール58、リール58のコード搬送方向下流側に配置されたコード加熱装置59、補強コード26の搬送方向下流側に配置された第1のローラ60、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64、及び第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66を備えている。なお、コード供給装置56は、第1のローラ60、及び第2のローラ64の何れか一方が設けられていれば良い。   Further, a cord supply device 56 shown in FIG. 4 is disposed in the vicinity of the molding machine 32. The cord supply device 56 includes a reel 58 around which the reinforcing cord 26 is wound, a cord heating device 59 disposed on the downstream side of the reel 58 in the code conveying direction, a first roller 60 disposed on the downstream side of the reinforcing cord 26 in the conveying direction, A first cylinder device 62 that moves the first roller 60 in a direction that is in contact with and away from the outer peripheral surface of the tire; a second roller 64 that is disposed on the downstream side in the conveying direction of the reinforcing cord 26 of the first roller 60; And a second cylinder device 66 that moves the second roller 64 in a direction in which the second roller 64 comes in contact with and separates from the outer peripheral surface of the tire. The code supply device 56 only needs to be provided with either the first roller 60 or the second roller 64.

また、コード加熱装置59は、熱風を生成する図示しないヒーター、及びファンと、内部に熱風が供給され、内部空間を補強コード26が通過する加熱ボックス68と、加熱された補強コード26を排出する排出部70を備えている。   Further, the cord heating device 59 discharges the heated reinforcing cord 26 and a heater and a fan (not shown) that generate hot air, a heating box 68 in which the hot cord is supplied and the reinforcing cord 26 passes through the internal space. A discharge unit 70 is provided.

(タイヤケースの成形工程)
次に、タイヤケースの成形工程を説明する。
本実施形態のタイヤケース17は、同一形状とされた円環状のタイヤ半体17Aを互いに向かい合わせてタイヤ赤道面部分で溶着することで形成されているが、溶着前のタイヤ半体17Aの形状は図5(A)に示すように、製品タイヤでの形状と一部分が異なっている。
(Tire case molding process)
Next, a tire case molding process will be described.
The tire case 17 of the present embodiment is formed by welding annular tire halves 17A having the same shape so as to face each other and welding at the tire equator portion, but the shape of the tire halves 17A before welding is formed. As shown in FIG. 5A, the shape of the product tire is partially different.

図5(A)に示すように、溶着前のタイヤ半体17Aは、外周面のタイヤ赤道面側端部付近に、タイヤ径方向外側に向けて突出し、かつタイヤ周方向に沿って連続して延びる環状突起19が形成されている。   As shown in FIG. 5A, the tire half body 17A before welding protrudes toward the outer side in the tire radial direction in the vicinity of the end portion on the tire equatorial plane side of the outer peripheral surface and continuously along the tire circumferential direction. An extending annular protrusion 19 is formed.

環状突起19には、タイヤ赤道面CL側とは反対側に、タイヤ周方向に沿って連続して形成され、タイヤ赤道面CL側が溝底とされタイヤ赤道面CL側とは反対側に開口する環状溝23が形成されている。図5(B)に示すように、環状溝23の溝底と溝側壁との隅部分の断面形状は、応力集中を緩和するために円弧形状とされている。   The annular protrusion 19 is continuously formed along the tire circumferential direction on the side opposite to the tire equatorial plane CL side, and the tire equatorial plane CL side serves as a groove bottom and opens to the side opposite to the tire equatorial plane CL side. An annular groove 23 is formed. As shown in FIG. 5B, the cross-sectional shape of the corner portion between the groove bottom and the groove side wall of the annular groove 23 is an arc shape to alleviate stress concentration.

溶着前のタイヤ半体17Aのタイヤ赤道面側端部17Aaには、溶着する際に溶融させるための溶融しろ25が形成されている。本実施形態の溶融しろ25は、タイヤ赤道面側端部17Aaからタイヤ赤道面CL側へ突出し、周方向に一定高さで連続する環状のリブ状突起である。溶融しろ25の高さ寸法h(本発明の押圧方向(接触させる方向)の寸法)は、0.5〜5mmの範囲内とすることが好ましい。本実施形態では、溶融しろ25の断面形状を矩形としているが、図5(C)に示すように半円形等の他の形状としても良い。   A melt margin 25 is formed at the tire equatorial plane side end portion 17Aa of the tire half body 17A before welding for melting when welding. The melting margin 25 of the present embodiment is an annular rib-like protrusion that protrudes from the tire equatorial plane side end 17Aa toward the tire equatorial plane CL and continues at a constant height in the circumferential direction. The height h of the melting margin 25 (the dimension in the pressing direction (contacting direction) of the present invention) is preferably in the range of 0.5 to 5 mm. In the present embodiment, the cross-sectional shape of the melting margin 25 is rectangular, but may be other shapes such as a semicircular shape as shown in FIG.

タイヤケース17を製造するには、図6に示すような溶着装置74を用いる。
図6に示すように、溶着装置74は、一方のタイヤ半体17Aを、タイヤ赤道面側端部17Aaを上向きにして支持する下側支持部材76を備えている。下側支持部材76の上面には、円筒状の第1保持具78が軸線を鉛直方向として取り付けられている。下側支持部材76には、タイヤ半体17Aが挿入される凹部76Bが形成されている。本実施形態の凹部76Bの内壁面の形状は、タイヤ半体17Aの外面の形状と同一形状とされ、タイヤ半体17Aの外面が凹部76Bの内壁面に密着するが、図6(A)の2点鎖線で示すように、凹部76Bの内壁面の形状は、タイヤ半体17Aの外面から離間しても良い。
なお、下側支持部材76の下方には、下側支持部材76を上下に移動するシリンダ装置76Aが配置されている。
In order to manufacture the tire case 17, a welding apparatus 74 as shown in FIG. 6 is used.
As shown in FIG. 6, the welding device 74 includes a lower support member 76 that supports one tire half 17 </ b> A with the tire equatorial plane side end 17 </ b> Aa facing upward. A cylindrical first holder 78 is attached to the upper surface of the lower support member 76 with the axis line being the vertical direction. The lower support member 76 has a recess 76B into which the tire half 17A is inserted. The shape of the inner wall surface of the recess 76B of this embodiment is the same as the shape of the outer surface of the tire half body 17A, and the outer surface of the tire half body 17A is in close contact with the inner wall surface of the recess 76B. As indicated by a two-dot chain line, the shape of the inner wall surface of the recess 76B may be separated from the outer surface of the tire half body 17A.
A cylinder device 76 </ b> A that moves the lower support member 76 up and down is disposed below the lower support member 76.

下側支持部材76の上方には、シリンダ装置80Aで上下に移動する上側支持部材80が配置されており、上側支持部材80の下面には、円筒状の第2保持具82が軸線を鉛直方向とし、かつ第1保持具78と同軸に取り付けられている。上側支持部材80にもタイヤ半体17Aが挿入される凹部80Bが形成されている。なお、図6(A)の2点鎖線で示すように、凹部80Bの内壁面の形状も、タイヤ半体17Aの外面から離間しても良い。   Above the lower support member 76, an upper support member 80 that moves up and down by the cylinder device 80A is disposed. On the lower surface of the upper support member 80, a cylindrical second holder 82 has its axis line in the vertical direction. And is attached coaxially to the first holder 78. The upper support member 80 is also formed with a recess 80B into which the tire half body 17A is inserted. Note that, as indicated by a two-dot chain line in FIG. 6A, the shape of the inner wall surface of the recess 80B may also be separated from the outer surface of the tire half body 17A.

下側支持部材76及び上側支持部材80は同一形状である。
また、第1保持具78及び第2保持具82は同一形状であり、タイヤ半体17Aの環状溝23に挿入(係合)可能な径に形成されている(図5,6参照。)。なお、第1保持具78の端部、及び第2保持具82の端部は、各々面取りすることが好ましい(本実施形態ではアール面取りが施されている。)。
溶着装置74は、図示しないヒーターで加熱される熱板84を備えており、下側支持部材76の側方には、熱板84を水平方向に移動可能に支持する熱板移動装置84Aが配置されている。
The lower support member 76 and the upper support member 80 have the same shape.
Further, the first holder 78 and the second holder 82 have the same shape, and are formed to have a diameter that can be inserted (engaged) into the annular groove 23 of the tire half body 17A (see FIGS. 5 and 6). In addition, it is preferable that the edge part of the 1st holder 78 and the edge part of the 2nd holder 82 are each chamfered (in this embodiment, rounded chamfering is given).
The welding device 74 includes a hot plate 84 that is heated by a heater (not shown), and a hot plate moving device 84A that supports the hot plate 84 so as to be movable in the horizontal direction is disposed on the side of the lower support member 76. Has been.

次に、この溶着装置74を用いてタイヤケース17を製造する方法を説明する。
図6(A)に示すように、一方のタイヤ半体17Aを、タイヤ赤道面側端部17Aaを上向きにして下側支持部材76の第1保持具78の上に同軸状に配置し、該タイヤ半体17Aを下方に移動して、第1保持具78の上端部分をタイヤ半体17Aの環状溝23に係合する。円筒状の第1保持具78を環状溝23に係合することで、下側のタイヤ半体17Aは真円を保ったまま第1保持具78に保持される。このとき、一方のタイヤ半体17Aの外周面は第1保持具78の内周面に密着している。
Next, a method for manufacturing the tire case 17 using the welding device 74 will be described.
As shown in FIG. 6 (A), one tire half 17A is coaxially disposed on the first holder 78 of the lower support member 76 with the tire equatorial plane side end 17Aa facing upward, The tire half body 17A is moved downward, and the upper end portion of the first holder 78 is engaged with the annular groove 23 of the tire half body 17A. By engaging the cylindrical first holder 78 with the annular groove 23, the lower tire half 17A is held by the first holder 78 while maintaining a perfect circle. At this time, the outer peripheral surface of the one tire half body 17 </ b> A is in close contact with the inner peripheral surface of the first holder 78.

また、他方のタイヤ半体17Aを、タイヤ赤道面側端部17Aaを下向きにして上側支持部材80の第2保持具82の下に同軸状に配置し、該タイヤ半体17Aを上方に移動して、第2保持具82の下端部分をタイヤ半体17Aの環状溝23に係合する。円筒状の第2保持具82を環状溝23に係合することで、上側のタイヤ半体17Aは真円を保ったまま第2保持具82に保持される。なお、第2保持具82を環状溝23に係合しているので、第2保持具82と環状溝23との摩擦によって上側のタイヤ半体17Aは落下しないように保持される。このとき、他方のタイヤ半体17Aの外周面は第2保持具82の内周面に密着している。   Further, the other tire half body 17A is disposed coaxially under the second holder 82 of the upper support member 80 with the tire equatorial plane side end portion 17Aa facing downward, and the tire half body 17A is moved upward. Then, the lower end portion of the second holder 82 is engaged with the annular groove 23 of the tire half body 17A. By engaging the cylindrical second holder 82 with the annular groove 23, the upper tire half 17A is held by the second holder 82 while maintaining a perfect circle. Since the second holder 82 is engaged with the annular groove 23, the upper tire half body 17 </ b> A is held so as not to fall due to friction between the second holder 82 and the annular groove 23. At this time, the outer peripheral surface of the other tire half body 17 </ b> A is in close contact with the inner peripheral surface of the second holder 82.

次に、上側のタイヤ半体17Aのタイヤ赤道面側端部17Aaと下側のタイヤ半体17Aタイヤ赤道面側端部17Aaとの中間に加熱した熱板84を挿入し、図6(B)に示すように、上側のタイヤ半体17Aを下方に移動して溶融しろ25を熱板84に接触させて溶融させると共に、下側のタイヤ半体17Aを上方に移動して溶融しろ25を熱板84に接触させて溶融させる(本発明の溶融工程)。   Next, a heated hot plate 84 is inserted between the tire equatorial plane side end portion 17Aa of the upper tire half body 17A and the lower tire half body 17A tire equatorial plane side end portion 17Aa, and FIG. As shown in FIG. 4, the upper tire half 17A is moved downward and melted to bring the melt 25 into contact with the hot plate 84 and melted, and the lower tire half 17A is moved upward and melted to heat the melt 25. It is brought into contact with the plate 84 and melted (melting process of the present invention).

溶融しろ25が溶融した後、図7(A)に示すように、上側のタイヤ半体17Aを上側に移動して熱板84から離間させると共に、下側のタイヤ半体17Aを下側に移動して熱板84から離間させ、熱板84を側方へ素早く退避させる。   After the melting margin 25 is melted, as shown in FIG. 7A, the upper tire half 17A is moved upward to be separated from the hot plate 84, and the lower tire half 17A is moved downward. Then, the hot plate 84 is moved away from the hot plate 84, and the hot plate 84 is quickly retracted to the side.

その後、図7(B)に示すように、上側のタイヤ半体17Aを下方に移動して上側のタイヤ半体17Aの溶融した溶融しろ25と下側のタイヤ半体17Aの溶融した溶融しろ25とを互いに押し付け、溶着を行う(本発明の接合工程)。なお、上側のタイヤ半体17Aと下側のタイヤ半体17Aとを互いに押圧すると、溶融した熱可塑性材料がタイヤ外面及び内面へはみ出て固化する(図9(B)の斜線部分。)。   Thereafter, as shown in FIG. 7B, the upper tire half 17A is moved downward to melt the melted melt margin 25 of the upper tire half 17A and the melt melt margin 25 of the lower tire half 17A. Are pressed together to perform welding (joining process of the present invention). When the upper tire half 17A and the lower tire half 17A are pressed against each other, the molten thermoplastic material protrudes from the tire outer surface and the inner surface and is solidified (shaded portion in FIG. 9B).

溶融しろ25は、本実施形態の様に熱板84を接触させて溶融しても良いが、熱板84を接近させて接触させずに溶融させることもできる。なお、熱板84を溶融しろ25に接触させる場合には、熱板84の表面にフッ素樹脂層を設け、熱板表面に熱可塑性材料が付着したまま残ることを防止することが好ましい。
本実施形態では、溶融しろ25を水平にして溶融させているので、溶融した熱可塑性材料の厚みが周方向に不均一になることはない。
The melting margin 25 may be melted by bringing the hot plate 84 into contact as in the present embodiment, but may be melted without bringing the hot plate 84 close to and making contact. When the hot plate 84 is melted and brought into contact with the margin 25, it is preferable to provide a fluororesin layer on the surface of the hot plate 84 to prevent the thermoplastic material from remaining on the hot plate surface.
In the present embodiment, since the melting margin 25 is horizontal and melted, the thickness of the molten thermoplastic material does not become uneven in the circumferential direction.

溶融した熱可塑性材料が固化した後、図8に示すように、下側支持部材76と上側支持部材80とを互いに離間させ、タイヤケース17を取り出す。
このようにして2つのタイヤ半体17Aを溶着した直後のタイヤケース17は、図9に示すように、タイヤ外周面の幅方向中央部分に環状突起19が突出しているので、タイヤ外周面よりもタイヤ径方向外側に突出している環状突起19(図9(B)の点線よりも図面左側)を、切削、研削等の機械加工により除去する(本発明の除去工程)。
After the molten thermoplastic material is solidified, as shown in FIG. 8, the lower support member 76 and the upper support member 80 are separated from each other, and the tire case 17 is taken out.
In the tire case 17 immediately after the two tire halves 17A are welded in this manner, as shown in FIG. 9, the annular protrusion 19 protrudes at the center portion in the width direction of the tire outer peripheral surface. The annular protrusion 19 (on the left side of the dotted line in FIG. 9B) protruding outward in the tire radial direction is removed by machining such as cutting and grinding (removal step of the present invention).

環状突起19を除去したタイヤケース17は、次に説明するタイヤ支持部40に装着してクラウン部補強層28の形成を行う。   The tire case 17 from which the annular protrusion 19 has been removed is attached to a tire support portion 40 described below to form a crown portion reinforcing layer 28.

(クラウン部補強層の形成)
図2に示すように、先ず、タイヤケース17の内側に薄い金属板(例えば、厚さ0.5mmの鋼板)からなる筒状のタイヤ内面支持リング72を配置する(なお、図2では、内部を見せるために一方のタイヤ半体17Aを外して記載されている。)。タイヤ内面支持リング72は薄い金属板で形成されているため、曲げ変形させてタイヤケース17の内部に容易に挿入可能である。タイヤ内面支持リング72の外径は、タイヤケース17のクラウン部の内径と略同一寸法に設定されており、タイヤ内面支持リング72の外周面が、タイヤケース17のクラウン部内周面に密着するようになっている。
(Formation of crown reinforcement layer)
As shown in FIG. 2, first, a cylindrical tire inner surface support ring 72 made of a thin metal plate (for example, a steel plate having a thickness of 0.5 mm) is arranged inside the tire case 17 (in FIG. 2, in FIG. (In this case, one of the tire halves 17A is removed in order to show the same). Since the tire inner surface support ring 72 is formed of a thin metal plate, the tire inner surface support ring 72 can be easily deformed by bending and inserted into the tire case 17. The outer diameter of the tire inner surface support ring 72 is set to be approximately the same as the inner diameter of the crown portion of the tire case 17 so that the outer peripheral surface of the tire inner surface support ring 72 is in close contact with the inner peripheral surface of the crown portion of the tire case 17. It has become.

次に、図10に示すように、タイヤ支持部40の外周側に、タイヤケース17を配置し、タイヤ支持部40を拡径してタイヤ内面支持リング72の内周面に複数のタイヤ支持片42を接触させてタイヤ内面支持リング72を内側から保持する(図10では、内部を見せるために両方のタイヤ半体17Aを外して記載している。)。   Next, as shown in FIG. 10, the tire case 17 is arranged on the outer peripheral side of the tire support portion 40, the tire support portion 40 is expanded in diameter, and a plurality of tire support pieces are formed on the inner peripheral surface of the tire inner surface support ring 72. 42 is contacted to hold the tire inner surface support ring 72 from the inside (in FIG. 10, both the tire halves 17A are removed to show the inside).

次に、図4に示すように、タイヤ支持部40(図4では図示省略)で支持したタイヤケース17を矢印A方向に回転させ、コード供給装置56の排出部70から排出された加熱された補強コード26をタイヤケース17の外周面に螺旋状に巻き付けてクラウン部補強層28を形成する。補強コード26をタイヤケース17の外周面に螺旋状に巻き付けるには、タイヤケース17を回転しながら、コード供給装置56をタイヤケース17の軸方向に移動させれば良い。   Next, as shown in FIG. 4, the tire case 17 supported by the tire support portion 40 (not shown in FIG. 4) is rotated in the direction of arrow A, and is heated from the discharge portion 70 of the cord supply device 56. The reinforcing cord 26 is spirally wound around the outer peripheral surface of the tire case 17 to form the crown portion reinforcing layer 28. In order to wind the reinforcing cord 26 around the outer circumferential surface of the tire case 17, the cord supply device 56 may be moved in the axial direction of the tire case 17 while the tire case 17 is rotated.

補強コード26を熱可塑性材料の融点よりも高温に加熱(例えば、補強コード26の温度を100〜200°C程度に加熱)することで、補強コード26が接触した部分の熱可塑性材料が溶融し、タイヤケース17の外周面に補強コード26の一部または全体を埋設することができる。
本実施形態では、補強コード26は、第1のローラ60、及び第2のローラ64に押圧されて熱可塑性材料内部に埋設される。
By heating the reinforcing cord 26 to a temperature higher than the melting point of the thermoplastic material (for example, heating the reinforcing cord 26 to about 100 to 200 ° C.), the portion of the thermoplastic material in contact with the reinforcing cord 26 is melted. A part or the whole of the reinforcing cord 26 can be embedded in the outer peripheral surface of the tire case 17.
In the present embodiment, the reinforcing cord 26 is pressed by the first roller 60 and the second roller 64 and embedded in the thermoplastic material.

補強コード26の埋設量は、補強コード26の温度、補強コード26に作用させるテンション等によって調整することができる。なお、補強コード26に作用させるテンションは、例えば、リール58にブレーキを掛ける、補強コード26の搬送経路途中にテンション調整用ローラを設ける等して調整可能である。   The embedment amount of the reinforcing cord 26 can be adjusted by the temperature of the reinforcing cord 26, the tension applied to the reinforcing cord 26, and the like. The tension applied to the reinforcing cord 26 can be adjusted by, for example, applying a brake to the reel 58, or providing a tension adjusting roller in the middle of the conveying path of the reinforcing cord 26.

次に、タイヤケース17の外周面に、加硫済みの帯状のトレッドゴム層30を1周分巻き付けてタイヤケース17の外周面にトレッドゴム層30を接着剤や未加硫ゴム(未加硫ゴムを用いる場合、接着するための加硫は後工程で行う。)等を用いて接着する。なお、トレッドゴム層30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。   Next, the vulcanized belt-like tread rubber layer 30 is wound around the outer peripheral surface of the tire case 17 by one turn, and the tread rubber layer 30 is attached to the outer peripheral surface of the tire case 17 with an adhesive or unvulcanized rubber (unvulcanized rubber). When rubber is used, vulcanization for bonding is performed in a later step.) In addition, the tread rubber layer 30 can use the precure tread used for the retread tire conventionally known, for example. This step is the same step as the step of bonding the precure tread to the outer peripheral surface of the base tire of the retreaded tire.

接着剤としては、トリアジンチオール系接着剤、塩化ゴム系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤、ハロゲン化ゴム系接着剤などを用いることができる。接着力を向上させるためには、接着剤を塗布した後に、ある程度乾燥させておくことが好ましい。このため、接着剤を塗布する際には、湿度70%以下の雰囲気で行うことが好ましい。   As the adhesive, a triazine thiol adhesive, a chlorinated rubber adhesive, a phenol resin adhesive, an isocyanate adhesive, a halogenated rubber adhesive, or the like can be used. In order to improve the adhesive strength, it is preferable that the adhesive is applied and then dried to some extent. For this reason, when apply | coating an adhesive agent, it is preferable to carry out in the atmosphere of 70% or less of humidity.

また、トレッドゴム層30を接着する部位は、予めバフして表面を粗し、アルコール等の溶剤で洗浄しておくことが好ましい。また、接着前のタイヤ半体17Aにおいて、溶接用熱可塑性材料43が付着し易い様に、溶着部位にコロナ処理や紫外線処理等を行っても良い。   Further, it is preferable that the portion to which the tread rubber layer 30 is bonded is previously buffed to roughen the surface and washed with a solvent such as alcohol. Further, in the tire half body 17A before bonding, a corona treatment, an ultraviolet treatment, or the like may be performed on the welded portion so that the welding thermoplastic material 43 is easily attached.

タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を接着剤等を用いて接着すれば、タイヤ10の完成となる。
最後に、タイヤ支持部40の径を縮小し、完成したタイヤ10をタイヤ支持部40から取り外し、内部のタイヤ内面支持リング72を曲げ変形させてタイヤ外へ取り外す。
If the seal layer 24 made of vulcanized rubber is bonded to the bead portion 12 of the tire case 17 using an adhesive or the like, the tire 10 is completed.
Finally, the diameter of the tire support portion 40 is reduced, the completed tire 10 is removed from the tire support portion 40, the inner tire inner surface support ring 72 is bent and deformed, and is removed from the tire.

(作用効果)
次に、本実施形態の作用効果を説明する。
本実施形態のタイヤ10では、一方のタイヤ半体17Aを第1保持具78で保持し、他方のタイヤ半体17Aを第2保持具82で保持し、双方の溶着面を溶融した後、第1保持具78と第2保持具82とを互いに接近させて一方のタイヤ半体17Aと他方のタイヤ半体17Aとを溶着するという簡単な製造工程で、タイヤケース17を効率的に製造することができる。
(Function and effect)
Next, the effect of this embodiment is demonstrated.
In the tire 10 of the present embodiment, one tire half 17A is held by the first holder 78, the other tire half 17A is held by the second holder 82, and both weld surfaces are melted. The tire case 17 is efficiently manufactured by a simple manufacturing process in which the first holding member 78 and the second holding member 82 are brought close to each other and the one tire half 17A and the other tire half 17A are welded together. Can do.

本実施形態のタイヤの製造方法では、タイヤ半体17Aを保持するためのブラダー、空気供給装置等を必要としないので、従来よりも装置構成を簡略化することができる。   In the tire manufacturing method of the present embodiment, a bladder, an air supply device, and the like for holding the tire half body 17A are not required, so that the device configuration can be simplified as compared with the related art.

本実施形態では、第1保持具78で一方のタイヤ半体17Aの溶着面近傍に設けた環状突起19を押圧し、第2保持具82で他方のタイヤ半体17Aの溶着面近傍に設けた環状突起19を押圧することで、双方の溶着面(溶融しろ25)を互いに押付けているため、溶着面に対して第1保持具78及び第2保持具82からの押圧力を効率的に付与することができ、双方の溶着面を確実に溶着させることができる。このように、一方のタイヤ半体17Aの溶着面を溶融させ、他方のタイヤ半体17Aの溶着面を溶融させ、溶融させた接着面同士を押圧する事が接合が確実で好ましい。なお、接合が確実に行われるのであれば、一方の溶着面は溶融させなくても良い。   In the present embodiment, the first holding tool 78 presses the annular protrusion 19 provided in the vicinity of the welding surface of one tire half body 17A, and the second holding tool 82 is provided in the vicinity of the welding surface of the other tire half body 17A. By pressing the annular protrusion 19, both welding surfaces (melting margin 25) are pressed against each other, so that the pressing force from the first holder 78 and the second holder 82 is efficiently applied to the welding surface. It is possible to weld both surfaces reliably. As described above, it is preferable that the welding surface of the one tire half body 17A is melted, the welding surface of the other tire half body 17A is melted, and the melted adhesion surfaces are pressed to ensure bonding. Note that one welded surface does not need to be melted if the joining is performed reliably.

さらに、筒状に形成された第1保持具78を一方のタイヤ半体17Aの環状溝23に挿入して一方のタイヤ半体17Aを保持すると共に、筒状に形成された第2保持具82を他方のタイヤ半体17Aの環状溝23に挿入して他方のタイヤ半体17Aを保持するので、溶着時に、一方のタイヤ半体17A及び他方のタイヤ半体17Aが各々真円状に保持され、タイヤ周方向に渡って均一に溶着を行うことができる。   Further, the first holder 78 formed in a cylindrical shape is inserted into the annular groove 23 of one tire half 17A to hold the one tire half 17A, and the second holder 82 formed in a cylinder is used. Is inserted into the annular groove 23 of the other tire half body 17A to hold the other tire half body 17A, so that at the time of welding, the one tire half body 17A and the other tire half body 17A are each held in a perfect circle shape. Further, welding can be performed uniformly in the tire circumferential direction.

本実施形態では、溶融しろ25が水平に配置されているので、溶融しろ25の溶融された熱可塑性材料何れかの方向に偏って厚みが周方向に不均一になることが抑制され、周方向に渡って確実な溶着を行うことができる。
そして、一方のタイヤ半体17Aの溶融しろ25と、他方のタイヤ半体17Aの溶融しろ25とを互いに押圧して溶融した熱可塑性材料(溶融しろ)をタイヤ表面からはみ出させるため、一方のタイヤ半体17Aと他方のタイヤ半体17Aとを隙間無く確実に溶着させることができる。
In the present embodiment, since the melting margin 25 is disposed horizontally, the thickness of the molten thermoplastic material of the melting margin 25 is prevented from being biased in any direction and the thickness is not uniform in the circumferential direction. Reliable welding can be performed.
Then, in order to cause the thermoplastic material (melting margin), which is melted by pressing the melting margin 25 of one tire half 17A and the melting margin 25 of the other tire half 17A, to protrude from the tire surface, one tire The half body 17A and the other tire half body 17A can be reliably welded without a gap.

本実施形態では、熱板84によって溶融しろ25のみを溶融させており、加熱部位は限定的となっている。即ち、熱風等で必要の無い部位まで加熱してしまうことが無いため、タイヤ半体17Aを変形させてしまう虞が無い。
また、溶融しろ25を設けることで、溶融させる部位が明確となり、溶融する必要の無い部分との区別が付きやすくなる。このため、必要の無い部分の溶融を防止することが可能となる。
In the present embodiment, only the melting margin 25 is melted by the hot plate 84, and the heating site is limited. That is, there is no possibility that the tire half body 17A will be deformed because it is not heated to an unnecessary part with hot air or the like.
Further, by providing the melting margin 25, the part to be melted becomes clear and it becomes easy to distinguish from the part that does not need to be melted. For this reason, it is possible to prevent melting of unnecessary portions.

本実施形態では、同一形状のタイヤ半体17Aを互いに向かい合わせてタイヤケース17を形成しているため、タイヤ半体17Aの成形用の金型は1種類で済む。即ち、一方のタイヤ半体17Aと他方のタイヤ半体17Aで金型の形状を変えなくても左右対称のタイヤ10を製造することができる。   In the present embodiment, the tire half 17A having the same shape is opposed to each other to form the tire case 17, so that only one type of mold for molding the tire half 17A is required. That is, the symmetrical tire 10 can be manufactured without changing the shape of the mold between the one tire half 17A and the other tire half 17A.

本実施形態のタイヤ10では、トレッド部を除く略全体を熱可塑性材料で形成したので、真空成形、圧空成形、インジェクション成形等で成形することができ、ゴム製の空気入りタイヤに比較して、製造工程を大幅に簡略化できる。   In the tire 10 of the present embodiment, since substantially the entire portion excluding the tread portion is formed of a thermoplastic material, it can be formed by vacuum forming, pressure forming, injection molding, or the like, compared to a rubber pneumatic tire, The manufacturing process can be greatly simplified.

本実施形態のタイヤ10では、ビード部12にビードコア18を埋設しているので、従来のゴム製の空気入りタイヤと同様に、リム20に対する嵌合強度を確保できる。
本実施形態のタイヤ10では、タイヤ構成材料の中で熱可塑性材料の占める割合が大きいので、リサイクル性が良好である。
In the tire 10 of this embodiment, since the bead core 18 is embedded in the bead portion 12, the fitting strength with respect to the rim 20 can be ensured similarly to the conventional rubber pneumatic tire.
In the tire 10 of the present embodiment, the ratio of the thermoplastic material in the tire constituent material is large, so that the recyclability is good.

熱可塑性材料よりも剛性の高い補強コード26を螺旋状に巻回することで形成されたクラウン部補強層28をクラウン部16に設けることで、クラウン部16が補強され、耐パンク性、耐破壊性、周方向剛性、クリープ防止効果等が向上する。   The crown portion 16 is reinforced by providing the crown portion 16 with a crown portion reinforcing layer 28 formed by spirally winding a reinforcing cord 26 having a rigidity higher than that of the thermoplastic material. Property, circumferential rigidity, creep prevention effect and the like are improved.

リム20と接触する部分、特にはリムフランジ22と接触する部分に、熱可塑性材料よりもシール性に優れたゴムからなるシール層24を設けているので、従来のゴム製の空気入りタイヤと同様のシール性が得られる。   Since a seal layer 24 made of rubber having a sealing property superior to that of a thermoplastic material is provided on a portion in contact with the rim 20, particularly a portion in contact with the rim flange 22, it is the same as a conventional rubber pneumatic tire. Sealing performance is obtained.

本実施形態の10では、従来のゴム製の空気入りタイヤのトレッドに用いられているゴムと同種のゴムからなるトレッドゴム層を供えているので、従来のゴム製の空気入りタイヤと同等の耐摩耗性、グリップ等が得られる。   In the present embodiment 10, since a tread rubber layer made of the same kind of rubber as that used in the tread of a conventional rubber pneumatic tire is provided, the same resistance to resistance as that of a conventional rubber pneumatic tire is provided. Abrasion, grip, etc. are obtained.

なお、本実施形態のタイヤケース17は、2つのタイヤ半体17Aを溶着して形成したが、3つの部材から構成する場合、タイヤケース17は、一方のサイド部14、他方のサイド部14、及び略円筒状のクラウン部16の3部材に分けることが出来る。これらを溶着する際も、溶接用熱可塑性材料43を用いて溶接することができる。なお、サイド部14とクラウン部16との溶着部分は、路面と接地しない部位に配置することが好ましい。   The tire case 17 of the present embodiment is formed by welding two tire halves 17A. However, when the tire case 17 is composed of three members, the tire case 17 includes one side portion 14, the other side portion 14, And it can be divided into three members of a substantially cylindrical crown portion 16. Also when these are welded, the welding thermoplastic material 43 can be used for welding. In addition, it is preferable to arrange | position the welding part of the side part 14 and the crown part 16 in the site | part which does not contact a road surface.

[その他の実施形態]
タイヤ半体17Aの端部は、上記実施形態で説明した形状に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
上記実施形態で説明した製造工程の順番は一例であり、各工程の順番を適宜変更しても良い。
上記実施形態では、上側のタイヤ半体17Aと、下側のタイヤ半体17Aの双方に溶融しろ25を設けたが、例えば、下側のタイヤ半体17Aのみに溶融しろ25を形成し、下側のタイヤ半体17Aの溶融しろ25を溶融して上側のタイヤ半体17Aのタイヤ赤道面側端部17Aa(溶融していない)に溶着することもできる。下側のタイヤ半体17Aの溶融しろ25は、上向きで水平に配置されているので、溶融された熱可塑性材料の厚みが周方向に不均一にならず、周方向に渡って確実な溶着を行うことができる。
[Other Embodiments]
The end portion of the tire half body 17A is not limited to the shape described in the above embodiment, and various modifications can be made without departing from the gist of the present invention.
The order of the manufacturing steps described in the above embodiment is an example, and the order of each step may be changed as appropriate.
In the above embodiment, the melting margin 25 is provided in both the upper tire half 17A and the lower tire half 17A. For example, the melting margin 25 is formed only in the lower tire half 17A, It is also possible to melt the melting margin 25 of the side tire half 17A and weld it to the tire equatorial plane side end portion 17Aa (not melted) of the upper tire half 17A. Since the melting margin 25 of the lower tire half 17A is disposed horizontally upward, the thickness of the molten thermoplastic material is not uneven in the circumferential direction, and reliable welding is performed in the circumferential direction. It can be carried out.

上記実施形態では、例えば、上側のタイヤ半体17Aを保持するために上側支持部材80の係合される環状溝23が環状突起19に形成されていたが、上側支持部材80の内周面等をタイヤ半体17Aの外周面に強く接するようにして保持できれば、図11に示すように、環状突起19に環状溝23を形成しなくても良い。このとき、一方のタイヤ半体17Aの外周面が第1保持具78の内周面に密着し、他方のタイヤ半体17Aの外周面が第2保持具82の内周面に密着しているので、一方のタイヤ半体17A、及び他方のタイヤ半体17Aは各々真円が保たれた状態で保持される。   In the above embodiment, for example, the annular groove 23 to be engaged with the upper support member 80 is formed in the annular protrusion 19 in order to hold the upper tire half body 17A, but the inner peripheral surface of the upper support member 80, etc. 11 can be held so as to be in strong contact with the outer peripheral surface of the tire half body 17A, the annular groove 23 does not have to be formed in the annular protrusion 19, as shown in FIG. At this time, the outer peripheral surface of one tire half 17A is in close contact with the inner peripheral surface of the first holder 78, and the outer peripheral surface of the other tire half 17A is in close contact with the inner peripheral surface of the second holder 82. Therefore, one tire half 17A and the other tire half 17A are each held in a state where a perfect circle is maintained.

上記実施形態では、第1保持具78を下側のタイヤ半体17Aの環状溝23に係合して下側のタイヤ半体17Aを保持し、第2保持具82を上側のタイヤ半体17Aの環状溝23に係合して上側のタイヤ半体17Aを保持したが、第1保持具78及び第2保持具82を用いず、下側のタイヤ半体17Aを下側支持部材76の凹部76Bに係合して下側支持部材76に保持し、上側のタイヤ半体17Aを上側支持部材80の凹部80Bに係合して上側支持部材80に保持しても良い。この場合、図12に示すように、タイヤ半体17Aの外周面に環状突起19を形成しなくても良い。なお、図12(A)は溶着前、図12(B)は溶着後を示している。
さらに、タイヤ半体17Aは、下側支持部材76、及び上側支持部材80を用いず、例えば、吸着パッド(吸盤)等を用いて保持することできる。
In the above embodiment, the first holder 78 is engaged with the annular groove 23 of the lower tire half 17A to hold the lower tire half 17A, and the second holder 82 is set to the upper tire half 17A. The upper tire half 17 </ b> A is held by engaging with the annular groove 23, but the first tire 78 and the second holder 82 are not used, and the lower tire half 17 </ b> A is recessed in the lower support member 76. The upper tire half 17 </ b> A may be engaged with the recess 80 </ b> B of the upper support member 80 and held on the upper support member 80 by engaging with 76 </ b> B. In this case, as shown in FIG. 12, the annular protrusion 19 may not be formed on the outer peripheral surface of the tire half body 17A. 12A shows before welding, and FIG. 12B shows after welding.
Furthermore, the tire half body 17A can be held using, for example, a suction pad (suction cup) without using the lower support member 76 and the upper support member 80.

上記実施形態では、加硫済みの帯状のトレッドゴム層30をタイヤケース17の外周面に1周分巻き付けてトレッド部を形成したが、予め円環状に形成した加硫済みのトレッドゴム層30を、タイヤケース17の軸方向から挿入してタイヤケース17と円環状に形成した加硫済みのトレッドゴム層30とを接着剤等を用いて接着することも出来る。   In the above embodiment, the tread portion is formed by winding the vulcanized belt-like tread rubber layer 30 around the outer peripheral surface of the tire case 17 by one turn. However, the vulcanized tread rubber layer 30 formed in an annular shape in advance is used. The tire case 17 may be inserted from the axial direction of the tire case 17 and the vulcanized tread rubber layer 30 formed in an annular shape may be bonded using an adhesive or the like.

上記実施形態では、補強コード26の材質がスチールであったが、有機繊維等であっても良い。補強コード26が有機繊維である場合、補強コード26自身を加熱せず、又は加熱しつつタイヤケース17の外周部の外表面を加熱して溶融させながら補強コード26を巻き付けることが出来、外表面を加熱する方が接合の観点で好ましい。
また、この場合も、接合面を、接合前に加熱(熱風を当てたり、熱ロールを転がす等)することが好ましい。
In the above embodiment, the material of the reinforcing cord 26 is steel, but organic fiber or the like may be used. When the reinforcing cord 26 is an organic fiber, the reinforcing cord 26 can be wound without heating the reinforcing cord 26 itself or heating and melting the outer surface of the outer periphery of the tire case 17 while heating. Is preferable from the viewpoint of bonding.
Also in this case, it is preferable to heat the joining surfaces (joining with hot air or rolling a hot roll) before joining.

上記実施形態のタイヤ10は、チューブレスタイプのタイヤであったが、図13に示すように、本実施形態のタイヤ86は、熱可塑性材料からなる円環状とされた中空のチューブ88をタイヤ幅方向に3本配置して、それらの外周部分に、ベルト89を埋設したトレッドゴム層30を接着した構成であり、チューブ88に係合する凹部を備えたリム90に装着されるものである。なお、このタイヤ86にはビードコアは設けられていない。   Although the tire 10 of the above embodiment is a tubeless type tire, as illustrated in FIG. 13, the tire 86 of the present embodiment includes a hollow tube 88 formed of a thermoplastic material in a tire width direction. The tread rubber layer 30 in which the belt 89 is embedded is bonded to the outer peripheral portion thereof, and is attached to the rim 90 having a recess that engages with the tube 88. The tire 86 is not provided with a bead core.

チューブ88は、図14に示すように、横向きに配置した断面半円形状のチューブ半体88Aを互いに向き合わせて溶着して形成することができる。チューブ半体88Aの内周側及び外周側の溶着面近傍には、各々上記実施形態のタイヤ半体17Aと同様の環状溝23を有する環状突起19が内外周に設けられており、内周側の環状溝23、及び外周側の環状溝23に筒状の内側保持具92、及び外側保持具94を挿入し、上側のチューブ半体88Aの端部と下側のチューブ半体88Aの端部とを互いに押付けて溶着を行う。なお、溶着後は、環状突起19の除去を行う。   As shown in FIG. 14, the tube 88 can be formed by welding the tube halves 88 </ b> A having a semicircular cross section arranged in a lateral direction so as to face each other. An annular protrusion 19 having an annular groove 23 similar to that of the tire half body 17A of the above-described embodiment is provided on the inner and outer circumferences in the vicinity of the inner circumferential side and outer circumferential side welding surfaces of the tube half body 88A. The cylindrical inner holder 92 and the outer holder 94 are inserted into the annular groove 23 and the outer annular groove 23, and the end of the upper tube half 88A and the end of the lower tube half 88A are inserted. Are pressed together to perform welding. After the welding, the annular protrusion 19 is removed.

また、タイヤ10は、図15に示すように、1本のチューブ88(2つのチューブ半体88Aからなる)を用い、そのチューブ88の外周部分にトレッドゴム層30を接着したチューブタイプの構成とすることも出来る。
なお、クラウン部補強層28は、補強コード26を螺旋状に巻回して形成することが製造上容易だが、タイヤ幅方向でコードを不連続としても良い。
Further, as shown in FIG. 15, the tire 10 uses a single tube 88 (consisting of two tube halves 88A), and has a tube-type configuration in which the tread rubber layer 30 is bonded to the outer peripheral portion of the tube 88. You can also
In addition, although it is easy to manufacture the crown portion reinforcing layer 28 by spirally winding the reinforcing cord 26, the cord may be discontinuous in the tire width direction.

上記実施形態では、上側支持部材80及び下側支持部材76を上下に配置してタイヤ半体17Aを保持したが、上側支持部材80及び下側支持部材76の配置される向きはこれに限らず、例えば、左右に配置しても良い。   In the above embodiment, the upper support member 80 and the lower support member 76 are vertically arranged to hold the tire half body 17A. However, the orientation in which the upper support member 80 and the lower support member 76 are arranged is not limited thereto. For example, it may be arranged on the left and right.

10 タイヤ
12 ビード部
16 クラウン部(外周部)
17 タイヤケース
17A タイヤ半体(熱可塑性材料。タイヤ構成部材)
17Aa タイヤ赤道面側端部
18 ビードコア
19 環状突起(第1,2係合部。突起)
23 環状溝
25 溶融しろ
76A シリンダ装置(移動手段)
80A シリンダ装置(移動手段)
84 熱板
86 タイヤ
88 チューブ
88A チューブ半体(タイヤ構成部材)
10 tire 12 bead portion 16 crown portion (outer peripheral portion)
17 Tire case 17A Tire half (thermoplastic material, tire component)
17Aa tire equatorial plane side end 18 bead core 19 annular projection (first and second engaging portions; projection)
23 annular groove 25 melting margin 76A cylinder device (moving means)
80A cylinder device (moving means)
84 Hot plate 86 Tire 88 Tube 88A Tube half (tire component)

Claims (17)

熱可塑性材料を含んで形成されたタイヤ構成部材を互いに接合する工程を含むタイヤの製造方法であって、
溶着前の一方のタイヤ構成部材には、前記一方のタイヤ構成部材を支持する第1保持具が係合される第1係合部が形成されており、前記一方のタイヤ構成部材に溶着する溶着前の他方のタイヤ構成部材には、前記他方のタイヤ構成部材を支持する第2保持具が係合される第2係合部が形成されており、
前記一方のタイヤ構成部材の第1溶着面及び前記第2のタイヤ構成部材の第2溶着面の少なくとも一方を溶融する溶融工程と、
前記第1係合部に前記第1保持具を係合させた前記一方のタイヤ構成部材の前記第1溶着面と、前記第2係合部に前記第2保持具を係合させた前記他方のタイヤ構成部材の前記第2溶着面とを互いに対向させ、前記第1保持具と前記第2保持具とを互いに接近させて前記第1溶着面と前記第2溶着面とを互いに接触させて溶着する接合工程と、
を有するタイヤの製造方法。
A tire manufacturing method including a step of joining tire constituent members formed including a thermoplastic material to each other,
The first tire constituent member before welding is formed with a first engaging portion to be engaged with the first holder that supports the one tire constituent member, and welded to the one tire constituent member. The second other tire constituent member is formed with a second engaging portion to be engaged with a second holder that supports the other tire constituent member,
A melting step of melting at least one of the first welding surface of the one tire constituent member and the second welding surface of the second tire constituent member;
The first welding surface of the one tire constituent member with the first holding member engaged with the first engaging portion, and the other with the second holding member engaged with the second engaging portion. The second welding surface of the tire constituent member is opposed to each other, the first holding tool and the second holding tool are brought close to each other, and the first welding surface and the second welding surface are brought into contact with each other. Welding process for welding,
The manufacturing method of the tire which has this.
前記一方のタイヤ構成部材及び前記他方のタイヤ構成部材は、各々ビード部からトレッドのタイヤ赤道面まで連続したタイヤ半体形状とされ、
前記第1係合部は、前記一方のタイヤ構成部材のタイヤ赤道面側に形成され、
前記第2係合部は、前記他方のタイヤ構成部材のタイヤ赤道面側に形成され、
前記第1溶着面は、前記一方のタイヤ構成部材のタイヤ赤道面側端面とされ、
前記第2溶着面は、前記他方のタイヤ構成部材のタイヤ赤道面側端面とされている、
請求項1に記載のタイヤの製造方法。
Each of the one tire constituent member and the other tire constituent member has a tire half-body shape continuous from the bead portion to the tire equatorial plane of the tread,
The first engagement portion is formed on the tire equatorial plane side of the one tire constituent member,
The second engagement portion is formed on the tire equatorial plane side of the other tire constituent member,
The first welding surface is a tire equatorial plane side end surface of the one tire constituent member,
The second welding surface is a tire equatorial plane side end surface of the other tire constituent member,
The method for manufacturing a tire according to claim 1.
前記第1係合部及び前記第2係合部は、タイヤ構成部材外周面からタイヤ径方向外側へ突出する突起部を備え、
前記接合工程では、筒状に形成された前記第1保持具の内周面を前記一方のタイヤ構成部材の外周面に接触させて保持すると共に、筒状に形成された前記第2保持具の内周面を前記他方のタイヤ構成部材の外周面に接触させて保持し、前記第1保持具で前記一方のタイヤ構成部材の前記突起部を押圧し、前記第2保持具で前記他方のタイヤ構成部材の前記突起部を押圧することで前記溶着を行う、請求項2に記載のタイヤの製造方法。
The first engaging portion and the second engaging portion include a protrusion that protrudes outward in the tire radial direction from the outer peripheral surface of the tire constituent member,
In the joining step, the inner peripheral surface of the first holder formed in a cylindrical shape is held in contact with the outer peripheral surface of the one tire constituent member, and the second holder formed in a cylindrical shape is held. An inner peripheral surface is held in contact with an outer peripheral surface of the other tire constituent member, the projection of the one tire constituent member is pressed with the first holder, and the other tire is pressed with the second holder. The tire manufacturing method according to claim 2, wherein the welding is performed by pressing the protrusions of the constituent members.
前記第1係合部及び前記第2係合部は、各々タイヤ構成部材外周面からタイヤ径方向外側へ突出し、タイヤ周方向に沿って連続して延びる環形状に形成された環状突起を備え、
前記環形突起には、タイヤ周方向に沿って連続して形成され、タイヤ赤道面側が溝底とされタイヤ赤道面側とは反対側に開口する環状溝が形成され、
前記接合工程では、前記第1保持具を前記第1係合部の前記環状溝に挿入して前記一方のタイヤ構成部材を保持し、前記第2保持具を前記第2係合部の前記環状溝に挿入して前記他方のタイヤ構成部材を保持し、前記第1保持具で前記一方のタイヤ構成部材の前記環状突起を押圧し、前記第2保持具で前記他方のタイヤ構成部材の前記環状突起を押圧することで前記溶着を行う、請求項2に記載のタイヤの製造方法。
Each of the first engaging portion and the second engaging portion includes an annular protrusion formed in an annular shape that protrudes outward in the tire radial direction from the outer peripheral surface of the tire constituent member and continuously extends along the tire circumferential direction,
The annular protrusion is formed continuously along the tire circumferential direction, and an annular groove is formed on the tire equatorial plane side that is the groove bottom and opens to the opposite side of the tire equatorial plane side.
In the joining step, the first holder is inserted into the annular groove of the first engagement portion to hold the one tire constituent member, and the second holder is attached to the annular portion of the second engagement portion. Inserting into the groove to hold the other tire constituent member, pressing the annular protrusion of the one tire constituent member with the first holder, and the annular of the other tire constituent member with the second holder The tire manufacturing method according to claim 2, wherein the welding is performed by pressing a protrusion.
前記環状溝の溝底と溝側壁との隅部分の断面形状は円弧形状とされている、請求項4に記載のタイヤの製造方法。   The tire manufacturing method according to claim 4, wherein a cross-sectional shape of a corner portion between the groove bottom and the groove side wall of the annular groove is an arc shape. 前記第1溶着面及び前記第2溶着面の少なくとも一方には、前記溶融工程で溶融される溶融しろが設けられている、請求項1〜請求項5の何れか1項に記載のタイヤの製造方法。   The tire manufacturing according to any one of claims 1 to 5, wherein at least one of the first welding surface and the second welding surface is provided with a melting margin that is melted in the melting step. Method. 前記溶融しろは、前記第1溶着面と前記第2溶着面との押圧方向の寸法が0.5〜5mmの範囲内に設定されている、請求項6に記載のタイヤの製造方法。   The tire melting method according to claim 6, wherein the melting margin is set such that a dimension in a pressing direction between the first welding surface and the second welding surface is in a range of 0.5 to 5 mm. 前記第1溶着面、及び前記第2溶着面の何れか一方が上向となり、何れか他方が下向きとなるように前記一方のタイヤ構成部材及び前記他方のタイヤ構成部材を配置し、前記第1溶着面、及び前記第2溶着面の内で上向きとされた方を溶融する、請求項1〜請求項7の何れか1項に記載のタイヤの製造方法。   The one tire constituent member and the other tire constituent member are arranged such that either one of the first welding surface and the second welding surface is upward and the other is downward. The method for manufacturing a tire according to any one of claims 1 to 7, wherein one of the weld surface and the second weld surface facing upward is melted. 前記熱可塑性材料の溶融は、前記熱可塑性材料の融点よりも高温に加熱した加熱部材を接近または接触させることで行われる、請求項1〜請求項8の何れか1項に記載のタイヤの製造方法。   The tire production according to any one of claims 1 to 8, wherein the thermoplastic material is melted by approaching or contacting a heating member heated to a temperature higher than the melting point of the thermoplastic material. Method. 前記加熱部材の表面には、フッ素樹脂層が設けられている、請求項9に記載のタイヤの製造方法。   The tire manufacturing method according to claim 9, wherein a fluororesin layer is provided on a surface of the heating member. 前記一方のタイヤ構成部材と前記他方のタイヤ構成部材との溶着時にタイヤ表面にはみ出した熱可塑性材料からなるはみ出し部を除去する除去工程を有する、請求項1〜請求項10の何れか1項に記載のタイヤの製造方法。   11. The method according to claim 1, further comprising a removing step of removing a protruding portion made of a thermoplastic material that protrudes from a tire surface during welding of the one tire component and the other tire component. The manufacturing method of the tire of description. 前記タイヤ構成部材はタイヤ径方向内側にリムのビードシート、及びリムフランジに接触するビード部を備え、前記ビード部に金属材料からなる環状のビードコアが埋設されている、請求項1〜請求項11の何れか1項に記載のタイヤの製造方法。   The tire constituent member includes a bead sheet of a rim and a bead portion that contacts a rim flange on a radially inner side of the tire, and an annular bead core made of a metal material is embedded in the bead portion. The method for manufacturing a tire according to any one of the above. 前記一方のタイヤ構成部材と前記第2のタイヤ構成部材とを溶着した後、外周部に前記熱可塑性材料よりも剛性の高いコードを螺旋状に巻回することで補強層を形成する、請求項1〜請求項12の何れか1項に記載のタイヤの製造方法。   The reinforcing layer is formed by spirally winding a cord having rigidity higher than that of the thermoplastic material around the outer peripheral portion after welding the one tire constituent member and the second tire constituent member. The manufacturing method of the tire of any one of Claims 1-12. 前記一方のタイヤ構成部材と前記第2のタイヤ構成部材とを溶着した後、路面と接触する部分に、前記熱可塑性材料よりも耐摩耗性に優れたゴムからなるトレッドゴム層を接着する、請求項1〜請求項13の何れか1項に記載のタイヤの製造方法。   A tread rubber layer made of rubber having better wear resistance than the thermoplastic material is bonded to a portion that contacts the road surface after welding the one tire constituent member and the second tire constituent member. The method for manufacturing a tire according to any one of claims 1 to 13. 前記一方のタイヤ構成部材と前記第2のタイヤ構成部材に対して、タイヤ内の空気が外部へ漏れないように、リムと接触する部分に前記熱可塑性材料よりもシール性に優れたゴムからなるシール部を貼り付ける、請求項1〜請求項14の何れか1項に記載のタイヤの製造方法。   For the one tire constituent member and the second tire constituent member, the portion in contact with the rim is made of rubber having better sealing properties than the thermoplastic material so that the air in the tire does not leak outside. The method for manufacturing a tire according to any one of claims 1 to 14, wherein a seal portion is attached. 熱可塑性材料を含んで形成されたタイヤ構成部材を互いに接合するタイヤの製造装置であって、
溶着前の一方のタイヤ構成部材に形成された第1係合部に係合して前記一方のタイヤ構成部材を支持する第1保持具と、
溶着前の他方のタイヤ構成部材に形成された第2係合部に係合して前記他方のタイヤ構成部材を支持する第2保持具と、
前記一方のタイヤ構成部材の第1溶着面、及び前記第2のタイヤ構成部材の第2溶着面の少なくとも一方を溶融する加熱部材と、
前記第1保持具と前記第2保持具とを互いに接離する方向に移動させる移動手段と、
を有するタイヤの製造装置。
A tire manufacturing apparatus for joining tire constituent members formed to include a thermoplastic material,
A first holder that engages with a first engagement portion formed on one tire constituent member before welding and supports the one tire constituent member;
A second holder that engages with a second engagement portion formed on the other tire constituent member before welding and supports the other tire constituent member;
A heating member that melts at least one of the first welding surface of the one tire constituent member and the second welding surface of the second tire constituent member;
A moving means for moving the first holding tool and the second holding tool in a direction of contacting and separating from each other;
A tire manufacturing apparatus comprising:
前記加熱部材の表面には、フッ素樹脂層が設けられている、請求項16に記載のタイヤの製造装置。   The tire manufacturing apparatus according to claim 16, wherein a fluororesin layer is provided on a surface of the heating member.
JP2009191197A 2009-08-20 2009-08-20 Method for producing tire and apparatus for producing tire Pending JP2011042090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191197A JP2011042090A (en) 2009-08-20 2009-08-20 Method for producing tire and apparatus for producing tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191197A JP2011042090A (en) 2009-08-20 2009-08-20 Method for producing tire and apparatus for producing tire

Publications (1)

Publication Number Publication Date
JP2011042090A true JP2011042090A (en) 2011-03-03

Family

ID=43829900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191197A Pending JP2011042090A (en) 2009-08-20 2009-08-20 Method for producing tire and apparatus for producing tire

Country Status (1)

Country Link
JP (1) JP2011042090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140345778A1 (en) * 2011-09-26 2014-11-27 Bridgestone Corporation Tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140345778A1 (en) * 2011-09-26 2014-11-27 Bridgestone Corporation Tire
US9623706B2 (en) * 2011-09-26 2017-04-18 Bridgestone Corporation Tire with welded thermoplastic constituent members

Similar Documents

Publication Publication Date Title
JP5893658B2 (en) Tire and tire manufacturing method
JP5689789B2 (en) Tire manufacturing method
JP5847890B2 (en) Tire and tire manufacturing method
WO2011021702A1 (en) Tire and tire manufacturing method
WO2014129427A1 (en) Tire, tire manufacturing device, and tire manufacturing method
JP2011042236A (en) Tire and manufacturing method for tire
US20130139938A1 (en) Tire manufacturing method, tread member and tire
EP2762330B1 (en) Tire with two welded portions
WO2012023523A1 (en) Method for processing tire and apparatus for processing tire
JP5441792B2 (en) Tire manufacturing method and tire
JP2011042090A (en) Method for producing tire and apparatus for producing tire
JP2011207154A (en) Method of manufacturing tire, and tire
JP5010017B2 (en) Pneumatic tire manufacturing method and molding apparatus
WO2011122451A1 (en) Tire manufacturing method and tire
JP6536204B2 (en) Method of manufacturing pneumatic tire
JP2007050717A (en) Air bladder, its manufacturing method, and safety tire
JP2011207153A (en) Method of manufacturing tire, and tire