JP5558406B2 - Flux-cored wire for carbon dioxide shielded arc welding - Google Patents

Flux-cored wire for carbon dioxide shielded arc welding Download PDF

Info

Publication number
JP5558406B2
JP5558406B2 JP2011097677A JP2011097677A JP5558406B2 JP 5558406 B2 JP5558406 B2 JP 5558406B2 JP 2011097677 A JP2011097677 A JP 2011097677A JP 2011097677 A JP2011097677 A JP 2011097677A JP 5558406 B2 JP5558406 B2 JP 5558406B2
Authority
JP
Japan
Prior art keywords
wire
weld metal
welding
flux
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011097677A
Other languages
Japanese (ja)
Other versions
JP2012228704A (en
Inventor
竜一 志村
聖人 笹木
正明 鳥谷部
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2011097677A priority Critical patent/JP5558406B2/en
Publication of JP2012228704A publication Critical patent/JP2012228704A/en
Application granted granted Critical
Publication of JP5558406B2 publication Critical patent/JP5558406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、炭酸ガスシールドアーク溶接用フラックス入りワイヤに関し、特に、高能率に溶接施工が可能な大入熱及び高パス間温度の溶接施工条件で引張強さが590〜740MPa級の高張力鋼を溶接する場合に、全姿勢溶接においての溶接作業性に優れ、機械的性能に優れた溶接金属を得ることができる炭酸ガスシールドアーク溶接用フラックス入りワイヤに関する。   TECHNICAL FIELD The present invention relates to a flux-cored wire for carbon dioxide shielded arc welding, and in particular, a high-tensile steel having a tensile strength of 590 to 740 MPa under welding conditions of high heat input and high-pass temperature capable of high-efficiency welding. It is related with the flux cored wire for carbon dioxide shielded arc welding which can obtain the weld metal which is excellent in welding work nature in all position welding, and excellent in mechanical performance.

近年、建築鉄骨分野において、溶接施工のさらなる能率向上を図るため、大入熱及び高パス間温度の溶接施工条件に対応するガスシールドアーク溶接用ソリッドワイヤが開発されており、その成分組成の一例がJIS Z3312 YGW18に規定されている。このガスシールドアーク溶接用ソリッドワイヤは、溶接金属の強度及び靭性の低下を招くことなく溶接施工が可能な条件として、引張強さが490MPa級の高張力鋼に対して、最大入熱40kJ/cm、最高パス間温度350℃の溶接施工条件が許容される。また、引張強さが520MPa級の高張力鋼に対しては、最大入熱30kJ/cm、最高パス間温度250℃の溶接施工条件が許容される。   In recent years, in order to further improve the efficiency of welding work in the field of building steel frames, solid wire for gas shielded arc welding has been developed that supports welding conditions with high heat input and high interpass temperature. Is defined in JIS Z3312 YGW18. This solid wire for gas shielded arc welding has a maximum heat input of 40 kJ / cm with respect to high-tensile steel with a tensile strength of 490 MPa class as a condition that enables welding work without reducing the strength and toughness of the weld metal. Welding conditions with a maximum interpass temperature of 350 ° C. are acceptable. For high-tensile steel with a tensile strength of 520 MPa, welding conditions with a maximum heat input of 30 kJ / cm and a maximum interpass temperature of 250 ° C. are allowed.

このような大入熱及び高パス間温度の溶接施工条件に対応したガスシールドアーク溶接用ソリッドワイヤとしては、例えば、特開平10−230387号公報(特許文献1)、特開平11−90678号公報(特許文献2)及び特開2001−287086号公報(特許文献3)等にあるように、Mo、Cr等を多く含むものが提案されている。このようなソリッドワイヤによれば、大入熱及び高パス間温度の溶接施工条件においても強度を確保することが可能であるが、ソリッドワイヤの場合、立向上進溶接においては溶融メタルが垂れ易いため、立向上進溶接で良好な溶接作業性を確保しつつ、高能率に溶接施工が可能な溶接施工条件で溶接するのは困難である。   As solid wires for gas shielded arc welding corresponding to such welding conditions of high heat input and high pass temperature, for example, Japanese Patent Application Laid-Open No. 10-230387 (Patent Document 1) and Japanese Patent Application Laid-Open No. 11-90678. As described in (Patent Document 2) and Japanese Patent Application Laid-Open No. 2001-287086 (Patent Document 3), those containing a large amount of Mo, Cr, and the like have been proposed. According to such a solid wire, it is possible to ensure strength even under welding conditions of high heat input and high-pass temperature, but in the case of solid wire, molten metal tends to sag in the vertical improvement welding. For this reason, it is difficult to perform welding under welding conditions that enable high-efficiency welding work while ensuring good welding workability by vertical improvement welding.

フラックス入りワイヤにより立向上進溶接性を向上した例として、特開平9−262693号公報(特許文献4)、特開2004−34078号公報(特許文献5)、特開2008−87044号公報(特許文献6)等に記載のものが提案されている。しかしながら、これらに記載の何れのフラックス入りワイヤも、高能率に溶接施工が可能な溶接入熱20〜40kJ/cm、パス間温度200〜350℃の溶接施工条件において得られる溶接金属の強度及び靭性が充分ではない。   As examples of improving the vertical weldability by the flux-cored wire, JP-A-9-262893 (Patent Document 4), JP-A-2004-34078 (Patent Document 5), JP-A-2008-87044 (Patent Document) Documents described in Document 6) have been proposed. However, the strength and toughness of the weld metal obtained in any of the flux-cored wires described therein can be obtained under welding conditions of welding heat input of 20 to 40 kJ / cm and inter-pass temperature of 200 to 350 ° C. that can be welded with high efficiency. Is not enough.

このような課題に対応するため、本願発明者らは、特開2011−25298号公報(特許文献7)で提案しているように、高能率に溶接施工が可能な大入熱及び高パス間温度の溶接施工条件の下で、良好な溶接作業性が得られるとともに、機械的性能に優れた溶接金属が得られるフラックス入りワイヤを開発している。しかし、このフラックス入りワイヤでは、520MPa級高張力鋼に対応できる強度と0℃での靭性とに優れた溶接金属は確保できるが、さらなる高強度鋼に対応できる強度とさらなる低温での靭性とについて、要求される性能を十分確保できていないという問題があった。   In order to cope with such a problem, the inventors of the present application proposed a high heat input and a high pass interval capable of high-efficiency welding as proposed in Japanese Patent Application Laid-Open No. 2011-25298 (Patent Document 7). We are developing flux-cored wires that can achieve good welding workability and temperature-welded metal under high temperature welding conditions. However, with this flux-cored wire, it is possible to secure a weld metal excellent in strength that can handle 520 MPa class high-strength steel and toughness at 0 ° C., but about strength that can handle higher strength steel and toughness at lower temperatures There was a problem that the required performance could not be secured sufficiently.

特開平10−230387号公報JP-A-10-230387 特開平11−90678号公報Japanese Patent Laid-Open No. 11-90678 特開2001−287086号公報JP 2001-287086 A 特開平9−262693号公報JP-A-9-262893 特開2004−34078号公報JP 2004-34078 A 特開2008−87044号公報JP 2008-87044 A 特開2011−25298号公報JP 2011-25298 A

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、シールドガスに炭酸ガスを用い、高能率に溶接施工が可能な溶接入熱20〜40kJ/cm、パス間温度200〜350℃の溶接施工条件において、全姿勢溶接において溶接作業性が良好であり、さらに590〜740MPa級の強度と−40℃で良好な靭性との溶接金属が得られる炭酸ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to use welding heat input of 20 to 40 kJ, which uses carbon dioxide as a shielding gas and can be welded with high efficiency. / Cm, under welding conditions of 200 to 350 ° C between passes, welding workability is good in all-position welding, and a weld metal having a strength of 590 to 740 MPa and good toughness at -40 ° C is obtained. An object of the present invention is to provide a flux-cored wire for carbon dioxide shielded arc welding.

本発明の要旨は、鋼製外皮にフラックスを充填してなる炭酸ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、C:0.03〜0.10%、Si:0.1〜0.4%、Mn:1.7〜2.8%、Mo:0.1〜0.3%、Ni:0.1〜3.0%、Mg:0.35〜0.65%、B:0.0010〜0.0100%、Ti酸化物のTiO2換算値:4.8〜6.5%、Si酸化物のSiO2換算値:0.3〜0.8%、Zr酸化物のZrO2換算値:0.2〜0.5%、AlのAl23換算値及びAl23の1種又は2種の合計:0.4〜1.2%、アルカリ金属化合物のNa2O換算値及びK2O換算値の1種又は2種の合計:0.06〜0.20%を含有し、弗素化合物のF換算値が0.03%以下であり、残部が鉄粉、鉄合金のFe分、鋼製外皮のFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is that, in a flux-cored wire for carbon dioxide shielded arc welding, in which a steel outer shell is filled with flux, C: 0.03 to 0.10%, Si: 0.0. 1 to 0.4%, Mn: 1.7 to 2.8%, Mo: 0.1 to 0.3%, Ni: 0.1 to 3.0%, Mg: 0.35 to 0.65% B: 0.0010 to 0.0100%, TiO 2 equivalent value of Ti oxide: 4.8 to 6.5%, SiO 2 equivalent value of Si oxide: 0.3 to 0.8%, Zr oxidation ZrO 2 converted value of the product: 0.2 to 0.5%, Al 2 O 3 converted value of Al and the total of one or two of Al 2 O 3 : 0.4 to 1.2%, alkali metal compound Of Na 2 O converted value and K 2 O converted value of one or two kinds: 0.06 to 0.20% in total, F converted value of fluorine compound is 0.03% It is the following, The remainder consists of iron powder, Fe part of an iron alloy, Fe part of a steel outer shell, and an unavoidable impurity.

また、ワイヤの全水素量が20ppm以下であることも特徴とする炭酸ガスシールドアーク溶接用フラックス入りワイヤにある。   Further, the present invention provides a flux-cored wire for carbon dioxide shielded arc welding, wherein the total hydrogen content of the wire is 20 ppm or less.

本発明に係る炭酸ガスシールドアーク溶接用フラックス入りワイヤによれば、高能率に溶接施工が可能な大入熱及び高パス間温度の溶接施工条件で590〜740MPa級高張力鋼を溶接した場合でも、全姿勢溶接においてアークが安定であるとともにスパッタ発生量が少なく、ビード形状及びスラグ剥離性など良好な溶接作業性が得られ、かつ、機械的性能、特に−40℃での靭性が良好な溶接金属を得ることが可能となる。   According to the flux-cored wire for carbon dioxide shielded arc welding according to the present invention, even when 590 to 740 MPa class high-tensile steel is welded under the welding conditions of high heat input and high-pass temperature enabling high-efficiency welding. In all position welding, the arc is stable, the amount of spatter is small, good welding workability such as bead shape and slag peelability is obtained, and mechanical performance, particularly toughness at -40 ° C is good. It becomes possible to obtain a metal.

本発明者らは、高能率に溶接施工が可能な大入熱及び高パス間温度の溶接施工条件で溶接した場合においても、全姿勢溶接での溶接作業性が良好であるとともに、強度及び低温靭性をはじめとした機械的性能に優れた溶接金属を得るべく、フラックス入りワイヤの成分組成について種々検討を行った。   The inventors of the present invention have good welding workability in all-position welding as well as strength and low temperature even when welding is performed under the welding conditions of high heat input and high-pass temperature capable of highly efficient welding. In order to obtain a weld metal with excellent mechanical performance including toughness, various investigations were made on the composition of the flux-cored wire.

この結果、最大入熱量40kJ/cm、最高パス間温度350℃で高能率に溶接施工が可能な条件で多層盛溶接した場合において、十分な溶接金属の強度及び低温靭性を確保するためには、ワイヤ中のC、Mn、Moを適正量とすることにより溶接金属の強度を確保し、さらにSiを低く制限し、Mg、Ni、Bを適正量とすることによって良好な溶接金属の強度及び低温靭性が得られることが判明した。   As a result, in order to ensure sufficient weld metal strength and low-temperature toughness when multi-layer welding is performed under conditions where the maximum heat input is 40 kJ / cm and the temperature between the maximum passes is 350 ° C. and can be welded with high efficiency, Strength of weld metal is ensured by making C, Mn, and Mo in the wire proper, and Si is restricted to a low level. It has been found that toughness can be obtained.

また、全姿勢溶接における溶接作業性は、TiO2、SiO2、ZrO2、Al、Al23、Na2O及びK2Oを適正量にすると共に、弗素化合物を低減することによって良好になることを見出した。 In addition, the welding workability in all-position welding is improved by making TiO 2 , SiO 2 , ZrO 2 , Al, Al 2 O 3 , Na 2 O and K 2 O appropriate amounts and reducing fluorine compounds. I found out that

以下、本発明に係るフラックス入りワイヤの成分(以下、ワイヤ成分という。)と、その組成の限定理由について説明する。なお、各ワイヤ成分は、フラックス入りワイヤの鋼製外皮又はフラックスの少なくとも一方に含有されるものである。以下の説明において、各ワイヤ成分の組成は、各ワイヤ成分の鋼製外皮とフラックスとでの合計質量をワイヤ全質量に対する質量%での割合で表すこととし、その質量%を表すときには単に%と記載して表すこととする。   Hereinafter, the components of the flux-cored wire according to the present invention (hereinafter referred to as wire components) and the reasons for limiting the composition will be described. Each wire component is contained in at least one of the steel outer sheath or flux of the flux-cored wire. In the following description, the composition of each wire component is represented by the total mass of the steel outer sheath and the flux of each wire component as a percentage by mass% with respect to the total mass of the wire. It shall be described and expressed.

[C:0.03〜0.10%]
Cは、溶接金属の焼入れ性を高め、溶接金属の強度及び低温靭性を確保するうえで重要な元素である。ワイヤ成分のCが0.03%未満では、必要な溶接金属の強度及び低温靭性が得られない。一方、ワイヤ成分のCが0.10%を超えると、溶接金属の高温割れ感受性が高くなり、クレータ割れ等の高温割れが生じやすくなる。また、溶接金属の強度が過度に高くなり溶接金属の低温靭性がかえって低下する。従って、ワイヤ成分のCは0.03〜0.10%とする。なお、ワイヤ成分のC源としては、鋼製外皮中のC、フラックス中のC単体、鉄粉及び金属粉中のC等がある。
[C: 0.03-0.10%]
C is an important element for enhancing the hardenability of the weld metal and ensuring the strength and low temperature toughness of the weld metal. If the C of the wire component is less than 0.03%, the required weld metal strength and low temperature toughness cannot be obtained. On the other hand, if the C of the wire component exceeds 0.10%, the hot metal is susceptible to high temperature cracking, and high temperature cracking such as crater cracking is likely to occur. In addition, the strength of the weld metal becomes excessively high, and the low temperature toughness of the weld metal is reduced. Therefore, C of the wire component is set to 0.03 to 0.10%. Examples of the C source of the wire component include C in the steel outer shell, C alone in the flux, C in iron powder and metal powder, and the like.

[Si:0.1〜0.4%]
Siは、溶接金属の酸素量を低下させて溶接金属の低温靭性を向上させるうえで重要な元素であるが、大入熱及び高パス間温度での溶接施工条件においては、溶接金属中のSiが過多であると、再熱部においてマルテンサイトと残留オーステナイトの混合組織(以下、MAという。)の生成が促進され、かえって溶接金属の低温靭性が低下してしまう。しかしながら、ワイヤ成分のSiが0.4%以下であれば、−40℃における靭性について許容できる範囲となる。一方、ワイヤ成分のSiが0.1%未満では、脱酸効果が不足するためブローホール等の気孔欠陥が発生する。従って、ワイヤ成分のSiは0.1〜0.4%とする。なお、ワイヤ成分のSi源としては、鋼製外皮中のSi、フラックス中のFe−Si、Fe−Si−Mnのような合金中のSi等がある。
[Si: 0.1 to 0.4%]
Si is an important element for reducing the oxygen content of the weld metal and improving the low temperature toughness of the weld metal. However, in welding conditions with a large heat input and a high interpass temperature, Si in the weld metal If it is excessive, the formation of a mixed structure of martensite and retained austenite (hereinafter referred to as MA) is promoted in the reheated portion, and the low-temperature toughness of the weld metal is deteriorated. However, if Si of the wire component is 0.4% or less, the toughness at −40 ° C. is acceptable. On the other hand, when the wire component Si is less than 0.1%, the deoxidation effect is insufficient, and pore defects such as blow holes are generated. Therefore, Si of the wire component is set to 0.1 to 0.4%. Examples of the Si source of the wire component include Si in the steel outer shell, Si in an alloy such as Fe-Si and Fe-Si-Mn in a flux, and the like.

[Mn:1.7〜2.8%]
Mnは、溶接金属の酸素量を下げて必要な溶接金属の低温靭性を得ると共に、溶接金属の焼き入れ性を高めて溶接金属の強度を確保する上で重要な元素である。ワイヤ成分のMnが1.7%未満であると、大入熱及び高パス間温度の溶接施工条件の下ではMnによる充分な効果が得られず、溶接金属の強度及び低温靭性の低下を招く。ワイヤ成分のMnが2.8%を超えると、溶接金属の強度が過度に高くなり溶接金属の低温靭性がかえって低下する。従って、ワイヤ成分のMnは1.7〜2.8%とする。ワイヤ成分のMn源としては、鋼製外皮中のMn、フラックス中の金属Mn、Fe−Mn、Fe−Si−Mnのような合金中のMn等がある。
[Mn: 1.7 to 2.8%]
Mn is an important element for reducing the oxygen content of the weld metal to obtain the necessary low temperature toughness of the weld metal and enhancing the hardenability of the weld metal to ensure the strength of the weld metal. If the Mn of the wire component is less than 1.7%, sufficient effects due to Mn cannot be obtained under the welding conditions of high heat input and high pass temperature, leading to a decrease in the strength and low temperature toughness of the weld metal. . If the Mn of the wire component exceeds 2.8%, the strength of the weld metal becomes excessively high, and the low temperature toughness of the weld metal decreases. Therefore, the Mn of the wire component is set to 1.7 to 2.8%. Examples of the Mn source of the wire component include Mn in a steel outer shell, metal Mn in a flux, Mn in an alloy such as Fe—Mn, Fe—Si—Mn, and the like.

[Mo:0.1〜0.3%]
Moは、Mnと同様に微量添加で溶接金属の焼入れ性を高める元素であり、特に、大入熱及び高パス間温度の溶接施工条件の下で強度を確保するために必須となる元素である。ワイヤ成分のMoが0.1%未満であると、必要な溶接金属の強度が得られず溶接金属の低温靭性も低下する。一方、ワイヤ成分のMoが0.3%を超えると、溶接金属の強度が高くなりすぎ溶接金属の低温靭性がかえって低下する。従って、ワイヤ成分のMoは0.1〜0.3%とする。なお、ワイヤ成分のMo源としては、金属Mo、Fe−Moのような合金中のMo等がある。
[Mo: 0.1 to 0.3%]
Mo, like Mn, is an element that enhances the hardenability of the weld metal by adding a small amount, and in particular, is an element that is indispensable to ensure strength under welding conditions of high heat input and high pass temperature. . If the Mo content of the wire component is less than 0.1%, the required weld metal strength cannot be obtained, and the low temperature toughness of the weld metal also decreases. On the other hand, if the Mo of the wire component exceeds 0.3%, the strength of the weld metal becomes too high, and the low temperature toughness of the weld metal is lowered. Therefore, Mo of the wire component is set to 0.1 to 0.3%. In addition, as Mo source of a wire component, there are Mo in an alloy such as metal Mo and Fe—Mo.

[Ni:0.1〜3.0%]
Niは、溶接金属の強度及び低温靭性を向上させる効果がある。ワイヤ成分のNiが0.1%未満では、その効果が不十分となり、溶接金属の強度及び低温靭性の低下を招く。ワイヤ成分のNiが3.0%を超えると、溶接金属の強度が過度に上昇し溶接金属の低温靭性がかえって低下する。従って、ワイヤ成分のNiは0.1〜3.0%とする。なお、ワイヤ成分のNi源としては、金属Ni、Ni−Mgのような合金中のNi等がある。
[Ni: 0.1 to 3.0%]
Ni has the effect of improving the strength and low temperature toughness of the weld metal. If Ni of the wire component is less than 0.1%, the effect becomes insufficient, and the strength and low temperature toughness of the weld metal are reduced. If the wire component Ni exceeds 3.0%, the strength of the weld metal excessively increases and the low-temperature toughness of the weld metal decreases. Therefore, Ni of the wire component is set to 0.1 to 3.0%. Note that the Ni source of the wire component includes metal Ni, Ni in an alloy such as Ni—Mg, and the like.

[Mg:0.35〜0.65%]
Mgは、強脱酸剤として溶接金属の酸素を低減することにより溶接金属の低温靭性を向上させる効果がある。特に、大入熱及び高パス間温度の溶接施工条件では、溶融プールが大きくなって他の脱酸剤(C、Si、Mn)の消耗が多いため、主にMgで脱酸して溶接金属の低温靭性を確保する。ワイヤ成分のMgが0.35%未満であると、溶接金属の酸素が多くなって溶接金属の低温靭性が低下する。一方、ワイヤ成分のMgが0.65%を超えると、スパッタ発生量が多くなる。従って、ワイヤ成分のMgは0.35〜0.65%とする。なお、ワイヤ成分のMg源としては、金属Mg、Al−Mg、Ni−Mgのような合金中のMg等がある。
[Mg: 0.35-0.65%]
Mg has the effect of improving the low temperature toughness of the weld metal by reducing the oxygen of the weld metal as a strong deoxidizer. In particular, under welding conditions of high heat input and high pass temperature, the molten pool becomes large and the consumption of other deoxidizers (C, Si, Mn) is large. Ensure low temperature toughness. If the wire component Mg is less than 0.35%, oxygen in the weld metal increases and the low-temperature toughness of the weld metal decreases. On the other hand, when the wire component Mg exceeds 0.65%, the amount of spatter generated increases. Therefore, Mg of the wire component is set to 0.35 to 0.65%. The Mg source of the wire component includes Mg in an alloy such as metal Mg, Al—Mg, and Ni—Mg.

[B:0.0010〜0.0100%]
Bは、微量の添加により溶接金属の焼入れ性を高めて、溶接金属の低温靭性を向上させる効果がある。ワイヤ成分のBが0.0010%未満では、その効果が不十分となり、溶接金属の低温靭性の低下を招く。ワイヤ成分のBが0.0100%を超えると、溶接金属の高温割れ感受性が高くなり、クレータ割れ等の高温割れが生じやすくなる。また、溶接金属の強度が過大となり溶接金属の低温靭性がかえって低下する。従って、ワイヤ成分のBは0.0010〜0.0100%とする。なお、Bの効果は、金属単体、合金又は酸化物による何れでも発揮することができるため、フラックスに添加する場合の形態は自由である。
[B: 0.0010 to 0.0100%]
B has the effect of increasing the hardenability of the weld metal by adding a small amount and improving the low temperature toughness of the weld metal. If B of the wire component is less than 0.0010%, the effect is insufficient, and the low temperature toughness of the weld metal is reduced. When B of the wire component exceeds 0.0100%, the hot metal is susceptible to high temperature cracking, and high temperature cracking such as crater cracking is likely to occur. In addition, the strength of the weld metal becomes excessive and the low temperature toughness of the weld metal is reduced. Therefore, B of the wire component is set to 0.0010 to 0.0100%. In addition, since the effect of B can be exhibited by any of a single metal, an alloy, or an oxide, the form when added to the flux is arbitrary.

[Ti酸化物のTiO2換算値:4.8〜6.5%]
ルチール、チタンスラグ等のTi酸化物は、アーク安定剤であるとともにビード形状を良好にする効果がある。また、Ti酸化物は、溶融スラグの粘性と融点を適度なものとすることにより、立向上進溶接で溶融メタルが垂れるのを防止する効果がある。さらに、Ti酸化物は、一部がTi酸化物として溶接金属に歩留り、溶接金属のミクロ組織を微細化して溶接金属の低温靭性を向上させる効果がある。Ti酸化物のTiO2換算値が4.8%未満であると、アークが不安定となりスパッタ発生量が多くなるとともに、ビード形状も不良となる。また、立向上進溶接で溶融メタルが垂れるようになる。一方、Ti酸化物のTiO2換算値が6.5%を超えると、アークが安定してスパッタ発生量も少なくなるが、多層盛溶接でスラグ量が多くなり、スラグ剥離性が不良となる。また、溶接金属へのTi酸化物の歩留りが過剰になり、非金属介在物が多くなって溶接金属の低温靭性が低下する。従って、Ti酸化物のTiO2換算値は4.8〜6.5%とする。
[TiO 2 converted value of Ti oxides: 4.8 to 6.5%]
Ti oxides such as rutile and titanium slag are an arc stabilizer and have an effect of improving the bead shape. In addition, the Ti oxide has an effect of preventing the molten metal from dripping in the vertical improvement welding by making the viscosity and melting point of the molten slag moderate. Furthermore, the Ti oxide partly has a yield as a Ti oxide in the weld metal, and has the effect of reducing the microstructure of the weld metal and improving the low temperature toughness of the weld metal. When the TiO 2 conversion value of the Ti oxide is less than 4.8%, the arc becomes unstable, the amount of spatter generated increases, and the bead shape becomes poor. In addition, the molten metal drips during the vertical improvement welding. On the other hand, if the TiO 2 equivalent value of the Ti oxide exceeds 6.5%, the arc becomes stable and the amount of spatter generated decreases, but the amount of slag increases by multi-layer welding, resulting in poor slag peelability. Moreover, the yield of the Ti oxide to the weld metal becomes excessive, and the non-metallic inclusions are increased, so that the low temperature toughness of the weld metal is lowered. Therefore, the TiO 2 equivalent value of the Ti oxide is 4.8 to 6.5%.

[Si酸化物のSiO2換算値:0.3〜0.8%]
珪砂やジルコンサンド、珪酸ソーダ等のSi酸化物は、大入熱及び高パス間温度の溶接施工条件においても溶融スラグの粘性を高め、特に、立向上進溶接でメタル垂れが発生するのを防止してビード形状を平滑にする効果がある。Si酸化物のSiO2換算値が0.3%未満であると、溶融スラグの粘性が低くなり、立向上進溶接でメタル垂れが発生し易くなることにより、ビード形状が凸形となり平滑なビード形状が得られない。一方、0.8%を超えると、溶接金属中のMA生成が促進され、溶接金属の低温靭性が低下する。従って、Si酸化物のSiO2換算値は0.3〜0.8%とする。
[SiO 2 converted value of Si oxide: 0.3 to 0.8%]
Si oxides such as silica sand, zircon sand, and sodium silicate increase the viscosity of molten slag even under welding conditions with high heat input and high pass temperature, and prevent metal dripping from occurring especially during vertical welding. This has the effect of smoothing the bead shape. When the SiO 2 equivalent value of the Si oxide is less than 0.3%, the viscosity of the molten slag becomes low, and metal dripping is likely to occur during vertical welding, so that the bead shape becomes convex and a smooth bead. The shape cannot be obtained. On the other hand, if it exceeds 0.8%, MA production in the weld metal is promoted, and the low temperature toughness of the weld metal is lowered. Therefore, the SiO 2 equivalent value of the Si oxide is set to 0.3 to 0.8%.

[Zr酸化物のZrO2換算値:0.2〜0.5%]
ジルコンサンド、酸化ジルコン等のZr酸化物は、溶融スラグの凝固温度を高くして立向上進溶接で溶融メタルを垂れにくくする効果がある。Zr酸化物のZrO2換算値が0.2%未満であると、立向上進溶接で溶融メタルが垂れ易くなることにより、ビード形状が凸形となり平滑なビード形状が得られない。一方、0.5%を超えると、スラグ巻込みが発生し易くなる。従って、Zr酸化物のZrO2換算値は0.2〜0.5%とする。
[ZrO 2 converted value of Zr oxide: 0.2 to 0.5%]
Zr oxides such as zircon sand and zircon oxide have the effect of increasing the solidification temperature of the molten slag and making it difficult for the molten metal to sag in the vertical improvement welding. If the ZrO 2 conversion value of the Zr oxide is less than 0.2%, the molten metal is likely to sag in the vertical improvement welding, and the bead shape becomes convex and a smooth bead shape cannot be obtained. On the other hand, if it exceeds 0.5%, slag entrainment tends to occur. Therefore, the ZrO 2 conversion value of the Zr oxide is 0.2 to 0.5%.

[AlのAl23換算値及びAl23の1種又は2種の合計:0.4〜1.2%]
Alは、酸化物となって、Al23とともに溶融スラグの粘性及び凝固点を調整することによって、スラグ被包性を高めてビード形状を良好にする効果がある。AlのAl23換算値及びAl23の1種又は2種の合計が0.4%未満であると、立向上進溶接で溶融メタルが垂れ易くなることによりビード形状が凸形となり、平滑なビード形状が得られない。一方、1.2%を超えると、溶接金属中に非金属介在物として残留して溶接金属の低温靭性が低下する。従って、AlのAl23換算値及びAl23の1種又は2種の合計は0.4〜1.2%とする。なお、ワイヤ成分のAl源としては、金属Al、Fe−Alのような合金中のAl等がある。
[Total of Al or Al 2 O 3 converted value of Al and one or two of Al 2 O 3 : 0.4 to 1.2%]
Al becomes an oxide and has the effect of improving the slag encapsulation and improving the bead shape by adjusting the viscosity and freezing point of the molten slag together with Al 2 O 3 . If the Al 2 O 3 conversion value of Al and the total of one or two of Al 2 O 3 is less than 0.4%, the bead shape becomes convex due to the fact that molten metal tends to sag during vertical welding. A smooth bead shape cannot be obtained. On the other hand, if it exceeds 1.2%, it remains as a non-metallic inclusion in the weld metal and the low temperature toughness of the weld metal is lowered. Therefore, the Al 2 O 3 conversion value of Al and the total of one or two of Al 2 O 3 is 0.4 to 1.2%. The Al source of the wire component includes Al in an alloy such as metal Al and Fe—Al.

[アルカリ金属化合物のNa2O換算値及びK2O換算値の1種又は2種の合計:0.06〜0.20%]
カリ長石、珪酸ソーダや珪酸カリからなる水ガラスの固質成分、弗化ソーダや珪弗化カリ等の弗素化合物からのNa及びKは、アーク安定剤及びスラグ形成剤として作用する。アルカリ金属化合物のNa2O換算値及びK2O換算値の1種又は2種の合計が0.06%未満であると、アークが不安定となりスパッタ発生量が多くなると共に、ビード外観が劣化する。一方、0.20%を超えると、スラグ剥離性が不良となる。また、立向上進溶接で溶融メタルが垂れやすくなる。従って、アルカリ金属化合物のNa2O換算値及びK2O換算値の1種又は2種の合計は0.06〜0.20%とする。
[Total of one or two kinds of Na 2 O equivalent value and K 2 O equivalent value of the alkali metal compound: 0.06 to 0.20%]
Solid components of water glass composed of potassium feldspar, sodium silicate and potassium silicate, and Na and K from fluorine compounds such as sodium fluoride and potassium silicofluoride act as arc stabilizers and slag forming agents. When one or two of the sum of terms of Na 2 O values and K 2 O converted value of the alkali metal compound is less than 0.06%, the arc becomes large amount of occurrence of spatter becomes unstable, bead appearance deterioration To do. On the other hand, if it exceeds 0.20%, the slag peelability becomes poor. In addition, the molten metal tends to sag during the vertical improvement welding. Accordingly, the total of one or two of the alkali metal compound Na 2 O equivalent value and K 2 O equivalent value is 0.06 to 0.20%.

[弗素化合物のF換算値:0.03%以下]
弗化ソーダや珪弗化カリ等の弗素化合物は、アークの指向性を高めて安定した溶融プールを形成する効果があるが、大入熱及び高パス間温度の溶接施工条件においては、弗素化合物のF換算値が0.03%超であると、スパッタ発生量が多くなる。従って、弗素化合物のF換算値は0.03%以下とする。
[F conversion value of fluorine compound: 0.03% or less]
Fluorine compounds such as sodium fluoride and potassium silicofluoride have the effect of increasing the directivity of the arc to form a stable molten pool. However, under the conditions of welding with high heat input and high interpass temperature, fluorine compounds If the F-converted value exceeds 0.03%, the amount of spatter generated increases. Therefore, the F-converted value of the fluorine compound is 0.03% or less.

[全水素量:20ppm以下]
ワイヤ中の水素は、溶接金属の拡散性水素源となるので、耐低温割れ性を高める観点からできるだけ低減することが好ましい。ワイヤ中の全水素量が20ppmを超えると、拡散性水素量(JIS Z3118)が4ml/100gを超えるので、多層盛溶接をした場合に低温割れ感受性が高まり、低温割れの可能性が大きくなる。従って、ワイヤ中の全水素量は20ppm以下とすることが好ましい。なお、ワイヤ中の全水素量は、不活性ガス融解熱伝導度法等により測定することができる。また、拡散性水素量は、JIS Z3118に記載の方法により測定することができる。
[Total hydrogen content: 20 ppm or less]
Since hydrogen in the wire serves as a diffusible hydrogen source for the weld metal, it is preferable to reduce it as much as possible from the viewpoint of improving cold cracking resistance. When the total amount of hydrogen in the wire exceeds 20 ppm, the amount of diffusible hydrogen (JIS Z3118) exceeds 4 ml / 100 g, so that the sensitivity to cold cracking is increased when multi-layer welding is performed, and the possibility of cold cracking is increased. Therefore, the total amount of hydrogen in the wire is preferably 20 ppm or less. The total amount of hydrogen in the wire can be measured by an inert gas melting thermal conductivity method or the like. The amount of diffusible hydrogen can be measured by the method described in JIS Z3118.

なお、本発明に係る炭酸ガスシールドアーク溶接用フラックス入りワイヤのその他の成分は、成分調整のために添加した鉄粉、鋼製外皮のFe分、鉄合金(Fe−Si、Fe−Mn等)のFe分及び不可避不純物である。   The other components of the flux-cored wire for carbon dioxide shielded arc welding according to the present invention include iron powder added for component adjustment, Fe content of steel outer sheath, iron alloy (Fe-Si, Fe-Mn, etc.) Fe content and inevitable impurities.

また、本発明に係る炭酸ガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成形し、その内部にフラックスを充填した構造である。本発明に係るフラックス入りワイヤの種類としては、鋼製外皮に継ぎ目が無いワイヤと、鋼製外皮に継ぎ目を有するワイヤとに大別できる。鋼製外皮に継ぎ目がないワイヤは、例えば、予め管状に成形されたパイプ内に開口部から粉状のフラックスを充填し、所定の断面寸法まで伸線加工するか、鋼製フープを管状に湾曲成形しながら内部に粉状のフラックスを充填し、次いで合わせ目を溶接してから所定の断面寸法まで伸線加工して製造される。鋼製外皮に継ぎ目があるワイヤは、例えば、鋼製フープを管状に湾曲成形しながら内部に粉状のフラックスを充填し、次いで所定の断面寸法まで伸線加工して製造される。本発明においては、何れの断面構造のワイヤを採用してもよい。   The flux-cored wire for carbon dioxide shielded arc welding according to the present invention has a structure in which a steel outer shell is formed into a pipe shape and the flux is filled therein. The types of the flux-cored wires according to the present invention can be roughly classified into a wire having no seam in the steel outer shell and a wire having a seam in the steel outer shell. For a wire that has no seam in the steel outer sheath, for example, a powder shaped flux is filled from an opening into a pipe that has been previously formed into a tubular shape, and is drawn to a predetermined cross-sectional dimension, or a steel hoop is bent into a tubular shape. It is manufactured by filling a powdery flux inside while forming, then welding the seam, and then drawing to a predetermined cross-sectional dimension. A wire having a seam in a steel outer shell is manufactured, for example, by filling a powdery flux inside while bending a steel hoop into a tubular shape, and then drawing to a predetermined cross-sectional dimension. In the present invention, a wire having any cross-sectional structure may be adopted.

なお、鋼製外皮に貫通した継ぎ目の無いワイヤは、ワイヤの全水素量を低減することを目的として、650〜1000℃の温度域で焼鈍する熱処理が可能であるうえ、製造後の吸湿がないことから、拡散性水素量を低減して耐低温割れ性の向上を容易に実現できるので、より好ましい。鋼製外皮に継ぎ目を有するワイヤは、耐低温割れ性の向上を図る場合、水素含有量の低いフラックスの選定が必要である。   In addition, the seamless wire that penetrates the steel outer sheath can be heat-treated by annealing in a temperature range of 650 to 1000 ° C. for the purpose of reducing the total hydrogen content of the wire, and does not absorb moisture after manufacturing. Therefore, it is more preferable because the amount of diffusible hydrogen can be reduced and the low temperature cracking resistance can be easily improved. For a wire having a seam in a steel outer shell, it is necessary to select a flux having a low hydrogen content in order to improve cold cracking resistance.

また、本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、シールドガスとして炭酸ガスを使用するガスシールドアーク溶接に用いられる。これは、炭酸ガスがアルゴンを主成分とする混合ガスより安価であることと、大入熱溶接においてアルゴンを主成分とする混合ガスよりシールド性の確保が容易であるという利点があるためである。   The flux-cored wire for gas shielded arc welding according to the present invention is used for gas shielded arc welding using carbon dioxide as a shielding gas. This is because carbon dioxide gas has the advantage that it is cheaper than a mixed gas containing argon as a main component, and that shielding properties are easier to secure than a mixed gas containing argon as a main component in large heat input welding. .

以下、本発明の効果を実施例により具体的に説明する。   Hereinafter, the effect of the present invention will be described in detail with reference to examples.

実施例では、まず、JIS G3141に記載のSPCCを鋼製外皮として使用して、下記の表1に示すワイヤNo.1〜25の成分組成のフラックス入りワイヤを試作した。各試作ワイヤのワイヤ径は1.4mmとした。ワイヤNo.23〜25を除く各試作ワイヤは、伸線加工の途中で650〜800℃の温度域で焼鈍を実施した。このうち、鋼製外皮に継ぎ目を有するワイヤNo.4,5及び21は、Ar雰囲気中で焼鈍した後、ワイヤ製造後にビニール製の袋に封入して溶接時まで保管した。また、ワイヤNo.23〜25は、焼鈍及びビニール製の袋への封入は実施しなかった。鋼製外皮に継ぎ目の無いワイヤは、ワイヤ表面に銅めっきを施した。なお、表1において、フラックス入りワイヤの成分組成が本発明において規定した範囲外であるものについては下線を付すこととした。   In Examples, first, SPCC described in JIS G3141 was used as a steel outer sheath, and wire Nos. Shown in Table 1 below were used. A flux-cored wire having a component composition of 1 to 25 was manufactured. The diameter of each prototype wire was 1.4 mm. Wire No. Each prototype wire except 23 to 25 was annealed in the temperature range of 650 to 800 ° C. during the drawing process. Of these, the wire No. having a seam in the steel outer sheath. Nos. 4, 5 and 21 were annealed in an Ar atmosphere, sealed in a vinyl bag after wire production, and stored until welding. In addition, wire No. In Nos. 23 to 25, annealing and encapsulation in a plastic bag were not performed. Wires that were seamless to the steel skin were plated with copper on the wire surface. In Table 1, those in which the component composition of the flux-cored wire is outside the range defined in the present invention are underlined.

Figure 0005558406
Figure 0005558406

各試作ワイヤは、その各試作ワイヤを実際に用いて、高能率に溶接施工が可能な溶接入熱35〜40kJ/cm、パス間温度200〜350℃の溶接施工条件の下で立向上進多層溶接を行った時の溶接作業性と、溶接後に得られる溶接金属の機械的性能及び拡散性水素量を調査した。また、各試作ワイヤは、溶接金属の耐低温割れ性を調査するため、後述の溶接割れ試験を行なった。   Each prototype wire is a multi-layer that can be improved under the welding conditions of 35 to 40 kJ / cm welding heat input and 200 to 350 ° C between passes, which can be welded efficiently by using each prototype wire. We investigated the welding workability when welding, the mechanical performance and diffusible hydrogen content of the weld metal obtained after welding. Each prototype wire was subjected to a weld cracking test described later in order to investigate the low temperature cracking resistance of the weld metal.

立向上進多層溶接は、板厚25mmの建築構造用鋼であり引張強さが590MPa級の鋼SA440Bを試験体として用い、その試験体について開先角度35度、ルート間隔7mmとしたうえで裏当てを配置した条件として、下記の表2に示す溶接条件の下で、試験体を各試作ワイヤによりガスシールドアーク溶接することにより行った。立向上進多層溶接では、アークの安定性、スパッタの発生状態、ビード形状及びスラグ剥離性を調査して、その調査結果に基づき各試作ワイヤを評価した。   Multi-layer welding is a steel for building structures with a plate thickness of 25 mm, and steel 440 B with a tensile strength of 590 MPa is used as a test specimen. The test specimen has a groove angle of 35 degrees and a root interval of 7 mm. As a condition for placing the abutment, the test specimen was subjected to gas shield arc welding with each prototype wire under the welding conditions shown in Table 2 below. In the vertical improvement multi-layer welding, the arc stability, spatter generation state, bead shape and slag peelability were investigated, and each prototype wire was evaluated based on the investigation results.

Figure 0005558406
Figure 0005558406

立向上進多層溶接により得られた溶接金属は、溶接金属の板厚中央部から引張試験片(JIS Z2241 10号)及びシャルピー衝撃試験片(JIS Z2242 Vノッチ試験片)を採取して、それぞれJIS Z2241に記載の方法及びJIS Z2242に記載の方法に準拠して引張試験及びシャルピー衝撃試験を行ない、その試験結果に基づき各試作ワイヤを評価した。このとき、シャルピー衝撃試験は、試験温度を−40℃として各試作ワイヤにつき三回分の試験を行ない、各試験により得られた吸収エネルギーの平均値を求めることとした。引張強さは590〜740MPaの範囲内、吸収エネルギーの平均値は70J以上を合格とした。   The weld metal obtained by vertical multi-layer welding was obtained by collecting a tensile test piece (JIS Z2241 No. 10) and a Charpy impact test piece (JIS Z2242 V-notch test piece) from the center of the weld metal thickness. A tensile test and a Charpy impact test were performed based on the method described in Z2241 and the method described in JIS Z2242, and each prototype wire was evaluated based on the test results. At this time, in the Charpy impact test, the test temperature was set to −40 ° C., the test was performed three times for each prototype wire, and the average value of the absorbed energy obtained by each test was determined. The tensile strength was within a range of 590 to 740 MPa, and the average value of absorbed energy was 70 J or more.

拡散性水素量は、JIS Z3118に記載の方法に準拠して測定した。拡散性水素量は4ml/100g以下を良好とした。ワイヤの全水素量は、(株)堀場製作所製の水素分析装置(EMGA−621)を用いて測定した。   The amount of diffusible hydrogen was measured according to the method described in JIS Z3118. The amount of diffusible hydrogen was 4 ml / 100 g or less. The total hydrogen content of the wire was measured using a hydrogen analyzer (EMGA-621) manufactured by Horiba, Ltd.

溶接割れ試験は、JIS Z3157のU形溶接割れ試験方法に準拠して行うこととし、板厚35mmの建築構造用鋼であり引張強さが590MPa級の鋼SA440Bを試験体として試験板を製作し、下記の表3に示す溶接条件の下で試験板の開先を各試験ワイヤによりガスシールドアーク溶接し、溶接後48時間経過した試験体について、表面割れ及び断面割れ(5断面)の発生有無を浸透探傷試験(JIS Z2343)により調査することで行なった。   The weld crack test shall be conducted in accordance with the U-shaped weld crack test method of JIS Z3157. A test plate was manufactured using steel SA440B with a thickness of 35 mm and a tensile strength of 590 MPa class steel SA440B. The presence or absence of occurrence of surface cracks and cross-sectional cracks (5 cross-sections) on the specimens that were gas-shielded arc welded to the test plate with each test wire under the welding conditions shown in Table 3 below and 48 hours after welding Was examined by a penetrant flaw detection test (JIS Z2343).

Figure 0005558406
Figure 0005558406

以上の試験結果を表4にまとめて示す。なお、表4において、評価対象とした数値が合格又は良好でないものについては下線を付すこととした。   The above test results are summarized in Table 4. In addition, in Table 4, it was decided that the numerical value made into the evaluation object was underlined about what passed or was not favorable.

Figure 0005558406
Figure 0005558406

表1及び表4中のワイヤNo.1〜10が本発明例、ワイヤNo.11〜25は比較例である。本発明例であるワイヤNo.1〜10は、フラックス入りワイヤの成分組成が本発明において規定した条件を満足しているので、アークが安定であり、スパッタ発生量が少なく、ビードの垂れがなく、ビード形状及びスラグ剥離性が良好であり、溶接金属の引張強さ及び吸収エネルギーが目標とする性能を満足した。また、ワイヤNo.1〜10は、ワイヤ中の全水素量が本発明において規定した条件を満足しているので、拡散性水素量が少なく、U形溶接割れ試験で割れが発生しないなど、極めて満足な結果であった。   In Table 1 and Table 4, the wire No. 1 to 10 are examples of the present invention, wire Nos. 11 to 25 are comparative examples. In the present invention, the wire No. 1 to 10, since the composition of the flux-cored wire satisfies the conditions specified in the present invention, the arc is stable, the amount of spatter is small, the bead does not sag, the bead shape and the slag peelability are The tensile strength and absorbed energy of the weld metal satisfied the target performance. In addition, wire No. Nos. 1 to 10 are extremely satisfactory results such that the total hydrogen amount in the wire satisfies the conditions specified in the present invention, so that the amount of diffusible hydrogen is small and cracks do not occur in the U-shaped weld crack test. It was.

これに対して、比較例であるワイヤNo.11は、Cが少ないので溶接金属の引張強さが低く、溶接金属の吸収エネルギーも低値であった。また、SiO2換算値が少ないので、メタル垂れが発生してビード形状が凸ビードとなった。 In contrast, the wire No. No. 11 had low C, so the tensile strength of the weld metal was low, and the absorbed energy of the weld metal was also low. Further, since the SiO 2 conversion value was small, metal dripping occurred and the bead shape became a convex bead.

ワイヤNo.12は、Cが多いのでクレータ部に割れが発生し、溶接金属の引張強さが高く、溶接金属の吸収エネルギーが低値であった。また、TiO2換算値が少ないので、アークが不安定となりスパッタの発生量が多く、メタル垂れが発生してビード形状が凸ビードとなった。 Wire No. In No. 12, since there was much C, the crater part was cracked, the tensile strength of the weld metal was high, and the absorbed energy of the weld metal was low. Further, since the TiO 2 conversion value is small, the arc becomes unstable, the amount of spatter generated is large, metal dripping occurs, and the bead shape becomes a convex bead.

ワイヤNo.13は、Siが少ないので、溶接金属の脱酸が不十分となりブローホールが発生した。また、AlのAl23換算値及びAl23の合計が多いので、溶接金属の吸収エネルギーが低値であった。 Wire No. In No. 13, since there was little Si, deoxidation of the weld metal was insufficient and blow holes were generated. Further, since the total amount of Al in terms of Al 2 O 3 and Al 2 O 3 is large, the absorbed energy of the weld metal was low.

ワイヤNo.14は、Siが多いので、溶接金属の吸収エネルギーが低値であった。また、ZrO2換算値が多いので、スラグ巻込みが発生した。 Wire No. No. 14 has a large amount of Si, so the absorbed energy of the weld metal was low. Further, since the terms of ZrO 2 value is large, slag inclusion occurs.

ワイヤNo.15は、Mnが少ないので、溶接金属の引張強さが低かった。また、Mgが少ないので、溶接金属の酸素量が高くなり吸収エネルギーが低値であった。   Wire No. No. 15 had a low Mn, so the tensile strength of the weld metal was low. Moreover, since there was little Mg, the oxygen amount of the weld metal became high and the absorbed energy was low.

ワイヤNo.16は、Mnが多いので、溶接金属の引張強さが高く、溶接金属の吸収エネルギーが低値であった。また、ZrO2換算値が少ないので、メタル垂れが発生してビード形状が凸ビードとなった。 Wire No. Since No. 16 had a large amount of Mn, the tensile strength of the weld metal was high, and the absorbed energy of the weld metal was low. Further, since the ZrO 2 converted value was small, metal dripping occurred and the bead shape became a convex bead.

ワイヤNo.17は、Moが少ないので、溶接金属の引張強さが低く、溶接金属の吸収エネルギーも低値であった。また、AlのAl23換算値が低いので、メタル垂れが発生してビード形状が凸ビードになった。 Wire No. Since No. 17 had little Mo, the tensile strength of the weld metal was low, and the absorbed energy of the weld metal was also low. Moreover, since the Al 2 O 3 conversion value of Al was low, metal sagging occurred and the bead shape became a convex bead.

ワイヤNo.18は、Moが多いので、溶接金属の引張強さが高く、溶接金属の吸収エネルギーが低値であった。また、ワイヤ中の全水素量が高いので、拡散性水素量が多く、U形溶接割れ試験で低温割れが発生した。   Wire No. Since No. 18 had a lot of Mo, the tensile strength of the weld metal was high, and the absorbed energy of the weld metal was low. Further, since the total amount of hydrogen in the wire was high, the amount of diffusible hydrogen was large, and cold cracking occurred in the U-shaped weld cracking test.

ワイヤNo.19は、Niが少ないので溶接金属の吸収エネルギーが低値であった。また、K2O換算値が少ないので、アークが不安定となりスパッタ発生量が多く、ビード外観も不良であった。 Wire No. In No. 19, since the amount of Ni is small, the absorbed energy of the weld metal was low. Further, since the K 2 O conversion value is small, the arc becomes unstable, the amount of spatter generated is large, and the bead appearance is also poor.

ワイヤNo.20は、Niが多いので、溶接金属の引張強さが高く、溶接金属の吸収エネルギーが低値であった。また、ワイヤ中の全水素量が高いので、拡散性水素量が多く、U形溶接割れ試験で低温割れが発生した。   Wire No. No. 20 had a large amount of Ni, so the tensile strength of the weld metal was high, and the absorbed energy of the weld metal was low. Further, since the total amount of hydrogen in the wire was high, the amount of diffusible hydrogen was large, and cold cracking occurred in the U-shaped weld cracking test.

ワイヤNo.21は、Mgが多いので、スパッタ発生量が多かった。また、Na2O換算値及びK2O換算値の合計が多いので、スラグ剥離性が不良であり、メタル垂れが発生してビード形状が凸ビードになった。 Wire No. Since No. 21 had a large amount of Mg, the amount of spatter generated was large. Further, since the terms of Na 2 O values and K sum is often the 2 O converted value, a slag removability poor bead shape becomes convex bead metal dripping occurs.

ワイヤNo.22は、Bが少ないので、溶接金属の吸収エネルギーが低値であった。また、F換算値が多いので、スパッタ発生量が多かった。   Wire No. No. 22 had a low B, so the absorbed energy of the weld metal was low. Moreover, since there were many F conversion values, the amount of spatter generation was large.

ワイヤNo.23は、Bが多いので、クレータ割れが生じ、溶接金属の強度が高く、溶接金属の吸収エネルギーが低値であった。また、ワイヤ中の全水素量が高いので、拡散性水素量が多く、U形溶接割れ試験で低温割れが発生した。   Wire No. No. 23 had a large amount of B, so crater cracking occurred, the strength of the weld metal was high, and the absorbed energy of the weld metal was low. Further, since the total amount of hydrogen in the wire was high, the amount of diffusible hydrogen was large, and cold cracking occurred in the U-shaped weld cracking test.

ワイヤNo.24は、TiO2換算値が多いのでスラグ剥離性が不良であり、溶接金属の吸収エネルギーも低値であった。また、ワイヤ中の全水素量が高いので、拡散性水素量が多く、U形溶接割れ試験で低温割れが発生した。 Wire No. No. 24 had a poor slag removability because of its large TiO 2 conversion value, and the absorbed energy of the weld metal was also low. Further, since the total amount of hydrogen in the wire was high, the amount of diffusible hydrogen was large and cold cracking occurred in the U-shaped weld cracking test.

ワイヤNo.25は、SiO2換算値が多いので、溶接金属の吸収エネルギーが低値であった。また、ワイヤ中の全水素量が高いので、拡散性水素量が多く、U形溶接割れ試験で低温割れが発生した。 Wire No. Since No. 25 has a large SiO 2 converted value, the absorbed energy of the weld metal was low. Further, since the total amount of hydrogen in the wire was high, the amount of diffusible hydrogen was large, and cold cracking occurred in the U-shaped weld cracking test.

Claims (2)

鋼製外皮内にフラックスを充填してなる炭酸ガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、
C:0.03〜0.10%、
Si:0.1〜0.4%、
Mn:1.7〜2.8%、
Mo:0.1〜0.3%、
Ni:0.1〜3.0%、
Mg:0.35〜0.65%、
B:0.0010〜0.0100%、
Ti酸化物のTiO2換算値:4.8〜6.5%、
Si酸化物のSiO2換算値:0.3〜0.8%、
Zr酸化物のZrO2換算値:0.2〜0.5%、
AlのAl23換算値及びAl23の1種又は2種の合計:0.4〜1.2%、
アルカリ金属化合物のNa2O換算値及びK2O換算値の1種又は2種の合計:0.06〜0.20%を含有し、
弗素化合物のF換算値が0.03%以下であり、
残部が鉄粉、鉄合金のFe分、鋼製外皮のFe分及び不可避不純物からなること
を特徴とする炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for carbon dioxide shielded arc welding formed by filling flux in the steel outer sheath,
% By mass relative to the total mass of the wire
C: 0.03-0.10%,
Si: 0.1 to 0.4%,
Mn: 1.7-2.8%,
Mo: 0.1 to 0.3%,
Ni: 0.1 to 3.0%,
Mg: 0.35-0.65%,
B: 0.0010 to 0.0100%,
TiO 2 conversion value of Ti oxide: 4.8 to 6.5%,
SiO 2 converted value of Si oxide: 0.3 to 0.8 percent,
ZrO 2 conversion value of Zr oxide: 0.2 to 0.5%,
Al 2 O 3 conversion value of Al and total of one or two of Al 2 O 3 : 0.4 to 1.2%,
One or two of the sum of terms of Na 2 O values and K 2 O converted value of the alkali metal compound: containing from 0.06 to 0.20%,
F conversion value of fluorine compound is 0.03% or less,
A flux-cored wire for carbon dioxide shielded arc welding, wherein the balance is composed of iron powder, Fe content of an iron alloy, Fe content of a steel outer sheath, and inevitable impurities.
ワイヤの全水素量が20ppm以下であること
を特徴とする請求項1に記載の炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
The flux-cored wire for carbon dioxide shielded arc welding according to claim 1, wherein the total hydrogen content of the wire is 20 ppm or less.
JP2011097677A 2011-04-25 2011-04-25 Flux-cored wire for carbon dioxide shielded arc welding Active JP5558406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097677A JP5558406B2 (en) 2011-04-25 2011-04-25 Flux-cored wire for carbon dioxide shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097677A JP5558406B2 (en) 2011-04-25 2011-04-25 Flux-cored wire for carbon dioxide shielded arc welding

Publications (2)

Publication Number Publication Date
JP2012228704A JP2012228704A (en) 2012-11-22
JP5558406B2 true JP5558406B2 (en) 2014-07-23

Family

ID=47430715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097677A Active JP5558406B2 (en) 2011-04-25 2011-04-25 Flux-cored wire for carbon dioxide shielded arc welding

Country Status (1)

Country Link
JP (1) JP5558406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106794559B (en) * 2014-10-15 2019-12-20 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding
JP6385879B2 (en) * 2015-04-15 2018-09-05 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
KR101784275B1 (en) * 2016-02-11 2017-10-11 한국기술교육대학교 산학협력단 Method for welding alloy steel and carbon steel
WO2018087812A1 (en) 2016-11-08 2018-05-17 新日鐵住金株式会社 Flux-cored wire, method of manufacturing welded joint, and welded joint
JP6951304B2 (en) * 2018-08-08 2021-10-20 日鉄溶接工業株式会社 Flux-cored wire for carbon dioxide shield arc welding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758040B2 (en) * 2002-07-26 2006-03-22 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP5136466B2 (en) * 2008-03-28 2013-02-06 新日鐵住金株式会社 Flux-cored wire for welding high-strength steel and method for producing the same
JP2010115701A (en) * 2008-11-14 2010-05-27 Kobe Steel Ltd High strength weld metal with excellent low-temperature toughness
JP5356142B2 (en) * 2009-07-28 2013-12-04 日鐵住金溶接工業株式会社 Gas shield arc welding method

Also Published As

Publication number Publication date
JP2012228704A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP5359561B2 (en) Flux-cored wire for high-tensile steel
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6188621B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP5356142B2 (en) Gas shield arc welding method
JP6437378B2 (en) Flux-cored wire for gas shielded arc welding
JP2018153853A (en) Flux-cored wire for gas shield arc welding
JP6382114B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high strength steel
JP5314339B2 (en) Flux cored wire
JP5459083B2 (en) Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP6385879B2 (en) Flux-cored wire for gas shielded arc welding
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2015205304A (en) Flux-cored wire for gas shield arc welding
JP7175784B2 (en) Flux-cored wire for carbon dioxide shielded arc welding of high-strength steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5558406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250