JP2011025271A - Flux-cored wire - Google Patents

Flux-cored wire Download PDF

Info

Publication number
JP2011025271A
JP2011025271A JP2009172504A JP2009172504A JP2011025271A JP 2011025271 A JP2011025271 A JP 2011025271A JP 2009172504 A JP2009172504 A JP 2009172504A JP 2009172504 A JP2009172504 A JP 2009172504A JP 2011025271 A JP2011025271 A JP 2011025271A
Authority
JP
Japan
Prior art keywords
mass
flux
welding
amount
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009172504A
Other languages
Japanese (ja)
Other versions
JP5351641B2 (en
Inventor
Masaki Shimamoto
正樹 島本
Hitoshi Ishida
斉 石田
Koichi Sakamoto
浩一 坂本
Hideji Sasakura
秀司 笹倉
Tomoki Kakizaki
智紀 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009172504A priority Critical patent/JP5351641B2/en
Priority to CN201010237026XA priority patent/CN101961823B/en
Priority to KR1020100070709A priority patent/KR101144577B1/en
Publication of JP2011025271A publication Critical patent/JP2011025271A/en
Application granted granted Critical
Publication of JP5351641B2 publication Critical patent/JP5351641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire having excellent high-temperature cracking resistance which may cause a problem in an initial layer weld part of a one-side butt joint weld of steel plates comprising mild steel or high-tensile steel, excellent welding work efficiency in the all-position welding, and excellent mechanical characteristic of a weld metal. <P>SOLUTION: The flux-cored wire which is used for the welding of steel plates comprising mild steel or high-tensile steel, comprises filling a steel shell with flux. The flux filling ratio to the total mass of the wire is, by mass, 10-25%. The wire contains, to the total mass of the wire, 0.02-0.10 mass% C, 0.05-1.50 mass% Si, 1.7-4.0 mass% Mn, 0.05-1.00 mass% Ti, 5.0-8.0 mass% TiO<SB>2</SB>, 0.20-1.50 mass% Al, 0.05-1.0 mass% Al<SB>2</SB>O<SB>3</SB>, 0.3-2.0 mass% Mg, 0.005-0.035 mass% N, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軟鋼または高張力鋼からなる鋼板のガスシールドアーク溶接に使用されるフラックス入りワイヤに関するものである。   The present invention relates to a flux-cored wire used for gas shielded arc welding of a steel plate made of mild steel or high-tensile steel.

従来から、鋼板の溶接、特に、片面突合せ継手溶接においては、初層溶接部(溶接金属)に発生する高温割れを抑制することが要望されている。このような高温割れの発生を抑制する方法として、以下のような技術が提案されている。   2. Description of the Related Art Conventionally, in steel plate welding, particularly single-sided butt joint welding, it is desired to suppress hot cracking that occurs in a first layer weld (welded metal). The following techniques have been proposed as a method for suppressing the occurrence of such hot cracking.

例えば、特許文献1では、耐高温割れ性を改善する方法として、溶接速度を下げ、溶接電流を低くするなど溶接能率を犠牲にした溶接施工にすることが提案されている。また、特許文献1では、耐高温割れ性を改善する方法として、溶接金属中のB量を低減すること、または、溶接用ワイヤ中の不純物中のS含有量を低減することも提案されている。   For example, in Patent Document 1, as a method for improving hot cracking resistance, it is proposed to perform welding construction at the expense of welding efficiency, such as lowering the welding speed and lowering the welding current. Further, in Patent Document 1, as a method for improving hot cracking resistance, it is also proposed to reduce the B content in the weld metal or to reduce the S content in impurities in the welding wire. .

特許文献2では、耐高温割れ性を改善する方法として、溶接用ワイヤにCaOを含有させて、溶接中に発生する溶融スラグ中にCaOが添加されるようにして、裏ビード形状の凹凸を無くすことが提案されている。また、特許文献2では、耐高温割れ性を改善する方法として、ワイヤ成分としてのC量を高めにして、裏ビード形成を安定化させることも提案されている。   In Patent Document 2, as a method for improving hot cracking resistance, CaO is contained in a welding wire so that CaO is added to molten slag generated during welding, thereby eliminating back bead-shaped irregularities. It has been proposed. In Patent Document 2, as a method of improving hot cracking resistance, it is also proposed to stabilize the back bead formation by increasing the amount of C as a wire component.

特許文献3では、耐高温割れ性を改善する方法として、フェライト系ステンレス鋼の溶接部の溶接金属の結晶粒径を微細にするために、ワイヤ成分としてAI、TiおよびNを含有させ、溶接金属中にAlおよびTiの窒化物を存在させることが提案されている。   In Patent Document 3, as a method for improving hot crack resistance, AI, Ti, and N are contained as wire components in order to make the crystal grain size of the weld metal in the welded portion of ferritic stainless steel fine, and the weld metal It has been proposed to have Al and Ti nitrides present therein.

特開昭54−130452号公報Japanese Patent Laid-Open No. 54-130552 特開2006−289404号公報JP 2006-289404 A 特開2002−336990号公報JP 2002-336990 A

しかしながら、特許文献1の改善方法では、近時、溶接能率を向上した溶接施工条件の適用が拡大しつつあること、また、ワイヤ成分の不純物元素としてのSの含有量の低減にも限界があるため、溶接金属に発生する高温割れを抑制できないという問題がある。また、特許文献1で提案されたワイヤ成分としてのBの含有量の低減は、耐高温割れ性の改善には効果があるものの、低温靭性の低下を招くという問題がある。   However, in the improvement method of Patent Document 1, recently, the application of welding conditions with improved welding efficiency is expanding, and there is a limit to the reduction of the content of S as an impurity element of the wire component. Therefore, there is a problem that hot cracks generated in the weld metal cannot be suppressed. Moreover, although the reduction of the content of B as the wire component proposed in Patent Document 1 is effective in improving the hot cracking resistance, there is a problem that the low temperature toughness is lowered.

特許文献2の改善方法では、溶融スラグへのCaOの添加は、溶融スラグの粘性と融点を低減させ、流動性が過剰となり、立向姿勢の溶接においてビード垂れ等が発生し、作業性が低下するという問題がある。また、高温割れの発生が最も問題となる片面突合せ継手溶接の初層パスでは、母材希釈の影響を大きく受けるため、特許文献2で提案されたC量を高めに限定したワイヤにおいては、安定した母材希釈が得られず、安定した耐高温割れ性を得ることができない。その結果、ワイヤの使用できる母材選択範囲が限られるという問題がある。   In the improvement method of Patent Document 2, the addition of CaO to the molten slag reduces the viscosity and melting point of the molten slag, the fluidity becomes excessive, and bead sagging occurs in welding in a vertical position, resulting in reduced workability. There is a problem of doing. Further, in the first layer pass of the single-sided butt joint welding where the occurrence of hot cracking is the most problematic, since it is greatly affected by the dilution of the base material, the wire proposed in Patent Document 2 has a stable C content and is stable. Thus, it is not possible to obtain a stable base material dilution and to obtain stable hot cracking resistance. As a result, there is a problem that the base material selection range in which the wire can be used is limited.

特許文献3の改善方法では、ワイヤが15〜25質量%のCrを含有するため、フェライト系ステンレス鋼の溶接部へのNの溶解度が増加する。そのため、溶接部の結晶粒径を微細にすべく、AlおよびTiの窒化物を活用するためにNを多量(0.04〜0.2質量%)に添加しても問題が生じない。   In the improvement method of Patent Document 3, since the wire contains 15 to 25% by mass of Cr, the solubility of N in the welded portion of ferritic stainless steel increases. Therefore, no problem arises even if N is added in a large amount (0.04 to 0.2% by mass) in order to utilize Al and Ti nitrides in order to make the crystal grain size of the welded portion fine.

しかしながら、軟鋼または高張力鋼からなる鋼板を溶接する場合、溶接部へのNの溶解度が小さく、多量のN添加は、溶接部の溶解度を超えるため、ブローホールなどの欠陥を発生しやすいという問題がある。   However, when welding a steel plate made of mild steel or high-tensile steel, the solubility of N in the welded portion is small, and a large amount of N exceeds the solubility of the welded portion, so that defects such as blow holes are likely to occur. There is.

また、TiOを含有するワイヤを使用した場合には、溶接金属中に多量(500〜700ppm)の酸素が存在し、Ti窒化物を生成すべく添加したTiの大部分は酸化物として消費される。そのため、Ti窒化物を生成すべく多量のTiを添加する必要があるが、その場合には、溶接金属中にTiの大部分が溶存し、溶接金属の凝固温度を下げるため、かえって高温割れが発生しやすくなるという問題がある。また、靭性などの機械的特性なども劣化すると共に、多量のTi添加は経済性の面からも好ましくないという問題もある。 Further, when a wire containing TiO 2 is used, a large amount (500 to 700 ppm) of oxygen is present in the weld metal, and most of Ti added to form Ti nitride is consumed as an oxide. The Therefore, it is necessary to add a large amount of Ti in order to produce Ti nitride. In that case, most of Ti dissolves in the weld metal and lowers the solidification temperature of the weld metal. There is a problem that it is likely to occur. In addition, mechanical properties such as toughness deteriorate, and there is a problem that a large amount of Ti is not preferable from the viewpoint of economy.

したがって、軟鋼または高張力鋼からなる鋼板の溶接において、溶接部に発生する高温割れを抑制する手段として、Tiの窒化物を活用し、溶接部の結晶粒を微細化することは、従来困難であった。   Therefore, in the welding of steel plates made of mild steel or high-tensile steel, it has been difficult in the past to use Ti nitride as a means to suppress high-temperature cracking that occurs in the weld and to refine the crystal grains in the weld. there were.

そこで、本発明は、このような問題点を解決すべく創案されたもので、その目的は、軟鋼または高張力鋼からなる鋼板の片面突合せ継手溶接の初層溶接部で問題となる耐高温割れ性に優れ、全姿勢溶接における溶接作業性および溶接金属の機械的特性が優れたフラックス入りワイヤを提供することにある。   Therefore, the present invention was devised to solve such problems, and its purpose is to provide a high temperature crack resistance that is a problem in the first-layer butt joint of a single-sided butt joint of a steel plate made of mild steel or high-tensile steel. It is an object of the present invention to provide a flux-cored wire that is excellent in weldability and has excellent welding workability in all-position welding and mechanical properties of the weld metal.

前記課題を解決するために、本発明に係るフラックス入りワイヤは、軟鋼または高張力鋼からなる鋼板の溶接に使用され、鋼製外皮内にフラックスを充填してなるフラックス入りワイヤであって、ワイヤ全質量に対するフラックス充填率が10〜25質量%であり、ワイヤ全質量に対して、C:0.02〜0.10質量%、Si:0.05〜1.50質量%、Mn:1.7〜4.0質量%、Ti:0.05〜1.00質量%、TiO:5.0〜8.0質量%、Al:0.20〜1.50質量%、Al:0.05〜1.0質量%、Mg:0.3〜2.0質量%、N:0.005〜0.035質量%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。 In order to solve the above problems, a flux-cored wire according to the present invention is a flux-cored wire that is used for welding a steel plate made of mild steel or high-strength steel and is filled with a flux in a steel outer shell, The flux filling rate with respect to the total mass is 10 to 25% by mass, and C: 0.02 to 0.10% by mass, Si: 0.05 to 1.50% by mass, and Mn: 1. 7 to 4.0 mass%, Ti: 0.05-1.00 mass%, TiO 2: 5.0~8.0 wt%, Al: 0.20 to 1.50 wt%, Al 2 O 3: 0.05 to 1.0% by mass, Mg: 0.3 to 2.0% by mass, N: 0.005 to 0.035% by mass, the balance being Fe and inevitable impurities To do.

前記構成によれば、ワイヤ全質量に対するフラックス充填率が所定量であって、ワイヤ全質量に対して、所定量のC、Si、Mn、Ti、TiO、Al、Al、MgおよびNを含有することによって、溶接部(溶接金属)での高温割れが抑制されると共に、機械的強度が向上し、かつ、溶接作業性が向上する。特に、所定量のTi、Al、MgおよびNを含有することによって、溶接金属中に生成する介在物の組成を核生成促進に効果的なTiNに制御できる。その結果、溶接部(溶接金属)の凝固組織を微細化でき、高温割れが抑制できる。 According to the above configuration, the flux filling rate with respect to the total mass of the wire is a predetermined amount, and the predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , Mg, and the total mass of the wire By containing N, hot cracking in the welded portion (welded metal) is suppressed, mechanical strength is improved, and welding workability is improved. In particular, by containing a predetermined amount of Ti, Al, Mg, and N, the composition of inclusions generated in the weld metal can be controlled to TiN that is effective in promoting nucleation. As a result, the solidification structure of the welded portion (welded metal) can be refined, and high temperature cracking can be suppressed.

本発明に係るフラックス入りワイヤによれば、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO、Al、Al、MgおよびNを含有することによって、軟鋼または高張力鋼からなる鋼板の片面突合せ継手溶接の初層溶接部で問題となる耐高温割れ性に優れ、全姿勢溶接における溶接作業性および溶接金属の機械的特性が優れたものとなる。その結果、品質の優れた溶接製品を提供することができる。 According to the flux-cored wire according to the present invention, the flux filling rate is a predetermined amount, and by containing a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , Mg, and N Excellent hot cracking resistance, which is a problem in the first layer butt joint of steel plate made of mild steel or high-strength steel. Excellent welding workability and weld metal mechanical properties in all-position welding. . As a result, it is possible to provide a welded product with excellent quality.

(a)〜(d)は、本発明に係るフラックス入りワイヤの構成を示す断面図である。(A)-(d) is sectional drawing which shows the structure of the flux cored wire which concerns on this invention. 耐高温割れ性の評価に使用する溶接母材の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the welding preform | base_material used for evaluation of hot cracking resistance.

本発明に係るフラックス入りワイヤについて詳細に説明する。
本発明に係るフラックス入りワイヤは、軟鋼または高張力鋼からなる鋼板の溶接に使用される。また、本発明に係るフラックス入りワイヤは、ガスシールドアーク溶接に好適に使用され、片面突合せ継手溶接において優れた効果を発揮するもので、特に溶接方法は限定されない。
The flux cored wire according to the present invention will be described in detail.
The flux cored wire according to the present invention is used for welding a steel plate made of mild steel or high-tensile steel. Moreover, the flux-cored wire according to the present invention is suitably used for gas shielded arc welding and exhibits an excellent effect in single-sided butt joint welding, and the welding method is not particularly limited.

図1(a)〜(d)に示すように、フラックス入りワイヤ(以下、ワイヤと称す)1は、筒状に形成された鋼製外皮2と、その筒内に充填されたフラックス3とからなる。また、ワイヤ1は、図1(a)に示すような継目のない鋼製外皮2の筒内にフラックス3が充填されたシームレスタイプ、図1(b)〜(d)に示すような継目4のある鋼製外皮2の筒内にフラックス3が充填されたシームタイプのいずれの形態でもよい。   As shown in FIGS. 1A to 1D, a flux-cored wire (hereinafter referred to as a wire) 1 includes a steel outer shell 2 formed in a cylindrical shape and a flux 3 filled in the cylinder. Become. Moreover, the wire 1 is a seamless type in which a flux 3 is filled in a seamless steel outer shell 2 as shown in FIG. 1 (a), and a seam 4 as shown in FIGS. 1 (b) to 1 (d). Any form of a seam type in which a flux 3 is filled in a cylinder of a steel outer shell 2 having a certain shape.

そして、ワイヤ1は、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO、Al、Al、MgおよびNを含有し、残部がFeおよび不可避的不純物からなる。 The wire 1 has a predetermined amount of flux filling and contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , Mg and N, with the balance being Fe and inevitable. Consists of impurities.

以下に、ワイヤ成分(フラックス充填率および成分量)の数値範囲を、その限定理由と共に記載する。フラックス充填率は、鋼製外皮2内に充填されるフラックスの質量を、ワイヤ1(鋼製外皮2+フラックス3)の全質量に対する割合で表したものである。また、成分量は、鋼製外皮2とフラックス3における成分量の総和で表し、ワイヤ1(鋼製外皮2+フラックス3)に含まれる各成分の質量を、ワイヤ1の全質量に対する割合で表したものである。なお、ワイヤ1を構成する成分のうち、C、Si、Mn、Ti、TiO、Al、Al、MgおよびNは、鋼製外皮2から添加するか、フラックス3から添加するかは特に問わず、鋼製外皮2およびフラックス3の少なくとも一方に添加されていればよい。 Below, the numerical range of a wire component (flux filling rate and component amount) is described with the reason for limitation. The flux filling rate represents the mass of the flux filled in the steel outer sheath 2 as a ratio to the total mass of the wire 1 (steel outer sheath 2 + flux 3). In addition, the component amount is represented by the sum of the component amounts in the steel outer sheath 2 and the flux 3, and the mass of each component contained in the wire 1 (steel outer sheath 2 + flux 3) is expressed as a ratio to the total mass of the wire 1. Is. Of the components constituting the wire 1, C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , Mg, and N are added from the steel outer shell 2 or the flux 3. Regardless of particular, it may be added to at least one of the steel outer sheath 2 and the flux 3.

(フラックス充填率:10〜25質量%)
フラックス充填率が10質量%未満では、アークの安定性が悪くなり、スパッタ発生量が増加すると共に、ビード外観不良が発生し、溶接作業性が低下する。フラックス充填率が25質量%超では、ワイヤ1の断線等が発生し、生産性が著しく劣化する。
(Flux filling ratio: 10 to 25% by mass)
If the flux filling rate is less than 10% by mass, the stability of the arc is deteriorated, the amount of spatter generated is increased, a bead appearance defect is generated, and welding workability is lowered. When the flux filling rate is more than 25% by mass, the wire 1 is disconnected and the productivity is remarkably deteriorated.

(C:0.02〜0.10質量%、好ましくは、0.03〜0.08質量%)
Cは、溶接部の焼入れ性を確保するために添加する。C量が0.02質量%未満の場合、焼入れ性不足により、溶接部の強度・靭性が不足する。また、低C量により溶接部に高温割れが発生する。C量が0.10質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、溶接時のスパッタ発生量またはヒューム発生量が増加し、溶接作業性が低下する。また、被溶接材である鋼材のC量が多い場合、溶接部(溶接金属)のC量が多くなる。そして、Cが包晶反応を起こす領域になると、溶接部に高温割れが発生しやすくなる。なお、C源としては、例えば、Fe−Mn等の合金粉、鉄粉等を用いる。
(C: 0.02-0.10 mass%, preferably 0.03-0.08 mass%)
C is added to ensure the hardenability of the weld. When the amount of C is less than 0.02% by mass, the strength and toughness of the welded portion are insufficient due to insufficient hardenability. Moreover, a hot crack occurs in the weld due to the low C content. When the amount of C exceeds 0.10% by mass, the strength of the welded portion becomes excessive and the toughness becomes insufficient. In addition, the amount of spatter generated during fusing or the amount of fume generated increases and welding workability decreases. Moreover, when there is much C amount of the steel materials which are to-be-welded materials, C amount of a welding part (welded metal) will increase. And when C becomes a region where a peritectic reaction occurs, high temperature cracks are likely to occur in the weld. In addition, as C source, alloy powder, such as Fe-Mn, iron powder, etc. are used, for example.

(Si:0.05〜1.50質量%、好ましくは、0.10〜1.00質量%)
Siは、溶接部の延性確保、ビード形状維持のために添加する。Si量が0.05質量%未満では、溶接部の延性(伸び)不足となる。また、ビード形状が悪くなり、特に、立向上進溶接でビードが垂れ、溶接作業性が低下する。Si量が1.50質量%を超えると、溶接部に高温割れが発生する。なお、Si源としては、例えば、Fe−Si、Fe−Si−Mn等の合金、KSiF等のフッ化物、ジルコンサンド、珪砂、長石等の酸化物を用いる。
(Si: 0.05 to 1.50 mass%, preferably 0.10 to 1.00 mass%)
Si is added to ensure the ductility of the weld and maintain the bead shape. When the amount of Si is less than 0.05% by mass, the ductility (elongation) of the welded portion is insufficient. In addition, the bead shape is deteriorated. In particular, the bead hangs down in the vertical improvement welding, and the welding workability is lowered. When the amount of Si exceeds 1.50% by mass, hot cracking occurs in the weld. As the Si source, for example, alloys such as Fe—Si and Fe—Si—Mn, fluorides such as K 2 SiF 6 , oxides such as zircon sand, silica sand, and feldspar are used.

(Mn:1.7〜4.0質量%、好ましくは、2.4〜3.7質量%)
Mnは、溶接部の焼入れ性確保のために添加する。Mn量が1.7質量%未満では、溶接部の焼入れ性が不足し、靭性が低下する。また、不可避的不純物として含有されるSと結合して得られるMnS量も少なくなるため、MnSによる高温割れの抑制作用が小さくなり、溶接部に高温割れが発生する。Mn量が4.0質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、溶接部に低温割れが発生する。なお、Mn源としては、例えば、Mn金属粉、Fe−Mn、Fe−Si−Mn等の合金を用いる。
(Mn: 1.7 to 4.0% by mass, preferably 2.4 to 3.7% by mass)
Mn is added to ensure the hardenability of the weld. When the amount of Mn is less than 1.7% by mass, the hardenability of the welded portion is insufficient and the toughness is lowered. Moreover, since the amount of MnS obtained by combining with S contained as an unavoidable impurity is reduced, the action of suppressing high-temperature cracking by MnS is reduced, and high-temperature cracking occurs in the welded portion. When the amount of Mn exceeds 4.0 mass%, the strength of the welded portion becomes excessive and the toughness becomes insufficient. In addition, cold cracks occur in the weld. As the Mn source, for example, an alloy such as Mn metal powder, Fe—Mn, or Fe—Si—Mn is used.

(Ti:0.05〜1.00質量%、好ましくは、0.20〜1.00質量%)
Ti(金属Ti)は、溶接部(溶接金属)の耐高温割れ性を改善するために添加する。Ti(金属Ti)は溶接時にNと結合し、溶接金属中の介在物を核生成促進に効果的なTiNに制御できる。その結果、溶接継手(溶接部)の凝固組織が微細され、溶接部の高温割れ抑制作用が改善される。Ti量(金属Ti)が0.05質量%未満では、上記効果が十分ではなく、溶接部に高温割れが発生する。Ti量(金属Ti)が1.00質量%を超えると、溶接金属再熱部が硬くて脆いベイナイト、マルテンサイトになりやすく、靭性が低下する。また、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。さらに、溶接金属中のTiが溶存として存在し、溶接金属の凝固温度を低下させ高温割れが発生する。なお、Ti源としては、例えば、Fe−Ti等の合金粉を用いる。
(Ti: 0.05 to 1.00% by mass, preferably 0.20 to 1.00% by mass)
Ti (metal Ti) is added to improve the hot crack resistance of the welded portion (welded metal). Ti (metal Ti) combines with N during welding, and inclusions in the weld metal can be controlled to TiN effective for promoting nucleation. As a result, the solidification structure of the welded joint (welded part) is refined, and the hot cracking suppressing action of the welded part is improved. When the amount of Ti (metal Ti) is less than 0.05% by mass, the above effect is not sufficient, and hot cracks occur in the welded portion. When the amount of Ti (metal Ti) exceeds 1.00% by mass, the weld metal reheated portion tends to be hard and brittle bainite and martensite, and the toughness decreases. In addition, the amount of spatter generated during welding increases and welding workability decreases. Further, Ti in the weld metal exists as dissolved, lowering the solidification temperature of the weld metal and causing hot cracking. In addition, as Ti source, alloy powder, such as Fe-Ti, is used, for example.

(TiO:5.0〜8.0質量%)
TiO(Ti酸化物)は、全姿勢溶接における溶接作業性を確保するために添加する。TiO量(Ti酸化物)が5.0質量%未満では、立向上進溶接でビードが垂れ、溶接作業性が低下する。TiO量(Ti酸化物)が8.0質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。また、フラックスのかさ比重が小さくなり、生産性が劣化する。なお、TiO源としては、例えば、ルチール等を用いる。
(TiO 2: 5.0 to 8.0 wt%)
TiO 2 (Ti oxide) is added to ensure welding workability in all-position welding. When the amount of TiO 2 (Ti oxide) is less than 5.0% by mass, the bead drips during the vertical improvement welding, and the workability of welding is lowered. When the amount of TiO 2 (Ti oxide) exceeds 8.0% by mass, the slag removability at the time of welding deteriorates and the welding workability decreases. Further, the bulk specific gravity of the flux is reduced, and the productivity is deteriorated. As the TiO 2 source, for example, rutile or the like is used.

(Al:0.20〜1.50質量%、好ましくは、0.20〜0.50質量%)
Alは、強脱酸剤であり溶接継手(溶接金属)中に生成する介在物から、Alに比べ脱酸力の弱いTiからなるTi酸化物を還元し、核生成促進に効果的なTiNを生成させる効果がある。その結果、溶接金属の凝固組織が微細化される。さらに、溶接金属の酸素量を低下させ、Mnの歩留まりも安定する。これらの効果から、溶接部の高温割れ抑制作用が改善し、靭性も安定化する。Al量が0.20質量%未満では、脱酸が十分でなく、溶接部に高温割れが発生する。また、靭性も低下する。Al量が1.50質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Al源としては、例えば、Al金属粉、Fe−Al、Al−Mg等の合金粉を用いる。
(Al: 0.20 to 1.50% by mass, preferably 0.20 to 0.50% by mass)
Al is a strong deoxidizer, and from the inclusions produced in the welded joint (welded metal), Ti oxide made of Ti, which has a weaker deoxidizing power than Al, is reduced, and TiN effective for promoting nucleation is reduced. Has the effect of generating. As a result, the solidification structure of the weld metal is refined. Furthermore, the oxygen content of the weld metal is reduced, and the yield of Mn is stabilized. From these effects, the hot cracking suppressing action of the welded portion is improved and the toughness is stabilized. If the amount of Al is less than 0.20% by mass, deoxidation is not sufficient, and hot cracks occur in the weld. Also, toughness is reduced. When the amount of Al exceeds 1.50% by mass, the strength of the weld becomes excessive and the toughness becomes insufficient. In addition, the amount of spatter generated during welding increases and welding workability decreases. In addition, as Al source, alloy powder, such as Al metal powder, Fe-Al, Al-Mg, is used, for example.

(Al:0.05〜1.0質量%、好ましくは、0.05〜0.5質量%)
Alは、水平すみ肉姿勢でのビード形状、立向上進姿勢でのビードの垂れ防止のために添加する。Al量が0.05質量%未満では、水平すみ肉溶接でのビード形状(なじみ)が悪く、また、立向上進溶接でビード垂れが発生し、溶接作業性が低下する。Al量が1.0質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。なお、Al源としては、例えば、アルミナや長石等の複合酸化物を用いる。
(Al 2 O 3 : 0.05 to 1.0% by mass, preferably 0.05 to 0.5% by mass)
Al 2 O 3 is added to prevent the bead from drooping in the horizontal fillet posture and in the standing improvement posture. If the amount of Al 2 O 3 is less than 0.05% by mass, the bead shape (familiarity) in horizontal fillet welding is poor, and bead sagging occurs in vertical improvement welding, resulting in poor welding workability. When the amount of Al 2 O 3 exceeds 1.0% by mass, the slag removability at the time of welding is deteriorated and the welding workability is lowered. As the Al 2 O 3 source, for example, a complex oxide such as alumina or feldspar is used.

(Mg:0.3〜2.0質量%、好ましくは、0.3〜1.0質量%)
Mgは、強脱酸剤であり溶接継手(溶接金属)中に生成する介在物から、Mgに比べ脱酸力の弱いTiからなるTi酸化物を還元し、核生成促進に効果的なTiNを生成させる効果がある。その結果、溶接金属の凝固組織が微細化される。さらに、溶接金属の酸素量を低下させ、Mnの歩留まりも安定する。これらの効果から、溶接部の高温割れ抑制作用が改善し、靭性も安定化する。Mg量が0.3質量%未満では、前記効果が十分ではなく、溶接部(初層溶接部)に高温割れが発生する。また、靭性も低下する。Mg量が2.0質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、スパッタ発生量が多くなる。なお、Mg源としては、例えば、金属Mg、Al−Mg、Fe−Si−Mg等の金属粉、合金粉を用いる。
(Mg: 0.3 to 2.0 mass%, preferably 0.3 to 1.0 mass%)
Mg is a strong deoxidizer and reduces Ti oxide composed of Ti, which has a weaker deoxidation power than Mg, from inclusions produced in welded joints (welded metal), and produces TiN that is effective in promoting nucleation. Has the effect of generating. As a result, the solidification structure of the weld metal is refined. Furthermore, the oxygen content of the weld metal is reduced, and the yield of Mn is stabilized. From these effects, the hot cracking suppressing action of the welded portion is improved and the toughness is stabilized. If the amount of Mg is less than 0.3% by mass, the above effect is not sufficient, and hot cracks occur in the welded portion (first layer welded portion). Also, toughness is reduced. When the amount of Mg exceeds 2.0% by mass, the strength of the welded portion becomes excessive and the toughness becomes insufficient. In addition, the amount of spatter generated increases. As the Mg source, for example, metal powder such as metal Mg, Al—Mg, Fe—Si—Mg, or alloy powder is used.

(N:0.005〜0.035質量%)
Nは、核生成促進に効果的なTiNを生成させるためには不可欠なものである。そして、TiNの生成により、溶接金属の凝固組織が微細化され、耐高温割れ性が改善される。N量が0.005質量%未満では、上記効果が十分ではなく、溶接部(初層溶接部)に高温割れが発生する。N量が0.035質量%を超えると、溶接金属中にブローホールが発生する。また溶接部の強度が過多となり、靭性が低下する。なお、N源としては、例えば、N−Cr,Fe−N−Cr、N−Si、N−Mn、N−Ti等の金属窒化物を使用する。
(N: 0.005-0.035 mass%)
N is indispensable for producing TiN effective for promoting nucleation. And by the production | generation of TiN, the solidification structure of a weld metal is refined | miniaturized and hot cracking resistance is improved. When the amount of N is less than 0.005% by mass, the above effect is not sufficient, and hot cracking occurs in the welded portion (first layer welded portion). When the amount of N exceeds 0.035% by mass, blow holes are generated in the weld metal. Moreover, the strength of the weld becomes excessive and the toughness decreases. In addition, as N source, metal nitrides, such as N-Cr, Fe-N-Cr, N-Si, N-Mn, N-Ti, are used, for example.

(Fe)
残部のFeは、鋼製外皮2を構成するFe、および/または、フラックス3に添加されている鉄粉、合金粉のFeである。
(Fe)
The remaining Fe is Fe constituting the steel outer shell 2 and / or iron powder or alloy powder Fe added to the flux 3.

(不可避的不純物)
残部の不可避的不純物としては、S、P、Ni、O、Zr等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。S量、P量、Ni量、O量、Zr量は、それぞれ、0.050質量%以下が好ましく、鋼製外皮2とフラックス3における各成分量の総和である。
(Inevitable impurities)
The remaining inevitable impurities include S, P, Ni, O, Zr and the like, and it is allowed to be contained within a range that does not hinder the effects of the present invention. The amount of S, amount of P, amount of Ni, amount of O, and amount of Zr are each preferably 0.050% by mass or less, and are the total amount of each component in the steel outer sheath 2 and the flux 3.

なお、本発明に係るワイヤ1では、ワイヤ作製時にワイヤ成分(成分量)が前記範囲内になるように、鋼製外皮2およびフラックス3の各成分(各成分量)を選択する。また、本発明に係るワイヤ1は、その表面にCu鍍金を施すことも可能であり、ワイヤ全質量に対し、0.35質量%以下のCuを含有してもよい。   In addition, in the wire 1 which concerns on this invention, each component (each component amount) of the steel outer sheath 2 and the flux 3 is selected so that a wire component (component amount) may become in the said range at the time of wire preparation. Moreover, the wire 1 which concerns on this invention can also give Cu plating to the surface, and may contain 0.35 mass% or less Cu with respect to the wire total mass.

また、本発明に係るワイヤ1の製造方法は、例えば、所定の組成を有する帯鋼で筒状の鋼製外皮2を形成する工程と、その鋼製外皮2の内部に所定の組成を有するフラックス3を充填する工程と、フラックス3が充填された鋼製外皮2を所定の外径まで伸線加工してワイヤ1とする工程と、必要に応じてワイヤ1の表面にCu鍍金を行う工程とを含むものである。しかしながら、ワイヤ1が製造できれば、前記製造方法に限定されるものではない。   Moreover, the manufacturing method of the wire 1 which concerns on this invention is a flux which has a predetermined composition in the process of forming the cylindrical steel outer skin 2 with the steel strip which has a predetermined composition, for example, and the inside of the steel outer shell 2 3, a step of drawing the steel outer skin 2 filled with the flux 3 to a predetermined outer diameter to form a wire 1, and a step of performing Cu plating on the surface of the wire 1 as necessary Is included. However, if the wire 1 can be manufactured, it is not limited to the said manufacturing method.

本発明に係るフラックス入りワイヤについて、本発明の要件を満足する実施例と、本発明の要件を満足しない比較例とを比較して具体的に説明する。   The flux-cored wire according to the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.

鋼製外皮(鋼は、C:0.03質量%、Si:0.02質量%、Mn:0.25質量%、P:0.010質量%、S:0.008質量%を含有し、残部Feおよび不可避的不純物からなるものを使用)の内側にフラックスを充填して、表1、表2に示すワイヤ成分からなるワイヤ径1.2mmの図1(b)に示すシームタイプのフラックス入りワイヤ(実施例:No.1〜20、比較例:No.21〜40)を作製した。   Steel outer shell (steel contains C: 0.03 mass%, Si: 0.02 mass%, Mn: 0.25 mass%, P: 0.010 mass%, S: 0.008 mass%, Filled with flux inside the remaining Fe and inevitable impurities), and filled with the seam type flux shown in FIG. Wires (Example: No. 1 to 20, Comparative Example: No. 21 to 40) were produced.

なお、ワイヤ成分は、以下の測定方法で測定、算出した。
C量は「燃焼赤外線吸収法」によって、N量は「不活性ガス融解熱伝導度法」によって、Si量、Mn量、Mg量は「ICP発光分光分析法」によって、測定した。
The wire component was measured and calculated by the following measurement method.
The C amount was measured by the “combustion infrared absorption method”, the N amount was measured by the “inert gas melting thermal conductivity method”, and the Si amount, Mn amount, and Mg amount were measured by the “ICP emission spectroscopic analysis method”.

TiO量(TiO等として存在し、Fe−Ti等は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるTi源(Fe−Ti等)は王水へ溶解するが、TiO源(TiO等)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のTi濃度を「ICP発光分光分析法」で測定した。このTi濃度をTiO量に換算し、TiO量を算出した。 The amount of TiO 2 (present as TiO 2 or the like but not including Fe—Ti or the like) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. Thus, although Ti source contained in the wire 1 (Fe-Ti, etc.) is dissolved in aqua regia, TiO 2 source (TiO 2, etc.) because it insoluble in aqua regia, melt remains. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Ti concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Ti concentration in the TiO 2 amount was calculated amount of TiO 2.

Ti量(Fe−Ti等として存在し、TiO等は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったTiO源(TiO等)をろ過し、その溶液をワイヤ1に含まれるTi源(Fe−Ti等)とし得ることで、「ICP発光分光分析法」を用い、Ti量(Fe−Ti等)として存在を求めた。 Ti amount (existing as Fe-Ti etc., not including TiO 2 etc.) is obtained by dissolving the whole amount of wire in aqua regia by “acid decomposition method” and filtering the insoluble TiO 2 source (TiO 2 etc.). Then, by using the solution as a Ti source (Fe—Ti or the like) contained in the wire 1, the presence of the Ti amount (Fe—Ti or the like) was determined using “ICP emission spectroscopy”.

Al量(アルミナや長石等の複合酸化物として存在し、Al金属粉等の合金粉は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるAl源(Al金属粉等の合金粉)は王水へ溶解するが、Al源(アルミナや長石等の複合酸化物)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のAl濃度を「ICP発光分光分析法」で測定した。このAl濃度をAl量に換算し、Al量を算出した。Al量(Al金属粉等の合金粉として存在し、アルミナや長石等の複合酸化物は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったAl源(アルミナや長石等の複合酸化物)をろ過し、その溶液をワイヤ1に含まれるAl源(Al金属粉等の合金粉)とし得ることで、「ICP発光分光分析法」を用い、Al量(Al金属粉等の合金粉)として存在を求めた。 The amount of Al 2 O 3 (present as a composite oxide such as alumina and feldspar, and does not include alloy powder such as Al metal powder) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. As a result, the Al source (alloy powder such as Al metal powder) contained in the wire 1 is dissolved in aqua regia, but the Al 2 O 3 source (a composite oxide such as alumina and feldspar) is insoluble in aqua regia. , It remains undissolved. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Al concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Al concentration in the amount of Al 2 O 3, it was calculated the amount of Al 2 O 3. (Present as an alloy powder such as Al metal powder, composite oxide of alumina and feldspar and the like are not included) Al amount, by dissolving the wire the total amount to aqua regia by "acid decomposition method", Al 2 was insoluble By filtering the O 3 source (composite oxide such as alumina and feldspar) and using the solution as the Al source (alloy powder such as Al metal powder) contained in the wire 1, the “ICP emission spectroscopy” is used. The presence of Al was determined as an Al amount (alloy powder such as Al metal powder).

Figure 2011025271
Figure 2011025271

Figure 2011025271
Figure 2011025271

作製されたフラックス入りワイヤを用いて、以下に示す方法で、耐高温割れ性、機械的性質(引張強さ、吸収エネルギー)、溶接作業性について評価した。その評価結果に基づいて、実施例および比較例のフラックス入りワイヤの総合評価を行った。   Using the prepared flux-cored wire, hot cracking resistance, mechanical properties (tensile strength, absorbed energy), and welding workability were evaluated by the following methods. Based on the evaluation results, comprehensive evaluation of the flux-cored wires of Examples and Comparative Examples was performed.

(耐高温割れ性)
JIS G3106 SM400B鋼(C:0.12質量%、Si:0.2質量%、Mn:1.1質量%、P:0.008質量%、S:0.003質量%を含有し、残部Feおよび不可避的不純物)からなる溶接母材を、表3に示す溶接条件で片面溶接(下向突合せ溶接)した。
(High temperature crack resistance)
JIS G3106 SM400B steel (C: 0.12% by mass, Si: 0.2% by mass, Mn: 1.1% by mass, P: 0.008% by mass, S: 0.003% by mass, balance Fe And a welding base material composed of unavoidable impurities) was subjected to single-sided welding (downward butt welding) under the welding conditions shown in Table 3.

Figure 2011025271
Figure 2011025271

図2に示すように、溶接母材11はV形状の開先を有し、このV形状の開先の裏面には、耐火物12およびアルミニウムテープ13等からなる裏当て材が配置されている。そして、開先角度を35°として、セラミック製の裏当て材が配置されている部分のルート間隔を4mmとした。溶接終了後、初層溶接部(クレータ部を除く)について、X線透過試験(JIS Z 3104)にて、内部割れの有無を確認し、割れ発生部分のトータル長さ測定し、割れ率を算出した。ここで、割れ率は、割れ率W=(割れ発生部分のトータル長さ)/(初層溶接部長さ(クレータ部を除く))×100により算出される。その割れ率で耐高温割れ性を評価した。評価基準は、割れ率0%のとき「優れている:○」、割れ有りのとき「劣っている:×」とした。その結果を表4、表5に示す。   As shown in FIG. 2, the welding base material 11 has a V-shaped groove, and a backing material made of a refractory 12 and an aluminum tape 13 is disposed on the back surface of the V-shaped groove. . The groove angle was set to 35 °, and the root interval of the portion where the ceramic backing material was disposed was set to 4 mm. After welding, the first layer welded part (excluding the crater part) is checked for internal cracks in the X-ray transmission test (JIS Z 3104), the total length of the cracked part is measured, and the cracking rate is calculated. did. Here, the cracking rate is calculated by the cracking rate W = (total length of cracked portion) / (first layer welded portion length (excluding crater portion)) × 100. The hot crack resistance was evaluated based on the crack rate. The evaluation criteria were “excellent: ○” when the crack rate was 0%, and “inferior: ×” when there was a crack. The results are shown in Tables 4 and 5.

(機械的性質)
JIS Z3313に準じて、引張強さ、靭性の評価基準としての0℃吸収エネルギーについて評価した。引張強さの評価基準は、490MPa以上640MPa以下のとき「優れている:○」、490MPa未満または640MPa超のとき「劣っている:×」とした。0℃吸収エネルギーの評価基準は、60J以上のとき「優れている:○」、60J未満のとき「劣っている:×」とした。さらに、JIS Z3313に準じて、伸びを評価する場合には、その評価基準は、22%以上のとき「優れている:○」、22%未満のとき「劣っている:×」とした。その結果を表4、表5に示す。
(mechanical nature)
According to JIS Z3313, the 0 ° C. absorbed energy as an evaluation standard of tensile strength and toughness was evaluated. The evaluation standard of the tensile strength was “excellent: ◯” when it was 490 MPa or more and 640 MPa or less, and “poor: x” when it was less than 490 MPa or more than 640 MPa. The evaluation standard of the 0 ° C. absorbed energy was “excellent: ○” when it was 60 J or more, and “inferior: ×” when it was less than 60 J. Furthermore, when evaluating elongation according to JIS Z3313, the evaluation criterion was “excellent: ◯” when 22% or more, and “inferior: ×” when less than 22%. The results are shown in Tables 4 and 5.

(溶接作業性)
耐高温割れ性と同様の溶接母材を使用して、下向すみ肉溶接、水平すみ肉溶接、立向上進すみ肉溶接、立向下進すみ肉溶接の4種の溶接を行い、作業性を官能評価した。ここで、下向すみ肉溶接試験、水平すみ肉溶接試験および立向下進溶接試験の溶接条件は、前記耐高温割れ性と同様とした(表3参照)。立向上進すみ肉溶接試験の溶接条件は、溶接電流200〜220A、アーク電圧24〜27Vとした。なお、評価基準は、スパッタ発生、ヒューム発生、ビード垂れ、ビード外観不良等に加え、低温割れやブローホール、生産中の断線等の溶接不良が発生しないとき「優れている:○」、溶接不良が発生したとき「劣っている:×」とした。その結果を表4、表5に示す。
(Welding workability)
Using weld base material similar to hot cracking resistance, 4 types of welding, vertical fillet welding, horizontal fillet welding, vertical improvement fillet welding, vertical down fillet welding, are performed. The sensory evaluation. Here, the welding conditions of the downward fillet welding test, the horizontal fillet welding test, and the vertical downward welding test were the same as those of the hot crack resistance (see Table 3). The welding conditions for the vertical improvement fillet welding test were a welding current of 200 to 220 A and an arc voltage of 24 to 27V. The evaluation criteria are “Excellent: ○” when welding failure such as low-temperature cracking, blow-holes, and disconnection during production does not occur in addition to spatter generation, fume generation, bead sagging, and poor bead appearance. When it occurred, it was set as “Inferior: x”. The results are shown in Tables 4 and 5.

(総合評価)
総合評価の評価基準は、前記評価項目のうち、耐高温割れ性が「○」かつ機械的性質および溶接作業性が「○」のとき「優れている:○」、前記評価項目の少なくとも1つが「×」のとき「劣っている:×」とした。その結果を表4、表5に示す。
(Comprehensive evaluation)
The evaluation criteria of the comprehensive evaluation are “Excellent: ○” when the hot crack resistance is “◯” and the mechanical properties and welding workability are “◯” among the evaluation items, and at least one of the evaluation items is When it was “x”, it was “inferior: x”. The results are shown in Tables 4 and 5.

Figure 2011025271
Figure 2011025271

Figure 2011025271
Figure 2011025271

表1、表4に示すように、実施例(No.1〜20)は、全てのワイヤ成分が本発明の範囲を満足するため、耐高温割れ性、機械的性質および溶接作業性の全てにおいて優れ、総合評価においても、優れていた。   As shown in Tables 1 and 4, in Examples (Nos. 1 to 20), all the wire components satisfy the scope of the present invention. Therefore, in all of hot crack resistance, mechanical properties and welding workability. Excellent and excellent in overall evaluation.

表2、表5に示すように、比較例(No.21)は、C量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.22)は、C量が上限値を超えるため、機械的性質および耐高温割れ性および溶接作業性に劣り、総合評価も劣っていた。比較例(No.23)は、Si量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.24)は、Si量が上限値を超えるため、耐高温割れ性に劣り、総合評価も劣っていた。   As shown in Tables 2 and 5, the comparative example (No. 21) was inferior in hot-cracking resistance and mechanical properties and inferior in overall evaluation because the C content was less than the lower limit. In Comparative Example (No. 22), the amount of C exceeded the upper limit value, so that the mechanical properties, hot cracking resistance and welding workability were poor, and the overall evaluation was also poor. In Comparative Example (No. 23), since the Si amount was less than the lower limit value, the welding workability was inferior and the overall evaluation was also inferior. The comparative example (No. 24) was inferior in hot cracking resistance and inferior in overall evaluation because the Si amount exceeded the upper limit.

比較例(No.25)は、Mn量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.26)は、Mn量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。比較例(No.27)は、Ti量が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.28)は、Ti量が上限値を超えるため、耐高温割れ性および機械的性質および溶接作業性に劣り、総合評価も劣っていた。   Since the amount of Mn was less than a lower limit, the comparative example (No. 25) was inferior in hot cracking resistance and mechanical properties, and was inferior in overall evaluation. In Comparative Example (No. 26), since the amount of Mn exceeded the upper limit, the mechanical properties and welding workability were inferior, and the overall evaluation was also inferior. In Comparative Example (No. 27), since the Ti amount was less than the lower limit value, the hot crack resistance was inferior, and the overall evaluation was also inferior. The comparative example (No. 28) was inferior in hot crack resistance, mechanical properties, and welding workability because the Ti amount exceeded the upper limit, and the overall evaluation was also inferior.

比較例(No.29)は、TiO量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.30)は、TiO量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.31)は、Al量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.32)は、Al量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。 In Comparative Example (No. 29), the amount of TiO 2 was less than the lower limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 30), the amount of TiO 2 exceeded the upper limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 31), since the Al amount was less than the lower limit, the hot crack resistance and mechanical properties were inferior, and the overall evaluation was also inferior. The comparative example (No. 32) was inferior in mechanical properties and welding workability because the Al amount exceeded the upper limit, and the overall evaluation was also inferior.

比較例(No.33)は、Al量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.34)は、Al量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.35)は、Mg量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.36)は、Mg量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。 Since the amount of Al 2 O 3 was less than the lower limit value in the comparative example (No. 33), the welding workability was inferior and the overall evaluation was also inferior. The comparative example (No. 34) was inferior in welding workability and inferior in overall evaluation because the amount of Al 2 O 3 exceeded the upper limit. In Comparative Example (No. 35), the amount of Mg was less than the lower limit value, so the hot crack resistance and mechanical properties were inferior, and the overall evaluation was also inferior. The comparative example (No. 36) was inferior in mechanical properties and welding workability because the amount of Mg exceeded the upper limit, and the overall evaluation was also inferior.

比較例(No.37)は、N量が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.38)は、N量が上限値を超えるため、機械的特性および溶接作業性に劣り、総合評価も劣っていた。比較例(No.39)は、フラックス充填率が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.40)は、フラックス充填率が上限値を超えるため、ワイヤ生産中に断線が発生し、総合評価としては劣っていた。   In Comparative Example (No. 37), since the N amount was less than the lower limit value, the hot crack resistance was inferior, and the overall evaluation was also inferior. The comparative example (No. 38) was inferior in mechanical properties and welding workability because the N amount exceeded the upper limit, and the overall evaluation was also inferior. The comparative example (No. 39) had poor flux workability and poor overall evaluation because the flux filling rate was less than the lower limit. In the comparative example (No. 40), since the flux filling rate exceeded the upper limit, disconnection occurred during wire production, and the overall evaluation was inferior.

以上の結果から、実施例(No.1〜20)は、比較例(No.21〜40)と比べて、フラックス入りワイヤ1として優れていることが確認された。   From the above results, it was confirmed that the examples (Nos. 1 to 20) are superior as the flux-cored wire 1 as compared with the comparative examples (Nos. 21 to 40).

1 フラックス入りワイヤ(ワイヤ)
2 鋼製外皮
3 フラックス
4 継目
11 溶接母材
12 耐火物
13 アルミニウムテープ
1 Flux-cored wire (wire)
2 Steel outer shell 3 Flux 4 Seam 11 Welding base material 12 Refractory 13 Aluminum tape

Claims (1)

軟鋼または高張力鋼からなる鋼板の溶接に使用され、鋼製外皮内にフラックスを充填してなるフラックス入りワイヤであって、
ワイヤ全質量に対するフラックス充填率が10〜25質量%であり、
ワイヤ全質量に対して、
C:0.02〜0.10質量%、
Si:0.05〜1.50質量%、
Mn:1.7〜4.0質量%、
Ti:0.05〜1.00質量%、
TiO:5.0〜8.0質量%、
Al:0.20〜1.50質量%、
Al:0.05〜1.0質量%、
Mg:0.3〜2.0質量%、
N:0.005〜0.035質量%を含有し、残部がFeおよび不可避的不純物からなる
ことを特徴とするフラックス入りワイヤ。
It is used for welding steel plates made of mild steel or high-tensile steel, and is a flux-cored wire in which flux is filled in a steel outer shell,
The flux filling rate with respect to the total mass of the wire is 10 to 25% by mass,
For the total mass of the wire
C: 0.02-0.10 mass%,
Si: 0.05-1.50 mass%,
Mn: 1.7-4.0% by mass,
Ti: 0.05 to 1.00% by mass,
TiO 2: 5.0 to 8.0 wt%,
Al: 0.20 to 1.50 mass%,
Al 2 O 3: 0.05~1.0 wt%,
Mg: 0.3 to 2.0 mass%,
N: A flux-cored wire containing 0.005 to 0.035 mass%, the balance being Fe and inevitable impurities.
JP2009172504A 2009-07-23 2009-07-23 Flux cored wire Expired - Fee Related JP5351641B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009172504A JP5351641B2 (en) 2009-07-23 2009-07-23 Flux cored wire
CN201010237026XA CN101961823B (en) 2009-07-23 2010-07-21 Welding wire filled with flux
KR1020100070709A KR101144577B1 (en) 2009-07-23 2010-07-22 Flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172504A JP5351641B2 (en) 2009-07-23 2009-07-23 Flux cored wire

Publications (2)

Publication Number Publication Date
JP2011025271A true JP2011025271A (en) 2011-02-10
JP5351641B2 JP5351641B2 (en) 2013-11-27

Family

ID=43514960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172504A Expired - Fee Related JP5351641B2 (en) 2009-07-23 2009-07-23 Flux cored wire

Country Status (3)

Country Link
JP (1) JP5351641B2 (en)
KR (1) KR101144577B1 (en)
CN (1) CN101961823B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107254564B (en) * 2017-05-24 2019-03-26 马鞍山市兴达冶金新材料有限公司 A kind of production method and its production core-spun yarn of high-performance micro alloyed steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164184A (en) * 1993-12-10 1995-06-27 Nippon Steel Corp Flux cored wire for gas shielded arc welding
KR20020008681A (en) * 2000-07-25 2002-01-31 이봉주 Flux cored wire for co2 gas shielded arc welding
JP2003136280A (en) * 2001-11-05 2003-05-14 Nippon Steel Corp Flux cored wire for welding austenitic stainless steel refining solidified crystal grain
KR20030049737A (en) * 2001-12-17 2003-06-25 현대종합금속 주식회사 A gas shield arc welding flux cored wire
JP2008087044A (en) * 2006-10-02 2008-04-17 Kobe Steel Ltd Flux-cored wire for titania gas-shielded arc welding
JP2009018316A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Flux-cored welding wire for gas shielded arc welding of fire-resistant steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283493A (en) * 1985-06-10 1986-12-13 Daido Steel Co Ltd Flux-cored wire for welding
JPS63273594A (en) * 1987-04-30 1988-11-10 Nippon Steel Corp Flux cored wire for gas shielding arc welding
JP3758040B2 (en) * 2002-07-26 2006-03-22 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP4886440B2 (en) * 2006-09-12 2012-02-29 株式会社神戸製鋼所 High strength weld metal with excellent low temperature toughness
JP5345770B2 (en) * 2007-07-27 2013-11-20 株式会社神戸製鋼所 Titanya flux cored wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164184A (en) * 1993-12-10 1995-06-27 Nippon Steel Corp Flux cored wire for gas shielded arc welding
KR20020008681A (en) * 2000-07-25 2002-01-31 이봉주 Flux cored wire for co2 gas shielded arc welding
JP2003136280A (en) * 2001-11-05 2003-05-14 Nippon Steel Corp Flux cored wire for welding austenitic stainless steel refining solidified crystal grain
KR20030049737A (en) * 2001-12-17 2003-06-25 현대종합금속 주식회사 A gas shield arc welding flux cored wire
JP2008087044A (en) * 2006-10-02 2008-04-17 Kobe Steel Ltd Flux-cored wire for titania gas-shielded arc welding
JP2009018316A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Flux-cored welding wire for gas shielded arc welding of fire-resistant steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire

Also Published As

Publication number Publication date
KR20110010065A (en) 2011-01-31
KR101144577B1 (en) 2012-05-15
CN101961823B (en) 2012-08-29
JP5351641B2 (en) 2013-11-27
CN101961823A (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5416605B2 (en) Flux cored wire
JP5438663B2 (en) Flux cored wire
JP5400461B2 (en) Flux cored wire
JP5359561B2 (en) Flux-cored wire for high-tensile steel
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP5400472B2 (en) Flux cored wire
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP5438664B2 (en) Flux cored wire
JP5314339B2 (en) Flux cored wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
KR101171445B1 (en) Flux cored wire
JP5459083B2 (en) Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP6453178B2 (en) Flux-cored wire for gas shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5351641B2 (en) Flux cored wire
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP6726008B2 (en) Flux-cored wire for gas shield arc welding
KR20150123483A (en) Flux cored wire for co2 gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees