JP2011025473A - White film for light reflecting plate - Google Patents

White film for light reflecting plate Download PDF

Info

Publication number
JP2011025473A
JP2011025473A JP2009172160A JP2009172160A JP2011025473A JP 2011025473 A JP2011025473 A JP 2011025473A JP 2009172160 A JP2009172160 A JP 2009172160A JP 2009172160 A JP2009172160 A JP 2009172160A JP 2011025473 A JP2011025473 A JP 2011025473A
Authority
JP
Japan
Prior art keywords
film
layer
thickness
support layer
isophthalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009172160A
Other languages
Japanese (ja)
Other versions
JP5319435B2 (en
Inventor
Shinya Togano
真也 栂野
Hiroshi Kusume
博 楠目
Koji Kubo
耕司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2009172160A priority Critical patent/JP5319435B2/en
Publication of JP2011025473A publication Critical patent/JP2011025473A/en
Application granted granted Critical
Publication of JP5319435B2 publication Critical patent/JP5319435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white film for a light reflecting plate capable of obtaining high luminance by effectively generating a void of a high void layer by adjusting a plane orientation of a white reflecting film. <P>SOLUTION: The white film for the light reflecting plate is a white film comprising a support layer provided on the high void layer and the both surfaces thereof, wherein the high void layer comprises 52-60 wt.% of a void forming material and 48-40 wt.% of isophthalic acid copolymerized polyethylene terephthalate, which has a thickness of 80-95% with respect to 100% of film whole thickness, wherein a support layer comprises 0.1-10 wt.% of inert particles and 99.9-90 wt.% of the isophthalic acid copolymerized polyethylene terephthalate, which has a thickness of 20-5% with respect to 100% of a film whole thickness, wherein an isophthalic acid component contained in the isophthalic acid copolymerized polyethylene terephthalate of the support layer is 0.1-2.9 mol%, the plane orientation coefficient (Ns) of the support layer is 0.110-0.150, and the total thickness of the film is 175-300 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光源の反射板として用いられる光反射板用白色フィルムに関する。   The present invention relates to a white film for a light reflector used as a reflector for a light source.

液晶表示装置のバックライトユニットには、表示装置の背面に光源を置くバックライト方式と、側面に光源を置くサイドライト方式があり、いずれの方式においても光源からの光が画面の背面へ逃げるのを防ぐために背面に反射板が設置される。この反射板には、高い反射率を備えることが要求される。この反射板として、フィルムの内部に微細な気泡を含有するポリエステルの白色フィルムが用いられている。   The backlight unit of a liquid crystal display device has a backlight method in which a light source is placed on the back surface of the display device and a sidelight method in which a light source is placed on the side surface. In either method, light from the light source escapes to the back surface of the screen. In order to prevent this, a reflector is installed on the back. This reflector is required to have a high reflectance. A polyester white film containing fine bubbles inside the film is used as the reflector.

特開昭63−62104号公報JP 63-62104 A 特公平8−16175号公報Japanese Patent Publication No. 8-16175 特開2000−37835号公報JP 2000-37835 A 特開2005―125700号公報JP 2005-125700 A 特開2004−50479号公報JP 2004-50479 A

このポリエステルの白色フィルムを高い生産性で生産するためには、ポリマーペレットとポリマー中に無機粒子を高い濃度で含有するマスターペレットとを混合して適切な粒子濃度に調整して用いるが、無機粒子を高い濃度で含有するマスターペレット中で無機粒子を適切に分散させるためにはポリマーとして共重合ポリエステルを用いることが好ましい。   In order to produce this polyester white film with high productivity, polymer pellets and master pellets containing a high concentration of inorganic particles in the polymer are mixed and used to adjust to an appropriate particle concentration. In order to disperse inorganic particles appropriately in a master pellet containing a high concentration, it is preferable to use a copolyester as a polymer.

高い反射率を得るためには、フィルム中に多数の微細なボイドを形成すればよく、このためには十分な延伸応力がボイドを形成される層に掛かることが必要であるが、支持層の共重合ポリエステルが共重合成分をある程度以上の比率で含有すると、ボイドを形成される層にかかる延伸応力を高くすることができず、所望の反射率を得ることができない。   In order to obtain a high reflectance, a large number of fine voids may be formed in the film. For this purpose, it is necessary to apply sufficient stretching stress to the layer where the void is formed. If the copolymerized polyester contains a copolymerization component at a certain ratio or more, the stretching stress applied to the layer in which the void is formed cannot be increased, and a desired reflectance cannot be obtained.

本発明は、かかる従来技術の問題点を解決することを目的になされたものである。本発明は、フィルムの製造にあたり、ポリマーペレットとポリマー中に無機粒子を高い濃度で含有するマスターペレットとを混合して適切な粒子濃度に調整することのできるマスターバッチ法で原料組成物を供給して製造することのできるフィルムありながら、実用上十分な可視光領域の反射性能を備え、延伸性の良好な光反射板用白色フィルムを提供することを目的とする。   The present invention has been made to solve the problems of the prior art. In the production of a film, the present invention supplies a raw material composition by a master batch method in which polymer pellets and master pellets containing a high concentration of inorganic particles in the polymer are mixed to adjust the particle concentration to an appropriate level. An object of the present invention is to provide a white film for a light reflection plate having a practically sufficient reflection performance in the visible light region and having a good stretchability.

すなわち本発明は、高ボイド層およびその両面に設けられた支持層からなる白色フィルムであり、高ボイド層がボイド形成物質52〜60重量%およびイソフタル酸共重合ポリエチレンテレフタレート48〜40重量%からなり、フィルム全体厚み100%に対して80〜95%の厚みを有し、支持層が不活性粒子0.1〜10重量%およびイソフタル酸共重合ポリエチレンテレフタレート99.9〜90重量%からなり、フィルム全体厚み100%に対して20〜5%の厚みを有し、支持層のイソフタル酸共重合ポリエチレンテレフタレートに含まれるイソフタル酸成分が0.1〜2.9モル%であり、支持層の面配向係数(Ns)が0.110〜0.150であり、フィルムの総厚みが175〜300μmであることを特徴とする光反射板用白色フィルムである。   That is, the present invention is a white film comprising a high void layer and a support layer provided on both sides thereof, the high void layer comprising 52 to 60% by weight of a void-forming substance and 48 to 40% by weight of isophthalic acid copolymerized polyethylene terephthalate. The film has a thickness of 80 to 95% with respect to 100% of the total film thickness, and the support layer comprises 0.1 to 10% by weight of inert particles and 99.9 to 90% by weight of isophthalic acid copolymerized polyethylene terephthalate. It has a thickness of 20 to 5% with respect to the total thickness of 100%, and the isophthalic acid component contained in the isophthalic acid copolymerized polyethylene terephthalate of the support layer is 0.1 to 2.9 mol%, and the plane orientation of the support layer The coefficient of light (Ns) is 0.110 to 0.150, and the total thickness of the film is 175 to 300 μm. Use a white film.

本発明によれば、フィルムの製造にあたり、ポリマーペレットとポリマー中に無機粒子を高い濃度で含有するマスターペレットとを混合して適切な粒子濃度に調整することのできるマスターバッチ法で原料組成物を供給して製造することのできるフィルムありながら、実用上十分な可視光領域の反射性能を備え、延伸性の良好な光反射板用白色フィルムを提供することができる。   According to the present invention, in the production of a film, a raw material composition is prepared by a master batch method in which polymer pellets and master pellets containing inorganic particles in a polymer at a high concentration are mixed and adjusted to an appropriate particle concentration. Although there is a film that can be supplied and manufactured, it is possible to provide a white film for a light reflecting plate that has practically sufficient visible light region reflection performance and good stretchability.

以下、本発明を詳細に説明する。
本発明の光反射版用白色フィルムは、高ボイド層およびその両面に設けられた支持層からなる。
Hereinafter, the present invention will be described in detail.
The white film for light reflecting plates of the present invention comprises a high void layer and support layers provided on both sides thereof.

[高ボイド層]
高ボイド層はポリエステル組成物からなり、このポリエステル組成物は、ボイド形成物質52〜60重量%およびイソフタル酸共重合ポリエチレンテレフタレート48〜40重量%からなる。
[High void layer]
The high void layer comprises a polyester composition, which comprises 52 to 60% by weight void forming material and 48 to 40% by weight isophthalic acid copolymerized polyethylene terephthalate.

高ボイド層のポリエステル組成物のボイド形成物質が52重量%未満であると十分な反射率および輝度を得ることができない。60重量%を超えると安定した製膜ができない。
高ボイド層は、フィルム全体厚み100%に対して80〜95%の厚み割合である。高ボイド層の厚み割合が95%を超えると安定した製膜ができず、80%未満であると十分な反射率と輝度を得ることができない。
When the void forming substance of the polyester composition of the high void layer is less than 52% by weight, sufficient reflectance and luminance cannot be obtained. If it exceeds 60% by weight, stable film formation cannot be achieved.
The high void layer has a thickness ratio of 80 to 95% with respect to 100% of the total film thickness. If the thickness ratio of the high void layer exceeds 95%, stable film formation cannot be achieved, and if it is less than 80%, sufficient reflectance and luminance cannot be obtained.

本発明の光反射板用白色フィルムでは、延伸時に、高ボイド層のボイド形成物質と共重合ポリエチレンテレフタレートとの界面で剥離が起こり、高ボイド層に多数の微細なボイドが形成される。高ボイド層のボイド体積率は、好ましくは30〜80%、さらに好ましくは35〜75%、特に好ましくは40〜70%である。この範囲であれば高い反射率を備えながら強度を維持した高ボイド層を得ることができる。   In the white film for a light reflecting plate of the present invention, peeling occurs at the interface between the void forming substance of the high void layer and the copolymerized polyethylene terephthalate during stretching, and a large number of fine voids are formed in the high void layer. The void volume ratio of the high void layer is preferably 30 to 80%, more preferably 35 to 75%, and particularly preferably 40 to 70%. Within this range, it is possible to obtain a high void layer having high reflectivity and maintaining strength.

[ボイド形成物質]
高ボイド層のボイド形成物質としては、無機粒子、有機粒子のいずれも用いることができる。無機粒子としては、硫酸バリウム、炭酸カルシウム、二酸化珪素、酸化チタンの粒子を例示することができる。有機粒子としては、シリコーン、アクリルの粒子を例示することができる。ボイド形成物質は、単独で用いてもよく、2種以上を併用してもよい。
[Void-forming substance]
As the void forming substance of the high void layer, either inorganic particles or organic particles can be used. Examples of the inorganic particles include barium sulfate, calcium carbonate, silicon dioxide, and titanium oxide particles. Examples of the organic particles include silicone and acrylic particles. Void forming substances may be used alone or in combination of two or more.

高い反射性や耐熱性を得ることができることから、ボイド形成物質としては、無機粒子を用いることが好ましく、なかでもポリエステルポリマー中に安定して分散させることができ、製膜性がよく、かつ良好な反射率を得ることができることから、硫酸バリウム粒子が特に好ましい。   Since it is possible to obtain high reflectivity and heat resistance, it is preferable to use inorganic particles as the void-forming substance, and among them, it can be stably dispersed in the polyester polymer, and the film forming property is good and good. Barium sulfate particles are particularly preferred because a high reflectance can be obtained.

[高ボイド層のイソフタル酸共重合ポリエチレンテレフタレート]
高ボイド層のイソフタル酸共重合ポリエチレンテレフタレートにおけるイソフタル酸共重合量は、好ましくは6〜18モル%、さらに好ましくは8〜16モル%である。この範囲の共重合量であることで、良好な製膜性で高い反射率のフィルムを得ることができる。
[High-void layer isophthalic acid copolymerized polyethylene terephthalate]
The amount of isophthalic acid copolymerization in the high void layer isophthalic acid copolymerized polyethylene terephthalate is preferably 6 to 18 mol%, more preferably 8 to 16 mol%. When the amount of copolymerization is within this range, a film having good film forming properties and high reflectance can be obtained.

[支持層]
支持層はポリエステル組成物からなり、このポリエステル組成物は、不活性粒子0.1〜10重量%およびイソフタル酸共重合ポリエチレンテレフタレート99.9〜90重量%のポリエステル組成物からなる。支持層のポリエステル組成物の不活性粒子が0.1重量%未満であると十分な滑り性を得ることができず、またエッジライト型のバックライトユニットに組み込んだ場合に導光板との貼り付きが生じる。10重量%を超えると高ボイド層を支える支持層としての強度を保つことができず、フィルムの破断に繋がる。
[Support layer]
The support layer comprises a polyester composition, which comprises 0.1 to 10% by weight of inert particles and 99.9 to 90% by weight of isophthalic acid copolymerized polyethylene terephthalate. If the inert particles of the polyester composition of the support layer are less than 0.1% by weight, sufficient slipperiness cannot be obtained, and when it is incorporated into an edge light type backlight unit, it adheres to the light guide plate. Occurs. If it exceeds 10% by weight, the strength as a support layer for supporting the high void layer cannot be maintained, which leads to breakage of the film.

[不活性粒子]
支持層の不活性粒子の平均粒径は、好ましくは0.1〜5μm、さらに好ましくは0.5〜3μm、特に好ましくは0.6〜2μmである。0.1μm未満であると粒子の凝集が生じ易く好ましくなく、5μmを超えると粗大突起となりフィルム破断に繋がることがあり好ましくない。
[Inert particles]
The average particle diameter of the inert particles in the support layer is preferably 0.1 to 5 μm, more preferably 0.5 to 3 μm, and particularly preferably 0.6 to 2 μm. If the thickness is less than 0.1 μm, the particles are likely to be aggregated, and if it exceeds 5 μm, coarse protrusions are formed and the film may be broken.

支持層の不活性粒子としては、無機物質の粒子を用いることができ、例えば、酸化アルミニウム、硫酸バリウム、炭酸カルシウム、二酸化珪素、酸化チタンの粒子を例示することができる。不活性粒子の平均粒径は、例えば0.3〜3μmである。
支持層の不活性粒子は、高ボイド層のボイド形成物質として用いることのできる無機粒子と同じ材質であってもよく、同じ平均粒径であってもよい。
As the inert particles of the support layer, particles of an inorganic substance can be used. For example, particles of aluminum oxide, barium sulfate, calcium carbonate, silicon dioxide, and titanium oxide can be exemplified. The average particle diameter of the inert particles is, for example, 0.3 to 3 μm.
The inert particles of the support layer may be the same material as the inorganic particles that can be used as the void-forming substance of the high void layer, or may have the same average particle size.

[支持層のイソフタル酸共重合ポリエチレンテレフタレート]
支持層のイソフタル酸共重合ポリエチレンテレフタレートに含まれるイソフタル酸成分は0.1〜2.9モル%、好ましくは0.1〜2.5モル%である。0.1モル%未満であると無機粒子の分散性が悪化する。2.9モル%を超えると寸法安定性が不足し、また高ボイド層に十分なボイドを形成させるのに必要な延伸応力が掛からず、十分な反射率が得られない。
[Support layer isophthalic acid copolymer polyethylene terephthalate]
The isophthalic acid component contained in the isophthalic acid copolymerized polyethylene terephthalate of the support layer is 0.1 to 2.9 mol%, preferably 0.1 to 2.5 mol%. If it is less than 0.1 mol%, the dispersibility of the inorganic particles is deteriorated. If it exceeds 2.9 mol%, the dimensional stability is insufficient, and the stretching stress necessary to form a sufficient void in the high void layer is not applied, and sufficient reflectivity cannot be obtained.

[支持層の面配向係数]
支持層の面配向係数(Ns)は0.110〜0.150、好ましくは0.115〜0.145の範囲である。0.110未満であると十分な延伸応力が掛からずに所望の反射率が得られず、0.150を超えると安定した製膜性が得られない。
支持層の面配向係数は下記式で表わされる。
ns=(nMD+nTD)/2−nZ
[Surface orientation coefficient of support layer]
The plane orientation coefficient (Ns) of the support layer is in the range of 0.110 to 0.150, preferably 0.115 to 0.145. If it is less than 0.110, sufficient stretching stress is not applied and a desired reflectance cannot be obtained, and if it exceeds 0.150, stable film-forming properties cannot be obtained.
The plane orientation coefficient of the support layer is represented by the following formula.
ns = (nMD + nTD) / 2-nZ

[厚み]
本発明の光反射板用白色フィルムの総厚みは175〜300μm、好ましくは180〜280μmである。175μm未満であると反射率が低下する。300μmを超えるとこれ以上厚くしても反射率の上昇が望めず、また安定した製膜性が得られない。
[Thickness]
The total thickness of the white film for a light reflecting plate of the present invention is 175 to 300 μm, preferably 180 to 280 μm. If it is less than 175 μm, the reflectivity is lowered. If the thickness exceeds 300 μm, an increase in reflectance cannot be expected even if the thickness is increased beyond this, and stable film-forming properties cannot be obtained.

高ボイド層の厚み割合は、高ボイド層および支持層の合計厚み100%に対して80〜95%、好ましくは82〜93%である。そして、支持層の厚み割合は、高ボイド層および支持層の合計厚み100%に対して5〜20%、好ましくは7〜18%である。高ボイド層および支持層の厚みがこの範囲の厚みであると良好な反射率と製膜時の良好な延伸性を得ることができる。なお、支持の厚みは、支持層の厚みの合計厚みである。   The thickness ratio of the high void layer is 80 to 95%, preferably 82 to 93% with respect to 100% of the total thickness of the high void layer and the support layer. And the thickness ratio of a support layer is 5 to 20% with respect to 100% of the total thickness of a high void layer and a support layer, Preferably it is 7 to 18%. When the thickness of the high void layer and the support layer is within this range, good reflectance and good stretchability during film formation can be obtained. The support thickness is the total thickness of the support layers.

[平均反射率]
本発明の光反射板用白色フィルムは、少なくとも一方の表面の反射率が、波長400〜700nmの平均反射率で98.6%以上、さらに好ましくは98.7%以上である。反射率が98.6%未満であるとバックライトユニットに組み込んだときに十分な輝度を得ることができない。
[Average reflectance]
In the white film for a light reflecting plate of the present invention, the reflectance of at least one surface is 98.6% or more, more preferably 98.7% or more, with an average reflectance of a wavelength of 400 to 700 nm. When the reflectance is less than 98.6%, sufficient luminance cannot be obtained when the backlight unit is incorporated.

[熱収縮率]
本発明の光反射板用白色フィルムは、85℃の熱収縮率が、直交する2方向ともに、好ましくは0.5%以下、さらに好ましくは0.4%以下、最も好ましくは0.3%以下である。この範囲の熱収縮率であることで、バックライトユニットに反射板として用いたときに光源の熱で変形することのない、高い耐熱性を備える光反射板用白色フィルムを得ることができる。
[Heat shrinkage]
The white film for light reflectors of the present invention has a heat shrinkage rate of 85 ° C. in both orthogonal directions, preferably 0.5% or less, more preferably 0.4% or less, and most preferably 0.3% or less. It is. When the heat shrinkage rate is in this range, a white film for a light reflector having high heat resistance that is not deformed by the heat of the light source when used as a reflector in a backlight unit can be obtained.

[製造方法]
以下、本発明の光反射板用白色フィルムを製造する方法の一例を説明する。なお、ガラス転移温度をTg、融点をTmと略することがある。
高ボイド層に用いるボイド形成物質の粒子を含有するポリエステル組成物を得るためには、粒子を多量添加したマスターペレットを製造し、これらと、粒子を含有しないか少量含有するポリエステルのペレットとを混練して、所定量を含有させる方法を用いることができる。
[Production method]
Hereinafter, an example of the method for producing the white film for a light reflecting plate of the present invention will be described. The glass transition temperature may be abbreviated as Tg and the melting point may be abbreviated as Tm.
In order to obtain a polyester composition containing void-forming substance particles used in the high void layer, master pellets containing a large amount of particles are produced and kneaded with polyester pellets containing no or a small amount of particles. Thus, a method of containing a predetermined amount can be used.

本発明では、製膜時のフィルターとして線径15μm以下のステンレス鋼細線よりなる平均目開き10〜100μm、好ましくは平均目開き20〜50μmの不織布型フィルターを用い、ポリエステル組成物を濾過することが好ましい。この濾過を行うことにより、一般的には凝集して粗大凝集粒子となりやすい粒子の凝集を抑えて、粗大異物の少ない白色フィルムを得ることができる。   In the present invention, the polyester composition can be filtered by using a nonwoven fabric type filter having an average opening of 10 to 100 μm, preferably an average opening of 20 to 50 μm made of a stainless steel fine wire having a wire diameter of 15 μm or less as a filter during film formation. preferable. By performing this filtration, it is possible to obtain a white film with few coarse foreign matters by suppressing the aggregation of particles that generally tend to agglomerate into coarse agglomerated particles.

ダイから溶融したポリエステル組成物をフィードブロックを用いた同時多層押出し法により、積層未延伸シートを製造する。すなわち高ボイド層を構成するポリエステル組成物の溶融物と、支持層を構成するポリエステル組成物の溶融物とを、フィードブロックを用いて支持層/高ボイド層/支持層となるように積層し、ダイに展開して押出しを実施する。この時、フィードブロックで積層されたポリエステル組成物物は、積層された形態を維持している。   A laminated unstretched sheet is produced from the polyester composition melted from the die by a simultaneous multilayer extrusion method using a feed block. Specifically, the melt of the polyester composition constituting the high void layer and the melt of the polyester composition constituting the support layer are laminated to form a support layer / high void layer / support layer using a feed block, It is developed on a die and extruded. At this time, the polyester composition laminated by the feed block maintains the laminated form.

ダイより押出された未延伸シートは、キャスティングドラムで冷却固化され、未延伸フィルムとなる。この未延伸フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は、2個以上のロールの周速差を利用して行うのが好ましい。   The unstretched sheet extruded from the die is cooled and solidified by a casting drum to form an unstretched film. This unstretched film is heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing a difference in peripheral speed between two or more rolls.

延伸温度は、ポリエステルのTg以上の温度、好ましくはTg〜(Tg+70℃)の温度範囲とする。縦延伸の倍率は2.5〜3.2倍、好ましくは2.6〜3.1倍とする。2.5倍未満であるとフィルムの厚み斑が悪くなり、また高ボイド層に十分なボイドを形成するのに必要な延伸応力が掛からず、十分な反射率が得られない、3.2倍を超えると製膜中に破断が発生し易くなる。   The stretching temperature is a temperature equal to or higher than the Tg of the polyester, preferably a temperature range of Tg to (Tg + 70 ° C.). The ratio of longitudinal stretching is 2.5 to 3.2 times, preferably 2.6 to 3.1 times. If the thickness is less than 2.5 times, the uneven thickness of the film is deteriorated, and the stretching stress necessary for forming a sufficient void in the high void layer is not applied, and sufficient reflectance cannot be obtained. If it exceeds, breakage tends to occur during film formation.

縦延伸後のフィルムは、続いて、横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、これら処理はフィルムを走行させながら行う。横延伸の処理はポリエステルのTgより高い温度から始め、(Tg+5℃)〜(Tg+70℃)の温度まで昇温しながら行う。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが、通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。横延伸の倍率は、好ましくは3.0〜4.0倍、さらに好ましくは3.1〜3.9倍である。3.0倍未満とするとフィルムの厚み斑が悪くるため好ましくなく、4.0倍を超えると製膜中に破断が発生し易くなり好ましくない。   The film after longitudinal stretching is subsequently subjected to lateral stretching, heat setting, and thermal relaxation to form a biaxially oriented film. These treatments are performed while the film is running. The transverse stretching treatment starts from a temperature higher than the Tg of the polyester and is performed while raising the temperature to a temperature of (Tg + 5 ° C.) to (Tg + 70 ° C.). Although the temperature increase in the transverse stretching process may be continuous or stepwise (sequential), the temperature is generally increased sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone. The transverse stretching ratio is preferably 3.0 to 4.0 times, more preferably 3.1 to 3.9 times. If it is less than 3.0 times, the thickness unevenness of the film is poor, which is not preferable, and if it exceeds 4.0 times, breakage tends to occur during film formation, which is not preferable.

横延伸後のフィルムは両端を把持したまま(Tm−20℃)〜(Tm−100℃)で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのがよい。これより高い温度であるとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。また、熱処理温度が(Tm−100℃)より低いと熱収縮率が大きくなることがある。また、熱固定後フィルム温度を常温に戻す過程で把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1〜1.5%、さらに好ましくは0.2〜1.2%、特に好ましくは0.3〜1.0%の速度ダウンを実施してフィルムを弛緩(この値を「弛緩率」という)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることもできる。
ここでは、フィルムを逐次二軸延伸法によって延伸する場合を例に詳細に説明したが、逐次二軸延伸法、同時二軸延伸法のいずれの方法で延伸してもよい。
The film after transverse stretching is preferably heat-treated with a constant width or a decrease in width of 10% or less while holding both ends (Tm−20 ° C.) to (Tm−100 ° C.) to reduce the thermal shrinkage rate. When the temperature is higher than this, the flatness of the film is deteriorated, and the thickness unevenness becomes large, which is not preferable. On the other hand, if the heat treatment temperature is lower than (Tm-100 ° C.), the thermal shrinkage rate may increase. Further, both ends of the film being gripped in the process of returning the film temperature to room temperature after heat setting can be cut off to adjust the take-up speed in the vertical direction of the film and relax in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 1.5%, more preferably 0.2 to 1.2%, particularly preferably 0.3. The film is relaxed by performing a speed reduction of ˜1.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, so that a desired heat shrinkage rate can be obtained.
Here, the case where the film is stretched by the sequential biaxial stretching method has been described in detail as an example, but the film may be stretched by any of the sequential biaxial stretching method and the simultaneous biaxial stretching method.

以下、実施例により本発明を詳述する。なお、測定、評価は以下の方法で行った。
(1)フィルム総厚み
フィルムサンプルをスピンドル検出器(安立電気(株)製K107C)にはさみ、デジタル差動電子マイクロメーター(安立電気(株)製K351)にて、異なる位置で厚みを10点測定し、平均値を求めフィルム総厚みとした。
Hereinafter, the present invention will be described in detail by way of examples. Measurement and evaluation were performed by the following methods.
(1) Total film thickness A film sample is sandwiched between spindle detectors (K107C manufactured by Anritsu Electric Co., Ltd.), and 10 points of thickness are measured at different positions with a digital differential electronic micrometer (K351 manufactured by Anritsu Electric Co., Ltd.). And the average value was calculated | required and it was set as the film total thickness.

(2)各層の厚み
フィルムサンプルを長手方向2mm、幅方向2cmに切り出し、包埋カプセルに固定後、エポキシ樹脂(リファインテック(株)製エポマウント)にて包埋した。包埋されたサンプルをミクロトーム(LEICA製ULTRACUT UCT)で幅方向に垂直に切断、5nm厚の薄膜切片にした。光学顕微鏡を用いて観察撮影し、写真から各層の厚み比を測定し、フィルム全体の厚みから計算して、各層の厚みを求めた。
(2) Thickness of each layer A film sample was cut into 2 mm in the longitudinal direction and 2 cm in the width direction, fixed to an embedding capsule, and then embedded with an epoxy resin (Refotech Co., Ltd. Epomount). The embedded sample was cut perpendicularly in the width direction with a microtome (LETAC ULTRACUT UCT) to form a 5 nm thick thin film slice. The film was observed and photographed using an optical microscope, the thickness ratio of each layer was measured from the photograph, and the thickness of each layer was determined by calculating from the thickness of the entire film.

(3)ガラス転移点(Tg)、融点(Tm)
サンプル約20mgを測定用のアルミニウム製パンに封入して示差走査熱量測定装置(TA Instruments社製、2100 DSC)に装着し、25℃から20℃/分の速度で290℃まで昇温させ、290℃で3分間保持した後取り出し、直ちに氷の上に移して急冷した。このパンを再度、示差走査熱量測定装置に装着し、25℃から20℃/分の速度で昇温させてTg(℃)およびTm(℃)を測定した。
(3) Glass transition point (Tg), melting point (Tm)
About 20 mg of a sample is sealed in an aluminum pan for measurement and attached to a differential scanning calorimeter (TA Instruments, 2100 DSC), heated from 25 ° C. to 290 ° C. at a rate of 20 ° C./minute, After holding at 3 ° C. for 3 minutes, it was taken out, immediately transferred onto ice and rapidly cooled. The pan was again mounted on the differential scanning calorimeter, and the temperature was increased from 25 ° C. to 20 ° C./min to measure Tg (° C.) and Tm (° C.).

(4)延伸性
縦方向2.5〜3.2倍、横方向3.0〜4.0倍に延伸してフィルムを製膜し、この際に安定して製膜できるか否かを観察し、下記基準で評価した。
◎: 4時間以上安定して製膜できる
○: 1時間以上4時間未満の間に切断が発生するが、比較的安定して製膜できる
×: 1時間未満に切断が発生し、安定して製膜ができない
(4) Stretchability A film is formed by stretching 2.5 to 3.2 times in the longitudinal direction and 3.0 to 4.0 times in the transverse direction, and whether or not the film can be stably formed is observed at this time. And evaluated according to the following criteria.
◎: Film can be stably formed for 4 hours or more ○: Cutting occurs between 1 hour and less than 4 hours, but film can be formed relatively stably ×: Cutting occurs stably and less than 1 hour Can not form a film

(5)反射率
島津製作所(株)製分光光度計UV−3101PCを用い、JIS−K7105測定法Bに従って全光線反射率を求めた。測定条件は、スキャン速度200nm/秒、スリット幅20nm、サンプリングピッチ2.0nmとし、標準白色板は硫酸バリウムを用いた。波長400nm〜700nmでの光線反射率を、その波長範囲内で平均して全光線反射率とした。フィルムの構成が高ボイド層A/支持層Bの2層の場合、高ボイド層A側から測定を行った。
(5) Reflectance Using a spectrophotometer UV-3101PC manufactured by Shimadzu Corporation, the total light reflectance was determined according to JIS-K7105 measurement method B. The measurement conditions were a scan speed of 200 nm / second, a slit width of 20 nm, a sampling pitch of 2.0 nm, and barium sulfate was used as the standard white plate. The light reflectance at wavelengths of 400 nm to 700 nm was averaged within the wavelength range to obtain total light reflectance. When the film was composed of two layers of high void layer A / support layer B, measurement was performed from the high void layer A side.

(6)面配向係数(ns)
メトリコン社製レーザー屈折計(モデル2010プリズムカプラ−)を用いて、1枚のサンプルフィルムを内蔵圧力計40目盛の圧力で挟み、波長633nmのレーザー光にて測定を行い、スペクトラムチャートを得た。得られたスペクトラムチャート上で、検知器出力が急激に低下する点を読み取り、この値を屈折率とした。支持層の縦方向屈折率(nMD)、横方向屈折率(nTD)および厚み方向屈折率(nZ)を読み取り、以下の式を用いて面配向係数(Ns)を算出した。
ns=(nMD+nTD)/2−nZ
(6) Plane orientation coefficient (ns)
Using a laser refractometer (Model 2010 prism coupler) manufactured by Metricon Corporation, one sample film was sandwiched between the pressures of the built-in pressure gauge 40 and measured with a laser beam having a wavelength of 633 nm to obtain a spectrum chart. On the obtained spectrum chart, the point at which the detector output sharply decreased was read, and this value was taken as the refractive index. The longitudinal refractive index (nMD), the lateral refractive index (nTD), and the thickness direction refractive index (nZ) of the support layer were read, and the plane orientation coefficient (Ns) was calculated using the following formula.
ns = (nMD + nTD) / 2-nZ

(7)光沢度(60°)
JIS規格Z8741に準拠し、日本電色工業(株)製のグロスメーター「VGS−SENSOR」を用いて測定した。入射角、受光角ともに60°にて、3層フィルムの場合はフィルムの片面ずつN=5測定しそれぞれの面の平均値を、2層フィルムの場合は高ボイド層面のみをN=5測定した平均値をそれぞれ用いた。
(7) Glossiness (60 °)
In accordance with JIS standard Z8741, the measurement was performed using a gloss meter “VGS-SENSOR” manufactured by Nippon Denshoku Industries Co., Ltd. When the incident angle and the light receiving angle are both 60 °, N = 5 is measured for each side of the film in the case of a three-layer film, and the average value of each surface is measured for N = 5 only in the case of a two-layer film. Each average value was used.

(8)平均粒径
粒度分布計(堀場製作所製LA−950)にて、粒子の粒度分布を求め、d50での粒子径を平均粒径とした。
(8) Average particle size The particle size distribution of the particles was determined with a particle size distribution meter (LA-950, manufactured by Horiba, Ltd.), and the particle size at d50 was defined as the average particle size.

(9)ボイド体積率
高ボイド層のポリマーの密度および無機粒子の密度と、高ボイド層におけるこれらの配合比率から、高ボイド層にボイドがない場合の高ボイド層の計算上の密度を求めた。この計算で用いた密度は、イソフタル酸共重合ポリエチレンテレフタレートが1.39g/cm、硫酸バリウム粒子が4.5g/cmである。他方、積層フィルムから高ボイド層のみを分離し、単位体積当たりの重量を計り、高ボイド層の実密度を求めた。ボイド体積率を下記式で算出した。
ボイド体積率(%)=(1−実密度/ボイドがない場合の計算上の密度)×100
(9) Void volume fraction From the density of the polymer in the high void layer and the density of the inorganic particles and the blending ratio in the high void layer, the calculated density of the high void layer when no void is present in the high void layer was obtained. . The density used in this calculation is 1.39 g / cm 3 for isophthalic acid copolymerized polyethylene terephthalate and 4.5 g / cm 3 for barium sulfate particles. On the other hand, only the high void layer was separated from the laminated film, and the weight per unit volume was measured to determine the actual density of the high void layer. The void volume ratio was calculated by the following formula.
Void volume fraction (%) = (1−actual density / calculated density without void) × 100

[実施例1]
テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの酸成分に対して12モル%)、エチレングリコール96重量部、ジエチレングリコール3.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150〜235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し重縮合反応を行った。得られた共重合ポリエステルのジエチレングリコール成分量は2.5重量%、ゲルマニウム元素量は50ppm、リチウム元素量は5ppmであった。この共重合ポリエステルのペレット、この共重合ポリエステルに表1に示す不活性粒子を60重量%の濃度となるように含有させたマスターペレット、およびポリエチレンテレフタレートのペレットを用い、これらのペレットの配合比率を調整することで、表1に示す層Aの組成物および層Bの組成物を得た。
[Example 1]
132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the acid component of the polyester), 96 parts by weight of ethylene glycol, 3.0 parts by weight of diethylene glycol, 0.05 part by weight of manganese acetate, 0 parts of lithium acetate .012 parts by weight were charged into a rectifying column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor. Subsequently, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg and the temperature was raised to 290 ° C. to carry out a polycondensation reaction. The obtained copolymer polyester had a diethylene glycol component amount of 2.5% by weight, a germanium element amount of 50 ppm, and a lithium element amount of 5 ppm. Using the copolymer polyester pellets, master pellets containing the inert particles shown in Table 1 in the copolymer polyester so as to have a concentration of 60% by weight, and polyethylene terephthalate pellets, the mixing ratio of these pellets is By adjusting, the composition of layer A and the composition of layer B shown in Table 1 were obtained.

層Aの組成物および層Bの組成物をそれぞれ280℃に加熱された2台の押出機に供給し、層Aと層BがB/A/Bとなるような3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。
さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを、95℃にて加熱し長手方向(縦方向)に2.8倍で延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手に垂直な方向(横方向)に3.4倍に延伸した。その後テンター内で215℃の温度で熱固定を行い、その後、縦方向に0.5%、横方向に2.0%弛緩を行い、室温まで冷やして、二軸延伸フィルムを得た。得られたフィルムの反射板用白色フィルムとしての物性は表1に示すとおりであった。
The composition of layer A and the composition of layer B are supplied to two extruders each heated to 280 ° C., and a three-layer feed block device is used in which layers A and B become B / A / B. Then, the sheet was formed into a sheet shape from a die while maintaining the laminated state.
Further, an unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 25 ° C. was heated at 95 ° C., stretched 2.8 times in the longitudinal direction (longitudinal direction), and cooled with a roll group at 25 ° C. Subsequently, while holding both ends of the longitudinally stretched film with clips, the film was drawn to a tenter and stretched 3.4 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. Thereafter, heat setting was performed at a temperature of 215 ° C. in a tenter, and thereafter, relaxation was carried out by 0.5% in the longitudinal direction and 2.0% in the transverse direction, followed by cooling to room temperature to obtain a biaxially stretched film. The physical properties of the obtained film as a white film for a reflector were as shown in Table 1.

[実施例2〜7、比較例1〜6]
層Aの組成物および層Bの組成物を表1に示すポリエステル組成および不活性粒子に変更し、さらにフィルムの層構成および製膜条件を表1記載のとおりに変更した以外は実施例1と同様にして二軸延伸フィルムを作成し、評価を行った。得られたフィルムの反射板用白色フィルムとしての物性は表1に示すとおりであった。
[Examples 2-7, Comparative Examples 1-6]
Example 1 except that the composition of layer A and the composition of layer B were changed to the polyester composition and inert particles shown in Table 1, and the layer structure and film forming conditions of the film were changed as shown in Table 1. Similarly, a biaxially stretched film was prepared and evaluated. The physical properties of the obtained film as a white film for a reflector were as shown in Table 1.

[比較例7および8]
層Aの組成物および層Bの組成物を表1に示すポリエステル組成および不活性粒子に変更し、さらにフィルムの層構成および製膜条件を表1記載のとおりに変更し、層Aおよび層BがA/Bとなるような2層フィードブロック装置を用いて製膜した以外は実施例1と同様にして二軸延伸フィルムを作成し、評価を行った。得られたフィルムの反射板用白色フィルムとしての物性は表1に示すとおりであった。
[Comparative Examples 7 and 8]
The composition of layer A and the composition of layer B were changed to the polyester composition and inert particles shown in Table 1, and the layer structure and film forming conditions of the film were changed as shown in Table 1, and layer A and layer B were changed. A biaxially stretched film was prepared and evaluated in the same manner as in Example 1 except that the film was formed using a two-layer feedblock device in which A / B was A / B. The physical properties of the obtained film as a white film for a reflector were as shown in Table 1.

Figure 2011025473
Figure 2011025473

Figure 2011025473
Figure 2011025473

本発明の光反射板用白色フィルムは、液晶テレビなどの表示装置の背面に光源を置くバックライト方式の液晶表示用や照明用などの反射フィルムとして好適に用いることができる。また、本発明の光反射板用白色フィルムは、光源からの熱を受けても良好な平面性を保つことができる。   The white film for a light reflection plate of the present invention can be suitably used as a reflection film for a backlight type liquid crystal display or illumination for placing a light source on the back of a display device such as a liquid crystal television. Moreover, the white film for light reflection plates of the present invention can maintain good flatness even when receiving heat from a light source.

Claims (2)

高ボイド層およびその両面に設けられた支持層からなる白色フィルムであり、高ボイド層がボイド形成物質52〜60重量%およびイソフタル酸共重合ポリエチレンテレフタレート48〜40重量%からなり、フィルム全体厚み100%に対して80〜95%の厚みを有し、支持層が不活性粒子0.1〜10重量%およびイソフタル酸共重合ポリエチレンテレフタレート99.9〜90重量%からなり、フィルム全体厚み100%に対して20〜5%の厚みを有し、支持層のイソフタル酸共重合ポリエチレンテレフタレートに含まれるイソフタル酸成分が0.1〜2.9モル%であり、支持層の面配向係数(Ns)が0.110〜0.150であり、フィルムの総厚みが175〜300μmであることを特徴とする光反射板用白色フィルム。   A white film comprising a high void layer and a support layer provided on both sides thereof, the high void layer comprising 52 to 60% by weight of a void-forming substance and 48 to 40% by weight of isophthalic acid copolymerized polyethylene terephthalate, and a total film thickness of 100 The support layer comprises 0.1 to 10% by weight of inert particles and 99.9 to 90% by weight of isophthalic acid copolymerized polyethylene terephthalate, and the total film thickness is 100%. The isophthalic acid component contained in the isophthalic acid copolymer polyethylene terephthalate of the support layer is 0.1 to 2.9 mol%, and the plane orientation coefficient (Ns) of the support layer is 20 to 5%. A white film for a light reflector, which is 0.110 to 0.150, and the total thickness of the film is 175 to 300 μm. 反射率が98.6%以上である、請求項1記載の光反射板用白色フィルム。   The white film for light reflectors according to claim 1, wherein the reflectance is 98.6% or more.
JP2009172160A 2009-07-23 2009-07-23 White film for light reflector Expired - Fee Related JP5319435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172160A JP5319435B2 (en) 2009-07-23 2009-07-23 White film for light reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172160A JP5319435B2 (en) 2009-07-23 2009-07-23 White film for light reflector

Publications (2)

Publication Number Publication Date
JP2011025473A true JP2011025473A (en) 2011-02-10
JP5319435B2 JP5319435B2 (en) 2013-10-16

Family

ID=43634808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172160A Expired - Fee Related JP5319435B2 (en) 2009-07-23 2009-07-23 White film for light reflector

Country Status (1)

Country Link
JP (1) JP5319435B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011370A (en) * 2009-06-30 2011-01-20 Teijin Dupont Films Japan Ltd White reflecting film
JP2013088715A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate
JP2013088716A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate
JP2015121590A (en) * 2013-12-20 2015-07-02 帝人デュポンフィルム株式会社 White reflection film for direct-type surface light source
JP2015174383A (en) * 2014-03-17 2015-10-05 帝人デュポンフィルム株式会社 white polyester film
JP2017199737A (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Light emitting diode-mounted module, and light reflective member for light emitting diode-mounted module
WO2018181701A1 (en) * 2017-03-31 2018-10-04 株式会社Ctnb Light distribution control element, light distribution adjustment means, reflection member, reinforcement plate, illumination unit, display and television receiver
US11666730B2 (en) 2017-12-08 2023-06-06 Hollister Incorporated Package for medical device for ergonomic device removal
US11771865B2 (en) 2017-10-25 2023-10-03 Hollister Incorporated Caps for catheter packages

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223735A (en) * 2003-01-20 2004-08-12 Teijin Ltd Polyethylene terephthalate resin composition, method for manufacturing polyethylene terephthalate film and polyethylene terephthalate film
JP2004230894A (en) * 2003-01-28 2004-08-19 Mitsubishi Polyester Film Gmbh Polyester film and its manufacturing process
JP2006021373A (en) * 2004-07-07 2006-01-26 Toray Ind Inc White polyester film
JP2007261260A (en) * 2006-03-02 2007-10-11 Toray Ind Inc White laminated polyester film for reflecting plate
JP2009083369A (en) * 2007-10-01 2009-04-23 Teijin Dupont Films Japan Ltd Laminated film
JP2009086423A (en) * 2007-10-01 2009-04-23 Toyobo Co Ltd Light diffusion film
WO2009072376A1 (en) * 2007-12-07 2009-06-11 Toyo Boseki Kabushiki Kaisha Surface light-diffusing polyester film
WO2009096604A1 (en) * 2008-01-31 2009-08-06 Teijin Dupont Films Japan Limited Polyester film for reflector purposes and coated polyester film for reflectors purposes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223735A (en) * 2003-01-20 2004-08-12 Teijin Ltd Polyethylene terephthalate resin composition, method for manufacturing polyethylene terephthalate film and polyethylene terephthalate film
JP2004230894A (en) * 2003-01-28 2004-08-19 Mitsubishi Polyester Film Gmbh Polyester film and its manufacturing process
JP2006021373A (en) * 2004-07-07 2006-01-26 Toray Ind Inc White polyester film
JP2007261260A (en) * 2006-03-02 2007-10-11 Toray Ind Inc White laminated polyester film for reflecting plate
JP2009083369A (en) * 2007-10-01 2009-04-23 Teijin Dupont Films Japan Ltd Laminated film
JP2009086423A (en) * 2007-10-01 2009-04-23 Toyobo Co Ltd Light diffusion film
WO2009072376A1 (en) * 2007-12-07 2009-06-11 Toyo Boseki Kabushiki Kaisha Surface light-diffusing polyester film
WO2009096604A1 (en) * 2008-01-31 2009-08-06 Teijin Dupont Films Japan Limited Polyester film for reflector purposes and coated polyester film for reflectors purposes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011370A (en) * 2009-06-30 2011-01-20 Teijin Dupont Films Japan Ltd White reflecting film
JP2013088715A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate
JP2013088716A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate
JP2015121590A (en) * 2013-12-20 2015-07-02 帝人デュポンフィルム株式会社 White reflection film for direct-type surface light source
JP2015174383A (en) * 2014-03-17 2015-10-05 帝人デュポンフィルム株式会社 white polyester film
JP2017199737A (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Light emitting diode-mounted module, and light reflective member for light emitting diode-mounted module
WO2018181701A1 (en) * 2017-03-31 2018-10-04 株式会社Ctnb Light distribution control element, light distribution adjustment means, reflection member, reinforcement plate, illumination unit, display and television receiver
JP2019009106A (en) * 2017-03-31 2019-01-17 株式会社Ctnb Light distribution control element, light distribution adjustment means, reflection member, reinforcing plate, lighting unit, display and television receiver
CN114236902A (en) * 2017-03-31 2022-03-25 沪苏艾美珈光学技术(江苏)有限公司 Light distribution control element, light distribution adjustment mechanism, reflection member, reinforcing plate, illumination unit, display, and television
US11771865B2 (en) 2017-10-25 2023-10-03 Hollister Incorporated Caps for catheter packages
US11666730B2 (en) 2017-12-08 2023-06-06 Hollister Incorporated Package for medical device for ergonomic device removal
US12023452B2 (en) 2017-12-08 2024-07-02 Hollister Incorporated Package for medical device for ergonomic device removal

Also Published As

Publication number Publication date
JP5319435B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5319435B2 (en) White film for light reflector
JP5926512B2 (en) White reflective film
JP6404962B2 (en) White reflective film and method for producing the same
CN102362217B (en) White film for reflector
WO2007007882A1 (en) Laminate film
JP5985809B2 (en) Polyester film for reflector
TW201809737A (en) White reflection film
JP5596404B2 (en) Polyester film for reflector
JP5985808B2 (en) Polyester film for reflector
JP2010224446A (en) White film for reflection film of backlight unit of liquid crystal display device
JP2008036823A (en) Laminated film
JP5468927B2 (en) Laminated white film for light reflector
JP4563822B2 (en) Biaxially oriented laminated film
JP5722937B2 (en) White reflective film
JP5108271B2 (en) Biaxially stretched laminated polyester film
TWI684794B (en) White reflective film for direct-type surface light source and direct-type surface light source using the same
JP5456962B2 (en) Laminated film
JP5108438B2 (en) Polyester film for reflector
JP5059681B2 (en) Laminated film
JP2007322875A (en) Reflection film
JP5702482B2 (en) White reflective film
JP5495345B2 (en) White reflective film
JP5495344B2 (en) White reflective film
JP5905915B2 (en) White reflective film
JP5785202B2 (en) White reflective film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees