JP3894778B2 - Lithium titanate and lithium battery using the same - Google Patents

Lithium titanate and lithium battery using the same Download PDF

Info

Publication number
JP3894778B2
JP3894778B2 JP2001353688A JP2001353688A JP3894778B2 JP 3894778 B2 JP3894778 B2 JP 3894778B2 JP 2001353688 A JP2001353688 A JP 2001353688A JP 2001353688 A JP2001353688 A JP 2001353688A JP 3894778 B2 JP3894778 B2 JP 3894778B2
Authority
JP
Japan
Prior art keywords
lithium
compound
titanate
lithium titanate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001353688A
Other languages
Japanese (ja)
Other versions
JP2002211925A (en
Inventor
斉昭 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2001353688A priority Critical patent/JP3894778B2/en
Publication of JP2002211925A publication Critical patent/JP2002211925A/en
Application granted granted Critical
Publication of JP3894778B2 publication Critical patent/JP3894778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池の電極材料などに有用な化合物であるチタン酸リチウムおよびその製造方法、ならびにそれを用いてなるリチウム電池に関する。
【0002】
【従来の技術】
リチウム二次電池は高電圧で、充放電サイクル特性に優れ、且つ軽量、小型であるため、近年急速に普及している。リチウム電池の正極活物質としてはコバルト酸リチウム、マンガン酸リチウムなどの遷移金属とリチウムとの複合酸化物が、負極には黒鉛などの炭素系材料が主に用いられており、これらは4V級の高起電力のものである。
【0003】
しかし、将来的には電子機器類では回路駆動電圧の低電圧化が進むと予想されており、この分野には低電圧で高性能の二次電池が求められている。このようなリチウム二次電池としてチタン酸リチウムを電極活物質として用いたものが知られている。また、チタン酸リチウムは充放電に伴う結晶構造の変化がほとんど見られないので、安定性、安全性に優れた電池材料としても期待されている。
【0004】
電池の電極は活物質、導電材、バインダーなどを混合した後成型する方法、活物質、導電材などをバインダーを溶解した媒液中で分散させた後塗布する方法などにより作成されるが、いずれの場合でも活物質のタップ密度が高ければ、このものを電極活物質として用いた電池の単位体積当たりの電池容量を大きくすることができる。一般的に粉体はその粒子径を大きくすると、タップ密度が高くなるので、大粒子径のチタン酸リチウムが求められている。
【0005】
チタン酸リチウムは、一般式LiXTiY4で表される化合物であり、代表的化合物としてはLi2.67Ti1.334、LiTi24、Li1.33Ti1.674、Li1.14Ti1.714などがある。このチタン酸リチウムを得るには、酸化チタンとリチウム化合物との混合物を700〜1600℃の温度で加熱焼成する方法(特開平6−275263号公報)が知られている。しかし、この方法により得られたチタン酸リチウムは、粒子を焼結させた不均一な焼結体であるため、粒子の大きさや形状が制御できないという問題がある。また、酸化チタンとリチウム化合物との反応性が悪く、反応を進行させるには高温で長時間の加熱焼成を要し、場合によっては加熱焼成と粉砕を繰り返して行う必要があり、工業的、経済的に不利であった。
【0006】
また、媒液中でチタン酸リチウム水和物を生成した後、200〜1300℃で焼成してチタン酸リチウムにする方法(特開平9−309727号公報、特開平9−309728号公報、特開平10−310428号公報)も知られている。この方法では低温で短時間の加熱焼成により、組成や粒子径が均一な粒子を得ることができるが、粒子形状が板状や薄片状になり、高温で焼成して大粒子径化しても球状粒子になり難く、所望されるような高タップ密度は得られていない。特開2001−192208号公報にはアナターゼ型酸化チタンとリチウム化合物とを含むスラリーを噴霧乾燥した後、加熱焼成して得られる球状二次粒子のチタン酸リチウムが開示されているが、十分なタップ密度が得られない。
【0007】
【発明が解決しようとする課題】
本発明は以上に述べた従来技術の問題点を克服し、体積当りの電池容量の大きいリチウム電池に適した、すなわち粒子径が大きくタップ密度が高い、しかも粒子径、粒子形状や組成が均一なチタン酸リチウムを提供することにある。また、本発明は前記のチタン酸リチウムを工業的、経済的に有利に製造する方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは鋭意研究を重ねた結果、チタン酸リチウムの二次粒子の形状を球状あるいは多面体状とし、その平均粒子径を0.5〜100μmとすれば、タップ密度が高くなり、さらに、このものが塩素を含有していれば、これを電池の電極活物質として用いると優れた電池特性が得られること、さらに、チタン酸化合物とリチウム化合物とを含むスラリーを噴霧乾燥した後、加熱焼成する方法において、加熱焼成前に塩素を存在させることにより上記特徴を有するチタン酸リチウムが得られることなどを見出し、本発明を完成した。
【0009】
すなわち、本発明は二次粒子が球状あるいは多面体状の形状を有し、且つ二次粒子の平均粒子径が0.5〜100μmの範囲にあり、塩素をClとして0.05〜1%の範囲で含有することを特徴とするチタン酸リチウム及びそれを用いてなるリチウム電池である。また、本発明は、チタン酸化合物とリチウム化合物とを含むスラリーを噴霧乾燥した後、加熱焼成する方法において、加熱焼成前に塩素を存在させることを特徴とするチタン酸リチウムの製造方法である。
【0010】
【発明の実施の形態】
本発明のチタン酸リチウムは、単一のチタン酸リチウム粒子が凝集して球状または多面体状で、平均粒子径(レーザー散乱法によるメジアン径)が0.5〜100μmの二次粒子を形成したものであって、塩素をClとして0.05〜1%含有することを特徴とする。本発明の二次粒子は一次粒子同士が強固に結合した状態にあり、ファンデルワース力等の粒子間の相互作用で凝集したり、機械的に圧密化されたものではない。球状または多面体状の大粒子であるため、従来の小粒子径のチタン酸リチウムや、板状あるいは薄片状のものと比較してタップ密度が高い。さらには、特定量の塩素を含有するので、このものをリチウム電池の電極活物質として用いた場合、エネルギー密度が高く、容量の大きい電池が得られる。塩素の作用については良く判っていないが、二次粒子の生成過程で、一次粒子の凝集状態を制御し、一次粒子間に適度な空隙を形成するのではないかと推測される。このため、チタン酸リチウムの表面に凹凸が生じ、電解液との接触面積が大きくなったり、あるいは二次粒子の内部に電解液が浸透し、二次粒子の内部から表面へリチウムイオンが挿入脱離し易くなるなどして、電池容量が高くなるのではないかと考えられる。その組成は、一般式LixTiyO4で表されるものであって、チタン酸リチウムの単一相であればより好ましいが、本発明の効果を損なわない範囲で若干の酸化チタンが混合していてもよい。前記一般式中のX、Yの値は、X/Yの値で表して0.5〜2の範囲が好ましい組成物となる値である。塩素含有量は前記範囲より少なくても、多くても所望の効果が得られず、0.1〜0.8%の範囲がより好ましい。
【0011】
二次粒子を構成する個々の1次粒子の形状は球状、多面体状、板状等特に制限は無く、平均粒子径は電子顕微鏡法によると、0.01〜2.0μmの範囲にある。その組成は前記の二次粒子と同様に、チタン酸リチウムの単一相であれば好ましく、一般式LixTiyO4で表されるものであり、前記一般式中のX、Yの値は、X/Yの値で表して0.5〜2の範囲が好ましい。
【0012】
