JP2011036462A - 医療用観察システム - Google Patents

医療用観察システム Download PDF

Info

Publication number
JP2011036462A
JP2011036462A JP2009187144A JP2009187144A JP2011036462A JP 2011036462 A JP2011036462 A JP 2011036462A JP 2009187144 A JP2009187144 A JP 2009187144A JP 2009187144 A JP2009187144 A JP 2009187144A JP 2011036462 A JP2011036462 A JP 2011036462A
Authority
JP
Japan
Prior art keywords
light
scanning
image
subject
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009187144A
Other languages
English (en)
Inventor
Yuichi Shibazaki
裕一 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2009187144A priority Critical patent/JP2011036462A/ja
Priority to US12/850,901 priority patent/US20110037841A1/en
Priority to CN201010250736.6A priority patent/CN101991400A/zh
Priority to DE102010036963A priority patent/DE102010036963A1/de
Publication of JP2011036462A publication Critical patent/JP2011036462A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0607Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for annular illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

【課題】術者に対する操作負担を強いることなく、着目したい被写体を精細に診断等するのに適した構成の医療用観察システムを提供すること。
【解決手段】光源からの光を伝送して射出端から射出する光ファイバと、射出端から射出された光を規定の走査範囲で走査するように該射出端近傍を振動させる振動手段と、該走査された光の反射光を受光して画像信号を検出する画像信号検出手段と、画像信号の検出タイミングに基づいて、各該画像信号により表現される画像情報の画素配置を決定する画素配置決定手段と、該決定された画素配置に従って各画像情報を空間的に配列して画像を作成する画像作成手段とを有し、振動手段を、術者による所定の操作に応じて、走査範囲内の走査光の軌跡の分布が変化するように該射出端近傍の振動を制御するように構成した医療用観察システムを提供する。
【選択図】図7

Description

この発明は、被写体を走査して観察画像を生成する医療用観察システムに関連し、詳しくは、極細径の光ファイバの先端を共振させて被写体を光走査して画像情報を取得する走査型医療用プローブを有する医療用観察システムに関する。
術者が患者の体腔内を診断する際に使用する医療機器として、ファイバスコープや電子スコープが一般的に知られている。例えば、電子スコープを使用する術者は、電子スコープの挿入部を体腔内に挿入して、挿入部先端に備えられた挿入先端部を被写体近傍に導く。術者は、電子スコープやビデオプロセッサの操作部を必要に応じて操作して、光源装置から放射された照明光によって被写体を照明する。術者は、照明された被写体の反射光像を挿入先端部に搭載されたCCD(Charge Coupled Device)等の固体撮像素子により撮像する。術者は、撮像された被写体の映像をモニタを通じて観察し診断や施術等を行う。
術者が着目したい被写体は、例えば撮影距離や被写体自体の大きさによって表示サイズが変わる。撮影距離が離れている場合や被写体が微小である場合、被写体の表示サイズは基本的に小さい。電子スコープのなかには、このように画面内に小さく表示された被写体の診断にも対応できるように、被写体を光学的に拡大して表示するためのズーム機能を搭載した製品もある。術者は、着目したい被写体を画面内に大きく表示させることにより、被写体を精細に診断することができる。この種のズーム機能を搭載した電子スコープの具体的構成例は、特許文献1に記載されている。
特開平10−99261号公報
特許文献1に記載の電子スコープをはじめとするズーム機能付きの電子スコープにおいては、撮影倍率を上げるほど撮影範囲自体は狭くなる。そのため、被写体は、電子スコープの手ぶれや被写体自体の僅かな動きによって術者の意に反して簡単にフレームアウトしてしまう。この場合、術者は、一旦ズームアウトして撮影範囲を広げてから被写体を探し出し、発見した被写体に再度ズームインする必要がある。この種の操作は煩雑であり、術者による円滑な診断等を阻害する問題が指摘される。
着目したい被写体は、撮影範囲の中央に必ずしも位置するとは限らず、例えば大腸等の部位では撮影範囲の周縁部に写される腸壁に位置することが多い。この場合、術者は、被写体にズームインするに先立ち、電子スコープの挿入先端部を被写体に向けて、該被写体を撮影範囲の中心に正確に収めるという煩雑な操作を強いられる。
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、術者に対する操作負担を強いることなく、着目したい被写体を精細に診断等するのに適した構成の医療用観察システムを提供することである。
上記の課題を解決する本発明の一形態に係る医療用観察システムは、所定の光を射出する光源と、光源からの光を伝送して射出端から射出する光ファイバと、射出端から射出された光を規定の走査範囲で走査するように該射出端近傍を振動させる振動手段と、該走査された光の反射光を受光して画像信号を検出する画像信号検出手段と、画像信号の検出タイミングに基づいて、各該画像信号により表現される画像情報の画素配置を決定する画素配置決定手段と、該決定された画素配置に従って各画像情報を空間的に配列して画像を作成する画像作成手段とを有する。振動手段は、術者による所定の操作に応じて、走査範囲内の走査光の軌跡の分布が変化するように該射出端近傍の振動を制御するように構成されている。
本発明に係る医療用観察システムによれば、振動手段が例えば走査範囲(撮影範囲)内の着目したい被写体に対する走査密度が重点的に高まるように光ファイバの射出端近傍を振動させることにより、撮影範囲を維持しつつも当該被写体について解像力の高い画像が得られる。そのため、撮像装置の手ぶれや被写体自体の僅かな動きによる該被写体のフレームアウトが起こり難いと共に、該被写体に対する精細な診断等が可能になる。
振動手段は、所定の操作に応じて、走査範囲内の光の走査軌跡の分布が均一になるように、又は該走査軌跡の分布が該走査範囲の中心ほど密になるように、或いは該走査軌跡の分布が該走査範囲の周縁ほど密になるように、光ファイバの射出端近傍の振動を制御する構成としてもよい。
振動手段は、所定の操作に応じて、光ファイバの射出端から射出された光による被写体の走査期間中、該射出端の回転軌跡の径が一定の割合で徐々に増加するように、又は該回転軌跡の径が指数関数的に増加するように、或いは該回転軌跡の径が対数関数的に増加するように、該射出端近傍の振動を制御する構成としてもよい。各走査期間中における振動手段による回転軌跡の最大径は、常に同じとしてもよい。
振動手段は、例えば光ファイバの射出端近傍に配置された圧電アクチュエータと、所定の操作に応じて圧電アクチュエータへの印加電圧を制御する印加電圧制御手段とを有する構成としてもよい。
本発明によれば、術者に対する操作負担を強いることなく、着目したい被写体を精細に診断等するのに適した構成の医療用観察システムが提供される。
本発明の実施形態の医療用観察システムの構成を概略的に示す図である。 本発明の実施形態のプロセッサの構成を示すブロック図である。 本発明の実施形態の走査型医療用プローブの挿入可撓部先端の模式的な内部構造を示す側断面図である。 本発明の実施形態の走査型医療用プローブの挿入可撓部先端の内部構造を示す斜視図である。 被写体上に形成されるスポットを説明するための図である。 タイミングTにおいて検出された画像情報と画素アドレスとの関係を説明するための図である。 本発明の実施形態において実行される解像力分布変更処理を示すフローチャートである。 本発明の実施形態の走査型医療用プローブが有するシングルモードファイバの射出端の一フレーム中の振幅を示すグラフである。 本発明の実施形態においてモニタに表示される画像を例示する図である。 本発明の実施形態においてモニタに表示される画像を例示する図である。
以下、図面を参照して、本発明の実施形態の医療用観察システムについて説明する。
図1は、本実施形態の医療用観察システム1の構成を概略的に示す図である。図1に示されるように、医療用観察システム1は、走査型医療用プローブ100を有している。走査型医療用プローブ100は、可撓性を有するシース132によって外装された挿入可撓部130を有している。術者は、挿入可撓部130を先端(以下、「挿入可撓部先端130a」と記す。)側から患者の体腔内に直接挿入して、挿入可撓部先端130aを被写体近傍に導く。または、挿入可撓部先端130aを被写体近傍にスムーズに導くため、挿入可撓部130にガイドワイヤ等を添えて体腔内に挿入する。或いは、例えば固体撮像素子等を搭載する一般的な電子スコープ等が有する鉗子チャンネルに挿入可撓部130を挿入し通して、挿入可撓部先端130aを被写体近傍に近接させるように操作する。
挿入可撓部130の基端には、走査型医療用プローブ100を操作するための手元操作部150が設けられている。手元操作部150から延びたユニバーサルケーブル160の基端には、コネクタ部110が設けられている。
医療用観察システム1は、プロセッサ200を有している。プロセッサ200は、走査型医療用プローブ100を駆動制御すると共に走査型医療用プローブ100によって取得される観察光に基づき画像信号を生成する信号処理装置と、自然光の届かない体腔内に走査型医療用プローブ100を通じて走査光を照射する光源装置とを内蔵した一体型のプロセッサである。なお、別の実施形態では信号処理装置と光源装置とを別体で構成してもよい。プロセッサ200は、コネクタ部210を有している。コネクタ部110がコネクタ部210に差し込まれることにより、走査型医療用プローブ100とプロセッサ200とが光学的にかつ電気的に接続される。
図2は、プロセッサ200の構成を示すブロック図である。図2においては、走査型医療用プローブ100とプロセッサ200との接続関係等を明確にするため、コネクタ部110の構成も模式的に示している。
プロセッサ200は、被写体を走査するための光源としてR、G、Bの各波長に対応した光を発振するレーザ光源230R、230G、230Bを有している。なお、これら3つのレーザ光源は、例えば広帯域であるスーパーコンティニューム光等を発振する単一のファイバレーザに置き換えてもよい。また、光源は、レーザ光源に限らず例えばLED(Light Emitting Diode)等の他の形態の光源としてもよい。
プロセッサ200は、該プロセッサ200の各回路の信号処理タイミング等を統括的に制御するタイミングコントローラ240を有している。タイミングコントローラ240は、光源ドライバ232R、232G、232Bの各ドライバ回路に所定の変調制御信号を出力する。光源ドライバ232R、232G、232Bはそれぞれ、入力した変調制御信号に基づきレーザ光源230R、230G、230Bを直接変調する。具体的には、各ドライバ回路は、変調制御信号に基づき、同一振幅かつ同位相の電流を、対応するレーザ光源に流す。これにより、レーザ光源230R、230G、230Bは、R、G、Bの各波長に対応する同一強度のパルス光(以下、「Rパルス光」、「Gパルス光」、「Bパルス光」と記す。)を同期したタイミングで発振する。
各レーザ光源から発振されたRパルス光、Gパルス光、Bパルス光は、光結合器234に入射する。光結合器234は、入射した各パルス光を位相を揃えた状態で結合して射出する。以下、説明の便宜上、光結合器234により結合されたパルス光を「結合パルス光」と記す。
光源が単一のファイバレーザである場合には、各波長のパルス光を同期させるためのタイミング制御が不要である。そのため、レーザ光源周辺の回路構成等を簡素化できるメリットがある。また、既に結合された状態のパルス光が発振されるため、光結合器234が不要になるメリットもある。
光結合器234から射出された結合パルス光は、走査型医療用プローブ100が有するシングルモードファイバ112の入射端112aに入射する。シングルモードファイバ112は、コネクタ部110から挿入可撓部先端130aに亘って、シース132に収容されている。入射端112aに入射した結合パルス光は、シングルモードファイバ112内部を全反射を繰り返すことにより伝播する。
図3は、挿入可撓部先端130aの模式的な内部構造を示す側断面図である。図4は、挿入可撓部先端130aの内部構造を示す斜視図である。なお、以降においては、走査型医療用プローブ100の構成を説明するにあたり、便宜上、走査型医療用プローブ100の長手方向をZ方向、Z方向に直交しかつ互いに直交する二方向をX方向、Y方向と定義する。かかる定義によれば、例えば図3は、走査型医療用プローブ100の中心軸AXを含むY−Z平面での挿入可撓部先端130aの断面図となっている。
図1や図3に示されるように、走査型医療用プローブ100の挿入部分の外径は、シース132によって規定されている。シース132は、走査型医療用プローブ100が固体撮像素子等を搭載しない構成であるため、一般的な電子スコープの外径に比べて格段に細い。そのため、走査型医療用プローブ100は、一般的な電子スコープに比べてより一層の低浸襲性が達成されている。
図3に示されるように、シース132内部には、支持体134が設けられている。シングルモードファイバ112の先端部112cは、支持体134の貫通穴に挿入され通されて片持ち梁の状態で支持されている。支持体134は、圧電アクチュエータ136、138も支持している。各電極は、終端がコネクタ部110内部に収容された電線(不図示)と接続されている。コネクタ部110とコネクタ部210とを接続させたとき、圧電アクチュエータ136、138はそれぞれ、電線を介してプロセッサ200のX軸ドライバ236X、Y軸ドライバ236Yに接続される。
タイミングコントローラ240は、X軸ドライバ236X、Y軸ドライバ236Yの各ドライバ回路に所定の駆動制御信号を出力する。X軸ドライバ236Xは、駆動制御信号に基づいて、交流電圧Xを圧電アクチュエータ136に印加する。Y軸ドライバ236Yは、駆動制御信号に基づいて、交流電圧Xと同一周波数であって位相が直交する交流電圧Yを圧電アクチュエータ138に印加する。なお、交流電圧X、Yはそれぞれ、振幅が一定の割合で徐々に増加して(後述の図8(a)参照)、時間(X)、(Y)かけて実効値(X)、(Y)に達する電圧として定義される。
圧電アクチュエータ136、138はそれぞれ、交流電圧X、Yが印加されたときにX方向、Y方向に共振するように材料及び形状が選択され構成されている。シングルモードファイバ112の射出端112bは、圧電アクチュエータ136、138によるX、Y方向への運動エネルギーが合成されることにより、X−Y平面に近似する面(以下、「XY近似面」と記す。)上において中心軸AXを中心に渦巻状のパターンを描くように回転する。射出端112bの回転軌跡は、印加される電圧に比例して大きくなり、実効値(X)、(Y)の交流電圧が印加された時点で最も大きい径を有する円の軌跡を描く。
シングルモードファイバ112の入射端112aに入射した結合パルス光は、各圧電アクチュエータへの交流電圧の印加開始直後から印加停止までの期間(つまり、時間(X)又は(Y)に相当する期間)、射出端112bから射出され続ける。以下、説明の便宜上、この期間を「サンプリング期間」と記す。
サンプリング期間の経過後、各圧電アクチュエータへの交流電圧の印加が停止して、シングルモードファイバ112の先端部112cの振動が減衰する。XY近似面上における射出端112bの円運動は、シングルモードファイバ112の先端部112cの振動の減衰に伴って収束し、所定時間後に中心軸AX上で停止する。以下、説明の便宜上、サンプリング期間が終了してから射出端112bが中心軸AX上に停止するまでの期間(より正確には、中心軸AX上での停止を保証するため、停止までに要する計算上の時間より僅かに長い期間)を「制動期間」と記す。一フレームに対応する期間は、サンプリング期間と制動期間で構成される。なお、制動期間を短縮するため、制動期間の初期段階に各圧電アクチュエータに逆相電圧を印加して、制動トルクを積極的に加えるようにしてもよい。
シングルモードファイバ112の射出端112bの前方には、集光光学系140が配置されている。集光光学系140は、図中単レンズで示されているが、複数枚のレンズ構成としてもよい。集光光学系140の前方には、シース132を封止するカバーガラスCGが配置されている。シングルモードファイバ112の射出端112bから射出された結合パルス光は、集光光学系140により集光されて、被写体上にスポットSiを形成する。スポット径は、例えば数ミクロンオーダであり極めて小さい。
図5に、被写体上に形成されるスポットSi(i=1〜n)を説明するための図を示す。走査型医療用プローブ100は、一枚の画像を得るべく、一サンプリング期間中、被写体上に渦巻パターンSPを描くようにn個のスポットSiをスポットS、S、S、・・・、Sn−2、Sn−1、Sの順に形成する。各スポットSiの間隔は、シングルモードファイバ112の射出端112bの運動速度や各レーザ光源の変調周波数等に依存して決まる。なお、渦巻パターンSPは、被写体上にパルス光で無く連続光を走査した場合を想定して描かれた仮想的な走査軌跡である。
サンプリング期間中のXY近似面におけるシングルモードファイバ112の射出端112bの位置(軌跡)は、実験等を重ねた結果予め求められている。また、射出端112bの位置と、各位置で結合パルス光が射出された場合に被写体上でスポットSiが形成されるであろう撮影範囲(走査範囲)内における位置との関係も予め計算されている。更に、撮影範囲内におけるスポット形成位置と、各スポット形成位置からの反射パルス光を検出して画像化する際の画素位置との関係も予め計算されている。タイミングコントローラ240は、これらの既知情報に基づいて、X軸ドライバ236X、Y軸ドライバ236Yに対する制御(つまり、圧電アクチュエータ136、138に印加される交流電圧の制御)、及び光源ドライバ232R、232G、232Bに対する制御(つまり、サンプリング期間中における各レーザ光源の変調制御)のそれぞれをフレームレートに応じた周期で繰り返す。
図4に示されるように、支持体134の端面134aには、円環状に並ぶ複数の貫通穴が形成されている。各貫通穴には、検出用ファイバ142が埋設されている。図4において図示省略するが、各検出用ファイバ142は支持体134の後方で束ねられており、光ファイババンドル142Bを構成している。
被写体上にスポットSiを形成した光の反射パルス光は、検出用ファイバ142の入射端142aに入射する。入射端142aに入射した反射パルス光は、ファイババンドル142B(検出用ファイバ142)内部を終端に向かって伝播する。光ファイババンドル142Bの終端は、コネクタ部110に収容されており、コネクタ部110とコネクタ部210との連結部分を介してプロセッサ200の光分離器238に結合している。
なお、ファイババンドル142Bは、数十本程度(例えば80本)の光ファイバを束ねたものに過ぎない。そのため、ファイババンドル142Bは、一般的な電子スコープやファイバスコープの光ファイババンドル(例えば数百〜千本の光ファイバを束ねた光ファイババンドル)と比べて遙かに径が細い。また、本実施形態において、検出用ファイバ142は最低限一本あればよい。検出用ファイバ142が一本の場合には、走査型医療用プローブ100をより一層細径化させることができる。
光分離器238は、光ファイババンドル142Bからの反射パルス光をR、G、Bの各波長の反射パルス光(以下、「反射Rパルス光」、「反射Gパルス光」、「反射Bパルス光」と記す。)に分離して、光検出器250R、250G、250Bに出力する。
前述したように、結合パルス光は、単一のシングルモードファイバ112により導光されて、被写体を照射する。そのため、被写体上で反射される反射パルス光の光量は、非常に少ない。このような微弱な光を確実にかつ低ノイズで検出するため、光検出器250R、250G、250Bの各光検出器には、光電子増倍管等の高感度光検出器が採用されている。
光検出器250R、250G、250Bは、受光された各波長の反射パルス光を光電変換してアナログ信号を生成し、後段の回路に出力する。各光検出器により検出された各波長の反射パルス光に応じたアナログ信号は、サンプリング及びホールドされて、A/Dコンバータ252R、252G、252Bによりデジタル信号列に変換される。変換されたデジタル信号列は、DSP(Digital Signal Processor)254に入力する。
DSP254は、上記の既知情報に基づいて作成された、結合パルス光のスポットSiが形成される撮影範囲中の位置(別の側面によれば画像を構成する画素のアドレス)と、各スポットSiからの反射パルス光が検出されるタイミングTとを関連付けた変換テーブルを保持している。DSP254は、変換テーブルを参照しつつ、各A/Dコンバータからのデジタル信号列を監視して、各タイミングTにおける各波長に対応する信号を各画素アドレスの画像信号(すなわち、A/Dコンバータ252Rからの信号をR色の輝度値、A/Dコンバータ252Gからの信号をG色の輝度値、A/Dコンバータ252Bからの信号をB色の輝度値)として検出する。DSP254は、検出された各画素アドレスの画像信号をフレームメモリFMにバッファリングする。
図6を用いて、各タイミングTにおいて検出された画像信号と画素アドレスとの関係を具体的に説明する。ここでは、説明の便宜上、最終的に生成される画像が19×19からなる画素配置で構成されるものとする。DSP254は、変換テーブルを参照して、スポットSに対応するタイミングtにおける各波長に対応する画像信号を検出する。DSP254は、検出された各波長に対応する画像信号を画素アドレス(10,10)に関連付けてフレームメモリFMにバッファリングする。以降のスポットS、S・・・に対応するタイミングT、T・・・における各波長に対応する画像信号も順次検出して、画素アドレス(9,9)、(9,11)・・・に関連付けてフレームメモリFMに順次バッファリングする。フレームメモリFMには、DSP254によって生成されたスポットS〜Sに対応する一フレーム分(全画素)の画像信号がバッファリングされる。
DSP254は、各波長に対応する画像信号を有さない画素アドレスについて、例えば所定のマスキングデータを生成してフレームメモリFMにバッファリングする。DSP254は、タイミングコントローラ240によるタイミング制御に従い、フレームメモリFMにバッファリングされた画像信号を読み出して、エンコーダ256に出力する。
エンコーダ256は、入力した画像信号を所定の規格に準拠したビデオ信号に変換してモニタ300に出力する。これにより、R色、G色、B色からなる被写体のカラー画像がモニタ300に表示される。このときモニタ300に表示される被写体画像の解像力は、医療用観察システム1の起動時に初期的に設定された解像力であって、撮影範囲の中心から周縁部までほぼ均一である。
本実施形態において、撮影される画像の解像力の分布は、手元操作部150のレバーの押し上げ操作又は押し下げ操作によって変更することができる。図7は、撮影される画像の解像力の分布を変更するために実行される解像力分布変更処理を示すフローチャートである。解像力分布変更処理は、例えば医療用観察システム1が起動してから停止するまでの間、継続的に実行される。以降の本明細書中の説明並びに図面において、処理ステップは「S」と省略して記す。
DSP254は、医療用観察システム1の起動直後、PD値メモリ270にPD値の初期値(PD=0)を書き込む(S1)。PD値メモリ270に書き込まれたPD値は、医療用観察システム1の動作中、術者による手元操作部150のレバー操作に応じて逐次更新される。具体的には、手元操作部150は、レバーの押し上げ操作時間又は押し下げ操作時間に応じたPD信号を発生させてDSP254に出力する。PD信号は、例えば押し上げ操作又は押し下げ操作を示す信号と、レバー操作時間に比例した数のパルス信号で構成されている。DSP254は、レバーの押し上げ操作に対応するPD信号が入力すると、PD値メモリ270に書き込まれているPD値を入力パルス数に応じて加算する。レバーの押し下げ操作に対応するPD信号が入力した場合は、PD値メモリ270に書き込まれているPD値を入力パルス数に応じて減算する。
S2の処理では、DSP254は、タイミングコントローラ240のタイミング制御下で、サンプリング期間から制動期間への移行を検知する。DSP254は、制動期間への移行が検知されたとき(S2:YES)、PD値メモリ270からPD値を読み出して(S3)、次フレームのサンプリング期間に達するまでの間に次のS4の処理とS5〜S7の何れかの処理とを実行する。
DSP254は、サンプリング期間中におけるシングルモードファイバ112の射出端112bの振幅を定義する各種の振幅定義関数fをPD値毎に対応付けて保持している。DSP254は、PD値メモリ270に書き込まれているPD値が0であるとき(S4:PD=0)、PD値=0に対応する第一の振幅定義関数fを呼び出してタイミングコントローラ240に渡す。S5の処理では、タイミングコントローラ240は、第一の振幅定義関数fに基づいて駆動制御信号を生成する。タイミングコントローラ240は、次フレームのサンプリング期間に達すると、S5の処理で生成した駆動制御信号をX軸ドライバ236X、Y軸ドライバ236Yの各ドライバ回路に出力する。
図8(a)に、中心軸AXを基準とした、一フレーム中のシングルモードファイバ112の射出端112bの振幅をグラフで示す。図8(a)の縦軸は振幅を、図8(a)の横軸は時間を、それぞれ示す。X軸ドライバ236X、Y軸ドライバ236Yはそれぞれ、第一の振幅定義関数fに基づいて生成された駆動制御信号が入力すると、図8(a)に示されるように、サンプリング期間中、射出端112bの振幅が最大振幅AMMAXに達するまで一定の割合で徐々に増加する(別の表現によれば、射出端112bの回転軌跡の径が一定の割合で徐々に大きくなる)ように圧電アクチュエータ136、138を駆動制御する。このとき、被写体上に形成されるn個のスポットSiの分布は、走査範囲全域でほぼ均一になる。そのため、被写体画像の解像力も撮影範囲全域に亘ってほぼ均一になる。図9(a)は、図8(a)の振幅制御時に撮影される気管支の画像を、図9(b)は、同じく図8(a)の振幅制御時に撮影される大腸の画像を、それぞれ示す。図9(a)中符号410が気管支内の注視対象の被写体を、図9(b)中符号420が大腸内の注視対象の被写体(腸壁)を、それぞれ示す。
DSP254は、PD値メモリ270に書き込まれているPD値が0未満であるとき(S4:PD<0)、当該PD値に対応する第二の振幅定義関数fを呼び出してタイミングコントローラ240に渡す。S6の処理では、タイミングコントローラ240は、第二の振幅定義関数fに基づいて駆動制御信号を生成する。タイミングコントローラ240は、次フレームのサンプリング期間に達すると、S6の処理で生成した駆動制御信号をX軸ドライバ236X、Y軸ドライバ236Yの各ドライバ回路に出力する。
図8(b)に、図8(a)と同様に、一フレーム中のシングルモードファイバ112の射出端112bの振幅をグラフで示す。X軸ドライバ236X、Y軸ドライバ236Yはそれぞれ、第二の振幅定義関数fに基づいて生成された駆動制御信号が入力すると、図8(b)に示されるように、サンプリング期間中、射出端112bの振幅が最大振幅AMMAXに達するまで指数関数的に増加する(別の表現によれば、射出端112bの回転軌跡の径が指数関数的に大きくなる)ように圧電アクチュエータ136、138を駆動制御する。ここで、サンプリング期間中における各レーザ光源の変調制御は、図8(a)の振幅制御時と変わらない。そのため、被写体上に形成されるn個のスポットSiの分布は、走査範囲の中心ほど密(別の表現によれば走査範囲の周縁ほど疎)になる。また、被写体画像は、上記変換テーブルを用いた図8(a)の例と同一の画素配置決定のアルゴリズムを用いて生成される。そのため、撮影範囲の中心の被写体ほどより多くの画素で構成された画像として(すなわち、解像力の高い画像として)モニタ300に表示される。また、走査範囲は、図8(a)の振幅制御時と変わらない。よって、撮影範囲自体は、被写体画像の中心の解像力を向上させたにも拘わらず、図8(a)の例と同一の範囲に保たれている。
図10(a)は、図9(a)と同一の気管支を図8(b)の振幅制御時に撮影したときの画像である。撮影範囲の中心の被写体ほどより多くの画素で構成されるため、被写体410は、図10(a)に示されるように、画面上で拡大表示される。そのため、術者は、被写体410を精細に診断等することができる。更に、図10(a)の撮影範囲は、図9(a)の例と同一の範囲に保たれている。そのため、一般的なズーム機能を用いて倍率を拡大した場合と比較して、走査型医療用プローブの手ぶれや被写体自体の僅かな動きによる被写体のフレームアウトが起こり難くなる。
なお、サンプリング期間中のシングルモードファイバ112の射出端112bの振幅は、PD値が低いほど(手元操作部150のレバーの押し下げ操作時間が長いほど)指数関数的な増加がより一層顕著になる。PD値が低いほど撮影範囲の中心の解像力が高くなるため、術者は、撮影範囲の中心の画像をより一層精細に診断等することができる。
DSP254は、PD値メモリ270に書き込まれているPD値が0を超えるとき(S4:PD>0)、当該PD値に対応する第三の振幅定義関数fを呼び出してタイミングコントローラ240に渡す。S7の処理では、タイミングコントローラ240は、第三の振幅定義関数fに基づいて駆動制御信号を生成する。タイミングコントローラ240は、次フレームのサンプリング期間に達すると、S7の処理で生成した駆動制御信号をX軸ドライバ236X、Y軸ドライバ236Yの各ドライバ回路に出力する。
図8(c)に、図8(a)と同様に、一フレーム中のシングルモードファイバ112の射出端112bの振幅をグラフで示す。X軸ドライバ236X、Y軸ドライバ236Yはそれぞれ、第三の振幅定義関数fに基づいて生成された駆動制御信号が入力すると、図8(c)に示されるように、サンプリング期間中、射出端112bの振幅が最大振幅AMMAXに達するまで対数関数的に増加する(別の表現によれば、射出端112bの回転軌跡の径が対数関数的に大きくなる)ように圧電アクチュエータ136、138を駆動制御する。ここで、サンプリング期間中における各レーザ光源の変調制御は、図8(a)の振幅制御時と変わらない。そのため、被写体上に形成されるn個のスポットSiの分布は、走査範囲の周縁ほど密(別の表現によれば走査範囲の中心ほど疎)になる。また、被写体画像は、上記変換テーブルを用いた図8(a)の例と同一の画素配置決定のアルゴリズムを用いて生成される。そのため、撮影範囲の周縁の被写体ほどより多くの画素で構成された画像として(すなわち、解像力の高い画像として)モニタ300に表示される。また、走査範囲は、図8(a)の振幅制御時と変わらない。よって、撮影範囲自体は、被写体画像の周縁の解像力を向上させたにも拘わらず、図8(a)の例と同一の範囲に保たれている。
図10(b)は、図9(b)と同一の大腸を図8(c)の振幅制御時に撮影したときの画像である。撮影範囲の周縁の被写体ほどより多くの画素で構成されるため、被写体420は、図10(b)に示されるように、画面上で拡大表示される。そのため、術者は、被写体420を精細に診断等することができる。更に、図10(b)の撮影範囲は、図9(b)の例と同一の範囲に保たれている。そのため、一般的なズーム機能を用いて倍率を拡大した場合と比較して、走査型医療用プローブの手ぶれや被写体自体の僅かな動きによる被写体のフレームアウトが起こり難くなる。
なお、サンプリング期間中のシングルモードファイバ112の射出端112bの振幅は、PD値が高いほど(手元操作部150のレバーの押し上げ操作時間が長いほど)対数関数的な増加がより一層顕著になる。PD値が高いほど撮影範囲の周縁の解像力が高くなるため、術者は、撮影範囲の周縁の画像をより一層精細に診断等することができる。
このように、本実施形態の医療用観察システム1を用いて被写体を光学的に拡大して表示させた場合は、拡大表示に伴う撮影範囲の縮小が発生しない(撮影範囲が常に同じである)。そのため、走査型医療用プローブの手ぶれや被写体自体の僅かな動きによる被写体のフレームアウトが起こり難く、術者による円滑な診断等を阻害されない。また、挿入可撓部先端130aを撮影範囲の周縁部に写されている被写体に向けることなく該被写体を拡大表示させることができるため、術者の操作負担が軽減されると同時に、挿入可撓部先端130aと生体組織との不要な接触が有効に避けられる。
以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えば撮影される画像の解像力の分布を変更するためのインターフェースとしては、手元操作部150に設けられたレバーに限らず、プロセッサ200のフロント面に実装された操作パネル260(例えばタッチスクリーン)やプロセッサ200に接続されたフットペダル等が想定される。
レバー操作に応じたシングルモードファイバ112の射出端112bの振幅の変化は、X、Y軸で互いに共通である必要はなく、互いに異なるものとしてもよい。
1 医療用観察システム
100 走査型医療用プローブ
136、138 圧電アクチュエータ
150 手元操作部
200 プロセッサ
240 タイミングコントローラ
254 DSP
270 PD値メモリ

Claims (5)

  1. 所定の光を射出する光源と、
    前記光源からの光を伝送して射出端から射出する光ファイバと、
    前記射出端から射出された光を規定の走査範囲で走査するように該射出端近傍を振動させる振動手段と、
    前記走査された光の反射光を受光して画像信号を検出する画像信号検出手段と、
    前記画像信号の検出タイミングに基づいて、各該画像信号により表現される画像情報の画素配置を決定する画素配置決定手段と、
    前記決定された画素配置に従って各前記画像情報を空間的に配列して画像を作成する画像作成手段と、
    を有し、
    前記振動手段は、術者による所定の操作に応じて、前記走査範囲内の前記光の走査軌跡の分布が変化するように該射出端近傍の振動を制御することを特徴とする医療用観察システム。
  2. 前記振動手段は、前記所定の操作に応じて、前記走査範囲内の前記光の走査軌跡の分布が均一になるように、又は該走査軌跡の分布が該走査範囲の中心ほど密になるように、或いは該走査軌跡の分布が該走査範囲の周縁ほど密になるように、該射出端近傍の振動を制御することを特徴とする、請求項1に記載の医療用観察システム。
  3. 前記振動手段は、前記所定の操作に応じて、前記射出端から射出された光による前記被写体の走査期間中、該射出端の回転軌跡の径が一定の割合で徐々に増加するように、又は該回転軌跡の径が指数関数的に増加するように、或いは該回転軌跡の径が対数関数的に増加するように、該射出端近傍の振動を制御することを特徴とする、請求項1又は請求項2の何れか一項に記載の医療用観察システム。
  4. 各前記走査期間中における前記振動手段による前記回転軌跡の最大径は、常に同じであることを特徴とする、請求項3に記載の医療用観察システム。
  5. 前記振動手段は、
    前記射出端近傍に配置された圧電アクチュエータと、
    前記所定の操作に応じて前記圧電アクチュエータへの印加電圧を制御する印加電圧制御手段と、
    を有することを特徴とする、請求項1から請求項4の何れか一項に記載の医療用観察システム。
JP2009187144A 2009-08-12 2009-08-12 医療用観察システム Withdrawn JP2011036462A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009187144A JP2011036462A (ja) 2009-08-12 2009-08-12 医療用観察システム
US12/850,901 US20110037841A1 (en) 2009-08-12 2010-08-05 Optical observation system
CN201010250736.6A CN101991400A (zh) 2009-08-12 2010-08-10 光学观察***
DE102010036963A DE102010036963A1 (de) 2009-08-12 2010-08-12 Optisches Beobachtungssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187144A JP2011036462A (ja) 2009-08-12 2009-08-12 医療用観察システム

Publications (1)

Publication Number Publication Date
JP2011036462A true JP2011036462A (ja) 2011-02-24

Family

ID=43448477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187144A Withdrawn JP2011036462A (ja) 2009-08-12 2009-08-12 医療用観察システム

Country Status (4)

Country Link
US (1) US20110037841A1 (ja)
JP (1) JP2011036462A (ja)
CN (1) CN101991400A (ja)
DE (1) DE102010036963A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231911A (ja) * 2011-04-28 2012-11-29 Olympus Corp 光走査装置および走査型観察装置
WO2013089053A1 (ja) * 2011-12-12 2013-06-20 Hoya株式会社 走査型内視鏡システム
WO2017163386A1 (ja) * 2016-03-24 2017-09-28 株式会社日立製作所 光走査装置、映像装置、及びtof型分析装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111604A1 (ja) 2012-01-26 2013-08-01 オリンパス株式会社 光走査型観察装置
JP6120624B2 (ja) * 2013-03-18 2017-04-26 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置
CN105899120B (zh) * 2014-02-21 2018-05-08 奥林巴斯株式会社 光的扫描轨迹的计算方法以及光扫描装置
DE112014006975T5 (de) * 2014-11-10 2017-06-29 Olympus Corporation Lichtleiter-Scanner, Beleuchtungsvorrichtung und Beobachtungsgerät
JPWO2016098139A1 (ja) * 2014-12-16 2017-11-02 オリンパス株式会社 レーザ走査型観察装置
DE112018001670T5 (de) * 2017-03-30 2019-12-19 Hoya Corporation Elektronische endoskopvorrichtung
JP6709241B2 (ja) * 2018-02-26 2020-06-10 株式会社Subaru 診断装置
CN113767619A (zh) * 2019-06-18 2021-12-07 索尼半导体解决方案公司 发射装置、接收装置和通信***
CN112305755B (zh) * 2019-07-31 2023-07-07 成都理想境界科技有限公司 一种致动器安装结构
CN112433360A (zh) * 2019-08-26 2021-03-02 成都理想境界科技有限公司 一种光纤扫描器、检测定位方法及扫描显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108776B2 (ja) 1996-09-30 2008-06-25 オリンパス株式会社 内視鏡装置
US6563105B2 (en) * 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
JP2004502957A (ja) * 2000-07-10 2004-01-29 ユニヴァーシティー ヘルス ネットワーク 高分解能コヒーレント光画像化のための方法及び装置
US6845190B1 (en) * 2000-11-27 2005-01-18 University Of Washington Control of an optical fiber scanner
EP1592992B1 (en) * 2003-01-24 2012-05-30 University of Washington Optical beam scanning system for compact image display or image acquisition
US7425982B2 (en) * 2003-11-12 2008-09-16 Euresys Sa Method and apparatus for resampling line scan data
US8929688B2 (en) * 2004-10-01 2015-01-06 University Of Washington Remapping methods to reduce distortions in images
US7608842B2 (en) * 2007-04-26 2009-10-27 University Of Washington Driving scanning fiber devices with variable frequency drive signals
US8212884B2 (en) * 2007-05-22 2012-07-03 University Of Washington Scanning beam device having different image acquisition modes
US8780176B2 (en) * 2008-08-15 2014-07-15 Technion Research & Development Foundation Limited Vessel imaging system and method
JP5225038B2 (ja) * 2008-11-19 2013-07-03 Hoya株式会社 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231911A (ja) * 2011-04-28 2012-11-29 Olympus Corp 光走査装置および走査型観察装置
WO2013089053A1 (ja) * 2011-12-12 2013-06-20 Hoya株式会社 走査型内視鏡システム
JPWO2013089053A1 (ja) * 2011-12-12 2015-04-27 Hoya株式会社 走査型内視鏡システム
WO2017163386A1 (ja) * 2016-03-24 2017-09-28 株式会社日立製作所 光走査装置、映像装置、及びtof型分析装置
JPWO2017163386A1 (ja) * 2016-03-24 2018-03-29 株式会社日立製作所 光走査装置、映像装置、及びtof型分析装置
US10413187B2 (en) 2016-03-24 2019-09-17 Hitachi, Ltd. Optical scanning device, imaging device, and TOF type analyzer

Also Published As

Publication number Publication date
DE102010036963A1 (de) 2011-02-17
US20110037841A1 (en) 2011-02-17
CN101991400A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
JP2011036462A (ja) 医療用観察システム
JP5388732B2 (ja) 医療用観察システムおよびプロセッサ
JP5498728B2 (ja) 医療用観察システム
JP2011115252A (ja) 医療用プローブ、および医療用観察システム
JP2010268961A (ja) 医療用観察システム
JP2009516568A (ja) 中断される走査共振を使用する可変順次フレーミングを用いたビームの走査
JP2010284369A (ja) 内視鏡システム、内視鏡、並びに内視鏡駆動方法
WO2011099322A1 (ja) 電子内視鏡システム
JP2010113312A (ja) 内視鏡装置および内視鏡プロセッサ
JP2011045461A (ja) 光走査型内視鏡プロセッサ
JP5551844B1 (ja) 内視鏡装置及び治療装置
JP2010268838A (ja) 医療用観察システム
JP5439032B2 (ja) 医療用観察システムおよびプロセッサ
JP2011050470A (ja) 内視鏡システム
JPWO2017179312A1 (ja) 内視鏡装置
JP2011030720A (ja) 医療用観察システム
JPWO2019176253A1 (ja) 医療用観察システム
JP5342889B2 (ja) 医療用プローブ、および医療用観察システム
JP2010042128A (ja) 医療用プローブ、および医療用観察システム
JP5366718B2 (ja) 走査型医療用プローブ、及び医療用観察システム
JP2011036460A (ja) 医療用観察システム
JP2011101665A (ja) 電子内視鏡システム
JP2011072732A (ja) 医療用観察システム
WO2016143160A1 (ja) 走査型内視鏡システム
JP4409227B2 (ja) プローブ型観察装置及び内視鏡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130304

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130510