JP2011040282A - All-solid secondary battery - Google Patents

All-solid secondary battery Download PDF

Info

Publication number
JP2011040282A
JP2011040282A JP2009186796A JP2009186796A JP2011040282A JP 2011040282 A JP2011040282 A JP 2011040282A JP 2009186796 A JP2009186796 A JP 2009186796A JP 2009186796 A JP2009186796 A JP 2009186796A JP 2011040282 A JP2011040282 A JP 2011040282A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
solid electrolyte
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009186796A
Other languages
Japanese (ja)
Inventor
Hideaki Maeda
英明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2009186796A priority Critical patent/JP2011040282A/en
Publication of JP2011040282A publication Critical patent/JP2011040282A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid secondary battery excellent in output characteristics and cycle characteristics. <P>SOLUTION: This all-solid secondary battery includes a negative electrode, a solid electrolyte containing an inorganic solid electrolyte having lithium ion conductivity of not less than 10<SP>-4</SP>S/cm, and a positive electrode containing a positive electrode active material made of secondary particles by agglutinating primary particles and the inorganic solid electrolyte. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、電気自動車用電池や大型蓄電池として利用可能な全固体二次電池に関するものである。   The present invention relates to an all-solid-state secondary battery that can be used as a battery for an electric vehicle or a large-sized storage battery.

近時、電解質として有機溶媒にリチウム塩を溶解させた非水電解液が用いられた従前のリチウムイオン二次電池に比べて安全性が高い電池として、リチウムイオン伝導体である無機固体電解質を用いた全固体リチウムイオン二次電池が注目されている。   Recently, an inorganic solid electrolyte, which is a lithium ion conductor, has been used as a battery that is safer than conventional lithium ion secondary batteries that use a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent. The all-solid-state lithium ion secondary battery has been attracting attention.

全固体二次電池においても、従来の電解液を用いた二次電池で使用されている、LiCoO(以下、LCOとも言う。)からなる正極活物質を用いた検討が行われているが、全固体二次電池において課題となっている正極活物質と固体電解質との界面の抵抗を減少させるために、主に、LCO表面を他の物質で被覆処理して抵抗を減少させることが検討されている(特許文献1)。更に、固体電解質と正極活物質との反応を抑制するために、固体電解質と正極活物質とに同アニオン種を含む化合物を組み合わせて用いる試みや(特許文献2)、固体電解質を薄膜化することにより正極活物質と固体電解質との抵抗を低減する試みもなされている(特許文献3)。 In all solid state secondary batteries, studies using a positive electrode active material made of LiCoO 2 (hereinafter also referred to as LCO), which is used in secondary batteries using conventional electrolytes, are being conducted. In order to reduce the resistance at the interface between the positive electrode active material and the solid electrolyte, which is an issue in all-solid-state secondary batteries, it has been studied mainly to reduce the resistance by coating the LCO surface with other materials. (Patent Document 1). Furthermore, in order to suppress the reaction between the solid electrolyte and the positive electrode active material, an attempt to use a compound containing the same anionic species in the solid electrolyte and the positive electrode active material (Patent Document 2), or thinning the solid electrolyte Attempts have also been made to reduce the resistance between the positive electrode active material and the solid electrolyte (Patent Document 3).

特開2008−103280JP2008-103280 特開2007−324079JP2007-324079 特開2000−340257JP2000-340257

全固体二次電池では、電極内部に混在させる固体電解質と活物質との固体−固体間の接触性が、固体電解質と活物質との界面の抵抗の大小に大きく関わってくる。そのため、固体電解質と混合し加圧した後の正極活物質の粉体の状態が、全固体二次電池の電流の取り出し易さ、すなわち出力特性に影響を与えると考えられる。   In an all-solid-state secondary battery, the solid-solid contact property between the solid electrolyte and the active material mixed inside the electrode greatly affects the resistance of the interface between the solid electrolyte and the active material. Therefore, it is considered that the state of the positive electrode active material powder after being mixed and pressurized with the solid electrolyte affects the ease of taking out the current of the all-solid secondary battery, that is, the output characteristics.

正極活物質が粒径が大きな単分散状態の一次粒子からなる場合は、固体電解質と正極活物質との接触点が少ないので、電子及びリチウムイオンの移動経路を充分に確保することは困難である。一方、正極活物質が粒径が小さな単分散状態の一次粒子からなる場合は、粒子の比表面積は大きくなるが、固体電解質と正極活物質との界面が増加することによって逆に抵抗上昇に繋がる。また、正極内に空隙が増加することによって、正極の電極密度が低下するので、これによっても正極の内部抵抗が上昇する。従って、単分散状態の一次粒子の粒径を小さくすることによっては、電池のインピーダンスを下げることはできない。   When the positive electrode active material is composed of primary particles having a large monodispersed state, there are few contact points between the solid electrolyte and the positive electrode active material, so it is difficult to secure a sufficient movement path for electrons and lithium ions. . On the other hand, when the positive electrode active material is composed of monodispersed primary particles with a small particle size, the specific surface area of the particles is increased, but the increase in the interface between the solid electrolyte and the positive electrode active material leads to an increase in resistance. . Moreover, since the electrode density of a positive electrode falls by the space | gap increasing in a positive electrode, this also raises the internal resistance of a positive electrode. Therefore, the impedance of the battery cannot be lowered by reducing the particle size of the primary particles in the monodispersed state.

また、合成時に1000℃近くの高温で焼成したり、フラックス等を添加して溶融させたりした、粒径が大きな単分散状態の一次粒子からなる正極活物質は、粒子自体が非常に硬く、割れ難い材料であり、更に、割れるような高い圧力をかけた際には、粒子が均等に割れるのではなく、微細な欠片が発生したり、大きな空隙が生じたりする。このような欠片は、固体電解質と正極活物質との間の空隙を埋めることはできず、また、新規な表面を持つので反応が活性な状態になる。そのため不均一な反応が起こり、固体電解質と正極活物質との界面の抵抗を低減することは困難である。また、新たに生じた空隙は、リチウムイオンや電子の移動経路を妨げるので、固体電解質と正極活物質との界面の抵抗上昇に繋がり、電池の出力特性の改善には繋がらない。   In addition, the positive electrode active material composed of primary particles having a large monodispersed state, which is fired at a high temperature close to 1000 ° C. at the time of synthesis or melted by adding a flux or the like, is very hard and cracks. Further, it is a difficult material, and when a high pressure that can be broken is applied, the particles are not evenly cracked, but fine fragments are generated or large voids are generated. Such a piece cannot fill the gap between the solid electrolyte and the positive electrode active material, and has a novel surface, so that the reaction becomes active. Therefore, a non-uniform reaction occurs, and it is difficult to reduce the resistance at the interface between the solid electrolyte and the positive electrode active material. In addition, the newly generated voids obstruct the movement path of lithium ions and electrons, leading to an increase in resistance at the interface between the solid electrolyte and the positive electrode active material, and not improving the output characteristics of the battery.

そこで本発明は、上記現状に鑑み、出力特性及びサイクル特性に優れた全固体二次電池を提供することを課題とする。   In view of the above, the present invention has an object to provide an all-solid-state secondary battery excellent in output characteristics and cycle characteristics.

すなわち本発明に係る全固体二次電池は、負極と、リチウムイオン伝導率が10−4S/cm以上である無機固体電解質を含有する固体電解質層と、一次粒子が凝集した二次粒子からなる正極活物質及び前記無機固体電解質を含有する正極とを備えていることを特徴とする。 That is, the all-solid-state secondary battery according to the present invention includes a negative electrode, a solid electrolyte layer containing an inorganic solid electrolyte having a lithium ion conductivity of 10 −4 S / cm or more, and secondary particles in which primary particles are aggregated. A positive electrode active material and a positive electrode containing the inorganic solid electrolyte are provided.

このようなものであれば、正極活物質として一次粒子が凝集した二次粒子からなるものを用いることにより、正極内部や固体電解質質と正極との界面において、正極活物質と固体電解質との接触性が高まるので、正極活物質と固体電解質との間における電子及びリチウムイオンの移動経路が確保され、正極活物質と固体電解質との界面における抵抗上昇を抑制することができる。また、このような正極活物質を用いることにより、正極活物質と固体電解質との間に空隙が生じにくく、正極の電極密度を向上することができるので、正極内部における電子及びリチウムイオンの移動経路も確保され、正極の内部抵抗が低下し、電池の出力特性を改善することが可能である。   In such a case, by using a secondary particle in which primary particles are aggregated as a positive electrode active material, contact between the positive electrode active material and the solid electrolyte is performed in the positive electrode or at the interface between the solid electrolyte and the positive electrode. Therefore, the movement path of electrons and lithium ions between the positive electrode active material and the solid electrolyte is secured, and an increase in resistance at the interface between the positive electrode active material and the solid electrolyte can be suppressed. Further, by using such a positive electrode active material, it is difficult to generate a gap between the positive electrode active material and the solid electrolyte, and the electrode density of the positive electrode can be improved. Is ensured, the internal resistance of the positive electrode is lowered, and the output characteristics of the battery can be improved.

前記正極活物質は、一次粒子の平均粒径が1μm以下であり、二次粒子のメジアン径が5μm以上であるものが好ましい。   The positive electrode active material preferably has an average primary particle size of 1 μm or less and a median diameter of secondary particles of 5 μm or more.

前記正極活物質は、電池製造時のプレスによって二次粒子の凝集が崩壊しやすいものが好ましく、具体的には、3t/cmの圧力で加圧した際の、加圧前後の二次粒子のメジアン径の変化率{100−(加圧後のメジアン径/加圧前のメジアン径)×100}が、15%以上であるものが好ましい。 The positive electrode active material is preferably a material in which aggregation of secondary particles tends to collapse due to pressing during battery production, specifically, secondary particles before and after pressing when pressed at a pressure of 3 t / cm 2. The median diameter change rate {100− (median diameter after pressurization / median diameter before pressurization) × 100} is preferably 15% or more.

このような構成の本発明によれば、正極内部や正極と固体電解質層との界面において、正極活物質と固体電解質との間の空隙を低減させることができ、更に、一次粒子が小さいので、リチウムイオンの拡散速度も速く、固体電解質との接触点も多くなり、リチウムイオン及び電子の移動経路が保持され、正極の内部抵抗や、正極と固体電解質層との界面抵抗の低減が可能となり、全固体二次電池の出力特性やサイクル特性を向上することが可能となる。   According to the present invention having such a configuration, voids between the positive electrode active material and the solid electrolyte can be reduced inside the positive electrode or at the interface between the positive electrode and the solid electrolyte layer, and further, since the primary particles are small, The diffusion rate of lithium ions is fast, the number of contact points with the solid electrolyte increases, the movement path of lithium ions and electrons is maintained, and the internal resistance of the positive electrode and the interface resistance between the positive electrode and the solid electrolyte layer can be reduced. It becomes possible to improve the output characteristics and cycle characteristics of the all-solid-state secondary battery.

比較例(a)(b)と本発明(c)における固体電解質と正極活物質と接触状態を示す模式図。The schematic diagram which shows a solid electrolyte, a positive electrode active material, and a contact state in a comparative example (a) (b) and this invention (c).

以下、本発明の一実施形態に係る全固体二次電池について説明する。   Hereinafter, an all solid state secondary battery according to an embodiment of the present invention will be described.

本実施形態に係る全固体二次電池は、正極、負極、及び、正極と負極に挟まれた固体電解質層からなるものである。   The all solid state secondary battery according to the present embodiment includes a positive electrode, a negative electrode, and a solid electrolyte layer sandwiched between the positive electrode and the negative electrode.

前記正極は、一次粒子が凝集した二次粒子からなる正極活物質と、後述する無機固体電解質とを含有するものである。   The positive electrode contains a positive electrode active material composed of secondary particles in which primary particles are aggregated and an inorganic solid electrolyte described later.

図1(a)に示すように、正極活物質が粒径が大きな単分散状態の一次粒子からなる場合、リチウムイオンの拡散速度が遅く、また、正極活物質粒子自体が硬く割れにくいので、固体電解質との接触点が少なく、電子及びリチウムイオンの移動経路を充分に確保することは困難である。また、図1(b)に示すように、正極活物質が粒径が小さな単分散状態の一次粒子からなる場合、粒子の比表面積は大きくなるが、固体電解質と正極活物質との界面が増加することによって逆に抵抗上昇に繋がる。また、固体電解質と正極活物質との間に空隙が増加し、正極の電極密度が低下するので、電子及びリチウムイオンの移動経路を充分に確保することが困難になり、これによっても正極の内部抵抗が上昇する。   As shown in FIG. 1A, when the positive electrode active material is composed of primary particles having a large particle size, the diffusion rate of lithium ions is slow, and the positive electrode active material particles themselves are hard and difficult to break. There are few contact points with an electrolyte, and it is difficult to secure a sufficient movement path for electrons and lithium ions. In addition, as shown in FIG. 1B, when the positive electrode active material is composed of primary particles having a small particle size, the specific surface area of the particles is increased, but the interface between the solid electrolyte and the positive electrode active material is increased. By doing so, the resistance rises. In addition, since voids increase between the solid electrolyte and the positive electrode active material and the electrode density of the positive electrode decreases, it becomes difficult to secure a sufficient movement path for electrons and lithium ions, and this also causes the inside of the positive electrode Resistance rises.

これに対して、本発明では、図1(c)に示すように、正極活物質が一次粒子の凝集した二次粒子からなるので、固体電解質との接触点が多くなり、また、二次粒子が崩壊しても、その間隙は新たな二次粒子で埋められるので、正極の電極密度も高くなり、電子及びリチウムイオンの移動経路を充分に確保することができる。   In contrast, in the present invention, as shown in FIG. 1 (c), the positive electrode active material is composed of secondary particles in which primary particles are aggregated, so that the number of contact points with the solid electrolyte increases, and the secondary particles Even if collapses, since the gap is filled with new secondary particles, the electrode density of the positive electrode is increased, and a sufficient movement path for electrons and lithium ions can be secured.

本発明で用いられる正極活物質としては、一次粒子の平均粒径が1μm以下であり、二次粒子のメジアン径が5μm以上であるものが好ましく、より好ましくは、一次粒子の平均粒径が0.1〜1μmであり、二次粒子のメジアン径が5〜20μmである。一次粒子の平均粒径が1μmより大きいと、リチウムイオンの拡散速度が遅くなり、固体電解質との接触点も減少する傾向にある。また、二次粒子のメジアン径が5μmより小さいと、二次粒子間の空隙が増加し、正極の電極密度が低下しやすく、また、固体電解質との接触点も減少する傾向にある。   As the positive electrode active material used in the present invention, those having an average primary particle diameter of 1 μm or less and a median diameter of secondary particles of 5 μm or more are preferable, and more preferably, the average particle diameter of primary particles is 0. 0.1 to 1 μm, and the median diameter of the secondary particles is 5 to 20 μm. When the average particle size of the primary particles is larger than 1 μm, the diffusion rate of lithium ions becomes slow, and the contact point with the solid electrolyte tends to decrease. On the other hand, if the median diameter of the secondary particles is smaller than 5 μm, voids between the secondary particles increase, the electrode density of the positive electrode tends to decrease, and the contact point with the solid electrolyte tends to decrease.

なお、本発明における一次粒子の平均粒径は、走査型電子顕微鏡(SEM)で観察した複数の一次粒子の粒径を平均することにより求めることができ、一方、本発明における二次粒子のメジアン径は、粒度分布計により得られた粒度分布のD50から求めることができる。   The average particle diameter of the primary particles in the present invention can be obtained by averaging the particle diameters of a plurality of primary particles observed with a scanning electron microscope (SEM), while the median of the secondary particles in the present invention. The diameter can be obtained from D50 of the particle size distribution obtained by the particle size distribution meter.

前記正極活物質として具体的には、例えば、LiNiM1M2(0.5<x<0.9、0.1<y<0.6、0.01<z<0.4、M1はCo及び/又はMn、M2はAl、Mg、Ti、Mnの内一種以上)、LiCoO等が用いられる。これらの正極活物質は、単独で用いられてもよく、二種以上が併用されてもよい。 Specific examples of the positive electrode active material include LiNi x M1 y M2 x O 2 (0.5 <x <0.9, 0.1 <y <0.6, 0.01 <z <0.4. M1 is Co and / or Mn, M2 is at least one of Al, Mg, Ti, and Mn), LiCoO 2 and the like. These positive electrode active materials may be used independently and 2 or more types may be used together.

本発明で用いられる正極活物質としては、更に、電池製造時のプレスによって二次粒子の凝集が崩壊しやすいものが好ましく、具体的には、3t/cmの圧力で加圧した際の、加圧前後の二次粒子のメジアン径の変化率{100−(加圧後のメジアン径/加圧前のメジアン径)×100}が、15%以上であるものが好ましく、より好ましくは15〜20%である。このようなものであれば、固体電解質と正極活物質との間に空隙が生じにくい。 As the positive electrode active material used in the present invention, a material in which the aggregation of secondary particles is likely to be disintegrated by pressing during battery production is preferable, and specifically, when pressurized at a pressure of 3 t / cm 2 , The change rate of the median diameter of the secondary particles before and after pressurization {100- (median diameter after pressurization / median diameter before pressurization) × 100} is preferably 15% or more, more preferably 15 to 20%. If it is such, it is hard to produce a space | gap between a solid electrolyte and a positive electrode active material.

前記負極は、リチウムとの合金化や、リチウムの吸蔵、放出が可能な負極活物質を含有するものである。当該負極活物質としては特に限定されず、例えば、リチウム、インジウム、スズ、アルミ、ケイ素等の金属やそれらの合金:Li4/3Ti5/3、SnO等の遷移金属酸化物:人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛、難黒鉛化性炭素等の炭素材料等が挙げられる。これらの負極活物質は、単独で用いられてもよく、二種以上が併用されてもよい。 The negative electrode contains a negative electrode active material capable of being alloyed with lithium, occluded and released from lithium. The negative electrode active material is not particularly limited, and examples thereof include metals such as lithium, indium, tin, aluminum, and silicon, and alloys thereof: transition metal oxides such as Li 4/3 Ti 5/3 O 4 and SnO: artificial Graphite, graphite carbon fiber, resin-fired carbon, pyrolysis vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, Examples thereof include carbon materials such as non-graphitizable carbon. These negative electrode active materials may be used independently and 2 or more types may be used together.

前記正極及び負極は、上述の活物質からなる粉末に、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択されて配合されていてもよい。   For the positive electrode and the negative electrode, additives such as, for example, a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended with the powder made of the above active material.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。更に、前記負極にも、後述する無機固体電解質が配合されていてもよい。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned. Furthermore, the inorganic solid electrolyte mentioned later may be mix | blended with the said negative electrode.

前記正極又は負極を製造するには、例えば、上述の活物質と各種添加剤との混合物を作製し、ペレット状にして油圧プレス機により厚密化して、正極又は負極とする方法や、水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストを、ドクターブレード法等を用いて集電体に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする方法がある。 In order to produce the positive electrode or the negative electrode, for example, a mixture of the above-described active material and various additives is prepared, formed into a pellet and thickened by a hydraulic press machine to obtain a positive electrode or a negative electrode, water, It is added to a solvent such as an organic solvent to form a slurry or paste, and the obtained slurry or paste is applied to a current collector using a doctor blade method or the like, dried, and compacted with a rolling roll or the like to form a positive electrode or a negative electrode There is a method.

前記集電体としては、例えば、インジウム、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が挙げられる。   Examples of the current collector include plates and foils made of indium, copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, lithium, or alloys thereof. Is mentioned.

なお、結着剤を用いずに、ペレット状に圧密化成形して正極や負極としてもよい。また、負極活物質として金属又はその合金を使用する場合、金属シート(箔)をそのまま負極として使用してもよい。   In addition, it is good also as a positive electrode or a negative electrode by carrying out the consolidation shaping | molding to a pellet form, without using a binder. Moreover, when using a metal or its alloy as a negative electrode active material, you may use a metal sheet (foil) as a negative electrode as it is.

前記固体電解質層は、リチウムイオン伝導率が10−4S/cm以上である無機固体電解質を含有するものである。 The solid electrolyte layer contains an inorganic solid electrolyte having a lithium ion conductivity of 10 −4 S / cm or more.

このような無機固体電解質としては、例えば、非晶質LiS−P及びガラスセラミックス、LiAlTiPOx等が挙げられる。 Examples of such an inorganic solid electrolyte include amorphous Li 2 S—P 2 S 5, glass ceramics, LiAlTiPOx, and the like.

本実施形態に係る全固体二次電池は、これらの正極、固体電解質層及び負極の材料を積層し、プレスすることにより製造することができる。   The all-solid-state secondary battery according to the present embodiment can be manufactured by laminating and pressing these positive electrode, solid electrolyte layer, and negative electrode materials.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
一次粒子の平均粒径が1μmで、二次粒子のメジアン径が17μmであるLiNi0.8Co0.15Al0.05を正極活物質として用いて、固体電解質としてはメカニカルミリング法により合成した非晶質LiS−P(80−20mol%)を用い、負極活物質としてはグラファイトを用いた。正負極ともに電極には、活物質と固体電解質、導電材であるVGCF(気相成長カーボンファイバ)を60/35/5wt%で混合した合剤を用いた。そして、正極合剤、固体電解質、負極合剤をこの順に積層し、プレスすることにより全固体二次電池を作製した。
Example 1
LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average primary particle diameter of 1 μm and a median diameter of secondary particles of 17 μm was used as the positive electrode active material, and the solid electrolyte was mechanically milled. Synthesized amorphous Li 2 S—P 2 S 5 (80-20 mol%) was used, and graphite was used as the negative electrode active material. For both the positive and negative electrodes, a mixture in which an active material, a solid electrolyte, and VGCF (vapor-grown carbon fiber) as a conductive material were mixed at 60/35/5 wt% was used. Then, a positive electrode mixture, a solid electrolyte, and a negative electrode mixture were laminated in this order and pressed to produce an all-solid secondary battery.

正極活物質の二次粒子のメジアン径は、粒度分布計を用いて測定した粒度分布のD50をもって評価し、また、正極活物質を3t/cmの圧力で加圧して、加圧前後の二次粒子のメジアン径(粒度分布のD50)の変化率{100−(加圧後D50/加圧前D50)×100}を算出した。 The median diameter of the secondary particles of the positive electrode active material is evaluated based on the D50 of the particle size distribution measured using a particle size distribution meter. Further, the positive electrode active material is pressurized at a pressure of 3 t / cm 2 , The change rate {100− (D50 after pressurization / D50 before pressurization) × 100} of the median diameter (D50 of the particle size distribution) of the secondary particles was calculated.

正極活物質の一次粒子の平均粒径及び分散状態は、走査型電子顕微鏡(SEM)によって正極活物質を観察することによって求め、一次粒子の平均粒径は、10000倍の倍率で10個以上の二次凝集粒子を選択し、凝集している一次粒子径を見積もった値の平均値として算出した。   The average particle diameter and dispersion state of the primary particles of the positive electrode active material are determined by observing the positive electrode active material with a scanning electron microscope (SEM), and the average particle diameter of the primary particles is 10 or more at a magnification of 10,000 times. Secondary agglomerated particles were selected, and the agglomerated primary particle diameter was calculated as an average value of estimated values.

全固体二次電池の評価は、1C=1.4mAとなるように電池を構成し、0.1C、0.3C、0.5C、1Cと電流を変化させて放電させて、そのときの0.1Cに対する1Cの容量維持率によって出力特性を評価した。また、0.1C充電、0.5C放電の条件で充放電を100回実施した際の容量維持率をサイクル維持率とし、これによってサイクル特性を評価した。   The evaluation of the all-solid-state secondary battery was such that the battery was configured so that 1 C = 1.4 mA, and the current was changed to 0.1 C, 0.3 C, 0.5 C, 1 C and discharged, and 0 at that time The output characteristics were evaluated by the capacity retention rate of 1C with respect to 1C. Moreover, the capacity maintenance rate when charging / discharging was performed 100 times under the conditions of 0.1 C charge and 0.5 C discharge was defined as the cycle maintenance rate, and thereby the cycle characteristics were evaluated.

(実施例2)
正極活物質として、一次粒子の平均粒径が1μmで、二次粒子のメジアン径が6μmであるものを使用したこと以外は、実施例1と同様にして全固体二次電池を作製し、その電池特性を評価した。
(Example 2)
An all-solid secondary battery was prepared in the same manner as in Example 1 except that a positive electrode active material having an average primary particle diameter of 1 μm and a secondary particle median diameter of 6 μm was used. Battery characteristics were evaluated.

(実施例3)
正極活物質として、一次粒子の平均粒径が0.5μmで、二次粒子のメジアン径が10μmであるLiNi0.333Co0.333Mn0.333を使用したこと以外は、実施例1と同様にして全固体二次電池を作製し、その電池特性を評価した。
(Example 3)
Example except that LiNi 0.333 Co 0.333 Mn 0.333 O 2 in which the average particle diameter of primary particles is 0.5 μm and the median diameter of secondary particles is 10 μm was used as the positive electrode active material. All-solid-state secondary batteries were produced in the same manner as in Example 1, and the battery characteristics were evaluated.

(実施例4)
正極活物質として、一次粒子の平均粒径が0.5μmで、二次粒子のメジアン径が6μmであるものを使用したこと以外は、実施例3と同様にして全固体二次電池を作製し、その電池特性を評価した。
Example 4
An all-solid secondary battery was prepared in the same manner as in Example 3 except that a positive electrode active material having an average primary particle diameter of 0.5 μm and a secondary particle median diameter of 6 μm was used. The battery characteristics were evaluated.

(実施例5)
正極活物質として、一次粒子の平均粒径が1μmで、二次粒子のメジアン径が12μmであるLiCoOを使用したこと以外は、実施例1と同様にして全固体二次電池を作製し、その電池特性を評価した。
(Example 5)
As the positive electrode active material, an all-solid secondary battery was produced in the same manner as in Example 1 except that LiCoO 2 having an average primary particle diameter of 1 μm and a secondary particle median diameter of 12 μm was used. The battery characteristics were evaluated.

(比較例1)
正極活物質として、一次粒子の平均粒径が10μmで単分散状態のものを使用したこと以外は、実施例5と同様にして全固体二次電池を作製し、その電池特性を評価した。
(Comparative Example 1)
As the positive electrode active material, an all-solid secondary battery was produced in the same manner as in Example 5 except that a monodispersed material having an average primary particle size of 10 μm was used, and its battery characteristics were evaluated.

(比較例2)
正極活物質として、一次粒子の平均粒径が1μmで単分散状態のものを使用したこと以外は、実施例5と同様にして全固体二次電池を作製し、その電池特性を評価した。
(Comparative Example 2)
As the positive electrode active material, an all-solid secondary battery was prepared in the same manner as in Example 5 except that a monodispersed material having an average primary particle size of 1 μm was used, and the battery characteristics were evaluated.

(比較例3)
正極活物質として、一次粒子の平均粒径が4μmで単分散状態のLiNiOを使用したこと以外は、実施例1と同様にして全固体二次電池を作製し、その電池特性を評価した。
(Comparative Example 3)
An all-solid secondary battery was produced in the same manner as in Example 1 except that monodispersed LiNiO 2 having an average primary particle diameter of 4 μm was used as the positive electrode active material, and the battery characteristics were evaluated.

各実施例及び比較例において得られた結果は、表1にまとめて記載した。   The results obtained in each example and comparative example are summarized in Table 1.

実施例1〜5では、全固体二次電池の正極活物質として、一次粒子の平均粒径が1μm程度で、二次粒子のメジアン径が5〜20μmの凝集粒子からなるものを用いることにより、固体電解質と混合して加圧した際に、一次粒子は変化せずに、二次粒子の凝集が解かれ、固体電解質との空隙に正極活物質が入り込み、正極内部の抵抗を低減させることができた。   In Examples 1 to 5, by using a positive electrode active material of an all-solid secondary battery, the primary particles have an average particle diameter of about 1 μm, and secondary particles have a median diameter of 5 to 20 μm. When mixed with a solid electrolyte and pressurized, the primary particles do not change, the secondary particles are agglomerated, and the positive electrode active material enters the voids with the solid electrolyte, reducing the internal resistance of the positive electrode. did it.

Claims (3)

負極と、リチウムイオン伝導率が10−4S/cm以上である無機固体電解質を含有する固体電解質層と、一次粒子が凝集した二次粒子からなる正極活物質及び前記無機固体電解質を含有する正極とを備えていることを特徴とする全固体二次電池。 A negative electrode, a solid electrolyte layer containing an inorganic solid electrolyte having a lithium ion conductivity of 10 −4 S / cm or more, a positive electrode active material comprising secondary particles in which primary particles are aggregated, and a positive electrode containing the inorganic solid electrolyte An all-solid-state secondary battery comprising: 前記正極活物質は、一次粒子の平均粒径が1μm以下であり、二次粒子のメジアン径が5μm以上である請求項1記載の全固体二次電池。   2. The all-solid secondary battery according to claim 1, wherein the positive electrode active material has an average primary particle diameter of 1 μm or less and a median diameter of secondary particles of 5 μm or more. 前記正極活物質は、3t/cmの圧力で加圧した際の、加圧前後の二次粒子のメジアン径の変化率{100−(加圧後のメジアン径/加圧前のメジアン径)×100}が、15%以上である請求項1又は2記載の全固体二次電池。 When the positive electrode active material is pressed at a pressure of 3 t / cm 2 , the change rate of the median diameter of secondary particles before and after pressurization {100- (median diameter after pressurization / median diameter before pressurization)) X100} is 15% or more, The all-solid-state secondary battery of Claim 1 or 2.
JP2009186796A 2009-08-11 2009-08-11 All-solid secondary battery Pending JP2011040282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186796A JP2011040282A (en) 2009-08-11 2009-08-11 All-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186796A JP2011040282A (en) 2009-08-11 2009-08-11 All-solid secondary battery

Publications (1)

Publication Number Publication Date
JP2011040282A true JP2011040282A (en) 2011-02-24

Family

ID=43767837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186796A Pending JP2011040282A (en) 2009-08-11 2009-08-11 All-solid secondary battery

Country Status (1)

Country Link
JP (1) JP2011040282A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157047A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 All-solid-state secondary battery
WO2013051478A1 (en) * 2011-10-06 2013-04-11 ソニー株式会社 Battery and method for manufacturing same
JP5660210B2 (en) * 2011-06-02 2015-01-28 トヨタ自動車株式会社 Solid electrolyte material, solid battery, and method for producing solid electrolyte material
JP2017016794A (en) * 2015-06-29 2017-01-19 トヨタ自動車株式会社 Cathode mixture and all-solid lithium battery
JP2017037821A (en) * 2015-08-14 2017-02-16 アルプス電気株式会社 Secondary battery and method for manufacturing secondary battery
CN110943255A (en) * 2018-09-21 2020-03-31 丰田自动车株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157047A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 All-solid-state secondary battery
JP5660210B2 (en) * 2011-06-02 2015-01-28 トヨタ自動車株式会社 Solid electrolyte material, solid battery, and method for producing solid electrolyte material
WO2013051478A1 (en) * 2011-10-06 2013-04-11 ソニー株式会社 Battery and method for manufacturing same
JP2013084377A (en) * 2011-10-06 2013-05-09 Sony Corp Battery and method for manufacturing the same
US9917326B2 (en) 2011-10-06 2018-03-13 Murata Manufacturing Co., Ltd. Battery and method of manufacturing the same
JP2017016794A (en) * 2015-06-29 2017-01-19 トヨタ自動車株式会社 Cathode mixture and all-solid lithium battery
JP2017037821A (en) * 2015-08-14 2017-02-16 アルプス電気株式会社 Secondary battery and method for manufacturing secondary battery
CN110943255A (en) * 2018-09-21 2020-03-31 丰田自动车株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
JP2020053115A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Production method of all-solid battery and all-solid battery
JP7293595B2 (en) 2018-09-21 2023-06-20 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
CN110943255B (en) * 2018-09-21 2023-10-13 丰田自动车株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery

Similar Documents

Publication Publication Date Title
JP6497282B2 (en) Negative electrode for all-solid-state battery
US8728668B2 (en) Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP6068655B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery containing the same, and method for producing negative electrode active material
JP7337049B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012079471A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP5827977B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016103479A (en) Manufacturing method of lithium electrode, and lithium secondary battery including lithium electrode
JP2011040282A (en) All-solid secondary battery
JP2015028855A (en) Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor
JP2011040281A (en) All-solid secondary battery
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014165156A (en) Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery
JP2012089464A (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2019169354A (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5677779B2 (en) Solid lithium ion secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
JP2013045515A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
WO2012127564A1 (en) Electrode precursor and electrode using same
JP5639017B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011175766A (en) Negative electrode active material for lithium ion secondary battery
JP6273868B2 (en) Negative electrode active material for power storage device and method for producing the same