二次粒子の形状は電池特性上できるだけ異方性の小さい形状が有利であり、球状が最も好ましい。二次粒子径の平均粒子径が前記範囲より小さいと所望の効果が得られず、前記範囲より大きいとこれを用いた電池の充放電特性が低下する。より好ましい範囲は1〜100μmであり、更に好ましくは1〜50、特に好ましくは10〜50μmである。二次粒子が0.1〜30m2/gの範囲の比表面積を有し、1.0〜2.5g/cm3の範囲のタップ密度を有していれば、充填性が優れているので好ましい。特に、1〜10m2/gの範囲の比表面積と1.2〜2.0g/cm3の範囲のタップ密度とを有するものは、電池容量も高く、より好ましい。通常、粉体の粒子径を大きくすると、タップ密度は大きく、比表面積は小さくなるが、本発明のチタン酸リチウムはこのようにタップ密度が大きく、比表面積も比較的大きいことから、前述のように一次粒子が適度に空隙が形成された状態で凝集しているのではないかと推測される。
【0013】
また、本発明はチタン酸リチウムの製造方法であって、チタン酸化合物とリチウム化合物とを含むスラリーを噴霧乾燥した後、加熱焼成する方法において、加熱焼成前に塩素を存在させることを特徴とする。この方法により、球状または多面体状の二次粒子からなり、塩素を含有するチタン酸リチウムが得られる。加熱焼成前に塩素を存在させるには、例えば(1)出発物質であるチタン酸化合物及び/又はリチウム化合物として予め塩素が含まれたもの用いる、(2)チタン酸化合物とリチウム化合物とを含むスラリーに塩素含有物質を添加する、あるいは(3)噴霧乾燥後に塩素含有物質を混合する方法などが挙げられ、特に制限は無い。反応機構は良く判っていないが、前述のように塩素は二次粒子が形成される過程で、一次粒子の凝集を適度に粗な状態に制御し、一次粒子間に空隙を形成させると考えられ、その結果本発明の方法で得られたチタン酸リチウムは電池容量が大きくなると考えられる。塩素は得られるチタン酸リチウムにClとして0.05〜1%、好ましくは0.1〜0.8%含有される量を用いる。(1)の方法では、チタン酸化合物にClとして0.05〜1%の塩素を含有させても良い。用いる塩素量が0.05%より少ないと、所望の適度に空隙を有する二次粒子が得られず、1%より多いと、チタン酸化合物とリチウム化合物の反応性が低下して、単一相のチタン酸リチウムが得られ難い。
【0014】
前記のチタン酸化合物としてはTiO(OH)またはTiO・HOで表されるメタチタン酸、Ti(OH)またはTiO・2HOで表されるオルトチタン酸、あるいはそれらの混合物などを用いることができ、塩素含有物質としては塩酸、塩化アンモニウム、塩化リチウム、塩化チタン、塩素ガスなどを用いることができる。リチウム化合物には特に制限はないが、水性媒体を用いてスラリー化する場合は、水酸化リチウム、炭酸リチウム、硝酸リチウム、硫酸リチウムなどの水溶性リチウム化合物を用いることが好ましく、中でも反応性の高い水酸化リチウムを用いるのが好ましい。チタン源としてアナターゼ型やルチル型等の結晶構造を有する酸化チタンを用いると、大粒子径の二次粒子が得られてもタップ密度が十分に大きくならない。これは噴霧乾燥時の収縮率が低く、中空状の二次粒子が生成し易いからではないかと推測される。また、チタン酸化合物はリチウム化合物との反応性が高く、800℃以下の比較的低い温度で加熱焼成してもチタン酸リチウムを生成するので、二次粒子間の焼結を防ぐことができる。特にチタン酸化合物と水酸化リチウムは混合した時点である程度反応が進むと考えられ、噴霧乾燥した造粒物から強アルカリである水酸化リチウムが揮散し難いので、作業環境や装置の腐食等を改善できるという利点もある。チタン酸化合物はチタン化合物の加水分解や、チタン化合物と塩基性化合物とを媒液中で反応させることにより得られ、例えばメタチタン酸は硫酸チタニルの加熱加水分解や塩化チタンの高温下での中和加水分解で、オルトチタン酸は硫酸チタンや塩化チタンの低温下での中和加水分解で、またメタチタン酸とオルトチタン酸の混合物は塩化チタンの中和加水分解温度を適宜制御することでが得られる。塩基性化合物としては、アンモニア、炭酸アンモニウム、硫酸アンモニウム、硝酸アンモニウムなどアンモニウム化合物を用いれば、焼成時に分解、揮散させることができる。チタン化合物としては前記の硫酸チタン、硫酸チタニル、塩化チタンなどの無機系のもの以外に、チタンアルコキシドのような有機系のものも用いることができる。チタン化合物として塩化チタンを用いると、このものを加水分解反応もしくは塩基性化合物との反応により塩素を含有するチタン酸化合物が得られるので好ましい。
【0015】
次に、チタン酸化合物とリチウム化合物とを含むスラリーを噴霧乾燥し、所望の大粒子、すなわち0.5〜100μm程度の二次粒子に造粒する。噴霧乾燥に用いる噴霧乾燥機はディスク式、圧力ノズル式、二流体ノズル式など、スラリーの性状や処理能力に応じて適宜選択することができる。二次粒子径の制御は、例えば上記のディスク式ならディスクの回転数を、圧力ノズル式や二流体ノズル式などならば噴霧圧やノズル径を調整して、噴霧される液滴の大きさを制御することにより行える。用いるスラリーの濃度、粘度等の性状は、噴霧乾燥機の能力に応じて適宜設定できる。スラリーの粘度が低く造粒し難い場合や、より粒子径を制御し易くするために、ポリビニルアルコール、メチルセルロース、ゼラチンなどのバインダーや、ノニオン系、アニオン系、両性、非イオン系などの界面活性剤など各種の添加剤を用いても良い。これら添加剤は有機物系で金属成分を含有しないものであれば、後の加熱焼成熱工程で分解、揮散するので望ましい。乾燥温度としては入り口温度が200〜450℃、出口温度が80〜120℃が好ましい。
【0016】
このようにして得られた造粒乾燥物を加熱焼成してチタン酸リチウムを製造する。加熱焼成温度としては造粒乾燥物の組成、焼成雰囲気などにより異なるが、本発明では噴霧乾燥により所望の粒子径にまでほぼ造粒されているので、チタン酸化合物とリチウム化合物とが反応してチタン酸リチウムになる概ね600℃以上でよく、二次粒子間の焼結を防ぐため、1100℃以下とするのが好ましい。より好ましい加熱焼成温度は600〜1000℃であり、600〜800℃であればさらに好ましい。加熱焼成後、得られたチタン酸リチウム二次粒子同士が焼結、凝集していれば、必要に応じてフレーククラッシャ、ハンマミル、ピンミルなどを用いて粉砕してもよい。
【0017】
次に本発明は上記チタン酸リチウムを電極活物質として用いたリチウム電池である。リチウム電池用電極は、本発明のチタン酸リチウムにカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または塗布して得られる。リチウム電池は前記の電極、対極及び電解液とからなり、チタン酸リチウムを正極に用いる場合は、対極として金属リチウム、リチウム合金など、あるいはグラファイト、コークスなどの炭素系材料などが用いられる。また、チタン酸リチウムを負極として用いる場合の対極にはリチウム含有酸化マンガン、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、五酸化バナジウムなどが用いられる。電解液にはプロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンなどの溶媒にLiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiBF4などのリチウム塩を溶解させたものなど常用の材料を用いることができる。
【0018】
【実施例】
以下に本発明の実施例を示すが、これらは本発明を限定するものではない。
【0019】
実施例1
(1)チタン酸化合物の合成
9.14モル/リットルのアンモニア水溶液2957ミリリットルと、純水1537ミリリットルとを反応容器入にれ、攪拌しながら溶液の温度が10〜15℃になるように氷冷して、1.25モル/リットルの四塩化チタン水溶液4506ミリリットルを2時間かけて加え、その後1時間熟成し、生成した沈殿物を濾過し、2リットルの純水で洗浄してチタン酸化合物(オルトチタン酸)(試料a)を得た。チタン酸化合物には塩素が0.12%含まれていた。
【0020】
(2)チタン酸化合物とリチウム化合物を含むスラリーの噴霧乾燥
TiO2に換算して150gの前記チタン酸化合物を2.07リットルの純水に分散させたスラリーに、3.655モル/リットルの水酸化リチウム水溶液416ミリリットルを添加した後、モービルマイナー型噴霧乾燥機(ニロ社製)を用いて、入口温度250℃、出口温度110℃の条件で噴霧乾燥を行い造粒乾燥物を得た。
【0021】
(3)造粒乾燥物の加熱焼成
得られた造粒乾燥物を大気中725℃で2時間の熱処理を行い、本発明のチタン酸リチウムを得た。(試料A)
【0022】
実施例2
実施例1の工程(1)において、四塩化チタンとアンモニアとの反応温度を50〜60℃として、チタン酸化合物(オルトチタン酸とメタチタン酸の混合物:塩素含有量0.7%)を得た以外は実施例1と同様にして本発明のチタン酸リチウムを得た。(試料B)
【0023】
実施例3
実施例1の工程(1)において、四塩化チタンとアンモニアとの反応をオートクレーブ中で行い、反応温度を130℃とし、2時間反応させて、チタン酸化合物(メタチタン酸:塩素含有量0.38%)を得た以外は実施例1と同様にして本発明のチタン酸リチウムを得た。(試料C)
【0024】
実施例4
(1)チタン酸化合物の合成
965gの水酸化リチウム一水和物を純水に溶解させ4495ミリリットルとした溶液を反応容器入にれ、攪拌しながら溶液の温度が50〜60℃になるように保ち、1.25モル/リットルの四塩化チタン水溶液4506ミリリットルを2時間かけて加え、その後1時間熟成し、生成した沈殿物を濾過し、2リットルの純水で洗浄してチタン酸化合物(オルトチタン酸とメタチタン酸の混合物)を得た。チタン酸化合物には塩素が0.35%含まれていた。
【0025】
(2)チタン酸化合物とリチウム化合物を含むスラリーの噴霧乾燥
TiO2に換算して150gの前記チタン酸化合物を2.07リットルの純水に分散させたスラリーに、3.655モル/リットルの水酸化リチウム水溶液257ミリリットルを添加した後、実施例1の工程(2)と同様に造粒乾燥物を得た。
【0026】
(3)造粒乾燥物の加熱焼成
得られた造粒乾燥物を大気中700℃で2時間の熱処理を行い、本発明のチタン酸リチウムを得た。(試料D)
【0027】
実施例5
(1)チタン酸化合物の合成
実施例1の工程(1)において、純水10リットルを用いて洗浄を行った以外は実施例1と同様にしてチタン酸化合物(オルトチタン酸)を得た。チタン酸化合物には塩素が0.01%含まれていた。
【0028】
(2)チタン酸化合物とリチウム化合物を含むスラリーの噴霧乾燥
実施例1の工程(2)において、チタン酸化合物として前記のものを用い、スラリーに2モル/リットルの塩酸9.4ミリリットルを添加した以外は実施例1と同様にして造粒乾燥物を得た。
【0029】
(3)造粒乾燥物の加熱焼成
得られた造粒乾燥物を大気中725℃で2時間の熱処理を行い、本発明のチタン酸リチウムを得た。(試料E)
【0030】
実施例6
(1)チタン酸化合物とリチウム化合物を含むスラリーの噴霧乾燥
実施例5の工程(1)で調整したチタン酸化合物を用いた以外は実施例1と同様にして造粒乾燥物を得た。
【0031】
(2)造粒乾燥物の加熱焼成
得られた造粒乾燥物100gに対し塩化アンモニウムを0.96g混合した後、大気中725℃で2時間の熱処理を行い、本発明のチタン酸リチウムを得た。(試料F)
【0032】
比較例1
TiO2に換算して20gのチタン酸化合物(試料a)と水酸化リチウム一水和物4.98gを自動乳鉢を用いて10分間混合し、大気中725℃で2時間の熱処理した後、サンプルミルにより粉砕し、比較試料のチタン酸リチウムを得た。(試料G)
【0033】
比較例2
アナターゼ型酸化チタン20gと水酸化リチウム一水和物8.72gを自動乳鉢を用いて10分間混合し、大気中で800℃で2時間の加熱焼成を行った後、サンプルミルにより粉砕し、比較試料のチタン酸リチウムを得た。(試料H)
【0034】
比較例3
実施例1の工程(1)を行わず、工程(2)において、チタン酸化合物に替えてアナターゼ型酸化チタン(塩素含有量0.01%)を用いた以外は実施例1と同様に造粒乾燥物の調整、加熱焼成を行って比較試料のチタン酸リチウムを得た。(試料I)
【0035】
比較例4
実施例6の工程(3)において、塩化アンモニウムを混合しなかったこと以外は実施例6と同様にしてチタン酸リチウムを得た。(試料J)
【0036】
評価1
実施例1〜6及び比較例1〜4で得られたチタン酸リチウム(試料A〜J)の水性スラリーを十分に超音波分散し、レーザー光による透過率が85±1%になるように調製した後、レーザー回折/散乱式粒度分布測定装置(LA−910:堀場製作所製)を用い体積基準で平均粒子径をメジアン径として測定した。
【0037】
評価2
実施例1〜6及び比較例1〜4で得られたチタン酸リチウム(試料A〜J)をそれぞれ50gを100ミリリットルのメスシリンダーに入れ、100回タッピングしてタップ密度を測定した。
【0038】
評価3
実施例1〜6及び比較例1〜4で得られたチタン酸リチウム(試料A〜J)の比表面積を、比表面積測定装置(モノソーブ:ユアサイアオニクス製)を用いて、BET法により測定した。
【0039】
評価4
実施例1〜6及び比較例1〜4で得られたチタン酸リチウム(試料A〜J)の塩素含有量を蛍光X線分析装置(RIX3000:理学電機工業製)を用いて測定した。
【0040】
評価5
実施例1〜6及び比較例1〜4で得られたチタン酸リチウム(試料A〜J)を電極活物質とした場合のリチウムニ次電池の充放電特性を評価した。電池はコイン型のセルとした。電池の形態や測定条件について説明する。
【0041】
上記各試料と、導電剤としてのグラファイト粉末、及び結着剤としてのポリ四フッ化エチレン樹脂を重量比で70:24:6で混合し、乳鉢で練り合わせ、直径10mmの円形に成型してペレット状とした。ペレットの重量は20mgであった。このペレットに直径10mmに切り出した金属チタン製のメッシュを重ね合わせ、14.7MPaでプレスして作用極とした。
【0042】
この作用極を120℃4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型評価用セルに組み込んだ。評価用セルには材質がステンレス製(SUS316)で外径20mm、高さ1.6mmのものを用いた。対極には厚み0.5mmの金属リチウムを直径14mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。
【0043】
作用極は評価用セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液をスポイドで7滴滴下した。さらにその上に負極をのせ、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封した。尚、厚みを調整するため、必要に応じてセパレーターの上に親水化処理したポリプロピレン製不繊布を置いた。
【0044】
充放電試験は、電圧範囲を1Vから2Vに、充電および放電電流をいずれも0.21mA(約1サイクル/日)に設定して、定電流で行った。
【0045】
試料A〜Jの粒子形状、メジアン径、タップ密度、比表面積、塩素含有量及び放電容量を表1に示す。本発明のチタン酸リチウムは充填性が優れ、放電容量が高いことが分かる。
【0046】
【表1】

Figure 0003894778
【0047】
評価6
実施例1、5、6及び比較例1、2で得られたチタン酸リチウム(試料A、E、F、G、H)の粉末X線回折(X線:CuKα)を測定した。結果を図1〜5に示す。試料A、E、Fにはチタン酸リチウムに由来する回折ピークのみが認められ、本発明のチタン酸リチウムは均一な組成であることが分かる。一方、比較試料G、Hには酸化チタンの強いピークが認められた。
【0048】
評価7
実施例1〜5、6及び比較例1〜5で得られたチタン酸リチウム(試料A、E、F、G〜J)の電子顕微鏡写真を撮影した。塩素を含有する本発明の試料Aは球状で、表面に一次粒子が顕在しており、適度に空隙が形成された凝集状態であり、塩素を含有しない試料Jは同様の球状二次粒子であるものの、表面は一次粒子同士が融合したような、非常にち密な凝集状態であることが確認された。また、チタン酸化合物に替えてアナターゼ型酸化チタンを用いた試料Iは中空状粒子であることが判る。
【0049】
【発明の効果】
本発明のチタン酸リチウムは小粒子径の球状、板状、薄片状のものや、従来の大粒子径の球状二次粒子と比較してタップ密度が高く、そのためこのものを電極材料として組込んだリチウム電池において充填性に優れ、その結果、高い電池容量を有するリチウム電池が得られる。また、本発明の製造方法は、上記特徴を有するチタン酸リチウムを工業的、経済的に有利に製造する方法である。
【図面の簡単な説明】
【図1】実施例1により得られた試料AのX線回折チャートである。
【図2】実施例5により得られた試料EのX線回折チャートである。
【図3】実施例6により得られた試料FのX線回折チャートである。
【図4】比較例1により得られた試料GのX線回折チャートである。
【図5】比較例2により得られた試料HのX線回折チャートである。
【図6】実施例1により得られた試料Aの電子顕微鏡写真(5000倍)である。
【図7】実施例1により得られた試料Aの電子顕微鏡写真(10000倍)である。
【図8】実施例5により得られた試料Eの電子顕微鏡写真(5000倍)である。
【図9】実施例6により得られた試料Fの電子顕微鏡写真(5000倍)である。
【図10】比較例1により得られた試料Gの電子顕微鏡写真(1000倍)である。
【図11】比較例2により得られた試料Hの電子顕微鏡写真(5000倍)である。
【図12】比較例3により得られた試料Iの電子顕微鏡写真(5000倍)である。
【図13】比較例4により得られた試料Jの電子顕微鏡写真(5000倍)である。
【図14】比較例4により得られた試料Jの電子顕微鏡写真(10000倍)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to lithium titanate that is a compound useful as an electrode material of a lithium battery, a method for producing the same, and a lithium battery using the same.
[0002]
[Prior art]
Lithium secondary batteries are rapidly spreading in recent years because of their high voltage, excellent charge / discharge cycle characteristics, light weight, and small size. As the positive electrode active material for lithium batteries, composite oxides of transition metals such as lithium cobaltate and lithium manganate and lithium are mainly used, and carbon materials such as graphite are mainly used for the negative electrode. Of high electromotive force.
[0003]
However, in the future, it is expected that the circuit drive voltage will be lowered in electronic devices, and a high-performance secondary battery with a low voltage is required in this field. A lithium secondary battery using lithium titanate as an electrode active material is known. In addition, since lithium titanate shows almost no change in crystal structure accompanying charge / discharge, it is also expected as a battery material having excellent stability and safety.
[0004]
The electrode of the battery is made by a method in which an active material, a conductive material, a binder, etc. are mixed and then molded, and a method in which an active material, a conductive material, etc. are dispersed in a medium solution in which the binder is dissolved and then applied, etc. Even in this case, if the tap density of the active material is high, the battery capacity per unit volume of a battery using this as an electrode active material can be increased. In general, when the particle size of the powder is increased, the tap density is increased, so that a lithium titanate having a large particle size is required.
[0005]
Lithium titanate is a compound represented by the general formula Li x Ti Y O 4 , and typical examples include Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O. There are 4 etc. In order to obtain this lithium titanate, a method (Japanese Patent Laid-Open No. 6-275263) is known in which a mixture of titanium oxide and a lithium compound is heated and fired at a temperature of 700 to 1600 ° C. However, since the lithium titanate obtained by this method is a non-uniform sintered body obtained by sintering particles, there is a problem that the size and shape of the particles cannot be controlled. In addition, the reactivity between titanium oxide and lithium compound is poor, and in order to proceed the reaction, it is necessary to heat and calcinate for a long time at a high temperature. In some cases, it is necessary to repeat heating and calcination and pulverization. It was disadvantageous.
[0006]
Moreover, after producing lithium titanate hydrate in a liquid medium, it is calcined at 200 to 1300 ° C. to form lithium titanate (Japanese Patent Laid-Open Nos. 9-309727, 9-309728, and No. 10-310428) is also known. In this method, particles having a uniform composition and particle size can be obtained by heating and baking at low temperature for a short time, but the particle shape becomes plate-like or flake-like, and even if the particle size is increased by baking at a high temperature, it is spherical. It is difficult to become particles, and a high tap density as desired is not obtained. JP 2001-192208 A discloses a lithium secondary titanate of spherical secondary particles obtained by spray-drying a slurry containing anatase-type titanium oxide and a lithium compound, followed by heating and firing. The density cannot be obtained.
[0007]
[Problems to be solved by the invention]
The present invention overcomes the problems of the prior art described above and is suitable for a lithium battery having a large battery capacity per volume, that is, a large particle diameter and a high tap density, and a uniform particle diameter, particle shape and composition. The object is to provide lithium titanate. The present invention also provides a method for producing the lithium titanate advantageously industrially and economically.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the inventors of the present invention have made the lithium titanate secondary particles spherical or polyhedral and have an average particle diameter of 0.5 to 100 μm, which increases the tap density. If this material contains chlorine, excellent battery characteristics can be obtained when it is used as an electrode active material for a battery, and further, a slurry containing a titanate compound and a lithium compound is spray-dried and then heated and fired. In this method, the present inventors have found that lithium titanate having the above characteristics can be obtained by the presence of chlorine before heating and baking.
[0009]
That is, in the present invention, the secondary particles have a spherical or polyhedral shape, the average particle diameter of the secondary particles is in the range of 0.5 to 100 μm, and the range of 0.05 to 1% with chlorine as Cl. Lithium titanate, characterized in that it is contained in a lithium battery. Further, the present invention is a method for producing lithium titanate, characterized in that chlorine is present before heat firing in the method of spray-drying a slurry containing a titanate compound and a lithium compound and then heat firing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The lithium titanate of the present invention is obtained by agglomerating single lithium titanate particles into spherical or polyhedral shapes and forming secondary particles having an average particle diameter (median diameter by laser scattering method) of 0.5 to 100 μm. And containing 0.05 to 1% chlorine as Cl. The secondary particles of the present invention are in a state in which the primary particles are firmly bonded to each other, and are not aggregated or mechanically consolidated by interaction between particles such as van der Waals force. Since it is a spherical or polyhedral large particle, the tap density is higher than that of a conventional lithium titanate having a small particle diameter, or a plate or flake. Furthermore, since a specific amount of chlorine is contained, when this is used as an electrode active material of a lithium battery, a battery having a high energy density and a large capacity can be obtained. Although the action of chlorine is not well understood, it is presumed that in the process of generating secondary particles, the aggregation state of the primary particles is controlled and appropriate voids are formed between the primary particles. As a result, the surface of the lithium titanate becomes uneven, the contact area with the electrolyte increases, or the electrolyte penetrates into the secondary particles, and lithium ions are inserted into and removed from the interior of the secondary particles. It is thought that the battery capacity is increased due to easy separation. The composition is represented by the general formula LixTiyO 4 and is preferably a single phase of lithium titanate, but even if some titanium oxide is mixed within a range not impairing the effects of the present invention. Good. The values of X and Y in the general formula are values that represent a preferred composition in the range of 0.5 to 2 in terms of the value of X / Y. Even if the chlorine content is less than or above the above range, the desired effect cannot be obtained, and a range of 0.1 to 0.8% is more preferable.
[0011]
The shape of the individual primary particles constituting the secondary particles is not particularly limited, such as a spherical shape, a polyhedral shape, and a plate shape, and the average particle diameter is in the range of 0.01 to 2.0 μm according to electron microscopy. The composition is preferably a single phase of lithium titanate, similar to the secondary particles, and is represented by the general formula LixTiyO 4. The values of X and Y in the general formula are X / Expressed in terms of Y, a range of 0.5 to 2 is preferred.
[0012]
The shape of the secondary particles is advantageously a shape having as little anisotropy as possible in terms of battery characteristics, and the spherical shape is most preferable. If the average particle size of the secondary particle size is smaller than the above range, a desired effect cannot be obtained. A more preferable range is 1 to 100 μm, still more preferably 1 to 50, and particularly preferably 10 to 50 μm. If the secondary particles have a specific surface area in the range of 0.1 to 30 m 2 / g and a tap density in the range of 1.0 to 2.5 g / cm 3 , the filling property is excellent. preferable. In particular, those having a specific surface area in the range of 1 to 10 m 2 / g and a tap density in the range of 1.2 to 2.0 g / cm 3 have a high battery capacity and are more preferable. Usually, when the particle diameter of the powder is increased, the tap density is increased and the specific surface area is decreased. However, the lithium titanate of the present invention has such a large tap density and a relatively large specific surface area. It is presumed that the primary particles are aggregated in a state where moderate voids are formed.
[0013]
Further, the present invention is a method for producing lithium titanate, wherein the slurry containing the titanate compound and the lithium compound is spray-dried and then heated and fired, wherein chlorine is present before the heating and firing. . By this method, lithium titanate composed of spherical or polyhedral secondary particles and containing chlorine is obtained. In order to make chlorine exist before heating and firing, for example, (1) a titanic acid compound which is a starting material and / or a lithium compound previously containing chlorine is used, and (2) a slurry containing a titanic acid compound and a lithium compound There is no particular limitation, for example, a method of adding a chlorine-containing substance to (3) or (3) a method of mixing a chlorine-containing substance after spray drying. Although the reaction mechanism is not well understood, as described above, chlorine is considered to form a void between primary particles by controlling the aggregation of primary particles to a moderately coarse state in the process of forming secondary particles. As a result, the lithium titanate obtained by the method of the present invention is considered to increase the battery capacity. Chlorine is used in an amount of 0.05 to 1%, preferably 0.1 to 0.8%, as Cl in the resulting lithium titanate. In the method (1), the titanic acid compound may contain 0.05 to 1% chlorine as Cl. If the amount of chlorine to be used is less than 0.05%, desired secondary particles having moderate voids cannot be obtained. If the amount of chlorine is more than 1%, the reactivity between the titanate compound and the lithium compound is reduced, and a single phase is obtained. It is difficult to obtain lithium titanate.
[0014]
The metatitanic acid as the titanate compound represented by TiO (OH) 2 or TiO 2 · H 2 O in, Ti (OH) 4 or orthotitanate represented by TiO 2 · 2H 2 O or mixtures thereof, As the chlorine-containing substance, hydrochloric acid, ammonium chloride, lithium chloride, titanium chloride, chlorine gas, or the like can be used. There is no particular limitation on the lithium compound, but when slurrying using an aqueous medium, it is preferable to use a water-soluble lithium compound such as lithium hydroxide, lithium carbonate, lithium nitrate, lithium sulfate, etc. It is preferable to use lithium hydroxide. When titanium oxide having an anatase type or rutile type crystal structure is used as the titanium source, even if secondary particles having a large particle size are obtained, the tap density is not sufficiently increased. This is presumably because the shrinkage rate during spray drying is low and hollow secondary particles are easily generated. Moreover, since titanic acid compounds are highly reactive with lithium compounds and produce lithium titanate even when heated and fired at a relatively low temperature of 800 ° C. or lower, sintering between secondary particles can be prevented. In particular, it is thought that the reaction proceeds to some extent when the titanate compound and lithium hydroxide are mixed. Lithium hydroxide, which is a strong alkali, is unlikely to evaporate from the spray-dried granulated product, thus improving work environment and equipment corrosion. There is also an advantage of being able to do it. A titanic acid compound is obtained by hydrolysis of a titanium compound or by reacting a titanium compound and a basic compound in a liquid medium. For example, metatitanic acid is hydrolyzed by heating titanyl sulfate or neutralizing titanium chloride at a high temperature. In the hydrolysis, orthotitanic acid is obtained by neutralizing hydrolysis of titanium sulfate and titanium chloride at a low temperature, and a mixture of metatitanic acid and orthotitanic acid is obtained by appropriately controlling the neutralization hydrolysis temperature of titanium chloride. It is done. As the basic compound, if an ammonium compound such as ammonia, ammonium carbonate, ammonium sulfate, or ammonium nitrate is used, it can be decomposed and volatilized at the time of firing. As the titanium compound, in addition to the inorganic compounds such as titanium sulfate, titanyl sulfate, and titanium chloride, organic compounds such as titanium alkoxide can be used. When titanium chloride is used as the titanium compound, it is preferable because a titanic acid compound containing chlorine can be obtained by hydrolysis reaction or reaction with a basic compound.
[0015]
Next, the slurry containing the titanic acid compound and the lithium compound is spray-dried and granulated into desired large particles, that is, secondary particles of about 0.5 to 100 μm. The spray dryer used for spray drying can be appropriately selected according to the properties and processing capacity of the slurry, such as a disk type, a pressure nozzle type, and a two-fluid nozzle type. The control of the secondary particle size is, for example, by adjusting the number of rotations of the disk in the case of the above-mentioned disk type, and adjusting the spray pressure and the nozzle diameter in the case of a pressure nozzle type or a two-fluid nozzle type, etc. This can be done by controlling. Properties such as concentration and viscosity of the slurry to be used can be appropriately set according to the ability of the spray dryer. When the slurry is low in viscosity and difficult to granulate, or to make it easier to control the particle size, binders such as polyvinyl alcohol, methylcellulose and gelatin, and nonionic, anionic, amphoteric and nonionic surfactants Various additives may be used. These additives are desirable if they are organic and do not contain a metal component, because they are decomposed and volatilized in the subsequent heating and baking heat step. As the drying temperature, an inlet temperature of 200 to 450 ° C. and an outlet temperature of 80 to 120 ° C. are preferable.
[0016]
The granulated dried product thus obtained is heated and fired to produce lithium titanate. Although the heating and firing temperature varies depending on the composition of the granulated dried product, the firing atmosphere, etc., in the present invention, the granulated product is almost granulated to the desired particle size by spray drying, so that the titanate compound reacts with the lithium compound. The temperature may be approximately 600 ° C. or higher to become lithium titanate, and is preferably 1100 ° C. or lower in order to prevent sintering between secondary particles. A more preferable heating and baking temperature is 600 to 1000 ° C, and more preferably 600 to 800 ° C. If the obtained lithium titanate secondary particles are sintered and agglomerated after heating and firing, they may be pulverized using a flake crusher, a hammer mill, a pin mill or the like, if necessary.
[0017]
Next, the present invention is a lithium battery using the above lithium titanate as an electrode active material. An electrode for a lithium battery is obtained by adding a conductive material such as carbon black and a binder such as a fluororesin to the lithium titanate of the present invention, and appropriately molding or applying it. The lithium battery is composed of the electrode, the counter electrode, and the electrolytic solution. When lithium titanate is used for the positive electrode, metal lithium, lithium alloy, or a carbon-based material such as graphite or coke is used as the counter electrode. In addition, lithium-containing manganese oxide, lithium manganate, lithium cobaltate, lithium nickelate, vanadium pentoxide, or the like is used as a counter electrode when lithium titanate is used as the negative electrode. In the electrolytic solution, lithium salts such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 were dissolved in a solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane. Conventional materials such as those can be used.
[0018]
【Example】
Examples of the present invention are shown below, but these do not limit the present invention.
[0019]
Example 1
(1) Synthesis of titanic acid compound 2957 ml of an aqueous 9.14 mol / liter ammonia solution and 1537 ml of pure water were placed in a reaction vessel, and ice-cooled so that the temperature of the solution became 10 to 15 ° C. while stirring. Then, 4506 ml of a 1.25 mol / liter titanium tetrachloride aqueous solution was added over 2 hours, and then aged for 1 hour. The formed precipitate was filtered, washed with 2 liters of pure water, and titanate compound ( Orthotitanic acid) (sample a) was obtained. The titanic acid compound contained 0.12% chlorine.
[0020]
(2) 3.655 mol / liter of water in a slurry in which 150 g of the titanate compound is dispersed in 2.07 liters of pure water in terms of spray-dried TiO 2 of the slurry containing the titanate compound and the lithium compound. After adding 416 ml of the lithium oxide aqueous solution, spray drying was performed using a mobile minor type spray dryer (manufactured by Niro Co., Ltd.) under the conditions of an inlet temperature of 250 ° C. and an outlet temperature of 110 ° C. to obtain a granulated dried product.
[0021]
(3) Heat-firing of the granulated dry product The granulated dry product obtained was heat-treated in the atmosphere at 725 ° C. for 2 hours to obtain lithium titanate of the present invention. (Sample A)
[0022]
Example 2
In step (1) of Example 1, the reaction temperature of titanium tetrachloride and ammonia was set to 50 to 60 ° C. to obtain a titanic acid compound (mixture of orthotitanic acid and metatitanic acid: chlorine content 0.7%). The lithium titanate of the present invention was obtained in the same manner as Example 1 except for the above. (Sample B)
[0023]
Example 3
In the step (1) of Example 1, the reaction between titanium tetrachloride and ammonia was carried out in an autoclave, the reaction temperature was 130 ° C., and the reaction was carried out for 2 hours to obtain a titanic acid compound (metatitanic acid: chlorine content 0.38). %) Was obtained in the same manner as in Example 1 except that the lithium titanate of the present invention was obtained. (Sample C)
[0024]
Example 4
(1) Synthesis of titanic acid compound A solution prepared by dissolving 965 g of lithium hydroxide monohydrate in pure water to make 4495 ml was placed in a reaction vessel so that the temperature of the solution was 50-60 ° C. while stirring. Then, 4506 ml of a 1.25 mol / liter titanium tetrachloride aqueous solution was added over 2 hours, then aged for 1 hour, the formed precipitate was filtered, washed with 2 liters of pure water, and washed with titanate compound (ortho A mixture of titanic acid and metatitanic acid) was obtained. The titanic acid compound contained 0.35% chlorine.
[0025]
(2) 3.655 mol / liter of water in a slurry in which 150 g of the titanate compound is dispersed in 2.07 liters of pure water in terms of spray-dried TiO 2 of the slurry containing the titanate compound and the lithium compound. After adding 257 ml of an aqueous lithium oxide solution, a granulated dry product was obtained in the same manner as in Step (2) of Example 1.
[0026]
(3) Heating and baking granulated dried product The obtained granulated dried product was heat-treated in air at 700 ° C. for 2 hours to obtain lithium titanate of the present invention. (Sample D)
[0027]
Example 5
(1) Synthesis of titanic acid compound A titanic acid compound (ortho titanic acid) was obtained in the same manner as in Example 1 except that washing was performed using 10 liters of pure water in the step (1) of Example 1. The titanic acid compound contained 0.01% chlorine.
[0028]
(2) Spray drying of slurry containing titanate compound and lithium compound In step (2) of Example 1, the above-mentioned titanate compound was used, and 9.4 ml of 2 mol / liter hydrochloric acid was added to the slurry. Except for the above, a granulated dry product was obtained in the same manner as in Example 1.
[0029]
(3) Heat-firing of the granulated dry product The granulated dry product obtained was heat-treated in the atmosphere at 725 ° C. for 2 hours to obtain lithium titanate of the present invention. (Sample E)
[0030]
Example 6
(1) Spray drying of slurry containing titanic acid compound and lithium compound A granulated dried product was obtained in the same manner as in Example 1 except that the titanic acid compound prepared in Step (1) of Example 5 was used.
[0031]
(2) Heating and baking of granulated dried product After 0.96 g of ammonium chloride was mixed with 100 g of the obtained granulated dried product, heat treatment was performed in the atmosphere at 725 ° C. for 2 hours to obtain the lithium titanate of the present invention. It was. (Sample F)
[0032]
Comparative Example 1
20 g of titanic acid compound (sample a) in terms of TiO 2 and 4.98 g of lithium hydroxide monohydrate were mixed for 10 minutes using an automatic mortar and heat-treated at 725 ° C. for 2 hours in the atmosphere. A comparative sample lithium titanate was obtained by grinding with a mill. (Sample G)
[0033]
Comparative Example 2
20g of anatase-type titanium oxide and 8.72g of lithium hydroxide monohydrate were mixed for 10 minutes using an automatic mortar, heated and baked at 800 ° C for 2 hours in the atmosphere, and then pulverized by a sample mill. A sample lithium titanate was obtained. (Sample H)
[0034]
Comparative Example 3
Granulation in the same manner as in Example 1 except that Step (1) in Example 1 was not performed, and anatase-type titanium oxide (chlorine content: 0.01%) was used in Step (2) instead of the titanate compound. The dried product was adjusted and heated and fired to obtain a comparative sample lithium titanate. (Sample I)
[0035]
Comparative Example 4
Lithium titanate was obtained in the same manner as in Example 6 except that ammonium chloride was not mixed in Step (3) of Example 6. (Sample J)
[0036]
Evaluation 1
The aqueous slurry of lithium titanate (samples A to J) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was sufficiently ultrasonically dispersed and prepared so that the transmittance by laser light was 85 ± 1%. After that, the average particle diameter was measured as a median diameter on a volume basis using a laser diffraction / scattering particle size distribution measuring device (LA-910: manufactured by Horiba Seisakusho).
[0037]
Evaluation 2
50 g of each of the lithium titanates (samples A to J) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were put into a 100 ml measuring cylinder and tapped 100 times to measure the tap density.
[0038]
Evaluation 3
The specific surface areas of the lithium titanates (samples A to J) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were measured by the BET method using a specific surface area measuring device (Monosorb: manufactured by Uasia Cionics). .
[0039]
Evaluation 4
The chlorine content of the lithium titanates (samples A to J) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was measured using a fluorescent X-ray analyzer (RIX3000: manufactured by Rigaku Corporation).
[0040]
Evaluation 5
The charge / discharge characteristics of the lithium secondary batteries were evaluated when the lithium titanates (samples A to J) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were used as electrode active materials. The battery was a coin-type cell. The battery configuration and measurement conditions will be described.
[0041]
Each of the above samples, graphite powder as a conductive agent, and polytetrafluoroethylene resin as a binder are mixed at a weight ratio of 70: 24: 6, kneaded in a mortar, molded into a circle with a diameter of 10 mm, and pellets It was in the shape. The weight of the pellet was 20 mg. A metal titanium mesh cut out to a diameter of 10 mm was superposed on this pellet and pressed at 14.7 MPa to obtain a working electrode.
[0042]
This working electrode was vacuum-dried at 120 ° C. for 4 hours, and then incorporated in a sealable coin-type evaluation cell in a glove box having a dew point of −70 ° C. or lower. The evaluation cell used was made of stainless steel (SUS316) and had an outer diameter of 20 mm and a height of 1.6 mm. As the counter electrode, a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 14 mm was used. As the non-aqueous electrolyte, a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.
[0043]
The working electrode was placed in the lower can of the evaluation cell, a porous polypropylene film was placed thereon as a separator, and 7 drops of nonaqueous electrolyte were dropped from above with a dropoid. Further, a negative electrode was placed thereon, and an upper can with a propylene gasket was placed thereon, and the outer peripheral edge was caulked and sealed. In order to adjust the thickness, a non-woven fabric made of polypropylene subjected to hydrophilic treatment was placed on the separator as necessary.
[0044]
The charge / discharge test was performed at a constant current with the voltage range set to 1 V to 2 V, and the charge and discharge currents both set to 0.21 mA (about 1 cycle / day).
[0045]
Table 1 shows the particle shape, median diameter, tap density, specific surface area, chlorine content, and discharge capacity of Samples A to J. It can be seen that the lithium titanate of the present invention has excellent filling properties and high discharge capacity.
[0046]
[Table 1]
Figure 0003894778
[0047]
Evaluation 6
Powder X-ray diffraction (X-ray: CuKα) of the lithium titanate (samples A, E, F, G, and H) obtained in Examples 1, 5, and 6 and Comparative Examples 1 and 2 was measured. The results are shown in FIGS. In samples A, E, and F, only a diffraction peak derived from lithium titanate is recognized, and it can be seen that the lithium titanate of the present invention has a uniform composition. On the other hand, strong peaks of titanium oxide were observed in comparative samples G and H.
[0048]
Evaluation 7
Electron micrographs of the lithium titanates (samples A, E, F, G to J) obtained in Examples 1 to 5 and 6 and Comparative Examples 1 to 5 were taken. Sample A of the present invention containing chlorine is spherical, has primary particles appearing on the surface, is in an agglomerated state with moderate voids formed, and sample J not containing chlorine is similar spherical secondary particles. However, it was confirmed that the surface was in a very dense aggregated state in which primary particles were fused together. Moreover, it turns out that the sample I which changed to the titanic acid compound and used the anatase type titanium oxide is a hollow particle.
[0049]
【The invention's effect】
The lithium titanate of the present invention has a tap density higher than that of small particles of spherical, plate-like, flakes, or conventional spherical secondary particles of large particles, so that this is incorporated as an electrode material. However, the lithium battery has excellent filling properties, and as a result, a lithium battery having a high battery capacity can be obtained. Moreover, the production method of the present invention is a method for producing lithium titanate having the above-mentioned characteristics in an industrially and economically advantageous manner.
[Brief description of the drawings]
1 is an X-ray diffraction chart of Sample A obtained in Example 1. FIG.
2 is an X-ray diffraction chart of Sample E obtained in Example 5. FIG.
3 is an X-ray diffraction chart of Sample F obtained in Example 6. FIG.
4 is an X-ray diffraction chart of Sample G obtained in Comparative Example 1. FIG.
5 is an X-ray diffraction chart of Sample H obtained in Comparative Example 2. FIG.
6 is an electron micrograph (5000 magnifications) of Sample A obtained in Example 1. FIG.
7 is an electron micrograph (10,000 ×) of Sample A obtained in Example 1. FIG.
8 is an electron micrograph (5000 magnifications) of Sample E obtained in Example 5. FIG.
9 is an electron micrograph (5000 magnifications) of Sample F obtained in Example 6. FIG.
10 is an electron micrograph (1000 ×) of Sample G obtained in Comparative Example 1. FIG.
11 is an electron micrograph (x5000) of Sample H obtained in Comparative Example 2. FIG.
12 is an electron micrograph (x5000) of Sample I obtained in Comparative Example 3. FIG.
13 is an electron micrograph (5000 magnifications) of Sample J obtained in Comparative Example 4. FIG.
14 is an electron micrograph (10000 × magnification) of Sample J obtained in Comparative Example 4. FIG.

Claims (3)

二次粒子が球状あるいは多面体状の形状を有し、且つ二次粒子の平均粒子径が0.5〜100μmの範囲にあり、塩素をClとして0.05〜1%の範囲で含有することを特徴とするチタン酸リチウム。The secondary particles have a spherical or polyhedral shape, the average particle diameter of the secondary particles is in the range of 0.5 to 100 μm, and chlorine is contained in the range of 0.05 to 1% as Cl. Features lithium titanate. 0.1〜30m2/gの範囲の比表面積、1.0〜2.5g/cm3の範囲のタップ密度を有することを特徴とする請求項1記載のチタン酸リチウム。2. The lithium titanate according to claim 1, having a specific surface area in the range of 0.1 to 30 m 2 / g and a tap density in the range of 1.0 to 2.5 g / cm 3 . 請求項1記載のチタン酸リチウムを電極活物質として用いることを特徴とするリチウム電池。A lithium battery using the lithium titanate according to claim 1 as an electrode active material.
JP2001353688A 2000-11-20 2001-11-19 Lithium titanate and lithium battery using the same Expired - Fee Related JP3894778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353688A JP3894778B2 (en) 2000-11-20 2001-11-19 Lithium titanate and lithium battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-352154 2000-11-20
JP2000352154 2000-11-20
JP2001353688A JP3894778B2 (en) 2000-11-20 2001-11-19 Lithium titanate and lithium battery using the same

Publications (2)

Publication Number Publication Date
JP2002211925A JP2002211925A (en) 2002-07-31
JP3894778B2 true JP3894778B2 (en) 2007-03-22

Family

ID=26604255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353688A Expired - Fee Related JP3894778B2 (en) 2000-11-20 2001-11-19 Lithium titanate and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP3894778B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872156B2 (en) * 2001-02-14 2012-02-08 三菱化学株式会社 Slurry, method for producing lithium transition metal composite oxide, and lithium secondary battery
JP4668539B2 (en) * 2004-02-25 2011-04-13 石原産業株式会社 Method for producing lithium titanate and method for producing lithium battery
JP4597546B2 (en) * 2004-02-25 2010-12-15 石原産業株式会社 Method for producing lithium titanate and method for producing lithium battery
FR2874603B1 (en) * 2004-08-31 2006-11-17 Commissariat Energie Atomique MIXED TITANIUM AND DENSE LITHIUM MIXED OXIDE POWDER COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ELECTRODE COMPRISING SUCH COMPOUND
JP2006202552A (en) * 2005-01-19 2006-08-03 Sii Micro Parts Ltd Lithium cell and its manufacturing method
JP2007227072A (en) * 2006-02-22 2007-09-06 Sii Micro Parts Ltd Electrochemical cell
US7820137B2 (en) 2006-08-04 2010-10-26 Enerdel, Inc. Lithium titanate and method of forming the same
KR101045416B1 (en) 2006-09-12 2011-06-30 주식회사 엘지화학 Lithium titanate powder, preparation method thereof, electrode and secondary battery comprising the same
JP5400607B2 (en) * 2007-03-16 2014-01-29 石原産業株式会社 Electrode active material and lithium battery using the same
WO2008123558A1 (en) * 2007-03-29 2008-10-16 Toho Titanium Co., Ltd. Method for production of alkali titanate, method for production of hollow powder of alkali titanate, alkali titanate and hollow powder thereof produced by the methods, and friction material comprising the alkali titanate or the hollow powder thereof
JP5354148B2 (en) * 2008-04-04 2013-11-27 独立行政法人日本原子力研究開発機構 Method for producing powder for producing lithium granule
KR101829177B1 (en) * 2009-05-26 2018-02-13 이시하라 산교 가부시끼가이샤 Lithium titanate, process for production of same, and electrode active material and electricity storage device each comprising same
KR20130080019A (en) * 2010-05-21 2013-07-11 이 아이 듀폰 디 네모아 앤드 캄파니 Process for making titanium compounds
KR20120017991A (en) * 2010-08-20 2012-02-29 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP5270634B2 (en) * 2010-10-19 2013-08-21 石原産業株式会社 Method for producing lithium titanate and method for producing lithium battery
TWI441779B (en) * 2010-12-20 2014-06-21 Ind Tech Res Inst Material of phosphorus-doped lithium titanium oxide with spinel structure and method of manufacturing the same
KR101548117B1 (en) 2012-04-18 2015-08-28 주식회사 엘지화학 Electrode Active Material of High Rate Capability and Lithium Secondary Battery Comprising The Same
JP6167491B2 (en) * 2012-09-11 2017-07-26 堺化学工業株式会社 Titanium dioxide composition and method for producing the same, and lithium titanate
CN103840146A (en) * 2012-11-27 2014-06-04 西安物华新能源科技有限公司 Preparation method of high-tap-density lithium titanate material
KR20160014636A (en) * 2013-06-04 2016-02-11 이시하라 산교 가부시끼가이샤 Lithium titanate, production method for same, and electrical storage device employing same
JP6523629B2 (en) * 2014-08-06 2019-06-05 Fdk株式会社 Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
US20160181604A1 (en) * 2014-09-12 2016-06-23 Johnson Controls Technology Company Systems and methods for lithium titanate oxide (lto) anode electrodes for lithium ion battery cells
US20160181603A1 (en) * 2014-09-12 2016-06-23 Johnson Controls Technology Company Systems and methods for lithium titanate oxide (lto) anode electrodes for lithium ion battery cells

Also Published As

Publication number Publication date
JP2002211925A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP3894778B2 (en) Lithium titanate and lithium battery using the same
JP5612856B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5612857B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5726074B2 (en) Lithium titanate, method for producing the same, electrode active material using the same, and electricity storage device
JP5400607B2 (en) Electrode active material and lithium battery using the same
JP4668539B2 (en) Method for producing lithium titanate and method for producing lithium battery
US9966599B2 (en) Process for manufacturing lithium titanium oxides
WO2012002122A1 (en) Method for producing porous lithium titanate, porous lithium titanate and lithium battery using same
JP6434555B2 (en) Negative electrode active material composite for lithium ion secondary battery and method for producing the same
JP5990512B2 (en) Titanium raw material for producing lithium titanate and method for producing lithium titanate using such raw material
JP5594663B2 (en) Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material
JP4597546B2 (en) Method for producing lithium titanate and method for producing lithium battery
WO2020153409A1 (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using titanium oxide-containing electrode active material
JP5270634B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5632794B2 (en) Lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
JP2003054952A (en) Method of producing lithium-manganese complex oxide and lithium battery obtained by using the lithium- manganese complex oxide
JP2016150868A (en) Lithium titanate, production method thereof, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R151 Written notification of patent or utility model registration

Ref document number: 3894778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees