JP2011036155A - MUTATED MICROORGANISM HIGHLY PRODUCING SYNTHETIC INTERMEDIATE OF DODECAHYDRO-3a,6,6,9a-TETRAMETHYLNAPHTHO[2,1-b]FURAN - Google Patents

MUTATED MICROORGANISM HIGHLY PRODUCING SYNTHETIC INTERMEDIATE OF DODECAHYDRO-3a,6,6,9a-TETRAMETHYLNAPHTHO[2,1-b]FURAN Download PDF

Info

Publication number
JP2011036155A
JP2011036155A JP2009184959A JP2009184959A JP2011036155A JP 2011036155 A JP2011036155 A JP 2011036155A JP 2009184959 A JP2009184959 A JP 2009184959A JP 2009184959 A JP2009184959 A JP 2009184959A JP 2011036155 A JP2011036155 A JP 2011036155A
Authority
JP
Japan
Prior art keywords
tetramethylnaphtho
dodecahydro
microorganism
furan
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009184959A
Other languages
Japanese (ja)
Other versions
JP5599171B2 (en
Inventor
Atsuko Hayase
温子 早瀬
Kazuaki Igarashi
一暁 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009184959A priority Critical patent/JP5599171B2/en
Publication of JP2011036155A publication Critical patent/JP2011036155A/en
Application granted granted Critical
Publication of JP5599171B2 publication Critical patent/JP5599171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mutated microorganism efficiently producing a synthetic intermediate of dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan. <P>SOLUTION: The method for creating the mutated microorganism highly producing the synthetic intermediate of the dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan includes the following steps (1) to (3): (1) a step for subjecting parent microorganisms belonging to Ascomycota, and having the ability of producing the synthetic intermediate of the dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan by using sclareol as a substrate to mutation treatment; (2) a step for selecting the mutated microorganisms by using acetic acid tolerance as an index; and (3) a step for selecting the microorganism exhibiting the high productivity of the synthetic intermediate of the dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b]furan by acetic acid from the selected microorganisms. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スクラレオール(Sclareol)を基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を高効率に生産する変異微生物及びその作製方法、ならびに当該変異微生物を用いたドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の製造方法に関する。   The present invention relates to a mutant microorganism that produces dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate with high efficiency using sclareol as a substrate, a method for producing the same, and The present invention relates to a method for producing a dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using a mutant microorganism.

ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン(アンブロキサン(登録商標)と呼ばれる場合もある)は残香性の高い香料であり、主にクラリーセージ(Salvia sclarea)から抽出されたスクラレオール(Sclareol)から化学変換によって製造されている。スクラレオールからドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フランを生産する工程を図1に示す。図1に示すように、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体としては、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノール及びスクラレオリド(Sclareolide;デカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン−2(1H)−オン)が知られている。また、図1には示さないが、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体としては、環状エーテル体(8α,13−オキシド−12,13−デヒドロ−15,16−ジノルラブダン)が知られている。
また、非特許文献1にはCryptococcus albidusにおけるスクラレオールの推定変換経路が記されており、スクラレオールからスクラレオリドが生産されるまでに10段階あり、スクラレオリド1モルが生産される過程で2モルの酢酸が排出されることが報告されている。
Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan (sometimes referred to as ambroxan (R)) is a highly fragrant fragrance, mainly salvia sclarea Manufactured by chemical conversion from Sclareol extracted from. A process for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan from sclareol is shown in FIG. As shown in FIG. 1, dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate includes decahydro-2-hydroxy-2,5,5,8a-tetramethyl. Naphthalene ethanol and sclareolide (decahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan-2 (1H) -one) are known. Although not shown in FIG. 1, as a synthesis intermediate of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan, a cyclic ether (8α, 13-oxide-12,13 -Dehydro-15,16-dinorlabdane) is known.
Non-patent document 1 describes the presumed conversion pathway of sclareol in Cryptococcus albidus . There are 10 steps from the production of sclareol to sclareolide, and 2 moles of acetic acid is discharged in the process of producing 1 mole of sclareolide. It has been reported that

微生物によるスクラレオールからドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の変換反応は、例えば特許文献1〜4に記載されている。特許文献1にはHyphozyma roseoniger(ATCC20624)によるデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールの生産が開示されている。また、特許文献2にはCryptococcus albidus(ATCC20918)、Bensingtonia cilliata(ATCC20919)、Cryptococcus laurentii(ATCC20920)及びCryptococcus albidus(ATCC20921)による、特許文献3にはCryptococcus sp.(KSM-JL3603)による、特許文献4にはAscomycete sp.(KSM-JL2842)、Ascomycete sp.(KSM-J3571)及びAscomycete sp.(KSM-JL4651)によるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産が開示されている。 For example, Patent Documents 1 to 4 describe conversion reactions of sclareol to dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate by microorganisms. Patent Document 1 discloses the production of decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol by Hyphozyma roseoniger (ATCC20624). Patent Document 2 includes Cryptococcus albidus (ATCC20918), Bensingtonia cilliata (ATCC20919), Cryptococcus laurentii (ATCC20920), and Cryptococcus albidus (ATCC20921). Patent Document 3 includes Cryptococcus sp. (KSM-JL3603). Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan by Ascomycete sp. (KSM-JL2842), Ascomycete sp. (KSM-J3571) and Ascomycete sp. (KSM-JL4651) The production of synthetic intermediates is disclosed.

このように、スクラレオールを基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を生産する能力を有する微生物として数種の微生物が知られているが、これら菌株の生産能力は、工業的規模の生産においては必ずしも満足し得るものではなく、デカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体生産性のさらに高い微生物が望まれていた。   As described above, several microorganisms are known as microorganisms having the ability to produce dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using sclareol as a substrate. The production capacity of these strains is not always satisfactory in industrial scale production, and the production of decahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate Higher microorganisms were desired.

特開昭62−74281号公報JP-A-62-74281 特開平3−224478号公報JP-A-3-224478 特開2007−222110号公報JP 2007-222110 A 特開2007−252365号公報JP 2007-252365 A

Biochem. Soc. Trans., 19, 690-694 (1991)Biochem. Soc. Trans., 19, 690-694 (1991)

本発明は、スクラレオールを基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を効率よく生産することができる変異微生物、及び当該変異微生物の作製方法を提供する。更に本発明は、当該変異微生物を用いたドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の製造方法を提供する。   The present invention relates to a mutant microorganism capable of efficiently producing a dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using sclareol as a substrate, and a method for producing the mutant microorganism I will provide a. Furthermore, the present invention provides a method for producing a dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using the mutant microorganism.

本発明者らは、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を高効率に生産する変異微生物の取得を試みた。その結果、驚くべきことに、子嚢菌門に属しドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産能を有する微生物(以下「親微生物」と称する)に対して突然変異処理を施し、当該変異微生物を酢酸耐性の向上を指標に選択したところ、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産性が親微生物に比べて向上した変異微生物を極めて効率よく取得できることを見出し、本発明を完成した。   The present inventors tried to obtain mutant microorganisms that produce dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate with high efficiency. As a result, surprisingly, a microorganism belonging to the Ascomycota and having the ability to produce dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate (hereinafter referred to as “parental microorganism”) And the mutant microorganism was selected with the improvement of acetic acid resistance as an index. Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate The present inventors have found that mutant microorganisms having improved productivity compared to the parent microorganism can be obtained very efficiently.

すなわち、本発明は、以下を提供するものである。
(1)以下の工程(i)〜(iii)を含むことを特徴とする、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性変異微生物の作製方法:
(i)子嚢菌門(Ascomycota)に属し且つスクラレオール(Sclareol)を基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を生産する能力を有する親微生物を突然変異処理に付す工程;
(ii)得られた変異微生物を酢酸耐性を指標に選択する工程;及び
(iii)選択された微生物から、さらに酢酸によるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性を示す微生物を選択する工程。
(2)前記合成中間体が、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールである(1)記載の方法。
(3)前記酢酸耐性を指標に選択する工程が、親微生物の最小生育阻止濃度前後の酢酸を含有する培地で培養して当該培地で生育するコロニーを選択する工程である、(1)又は(2)記載の方法。
(4)前記最小生育阻止濃度前後の酢酸が30mM〜40mMの酢酸である、(3)記載の方法。
(5)前記突然変異処理が紫外線照射、放射線照射、又は塩基類似性物質、アクリジン、亜硝酸、ヒドロキシルアミン及びアルキル化試剤からなる群より選ばれる薬剤による処理である(1)〜(4)のいずれか1記載の方法。
(6)(1)〜(5)のいずれか1記載の方法によって作製される、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性変異微生物。
(7)受託番号FERM P−21812(ACR−8)、もしくはFERM P−21813(ACR−35)で特定される変異微生物。
(8)(6)または(7)記載の変異微生物を用いるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の製造方法。
(9)前記合成中間体が、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールである(8)記載の製造方法。
That is, the present invention provides the following.
(1) A dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high-productivity mutant microorganism comprising the following steps (i) to (iii): Production method:
(I) A parent belonging to Ascomycota and capable of producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate using Sclareol as a substrate Subjecting the microorganism to a mutation treatment;
(Ii) selecting the obtained mutant microorganism using acetic acid resistance as an index; and (iii) further selecting dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b from acetic acid from the selected microorganism. The process of selecting the microorganism which shows the furan synthetic intermediate high productivity.
(2) The method according to (1), wherein the synthetic intermediate is decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol.
(3) The step of selecting with the acetic acid resistance as an index is a step of culturing in a medium containing acetic acid before and after the minimum growth inhibitory concentration of the parent microorganism and selecting a colony growing on the medium (1) or ( 2) The method described.
(4) The method according to (3), wherein the acetic acid before and after the minimum growth inhibitory concentration is 30 mM to 40 mM acetic acid.
(5) The mutation treatment according to (1) to (4), wherein the mutation treatment is treatment with an agent selected from the group consisting of ultraviolet irradiation, radiation irradiation, or a base-analogous substance, acridine, nitrous acid, hydroxylamine, and an alkylating agent. Any one of the methods.
(6) Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high productivity mutant microorganism produced by the method according to any one of (1) to (5) .
(7) A mutant microorganism identified by accession number FERM P-21812 (ACR-8) or FERM P-21813 (ACR-35).
(8) A method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate using the mutant microorganism according to (6) or (7).
(9) The production method according to (8), wherein the synthetic intermediate is decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol.

本発明によれば、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を高生産可能な変異微生物が提供される。また本発明によれば、当該変異微生物を用いて上記合成中間体を効率よく製造することができるため、残香性の高い香料として有用なドデカヒドロ−3a,6,6,9a−テトラナフト[2,1−b]フランをより高効率且つ大規模に生産することが可能になる。   According to the present invention, there is provided a mutant microorganism capable of producing a dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate with high production. Further, according to the present invention, since the synthetic intermediate can be efficiently produced using the mutant microorganism, dodecahydro-3a, 6,6,9a-tetranaphtho [2,1 useful as a perfume having a high residual fragrance property. -B] The furan can be produced more efficiently and on a large scale.

スクラレオールからドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フランを生産する工程を示す図。The figure which shows the process of producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan from sclareol. 培養5日目における親微生物と変異微生物のスクラレオールからデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールへの変換率を示す図。The figure which shows the conversion rate from the sclareol of a parent microorganism and a mutant microorganism to decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol in the culture | cultivation 5th day. 各種濃度の酢酸存在下での培養7日目における本発明の微生物とその親微生物とのスクラレオールからデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールへの変換率を示す図。The figure which shows the conversion rate from the sclareol of the microorganisms of this invention and its parent microorganism to decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol on the 7th day of cultivation in the presence of various concentrations of acetic acid .

本発明の微生物の作製方法
本発明のドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性変異微生物は、(1)親微生物を突然変異処理に付す工程;(2)得られた変異微生物を酢酸耐性を指標に選択する工程;及び(3)選択された微生物から、さらにドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性を示す微生物を選択する工程を含むことを特徴とする方法によって作製される。
Method for Producing Microorganism of the Present Invention The dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate highly productive mutant microorganism of the present invention comprises (1) a parental microorganism for mutation treatment. (2) selecting the obtained mutant microorganism using acetic acid resistance as an index; and (3) further adding dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1- b] It is produced by a method comprising a step of selecting a microorganism exhibiting high productivity of a furan synthetic intermediate.

本発明に係る微生物の親微生物としては、子嚢菌門(Ascomycota)に属し、スクラレオールを基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成過程における中間体(ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体)を生産する能力を有する微生物であれば、いずれの微生物を用いてもよい。ここで、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体としては、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノール、デカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン−2(1H)−オン(スクラレオリド)、環状エーテル体(8α,13−オキシド−12,13−デヒドロ−15,16−ジノルラブダン)等を挙げることができる。このうち、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールが好ましい。   The parental microorganism of the microorganism according to the present invention belongs to the Ascomycota and is an intermediate in the process of synthesizing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan using sclareol as a substrate. Any microorganism may be used as long as it is capable of producing (dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate). Here, as decahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate, decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol, decahydro -3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan-2 (1H) -one (sclareolide), cyclic ether (8α, 13-oxide-12,13-dehydro-15,16 -Ginollabdan) and the like. Of these, decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol is preferred.

好ましい親微生物としては、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールを生産する微生物であるAscomycete sp. KSM−JL2842(特開2007−252365号公報、FERM BP−10713)、Ascomycete sp. KSM−J3571(特開2007−252365号公報、FERM BP−10712)及びAscomycete sp. KSM−JL4651(特開2007−252365号公報、FERM BP−10714)等が挙げられる。   As a preferred parental microorganism, Ascomycete sp. KSM-JL2842 which is a microorganism producing decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol (Japanese Patent Laid-Open No. 2007-252365, FERM BP-10713) Ascomycete sp. KSM-J3571 (JP 2007-252365, FERM BP-10712), Ascomycete sp. KSM-JL4651 (JP 2007-252365, FERM BP-10714) and the like.

本明細書において、「親微生物から変異した微生物」としては、天然の突然変異を有する微生物、及び人工的な突然変異処理に付された微生物が挙げられる。人工的な突然変異処理としては、親微生物への放射線等の照射、突然変異剤による処理等の通常の方法が挙げられる。ここで、放射線等の照射の例としては、電離放射線照射、紫外線照射等が挙げられる。また、薬剤処理の例としては、塩基類似性物質(5−ブロモウラシル、ブロモデオキシウリジン等)、アクリジン、亜硝酸、ヒドロキシルアミン、アルキル化試剤(エチルメタンスルフォネート(EMS)、N−メチル−N’−二トロ−N−二トロソグアニジン(NTG)、マスタードガス等)等の公知の突然変異誘発剤が挙げられる。その他に、当該分野で通常使用される突然変異誘発のための任意の方法を使用することができる。   In the present specification, the “microorganism mutated from the parental microorganism” includes a microorganism having a natural mutation and a microorganism subjected to artificial mutation treatment. Examples of the artificial mutation treatment include ordinary methods such as irradiation of the parent microorganism with radiation and the like, treatment with a mutation agent, and the like. Here, examples of irradiation with radiation include ionizing radiation irradiation, ultraviolet irradiation, and the like. Examples of chemical treatment include base analogs (5-bromouracil, bromodeoxyuridine, etc.), acridine, nitrous acid, hydroxylamine, alkylating agents (ethyl methanesulfonate (EMS), N-methyl- N'-nitro-N-nitrotroguanidine (NTG), mustard gas, etc.) and the like. In addition, any method for mutagenesis commonly used in the art can be used.

次に、変異処理を施した微生物を、酢酸耐性を指標に選択する。酢酸耐性を指標とする選択は、例えば、酢酸含有培地での生存率が高い微生物を選択することで行うことができる。より具体的には、例えば、親微生物の最小生育阻止濃度前後の酢酸を含む培地で生育するコロニーを選択する。本明細書において、「親微生物の最小生育阻止濃度前後の酢酸を含む培地で生育するコロニー」とは、親微生物の最小生育阻止濃度前後の酢酸を含有する培地において、生育できるか、あるいは生育に遅延の認められない変異微生物のコロニーを指す。「親微生物の最小生育阻止濃度」とは、親微生物が生育できないかあるいは生育が遅延する濃度であって、微生物の菌株又は培養条件等により異なるが、親微生物を種々の濃度の酢酸を含有する培地で通常の手順により培養することで、当業者は適切な濃度を決定することができる。「最小生育阻止濃度前後」とは上記により決定された「最小生育阻止濃度」の前後10mM、好ましくは前後5mMの濃度範囲をいう。「生育が遅延する」とは、例えば、目視でより小さいコロニーを形成している状態を指す。   Next, the microorganisms subjected to the mutation treatment are selected using acetic acid resistance as an index. Selection using acetic acid resistance as an index can be performed, for example, by selecting a microorganism having a high survival rate in an acetic acid-containing medium. More specifically, for example, colonies that grow in a medium containing acetic acid around the minimum growth inhibitory concentration of the parent microorganism are selected. In the present specification, “a colony that grows in a medium containing acetic acid around the minimum growth inhibitory concentration of the parent microorganism” means that it can grow or grow in a medium containing acetic acid around the minimum growth inhibitory concentration of the parent microorganism. This refers to colonies of mutant microorganisms that are not delayed. “Minimum growth inhibitory concentration of parental microorganism” refers to a concentration at which the parental microorganism cannot grow or growth is delayed, and varies depending on the microorganism strain or culture conditions, but the parental microorganism contains various concentrations of acetic acid. An appropriate concentration can be determined by those skilled in the art by culturing in a medium according to a normal procedure. “Before and after the minimum growth inhibition concentration” means a concentration range of 10 mM before and after the “minimum growth inhibition concentration” determined as described above, preferably around 5 mM. “Growth is delayed” refers to, for example, a state in which smaller colonies are visually formed.

次いで、上記で選択した微生物から、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性を示すものを選択することによって、本発明の変異微生物を取得することができる。ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産性は、上記で選択されたコロニー由来の微生物をスクラレオール含有培地にて培養し、培地中に生産されるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を検出することで評価することができる。培地中に生産されるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体は、培養液から有機溶媒を用いて抽出した後、例えばガスクロマトグラフィー(GC)、気液クロマトグラフィー(GLC)、薄層クロマトグラフィー(TLC)、高速液体クロマトグラフィー(HPLC)、赤外スペクトル(IR)、核磁気共鳴(NMR)等の従来公知の分析方法によって検出することができる。   Next, by selecting from the microorganisms selected above those exhibiting high productivity of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate, the mutant microorganism of the present invention is selected. Can be acquired. The productivity of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate is determined by culturing the colony-derived microorganism selected above in a sclareol-containing medium. It can be evaluated by detecting the produced dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate. The dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate produced in the medium is extracted from the culture solution using an organic solvent, and then, for example, gas chromatography (GC ), Gas-liquid chromatography (GLC), thin layer chromatography (TLC), high performance liquid chromatography (HPLC), infrared spectrum (IR), nuclear magnetic resonance (NMR), etc. Can do.

次いで、中間体生産性を同条件で培養した親微生物と比較する。例えば、スクラレオールから当該中間体への変換率や、中間体の生産量を親微生物と比較することができる。中間体生産性が、同条件で培養された親微生物より有意に高い、あるいは最大10%以上高い、好ましくは20%以上高い、より好ましくは30%以上高い、さらに好ましくは50%以上高い微生物を選択することで、本発明の変異微生物を取得することができる。   The intermediate productivity is then compared with the parental microorganism cultured under the same conditions. For example, the conversion rate from sclareol to the intermediate and the production amount of the intermediate can be compared with those of the parent microorganism. A microorganism whose intermediate productivity is significantly higher than that of a parent microorganism cultured under the same conditions, or a maximum of 10% or more, preferably 20% or more, more preferably 30% or more, more preferably 50% or more. By selecting, the mutant microorganism of the present invention can be obtained.

以上のような方法で得られた本発明の変異微生物の例としては、Ascomycete sp. KSM−JL2842を親微生物とし、これから突然変異誘発によって作製されるAscomycota sp. KSM−ACR8、及びAscomycota sp. KSM−ACR35等が挙げられる。これらは、子嚢菌門(Ascomycota)に属し、親微生物の最小生育阻止濃度下で生育することができ、且つスクラレオールを基質としてドデカヒドロ−3a,6,6,9a−テトラナフト[2,1−b]フラン合成中間体を親微生物の約1.3〜1.5倍の生産性で生産する微生物である。Ascomycota sp. KSM−ACR8及びAscomycota sp. KSM−ACR35は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(独立行政法人製品評価技術基盤機構(NITE)特許微生物寄託センター(NPMD):〒292-0818 千葉県木更津市かずさ鎌足2−5−8)に2009年5月27日付けでそれぞれ受領番号FERM P−21812及びFERM P−21813として寄託された。   Examples of the mutant microorganisms of the present invention obtained by the above method include Ascomycete sp. KSM-JL2842 as a parent microorganism and Ascomycota sp. KSM-ACR8 and Ascomycota sp. -ACR35 etc. are mentioned. These belong to the Ascomycota, can grow under the minimum inhibitory concentration of the parent microorganism, and dodecahydro-3a, 6,6,9a-tetranaphtho [2,1-b] using sclareol as a substrate. It is a microorganism that produces a furan synthetic intermediate with a productivity approximately 1.3 to 1.5 times that of the parent microorganism. Ascomycota sp. KSM-ACR8 and Ascomycota sp. KSM-ACR35 are the National Institute of Technology and Evaluation (NITE) Patent Organization of Microorganisms (NITE). [0818] Deposited as FERM P-21812 and FERM P-21813 on May 27, 2009, respectively, in Kisarazu City, Chiba Prefecture, 2-5-8).

本発明の変異微生物によるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の製造
本発明に係る変異微生物を使用して、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を高効率に製造することができる。製造されたドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体は、残香性が高く付加価値の高い香料であるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フランを製造する際の原料として使用することができる。
Production of Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan Synthesis Intermediate by Mutant Microorganism of the Present Invention Using the mutant microorganism according to the present invention, dodecahydro-3a, 6,6 , 9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate can be produced with high efficiency. The produced dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate is dodecahydro-3a, 6,6,9a-, which is a perfume having high residual fragrance and high added value. It can be used as a raw material when producing tetramethylnaphtho [2,1-b] furan.

本発明に係る変異微生物を利用してドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を製造する際には、先ず、本発明に係る変異微生物をスクラレオールを含有する培地で培養する。培地としては、子嚢菌門に属する微生物が生育可能である培地であれば如何なる組成の培地をも使用することができる。本発明の微生物を培養した培地を回収し、目的のドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を単離し、さらに必要に応じて精製することにより、目的の中間体を製造することができる。
ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を培地から回収する方法は、公知の方法に従って行えば良く、特に限定されない。例えば、培地から菌体のみを分離除去した後、遠心分離、限外ろ過、イオン交換、逆浸透膜、電気透析、塩析、晶析等を組み合わせることによりデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を単離・精製することができる。
When producing a dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using the mutant microorganism according to the present invention, first, the mutant microorganism according to the present invention is selected. Incubate in medium containing sclareol. As the medium, any composition medium can be used as long as microorganisms belonging to Ascomycota can grow. Collecting the culture medium in which the microorganism of the present invention is cultured, and isolating the target dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate and further purifying it as necessary. Thus, the target intermediate can be produced.
The method for recovering the dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate from the medium is not particularly limited, and may be performed according to a known method. For example, decahydro-3a, 6,6,9a- is obtained by separating and removing bacterial cells from the medium and then combining centrifugation, ultrafiltration, ion exchange, reverse osmosis membrane, electrodialysis, salting out, crystallization, and the like. Tetramethylnaphtho [2,1-b] furan synthesis intermediate can be isolated and purified.

次に実施例及び参考例を挙げ、本発明をさらに詳しく説明する。   EXAMPLES Next, an Example and a reference example are given and this invention is demonstrated in more detail.

(参考例1 Ascomycete sp. KSM−JL2842(FERM BP−10713)の酢酸耐性評価)
Ascomycete sp. KSM−JL2842(FERM BP−10713)を各濃度の酢酸を添加した培地A(表1)に塗布し、酢酸の生育阻止濃度を求めた。すなわち、酢酸を添加した培地Aに上記 Ascomycete sp. KSM−JL2842を塗布した後、25℃で7日間放置し、該菌株の表面生育を目視で観察した。この結果を表2に示す。
(Reference Example 1 Acetic acid tolerance evaluation of Ascomycete sp. KSM-JL2842 (FERM BP-10713))
Ascomycete sp. KSM-JL2842 (FERM BP-10713) was applied to medium A (Table 1) to which acetic acid at each concentration was added to determine the growth inhibitory concentration of acetic acid. That is, the above-mentioned Ascomycete sp. KSM-JL2842 was applied to the medium A to which acetic acid had been added, then left at 25 ° C. for 7 days, and the surface growth of the strain was visually observed. The results are shown in Table 2.

Figure 2011036155
Figure 2011036155

Figure 2011036155
Figure 2011036155

表2から明らかなように、Ascomycete sp. KSM−JL2842に対する酢酸の最小生育阻止濃度は30〜40mMの範囲内であった。   As is apparent from Table 2, the minimum inhibitory concentration of acetic acid against Ascomycete sp. KSM-JL2842 was in the range of 30-40 mM.

(実施例1 本発明の変異微生物の作製)
1)酢酸耐性変異株の取得
Ascomycete sp. KSM−JL2842を液体培地B(表3)に接種し、25℃で3日間培養した時点で生理食塩水を用いて10倍希釈しUVを3分間照射した後、処理液を液体培地Bを用いてさらに10倍希釈し、25℃で6時間順化させた。その後、集菌し、液体培地C(表3)に懸濁し25℃で3日間程度培養したものを液体培地Cに植え継ぎ、さらに25℃で4日間程度培養した。この培養液から集菌し、30mMの酢酸を含む培地Aに塗布し、25℃で7日間程度放置した後、該培地表面上で生育したコロニーを選抜し、50個の微生物を得た。
(Example 1 Production of mutant microorganism of the present invention)
1) Acquisition of acetic acid resistant mutants
Ascomycete sp. KSM-JL2842 was inoculated into liquid medium B (Table 3), and after culturing at 25 ° C. for 3 days, it was diluted 10-fold with physiological saline and irradiated with UV for 3 minutes. B was further diluted 10 times and acclimated at 25 ° C. for 6 hours. Thereafter, the cells were collected, suspended in liquid medium C (Table 3) and cultured at 25 ° C. for about 3 days, transferred to liquid medium C, and further cultured at 25 ° C. for about 4 days. Bacteria were collected from this culture solution, applied to medium A containing 30 mM acetic acid, allowed to stand at 25 ° C. for about 7 days, and then colonies that grew on the surface of the medium were selected to obtain 50 microorganisms.

Figure 2011036155
Figure 2011036155

2)ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体生産性の評価
実施例1で取得した微生物を大型試験管中4.5mLの液体培地Bに接種し、25℃で3日間培養した時点で基質溶液A(表4)を0.5mL添加し、さらに4日間培養した。培養液5mLに酢酸エチル10mLにて目的物質を抽出し、適宜希釈してGC分析を行った。GC装置としては、Agilent technologies 6890Nを用い、分析条件は以下のとおりである。検出器:Flame Ionization Detector(FID)、注入口温度:250℃、注入法:スプリットモード(スプリット比100:1)、トータルフロー:200mL/分、カラム流速:0.4mL/分、オーブン温度:250℃、カラム:J&W社製DB−WAX(φ0.1mm×10m)。
上記条件により、上記1)で取得した微生物のドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体生産量を評価した結果、2株の微生物のデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノール生産量が親出願と比較して高かった。これらの変異微生物を、それぞれAscomycota sp. KSM−ACR8、Ascomycota sp. KSM−ACR35と命名し、NITE特許微生物寄託センター(NPMD)に、それぞれ受領番号FERM P−21812及びFERM P−21813として寄託した。
2) Evaluation of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate productivity Microorganisms obtained in Example 1 were placed in 4.5 mL of liquid medium B in a large test tube. When inoculated and cultured at 25 ° C. for 3 days, 0.5 mL of the substrate solution A (Table 4) was added and further cultured for 4 days. The target substance was extracted with 10 mL of ethyl acetate in 5 mL of the culture solution, diluted appropriately, and subjected to GC analysis. As the GC device, Agilent technologies 6890N is used, and the analysis conditions are as follows. Detector: Flame Ionization Detector (FID), inlet temperature: 250 ° C., injection method: split mode (split ratio 100: 1), total flow: 200 mL / min, column flow rate: 0.4 mL / min, oven temperature: 250 C, column: DB-WAX (φ0.1 mm × 10 m) manufactured by J & W.
Based on the above conditions, the production of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate of microorganisms obtained in 1) above was evaluated. The production amount of 2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol was higher than that of the parent application. These mutant microorganisms were named Ascomycota sp. KSM-ACR8 and Ascomycota sp. KSM-ACR35, respectively, and deposited with the NITE Patent Microorganism Depositary Center (NPMD) as receipt numbers FERM P-21812 and FERM P-21813, respectively.

Figure 2011036155
Figure 2011036155

(参考例2 酢酸存在下でのデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノール生産性評価)
変異微生物Ascomycota sp. KSM−ACR8とその親微生物Ascomycete sp. KSM−JL2842とを、大型試験管中4mLの液体培地Bに接種し、25℃で3日間培養した時点で基質溶液A及び所定濃度の酢酸を0.5mLずつ添加し(最終濃度:0〜40mM)、さらに4日間培養した。培養終了後、実施例1の2)の手法にて抽出及びGC分析を行い、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産性を評価した。その結果、図3に示すとおり、KSM−JL2842は酢酸添加培地ではデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールの生産性が低下するが、KSM−ACR8では、培地への酢酸添加濃度が20mM以下の場合、親微生物に見られるようなデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールの生産性の低下が緩和されており、酢酸未添加の場合と同様の高いデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノール生産性を示した。
Reference Example 2 Decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol productivity evaluation in the presence of acetic acid
Mutant microorganism Ascomycota sp. KSM-ACR8 and its parental microorganism Ascomycete sp. KSM-JL2842 are inoculated into 4 mL of liquid medium B in a large test tube and cultured at 25 ° C. for 3 days. Acetic acid was added in an amount of 0.5 mL (final concentration: 0 to 40 mM) and further cultured for 4 days. After completion of the culture, extraction and GC analysis were performed by the method of 2) of Example 1 to evaluate the productivity of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate. did. As a result, as shown in FIG. 3, KSM-JL2842 decreased the productivity of decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol in the acetic acid-added medium, but KSM-ACR8 When the concentration of acetic acid added is 20 mM or less, the decrease in productivity of decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol as seen in the parent microorganism is alleviated, and no acetic acid is added. The same high decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthalene ethanol productivity was exhibited.

親微生物KSM−JL2842では、参考例1(表2)に示したように5mM酢酸存在下で生育は阻害されなかった一方、同じ濃度の酢酸を添加した培地でのデカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールの生産性は低下した。Biochem. Soc. Trans., 19, 690-694 (1991)に記載されるように、スクラレオールを基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を生産する場合、同時に多量の酢酸が生産されることになる。よって当該中間体を産生する微生物は、その過程で高濃度の酢酸に曝されることとなり、結果として中間体合成の進行とともにその生産効率はむしろ低下していると推測される。親微生物KSM−JL2842の場合も、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を生産する過程で、副産物である酢酸の影響を受け、結果として通常培養では充分生育できる濃度であっても合成中間体の生産性が低下したと推察される。一方、酢酸耐性が向上した変異微生物は、中間体生産過程で生成した酢酸からの悪影響が相対的に小さく、結果としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産性が向上すると推察される。
従って、酢酸耐性を指標として変異微生物を選択する工程を含む本発明の方法によれば、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の生産性が向上した変異微生物を極めて効率よく取得することが可能になる。
In the parent microorganism KSM-JL2842, growth was not inhibited in the presence of 5 mM acetic acid as shown in Reference Example 1 (Table 2), while decahydro-2-hydroxy-2, The productivity of 5,5,8a-tetramethylnaphthalene ethanol decreased. Biochem. Soc. Trans., 19, 690-694 (1991). Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using sclareol as a substrate A large amount of acetic acid is produced at the same time. Therefore, the microorganism producing the intermediate is exposed to a high concentration of acetic acid in the process, and as a result, it is presumed that the production efficiency is rather lowered as the intermediate synthesis proceeds. In the case of the parent microorganism KSM-JL2842, also in the process of producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate, it is affected by the by-product acetic acid, It is presumed that the productivity of the synthetic intermediate has decreased even at a concentration sufficient for normal culture. On the other hand, mutant microorganisms with improved acetic acid resistance have relatively little adverse effect from acetic acid produced in the intermediate production process, resulting in dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b]. It is estimated that the productivity of the furan synthetic intermediate is improved.
Therefore, according to the method of the present invention including the step of selecting mutant microorganisms using acetic acid resistance as an index, the productivity of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate It is possible to obtain mutant microorganisms with improved efficiency very efficiently.

Claims (9)

以下の工程(1)〜(3)を含むことを特徴とする、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性変異微生物の作製方法:
(1)子嚢菌門(Ascomycota)に属し且つスクラレオール(Sclareol)を基質としてドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体を生産する能力を有する親微生物を突然変異処理に付す工程;
(2)得られた変異微生物を酢酸耐性を指標に選択する工程;及び
(3)選択された微生物から、さらに酢酸によるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性を示す微生物を選択する工程。
A method for producing a mutant microorganism having high productivity of dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate, comprising the following steps (1) to (3):
(1) A parent belonging to Ascomycota and capable of producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using Sclareol as a substrate Subjecting the microorganism to a mutation treatment;
(2) a step of selecting the obtained mutant microorganism using acetic acid resistance as an index; and (3) dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b by acetic acid from the selected microorganism. The process of selecting the microorganism which shows the furan synthetic intermediate high productivity.
前記合成中間体が、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールである請求項1記載の方法。   The method according to claim 1, wherein the synthetic intermediate is decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol. 前記酢酸耐性を指標に選択する工程が、親微生物の最小生育阻止濃度前後の酢酸を含有する培地で培養して当該培地で生育するコロニーを選択する工程である、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the step of selecting the acetic acid resistance as an index is a step of selecting a colony that grows in the medium by culturing in a medium containing acetic acid at a concentration around the minimum growth inhibitory concentration of the parent microorganism. . 前記最小生育阻止濃度前後の酢酸が30mM〜40mMの酢酸である、請求項3記載の方法。   The method according to claim 3, wherein the acetic acid around the minimum growth inhibitory concentration is 30 mM to 40 mM acetic acid. 前記突然変異処理が紫外線照射、放射線照射、又は塩基類似性物質、アクリジン、亜硝酸、ヒドロキシルアミン及びアルキル化試剤からなる群より選ばれる薬剤による処理である請求項1〜4のいずれか1項記載の方法。   5. The treatment according to claim 1, wherein the mutation treatment is treatment with an agent selected from the group consisting of ultraviolet irradiation, radiation irradiation, or a base-analogous substance, acridine, nitrous acid, hydroxylamine, and an alkylating agent. the method of. 請求項1〜5のいずれか1項記載の方法によって作製される、ドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体高生産性変異微生物。   A dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate-producing mutant microorganism produced by the method according to any one of claims 1 to 5. 受託番号FERM P−21812(ACR−8)、もしくはFERM P−21813(ACR−35)で特定される変異微生物。   A mutant microorganism identified by the accession number FERM P-21812 (ACR-8) or FERM P-21813 (ACR-35). 請求項6または請求項7記載の変異微生物を用いるドデカヒドロ−3a,6,6,9a−テトラメチルナフト[2,1−b]フラン合成中間体の製造方法。   A method for producing a dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthesis intermediate using the mutant microorganism according to claim 6 or 7. 前記合成中間体が、デカヒドロ−2−ヒドロキシ−2,5,5,8a−テトラメチルナフタレンエタノールである請求項8記載の製造方法。   The method according to claim 8, wherein the synthetic intermediate is decahydro-2-hydroxy-2,5,5,8a-tetramethylnaphthaleneethanol.
JP2009184959A 2009-08-07 2009-08-07 Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high productivity mutant microorganism Active JP5599171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184959A JP5599171B2 (en) 2009-08-07 2009-08-07 Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high productivity mutant microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184959A JP5599171B2 (en) 2009-08-07 2009-08-07 Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high productivity mutant microorganism

Publications (2)

Publication Number Publication Date
JP2011036155A true JP2011036155A (en) 2011-02-24
JP5599171B2 JP5599171B2 (en) 2014-10-01

Family

ID=43764640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184959A Active JP5599171B2 (en) 2009-08-07 2009-08-07 Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high productivity mutant microorganism

Country Status (1)

Country Link
JP (1) JP5599171B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502065A (en) * 1987-11-07 1990-07-12 株式会社資生堂 Microorganisms with low acetic acid production ability and methods for producing useful substances using the same
JPH04356185A (en) * 1991-05-30 1992-12-09 Kao Corp Novobiocin-resistant mutant and its production
JP2000316559A (en) * 1999-05-11 2000-11-21 Suntory Ltd Production of alcoholic beverage
JP2007252365A (en) * 2006-02-24 2007-10-04 Kao Corp NEW MICROORGANISM, METHOD FOR EFFICIENTLY PRODUCING INTERMEDIATE OF DODECAHYDRO-3a,6,6,9a-TETRAMETHYLNAPHTHO[2,1-b]FURAN USING THE NEW MICROORGANISM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502065A (en) * 1987-11-07 1990-07-12 株式会社資生堂 Microorganisms with low acetic acid production ability and methods for producing useful substances using the same
JPH04356185A (en) * 1991-05-30 1992-12-09 Kao Corp Novobiocin-resistant mutant and its production
JP2000316559A (en) * 1999-05-11 2000-11-21 Suntory Ltd Production of alcoholic beverage
JP2007252365A (en) * 2006-02-24 2007-10-04 Kao Corp NEW MICROORGANISM, METHOD FOR EFFICIENTLY PRODUCING INTERMEDIATE OF DODECAHYDRO-3a,6,6,9a-TETRAMETHYLNAPHTHO[2,1-b]FURAN USING THE NEW MICROORGANISM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014000202; Biochemical Society Transactions, 1991, Vol.19, pp.690-694 *

Also Published As

Publication number Publication date
JP5599171B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
Kubiak et al. Physiological predisposition of various Clostridium species to synthetize 1, 3-propanediol from glycerol
JP2012143238A (en) NOVEL MICROORGANISM,AND METHOD FOR PRODUCING DODECAHYDRO-3a,6,6,9a-TETRAMETHYLNAPHTHO [2,1-b] FURAN INTERMEDIATE USING THE SAME
US20160160250A1 (en) Hyphomicrobium sp. microorganism and method of producing pyrroloquinoline quinone using the same
JP6181972B2 (en) Method for producing aromatic compound
EP3354743A1 (en) Novel candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
Sui et al. Characterization of halophilic C50 carotenoid-producing archaea isolated from solar saltworks in Bohai Bay, China
JP5599171B2 (en) Dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan synthetic intermediate high productivity mutant microorganism
JP5113379B2 (en) Novel microorganism and method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan intermediate using the novel microorganism
JP2006345796A (en) Acetobacter of high ceramide productivity
JPS59140889A (en) Production of nylon 66 salt
Chen et al. Muricauda chongwuensis sp. nov., isolated from coastal seawater of China
Ranadive et al. Strain improvement of Sporidiobolus johnsonii ATCC 20490 for biotechnological production of Coenzyme Q10
CN102203238A (en) Scyllo-inositol-producing cell and scyllo-inositol production method using said cells
KR100464107B1 (en) Microorganism consortia for the degradation of diesel and process for preparation thereof
JP4598692B2 (en) Novel microorganism and method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan intermediate using the novel microorganism
JP5317488B2 (en) Novel microorganism and method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan intermediate using the novel microorganism
KR101556544B1 (en) - SJ10 - Pseudomonas mosselii SJ10 having -caprolactam degrading activity and method for degrading -caprolactam using the same
JP6494738B2 (en) Method for producing 2-aza-8 oxohypoxanthine
CN106754381B (en) Mutagenic dinoflagellate Zhanjiang and the like and culture method thereof
JP2015039348A5 (en)
JP2007222110A5 (en)
JP2014023489A (en) Paracoccus bacterium
JP7424989B2 (en) Isolation and pure culture of archaea of the order METHANOMASSILIICOCCALES
JP6181971B2 (en) Method for producing aromatic compound
KR20130001045A (en) Microcystin degrading bacteria micrococcus sp. ch4

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R151 Written notification of patent or utility model registration

Ref document number: 5599171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250