JP2011020134A - Different material build-up welding method and different material build-up welding structure - Google Patents

Different material build-up welding method and different material build-up welding structure Download PDF

Info

Publication number
JP2011020134A
JP2011020134A JP2009166266A JP2009166266A JP2011020134A JP 2011020134 A JP2011020134 A JP 2011020134A JP 2009166266 A JP2009166266 A JP 2009166266A JP 2009166266 A JP2009166266 A JP 2009166266A JP 2011020134 A JP2011020134 A JP 2011020134A
Authority
JP
Japan
Prior art keywords
welding
build
weld
wire
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009166266A
Other languages
Japanese (ja)
Other versions
JP5320196B2 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Eiji Ashida
栄次 芦田
Takeshi Obana
健 尾花
Sho Tarasawa
湘 多羅沢
Masaya Okada
昌哉 岡田
Kazuhiko Mizuguchi
和彦 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009166266A priority Critical patent/JP5320196B2/en
Publication of JP2011020134A publication Critical patent/JP2011020134A/en
Application granted granted Critical
Publication of JP5320196B2 publication Critical patent/JP5320196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a different material build-up welding method which can obtain a build-up weld zone of superio quality free of weld cracks or brittle structures, and is effective to enhance welding efficiency, and to provide a and different material build-up welding structure using the method. <P>SOLUTION: The different material build-up welding method is characterized in that, on the surface of a carbon steel base material 5, a welding wire 6 of SUS309 system is built-up by welding by hot wire TIG welding of a wire energizing/heating method to form a build-up weld zone comprising a plurality of weld passes and a plurality of layers, and that the rate of dilution of fusion on the base material 5 side relative to each welding cross section of the weld passes is set &le;30% so that the molten metal structure of the build-up weld zones b1-b6 of the first layer becomes a mixed structure of an austenitic structure and a ferrite structure of 3-15%. Also, in the method, a low-carbon steel welding wire is underlaid on the surface of the carbon steel base material, with build-up welding of a stainless wire performed as above on the underlaying surface. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、炭素鋼の母材表面に耐食性に優れたステンレス鋼ワイヤを肉盛りする異材肉盛り溶接方法及びその異材肉盛り溶接構造物に関する。   The present invention relates to a different material build-up welding method for depositing a stainless steel wire excellent in corrosion resistance on the surface of a base material of carbon steel and a different material build-up welded structure.

炭素鋼とステンレス鋼との異材継手を溶接する異材溶接方法、炭素鋼母材表面にステンレス鋼ワイヤを肉盛りする異材肉盛り溶接方法が既に幾つか提案されている。   Several different material welding methods for welding dissimilar material joints of carbon steel and stainless steel, and different material overlay welding methods for overlaying stainless steel wires on the surface of a carbon steel base material have already been proposed.

例えば、特開昭53−67649号公報(特許文献1)に記載の異種金属の溶接方法では、低級鋼(炭素鋼)側に高級鋼(オーステナイト系ステンレス鋼)に合った金属を肉盛り溶接する際に、この肉盛り金属と低級鋼との間に、両者の溶接作業性及び溶接継手性能を向上させる下盛り肉盛り溶接を施すことが開示されている。炭素鋼側に低炭素系の溶接棒を予め下盛り溶接した後に、その下盛り溶接部の上に高級鋼に合ったステンレス鋼又はNi合金の肉盛り金属を溶接することにより、異種金属の肉盛り溶接部の境界部分に生成される劣化層を軽減することができる。   For example, in the method for welding dissimilar metals described in JP-A-53-67649 (Patent Document 1), a metal suitable for high-grade steel (austenitic stainless steel) is welded on the lower steel (carbon steel) side. On the other hand, it is disclosed that underlay build-up welding is performed between the build-up metal and the lower steel to improve the welding workability and weld joint performance of both. After welding a low-carbon welding rod on the carbon steel side in advance, welding a build-up metal of stainless steel or Ni alloy suitable for high-grade steel on the lower welding part, It is possible to reduce a deteriorated layer generated at the boundary portion of the welded portion.

特開昭58−128277号公報(特許文献2)に記載の異材溶接方法では、炭素鋼の母材にステンレス鋼又はNi合金を肉盛り溶接するか、又は前記母材とステンレス鋼又はNi合金との継手を溶接する際に、母材上又は母材側に、前記母材と同質でかつ低炭素の下盛り材又はバタリング材料を施した後に、ステンレス鋼又はNi合金を肉盛り溶接又は継手溶接することが開示されている。炭素鋼の母材上又は母材側に、母材と同質でかつ低炭素の下盛り材又はバタリング材を予め下盛り溶接した後に、異種材のステンレス鋼を前記下盛り溶接部の上に肉盛り溶接、又は異種材の高Ni合金(インコネル)を継手開先内に積層溶接することにより、ボンド剥離割れを防止できるようにしている。   In the dissimilar material welding method described in Japanese Patent Application Laid-Open No. 58-128277 (Patent Document 2), stainless steel or Ni alloy is welded on a carbon steel base material, or the base material and stainless steel or Ni alloy are welded. When welding a joint of the above, after applying a low carbon underlaying material or buttering material on the base material or on the base material side, which is the same quality as the base material, overlay welding or joint welding of stainless steel or Ni alloy Is disclosed. On the base material of carbon steel or on the base material side, a low carbon underlaying material or buttering material that is the same quality as the base material is preliminarily welded, and then dissimilar stainless steel is placed on the underlaying weld. Bond delamination cracking can be prevented by stack welding or laminating and welding a high Ni alloy (Inconel) of different materials in the joint groove.

特公平3−16224号公報(特許文献3)に記載のTIG自動肉盛り溶接方法では、円筒状被溶接物の1回転を検出するリミットスイッチを備えた回転ポジショナーと、ピッチ送り装置で前記円筒状被溶接物の直径方向に一定ピッチ移動できるTIG溶接トーチとからなるTIG自動肉盛り連続溶接装置を用いて、前記円筒状被溶接物の端面全周をTIG溶接トーチで溶接後に同トーチを被溶接物の直径方向に一定ピッチ移動して更に全周を溶接する操作を順次行って、上記端面全面を連続して肉盛り溶接することが開示されている。TIG自動肉盛り溶接装置を用いて1周の溶接とトーチ位置の一定ピッチ移動とを繰返す肉盛り溶接を連続的に行うことにより、肉盛り溶接の作業能率及び溶接品質を向上できるようにしている。   In the TIG automatic build-up welding method described in Japanese Examined Patent Publication No. 3-16224 (Patent Document 3), a rotary positioner provided with a limit switch for detecting one rotation of a cylindrical workpiece, and the cylindrical shape by a pitch feeder. Using a TIG automatic build-up continuous welding device consisting of a TIG welding torch that can move a constant pitch in the diameter direction of the work piece, the entire end surface of the cylindrical work piece is welded with a TIG welding torch and then the torch is welded. It is disclosed that the entire end surface is continuously welded by sequentially performing an operation of moving a constant pitch in the diameter direction of the object and further welding the entire circumference. The build-up welding work efficiency and weld quality can be improved by continuously performing build-up welding that repeats one round of welding and constant pitch movement of the torch position using the TIG automatic build-up welding device. .

特開平8−1360号公報(特許文献4)に記載の炭素鋼とオーステナイト系ステンレス鋼との溶接方法及び電力送配電用ガス遮断器の溶接方法では、炭素鋼とSUS304オーステナイト系ステンレス鋼との母材をレーザビームによって溶接する方法において、重量でC0.15%以下,Si0.65%以下,Mn1.0〜3.0%,Ni10〜16%,Cr26〜32%,P0.02%以下,S0.02%以下及びFe残部からなる溶加材を溶融させて溶接部を形成させるとともに、前記溶接部の組織をオーステナイト組織と20%以下のフェライト組織との混合組織となるように前記母材の前記溶接部の溶け込み率を80%以下にすることが開示されている。溶接材料の主組成としてNi当量が15〜17%、Cr当量が28〜33%となるように調整した細径の溶接ワイヤ又は薄板状の融合インサートを異材母材継手部にレーザビーム溶接によって溶融させて異材溶接部を形成させると共に、母材溶け込み率を80%以下にすることにより、溶接割れがなく、高靭性を有する異材溶接を得るようにしている。   In the welding method of carbon steel and austenitic stainless steel and the welding method of gas circuit breaker for power transmission / distribution described in JP-A-8-1360 (Patent Document 4), the mother of carbon steel and SUS304 austenitic stainless steel is used. In a method of welding a material by a laser beam, C 0.15% or less, Si 0.65% or less by weight, Mn 1.0 to 3.0%, Ni 10 to 16%, Cr 26 to 32%, P 0.02% or less, S0 The weld metal is formed by melting a filler material composed of 0.02% or less and the remainder of Fe to form a welded portion, and the structure of the weld metal is made to be a mixed structure of an austenite structure and a ferrite structure of 20% or less. It is disclosed that the penetration rate of the weld is 80% or less. A welding wire with a small diameter or a thin plate-shaped fusion insert adjusted so that the Ni equivalent is 15 to 17% and the Cr equivalent is 28 to 33% as the main composition of the welding material is melted by laser beam welding to the dissimilar base metal joint. Thus, the dissimilar material weld is formed, and the base material penetration rate is set to 80% or less, thereby obtaining a dissimilar material weld having no weld cracking and high toughness.

特開昭53−67649号公報(第1頁右欄第18行〜第2頁左上欄第7行,第1図,第2図)JP-A-53-67649 (first page, right column, line 18 to page 2, upper left column, line 7, FIG. 1, FIG. 2) 特開昭58−128277号公報(第2頁右上欄第7行〜同2頁右上欄第20行,第5図,第6図)JP-A-58-128277 (page 2, upper right column, line 7 to page 2, upper right column, line 20, FIG. 5, FIG. 6) 特公平3−16224号公報(第2頁左欄第4行〜同2頁左欄第15行,第1図,第2図)Japanese Examined Patent Publication No. 3-16224 (page 2, left column, line 4 to page 2, left column, line 15, lines 1 and 2) 特開平8−1360号公報(段落0008,段落0009,表1,図2,図4)JP-A-8-1360 (paragraph 0008, paragraph 0009, Table 1, FIG. 2, FIG. 4)

しかしながら、特許文献1に開示された発明では、下盛り溶接に手間と時間が掛かるという問題がある。また、特許文献1では、肉盛り溶接に使用される溶接法及びその熱源,溶接ワイヤの成分,溶接条件などが特定されていない。従って、肉盛り溶接部の溶接割れ防止には不十分である。さらに肉盛り溶接部の溶接割れ防止に有効なフェライト含有量についても何ら開示も示唆もされていない。   However, in the invention disclosed in Patent Document 1, there is a problem that it takes time and effort for underlay welding. Moreover, in patent document 1, the welding method used for overlay welding, its heat source, the component of a welding wire, welding conditions, etc. are not specified. Therefore, it is not sufficient for preventing weld cracking of the weld overlay. Furthermore, there is no disclosure or suggestion about the ferrite content effective for preventing weld cracking in the weld overlay.

特許文献2に開示された異材管継手(低合金鋼管とステンレス鋼管との開先継手)の溶接では、低合金鋼管側の開先斜面にバタリング材(低炭素鋼の溶接材料)を被覆アーク溶接(多層多パスの下盛り溶接)しているため、溶接作業に手間と時間が掛かるという問題がある。また、下盛り溶接部の管材とステンレス鋼管とを突合わせた開先継手内を積層溶接(インコネル材を多層多パスする本溶接)する時に被覆アーク溶接が使用されている。このため、溶接表面に付着するフラックスの除去作業や溶接作業に手間と時間が掛かると共に、融合不良やポロシティ等の溶接欠陥が発生し易いという問題がある。また、特許文献2では、低合金鋼管の内面に低炭素の下盛り材を下盛り溶接、及び下盛り溶接部の上に異種材のステンレス鋼材を肉盛り溶接する時には、バンドアーク溶接が使用されているため、溶接表面に付着するフラックスの除去作業が必要になると共に、融合不良やポロシティ等の溶接欠陥が発生し易いという問題がある。   In welding dissimilar pipe joints (groove joints of low alloy steel pipes and stainless steel pipes) disclosed in Patent Document 2, a buttering material (welding material of low carbon steel) is coated on the groove slope on the low alloy steel pipe side by arc welding Since (multi-layer multipass underlay welding), there is a problem that the welding work takes time and effort. In addition, covered arc welding is used when performing laminar welding (main welding in which multiple layers of Inconel material are multipassed) in the groove joint where the pipe material of the underlay weld and the stainless steel pipe are butted together. For this reason, there are problems that it takes time and effort to remove the flux adhering to the welding surface and the welding operation, and welding defects such as poor fusion and porosity are likely to occur. Further, in Patent Document 2, band arc welding is used when a low carbon underlay material is welded on the inner surface of a low alloy steel pipe, and a dissimilar stainless steel material is overlay welded on the lower weld portion. Therefore, it is necessary to remove the flux adhering to the welding surface, and there is a problem that welding defects such as poor fusion and porosity are likely to occur.

さらに、特許文献2では、上記被覆アーク溶接やバンドアーク溶接と方法が全く異なるワイヤ通電加熱方式のホットワイヤTIG溶接については全く適用されておらず、何ら開示も示唆もされていない。また、肉盛り溶接部の溶接割れ防止に有効なフェライト含有量についても何ら開示も示唆もされていない。   Furthermore, Patent Document 2 does not apply at all to hot wire TIG welding of a wire energization heating method, which is completely different from the above-described covering arc welding and band arc welding, and does not disclose or suggest any. Further, there is no disclosure or suggestion about the ferrite content effective for preventing weld cracking in the weld overlay.

特許文献3に開示された発明のTIG溶接は、溶接パス毎のワイヤ溶着量が少ないので肉盛り溶接効率が低く、パス数及び層数が増加し、溶接作業に手間と時間が掛かるという問題がある。溶接効率が高められるワイヤ通電加熱方式のホットワイヤTIG溶接については全く適用されておらず、何ら開示も示唆もされていない。また、異種金属の肉盛り溶接部の溶接割れ防止に有効なフェライト含有量についても何ら開示も示唆もされていない。   The TIG welding of the invention disclosed in Patent Document 3 has a problem that since the amount of wire welding per welding pass is small, the build-up welding efficiency is low, the number of passes and the number of layers increase, and the welding work takes time and effort. is there. No application has been made to hot-wire TIG welding of a wire current heating method that can improve welding efficiency, and no disclosure or suggestion has been made. Further, there is no disclosure or suggestion about the ferrite content effective for preventing weld cracking in the weld overlay of dissimilar metals.

特許文献4に開示された発明のレーザビーム溶接(レーザ溶接)は、溶接部の幅が狭く形成されるため、例えば、溶接すべき異材管継手の円周溶接線に僅かな位置ずれ(溶接線に対するレーザビーム照射の相対的な位置ずれ)があったりすると、片寄り溶けや融合不良が発生し易くなると共に、炭素鋼管側の溶け過剰に伴って溶金組織がマルテンサイト組織に変化したり、溶接割れが発生したりするという問題がある。特許文献4では、肉盛り溶接については適用されておらず、何ら開示も示唆もされていない。また、レーザ溶接と方法が全く異なるホットワイヤTIG溶接による肉盛り溶接ついても全く適用されておらず、何ら開示も示唆もされていない。   In the laser beam welding (laser welding) of the invention disclosed in Patent Document 4, since the width of the welded portion is narrow, for example, a slight misalignment (weld line) in the circumferential weld line of the dissimilar pipe joint to be welded Relative displacement of the laser beam irradiation with respect to), it tends to cause misalignment and poor fusion, and the melt structure on the carbon steel tube side changes to a martensite structure, There is a problem that weld cracks occur. In Patent Document 4, no overlay welding is applied, and no disclosure or suggestion is made. Further, no overlay application by hot wire TIG welding, which is completely different from laser welding, is not applied at all, and there is no disclosure or suggestion.

本発明は、前記技術の種々の点を考慮してなされたものであり、溶接割れや脆化組織のない品質良好な肉盛り溶接部を得ると共に溶接効率を高めるのに有効な異材肉盛り溶接方法及びその異材肉盛り溶接構造物を提供することを目的とする。   The present invention has been made in consideration of various points of the above-described technology, and is effective for obtaining a build-up weld portion with good quality free from weld cracks and embrittlement structures and effective for increasing welding efficiency. It is an object of the present invention to provide a method and a different material build-up welded structure.

上記目的を達成する本発明は、炭素鋼の母材表面、又は該母材表面に低炭素鋼の溶接ワイヤが下盛りされている下盛り表面に、ステンレス鋼の溶接ワイヤをワイヤ通電加熱方式のホットワイヤTIG溶接によって肉盛り溶接する異材肉盛り溶接方法である。前記母材表面又は前記下盛り表面に、SUS309系の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて溶接し、複数の溶接パス部を形成し、該溶接パス部からなる1層または複数の肉盛り溶接部を形成させる。このとき、母材側又は前記下盛り側と融合した1層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織になるようする。具体的には、前記溶接パス部の各溶接断面積に対する前記母材側又は前記下盛り側の溶融希釈率を30%以下にすることを特徴とする。上記の異材肉盛り溶接方法では、溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。   The present invention that achieves the above object is to apply a stainless steel welding wire to the surface of a carbon steel base metal or a base surface on which a low carbon steel welding wire is underlaid. This is a different material overlay welding method in which overlay welding is performed by hot wire TIG welding. A SUS309 welding wire is melted by the hot wire TIG welding and welded to the base material surface or the underlaying surface to form a plurality of welding path portions, and one or more layers of the welding path portions are formed. A weld weld is formed. At this time, the molten metal structure of the first weld overlay welded to the base metal side or the underlay side is made to be a mixed structure of an austenite structure and a ferrite structure of 3% to 15%. Specifically, the melt dilution rate on the base material side or the underlay side with respect to each weld cross-sectional area of the weld pass portion is set to 30% or less. In the above-mentioned different material build-up welding method, it is possible to obtain a weld pass portion and build-up weld portion with good quality without weld cracking and embrittlement structure, and at the same time, build-up welding efficiency can be improved by the hot wire TIG welding, The welding time can be greatly shortened.

特に、前記母材側又は前記下盛り側の溶融希釈率を25%以下とし、前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と5%以上15%以下のフェライト組織との混合組織になるようにするとよい。上記の構成によれば、さらに溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部を確実に得ることができる。また、肉盛り溶接効率も向上させることができる。   In particular, the melt dilution ratio on the base metal side or the underlay side is 25% or less, and the molten metal structure of the first layer build-up weld fused with the base material side or the underlay side is an austenite structure. It is preferable to have a mixed structure with a ferrite structure of 5% or more and 15% or less. According to said structure, the welding pass part and build-up weld part with a sufficient quality which do not have a weld crack and an embrittlement structure | tissue can be obtained reliably. Moreover, the build-up welding efficiency can also be improved.

以上述べたように、本発明の異材肉盛り溶接方法によれば、溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部、並びに該肉盛り溶接部を有する溶接構造物を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。   As described above, according to the method for depositing a different material according to the present invention, a weld pass portion and a build-up weld portion having good quality without weld cracking and an embrittlement structure, and a welded structure having the build-up weld portion are provided. At the same time, the overlay welding efficiency can be improved by the hot wire TIG welding, and the welding time can be greatly shortened.

ワイヤ通電加熱方式のホットワイヤTIG溶接装置の一例の構成を示す図である。It is a figure which shows the structure of an example of the hot wire TIG welding apparatus of a wire electricity heating system. 母材表面に複数の溶接パス部からなる1層目の肉盛り溶接部を形成したときの断面の模式図である。It is a schematic diagram of a cross section when the 1st build-up weld part which consists of a some welding pass part is formed in the base material surface. シェフラーの組織図上における炭素鋼母材とステンレスワイヤとの金属組織の関係を示す組織図である。It is an organization chart which shows the relationship of the metal structure of a carbon steel base material and a stainless steel wire on an organization chart of Schaeffler. 母材表面にワイヤを3層15パス溶接した肉盛り溶接部の断面の模式図である。It is a schematic diagram of the cross section of the build-up welding part which welded the wire to the base material surface 3 layers 15 passes. 図4に示した肉盛り溶接部の溶接表面を切削加工した後の肉盛り溶接部の形状を示す断面図である。It is sectional drawing which shows the shape of the build-up weld part after cutting the welding surface of the build-up weld part shown in FIG. シェフラーの組織図上における炭素鋼母材とステンレスワイヤとの金属組織の関係を示す他の組織図である。It is another organization chart which shows the relationship of the metal structure of the carbon steel base material and stainless steel wire on the organization chart of Schaeffler. 炭素鋼の母材表面に低炭素鋼の溶接ワイヤを1層6パス下盛り溶接した後の下盛り表面に異材のステンレスワイヤを3層12パス溶接した肉盛り溶接部を示す断面図である。It is sectional drawing which shows the build-up welding part which welded the stainless steel of the dissimilar material 3 layers 12 passes to the underlay surface after welding the low carbon steel welding wire on the surface of the carbon steel base material 1 layer 6 passes. 炭素鋼母材表面にSUS309MoLワイヤを2層6パス溶接した異材ワイヤ2層肉盛り溶接部の深さ方向のビッカース硬さを示す図である。It is a figure which shows the Vickers hardness of the depth direction of the dissimilar wire 2 layer build-up weld part which welded the SUS309MoL wire 2 layers 6 pass to the carbon steel base material surface. 下盛り及び肉盛り溶接部(4層18パス)の深さ方向のビッカース硬さを示す図である。It is a figure which shows the Vickers hardness of the depth direction of an underlay and a build-up welding part (4 layers 18 passes).

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

上述のとおり、炭素鋼の母材表面又は該母材表面に低炭素鋼の溶接ワイヤが下盛りされている下盛り表面にステンレス鋼の溶接ワイヤをワイヤ通電加熱方式のホットワイヤTIG溶接によって肉盛り溶接する異材肉盛り溶接方法において、前記母材表面又は前記下盛り表面に異材のSUS309系の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて溶接すると共に、複数の溶接パス部及び該溶接パス部からなる1層目の肉盛り溶接部、又は該1層目及び2層目の肉盛り溶接部を形成させ、かつ前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織になるように、前記溶接パス部の各溶接断面積に対する前記母材側又は前記下盛り側の溶融希釈率を30%以下にすることにより目的が達成される。特に、前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と5%以上15%以下のフェライト組織との混合組織になるように、前記ホットワイヤTIG溶接によって前記母材側又は前記下盛り側の溶融希釈率を25%以下にするとよい。   As described above, a stainless steel welding wire is deposited on the surface of the base material of carbon steel or the surface of the base material on which the welding wire of low carbon steel is deposited by hot wire TIG welding of a wire current heating method. In the different material build-up welding method for welding, a SUS309 type welding wire made of a different material is melted and welded to the surface of the base material or the lower surface by the hot wire TIG welding, and a plurality of welding pass portions and the welding pass portions The first layer build-up weld, or the first and second layer build-up welds, and the first layer build-up weld fused to the base material side or the bottom build-up side The base metal side or the underlay with respect to each weld cross-sectional area of the weld pass part so that the molten metal structure of the part becomes a mixed structure of an austenite structure and a ferrite structure of 3% to 15%. Object is achieved by the melt dilution below 30%. In particular, the molten metal structure of the first layer build-up weld fused to the base material side or the underlay side is a mixed structure of an austenite structure and a ferrite structure of 5% or more and 15% or less. The melt dilution rate on the base material side or the underlay side is preferably 25% or less by hot wire TIG welding.

前記母材側又は前記下盛り側の溶融希釈率が30%より過大になると、割れ防止に有効なフェライト組織の含有量(析出量)が3%を下回る組織、若しくは硬化し易いマルテンサイト組織が存在する溶金組織になって、溶接割れや脆化の発生要因になるので好ましくない。また、前記SUS309系の溶接ワイヤの替わりに、例えば、SUS308系又はSUS316系の溶接ワイヤを用いて前記炭素鋼の母材表面に肉盛り溶接した場合には、例えば、フェライト組織に係わるCr当量が少ないため、マルテンサイト生成組織やマルテンサイトとオーステナイトとの混合組織になり易くなるので好ましくない。また、前記Cr当量を特別に増加(例えば、Cr当量が30%以上含有)させて製作したような規格外の特殊なワイヤを使用する必要性もない。前記SUS309系の溶接ワイヤは、JIS規格のものであり、市販品を使用することができる。   When the melt dilution ratio on the base material side or the underlay side is more than 30%, a structure in which the content (precipitation amount) of the ferrite structure effective for preventing cracking is less than 3%, or a martensite structure that is easy to harden is formed. It is not preferable because the existing molten metal structure becomes a cause of weld cracking and embrittlement. Further, instead of the SUS309 series welding wire, for example, when overlay welding is performed on the surface of the base material of the carbon steel using a SUS308 series or SUS316 series welding wire, for example, the Cr equivalent related to the ferrite structure is Since the amount is small, a martensite generation structure or a mixed structure of martensite and austenite tends to be formed, which is not preferable. Further, there is no need to use a special wire that is not standardized and manufactured by specially increasing the Cr equivalent (for example, containing Cr equivalent of 30% or more). The SUS309 series welding wire is JIS standard, and a commercially available product can be used.

前記肉盛り溶接部(第一の肉盛り溶接部)の上位表面に、前記SUS309系の溶接ワイヤと異なる成分のワイヤ(SUS308系又はSUS316系の溶接ワイヤ、若しくは硬化し難い他のオーステナイト系ステンレス鋼の溶接ワイヤ)をホットワイヤTIG溶接によって溶融させて溶接し、第二の肉盛り溶接部を形成することが好ましい。   On the upper surface of the build-up weld (first build-up weld), a wire having a component different from that of the SUS309 welding wire (SUS308 or SUS316 welding wire or other hard-to-harden austenitic stainless steel) It is preferable that the second welding wire is melted and welded by hot wire TIG welding to form a second build-up weld.

また、前記母材表面若しくは前記下盛り表面からの肉盛り高さを少なくとも6mm以上にすることが好ましい。また、溶接表面を切削加工してもよい。その場合、切削加工された後の加工表面までの前記肉盛り高さを6mm以上にすることが好ましい。   Further, it is preferable that the height of the build-up from the surface of the base material or the surface of the underlay is at least 6 mm. Moreover, you may cut the welding surface. In that case, it is preferable that the build-up height to the processed surface after being cut is set to 6 mm or more.

SUS308系又はSUS316系の溶接ワイヤ、若しくは硬化し難い他のオーステナイト系ステンレス鋼の1層以上の肉盛り溶接部を形成させ、かつ3層以上肉盛りされた肉盛り溶接部の溶接表面又は該溶接表面が切削加工された後の加工表面から前記母材表面若しくは前記下盛り表面までの肉盛り高さを少なくとも6mm以上にすることにより、耐食性に優れた安定なオーステナイト及びフェライトの混合組織を有するステンレス鋼の肉盛り溶接部を得ることができる。また、前記肉盛り溶接部の溶接表面又は切削加工された加工表面が高温水蒸気媒体若しくは腐食性媒体の環境下で長期間適用されても、耐食性が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。さらに、レーザビームや通常TIGを用いた肉盛り溶接と比べて、肉盛り溶接のパス数及び層数を大幅に削減できるので工数低減が図れ、生産性向上及びコスト低減が可能となる。   SUS308 or SUS316 welding wire, or a weld surface of a build-up weld that has one or more build-up welds of other austenitic stainless steel that is hard to harden, and three or more build-up welds or the weld Stainless steel having a stable austenite and ferrite mixed structure excellent in corrosion resistance by setting the height of the build-up from the machined surface after the surface is cut to the surface of the base material or the underlying surface to at least 6 mm or more Steel build-up welds can be obtained. In addition, even when the weld surface of the build-up weld or the machined machined surface is applied for a long time in an environment of a high-temperature steam medium or a corrosive medium, the corrosion resistance is high, so that an event such as corrosion cracking can be prevented. It can contribute to life extension. Furthermore, compared to overlay welding using a laser beam or normal TIG, the number of passes and the number of layers for overlay welding can be greatly reduced, thereby reducing man-hours and improving productivity and cost.

なお、前記肉盛り高さが6mmより小さいと、例えば、腐食性環境下での長期間適用時の腐食進捗に対する耐久性が確保できなくなるので好ましくない。前記SUS308系又はSUS316系の溶接ワイヤ、若しくは硬化し難い他のオーステナイト系ステンレス鋼の溶接ワイヤは、何れもJIS規格のものであり、市販品を使用できる。   It is not preferable that the build-up height is less than 6 mm because, for example, durability against corrosion progress during long-term application in a corrosive environment cannot be ensured. The SUS308-based or SUS316-based welding wire or other austenitic stainless steel welding wire which is hard to harden is JIS standard, and commercially available products can be used.

特に、前記ワイヤ通電加熱方式のホットワイヤTIG溶接による肉盛り溶接を遂行する時には、前記溶接ワイヤを溶接進行方向の後方からアーク近傍の溶融プール内へ送給しながら溶融させると共に、溶接パス毎に形成させる溶接パス部のビード高さを2mm以上4mm以下の範囲、母材側又は下層側の溶け込み深さを1mm以下になるように溶接することにより、ワイヤアークの発生防止と安定なワイヤ溶融及び溶融プールを保持することができ、融合不良等の欠陥のない良好な溶接ビードを得ることができる。好ましくは前記ビード高さを2.5mm以上3.5mm以下の範囲、前記溶け込み深さを0.7mm程度になるように溶接するとさらによい。また、理想的な溶接ビード及び断面形状は、例えば、ビード高さが3mm前後、溶け込み深さが0.7mm程度、ビード幅が12〜15mm程度、ビード立上り角度が30度以下となるような形状である。これにより、母材側又は下盛り側の溶融希釈率が30%以下となる溶接ビード部が確実に得られ、この溶接ビード部(溶接パス部及び肉盛り溶接部)の溶金組織を安定なオーステナイト及びフェライトの混合組織にすることができる。   In particular, when performing build-up welding by hot wire TIG welding of the wire current heating method, the welding wire is melted while being fed from the rear in the welding direction into the melt pool near the arc, and for each welding pass. By welding so that the bead height of the weld path to be formed is in the range of 2 mm or more and 4 mm or less, and the penetration depth on the base metal side or lower layer side is 1 mm or less, the occurrence of wire arc and stable wire melting and The molten pool can be retained, and a good weld bead without defects such as poor fusion can be obtained. Preferably, welding is performed such that the bead height is in the range of 2.5 mm to 3.5 mm and the penetration depth is about 0.7 mm. The ideal weld bead and cross-sectional shape are, for example, shapes in which the bead height is about 3 mm, the penetration depth is about 0.7 mm, the bead width is about 12 to 15 mm, and the bead rising angle is 30 degrees or less. It is. As a result, a weld bead portion having a melt dilution ratio of 30% or less on the base metal side or the underlay side is reliably obtained, and the molten metal structure of this weld bead portion (weld pass portion and build-up weld portion) is stable. A mixed structure of austenite and ferrite can be obtained.

なお、前記ビード高さが2mmより小さい時又は前記溶け込み深さが1mmより深い時には、母材側又は下盛り側の前記溶融希釈率が30%を超えることになり、割れ防止に有効なフェライト組織の含有量(析出量)が3%を下回る組織、若しくは硬化し易いマルテンサイト組織が存在する溶金組織に変化する可能性が高まるので好ましくない。また、所望の肉盛り高さが不足状態になるため、肉盛り溶接のパス数及び層数を増加しなければならない。反対に、前記ビード高さが4mmより大きい過ぎる時には、例えば、この溶接ビードの横に溶接ビードを並べる溶接を行う場合に、前パスのビード境界近傍部に融合不良が発生したり、不整ビードになったりし易くなるので好ましくない。さらに、溶接進行方向の前方から溶接ワイヤを送給しながらホットワイヤTIG溶接した時には、平板溶接の場合、前記溶接ワイヤが溶融プールから遊離し易く、このワイヤ遊離に伴ってワイヤアークが発生するため、ワイヤ6の溶融状態及び溶融プール11状態が悪化し、不整ビードや溶接不良の発生に至る可能性が高まり、溶接品質が悪化することになるので好ましくない。   When the bead height is less than 2 mm or the penetration depth is deeper than 1 mm, the melt dilution rate on the base material side or the underlay side exceeds 30%, which is an effective ferrite structure for crack prevention. This is not preferable because the possibility of changing to a molten metal structure in which a content (precipitation amount) of less than 3% or a martensite structure that easily hardens exists is increased. Further, since the desired build-up height becomes insufficient, the number of passes and the number of layers for build-up welding must be increased. On the other hand, when the bead height is larger than 4 mm, for example, when performing welding in which a weld bead is arranged next to the weld bead, a fusion failure may occur in the vicinity of the bead boundary of the previous pass, or irregular beads may be formed. Since it becomes easy to become, it is not preferable. Furthermore, when hot wire TIG welding is performed while feeding a welding wire from the front in the welding direction, in the case of flat plate welding, the welding wire is easily released from the molten pool, and a wire arc is generated along with this wire release. The molten state of the wire 6 and the molten pool 11 state are deteriorated, and the possibility of occurrence of irregular beads and poor welding is increased, so that the welding quality is deteriorated.

前記ホットワイヤTIG溶接によって前記肉盛り溶接部を形成させる以前に、前記低炭素鋼の溶接ワイヤを前記母材表面に下盛り溶接する場合には、前記ホットワイヤTIG溶接によって溶接パス部のビード高さが2mm以上4mm以下の範囲になるように下盛り溶接することにより、融合不良等の欠陥のない良好な溶接ビード及び下盛り溶接部を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。   In the case where the low-carbon steel welding wire is welded on the surface of the base material before the build-up weld is formed by the hot wire TIG welding, the bead height of the weld pass portion is formed by the hot wire TIG welding. By welding the bottom so that the thickness is in the range of 2 mm or more and 4 mm or less, it is possible to obtain a good weld bead and the bottom welding without defects such as poor fusion, and at the same time, by hot wire TIG welding Prime welding efficiency can be improved, and welding time can be greatly shortened.

ステンレス鋼同士の溶接となる2層目から最上層目まで肉盛りする溶接では、前記炭素鋼を溶接する時よりも、前記ホットワイヤTIG溶接の溶接電流及び入熱量を減少及びワイヤ送り速度を増加させる条件変更の溶接によって前記肉盛り溶接部を形成させることにより、前記炭素鋼の母材表面に形成済みの肉盛り溶接部と同様な形状,融合不良等の欠陥のない良好な形状の溶接ビード及び肉盛り溶接部を得ることができる。   In welding that builds up from the second layer to the uppermost layer, which is a weld between stainless steels, the welding current and heat input of the hot wire TIG welding are reduced and the wire feed rate is increased compared to welding the carbon steel. By forming the build-up welded portion by welding under a condition to be changed, the weld bead having a good shape without defects such as the shape and fusion failure similar to the build-up welded portion already formed on the surface of the carbon steel base material And a build-up weld can be obtained.

一方、上記課題を達成する本発明の異材肉盛り溶接構造物は、炭素鋼の母材表面又は該母材表面に低炭素鋼の溶接ワイヤが下盛りされている下盛り表面にステンレス鋼の溶接ワイヤがワイヤ通電加熱方式のホットワイヤTIG溶接によって肉盛り溶接されている異材肉盛り溶接構造物であり、前記母材表面又は前記下盛り表面に異材のSUS309系の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて溶接すると共に、複数の溶接パス部及び該溶接パス部からなる1層目の肉盛り溶接部、又は該1層目及び2層目の肉盛り溶接部を形成させ、かつ前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織になるように、前記溶接パス部の各溶接断面積に対する前記母材側又は前記下盛り側の溶融希釈率を30%以下にした異材肉盛りの構造にすることを特徴とする。上述したように、溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部、並びに該肉盛り溶接部を有する溶接構造物を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。   On the other hand, the different material build-up welded structure of the present invention that achieves the above-mentioned problem is the welding of stainless steel on the surface of the base material of the carbon steel or the surface of the base material on which the low-carbon steel welding wire is on the surface of the base material. It is a dissimilar build-up welded structure in which the wire is build-up welded by hot wire TIG welding of a wire energization heating method, and a dissimilar SUS309 welding wire is applied to the base metal surface or the underfill surface. The first layer build-up welded portion including the plurality of weld pass portions and the weld pass portions, or the first and second build-up weld portions, and the mother The welding pass so that the molten metal structure of the first layer build-up weld fused with the material side or the underlay side is a mixed structure of an austenite structure and a ferrite structure of 3% to 15%. Characterized by the base metal or molten dilution of the lower platter side for each weld cross sectional area of the structure of the dissimilar padding it was below 30%. As described above, it is possible to obtain a weld pass portion and a build-up weld portion with good quality without weld cracks and an embrittlement structure, and a welded structure having the build-up weld portion, and at the same time by the hot wire TIG welding. Overlay welding efficiency can be improved, and welding time can be significantly shortened.

特に、前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と5%以上15%以下のフェライト組織との混合組織になるように、前記ホットワイヤTIG溶接によって前記母材側又は前記下盛り側の溶融希釈率を25%以下にした異材肉盛りの構造にすることにより、さらに溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部、並びに該肉盛り溶接部を有する溶接構造物を確実に得ることができる。また、肉盛り溶接効率も向上させることができる。   In particular, the molten metal structure of the first layer build-up weld fused to the base material side or the underlay side is a mixed structure of an austenite structure and a ferrite structure of 5% or more and 15% or less. By forming a different material build-up structure with a melt dilution rate of 25% or less on the base material side or the underlay side by hot wire TIG welding, a weld pass portion with good quality free from weld cracks and brittle structures, and A build-up weld and a welded structure having the build-up weld can be reliably obtained. Moreover, the build-up welding efficiency can also be improved.

また、前記1層目の肉盛り溶接部又は2層目の肉盛り溶接部の上位表面に、前記SUS309系の溶接ワイヤと異なる成分のSUS308系又はSUS316系の溶接ワイヤ、若しくは硬化し難い他のオーステナイト系ステンレス鋼の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて溶接すると共に、1層以上の肉盛り溶接部を形成させ、かつ3層以上肉盛り溶接された肉盛り溶接部の溶接表面又は該溶接表面が切削加工された後の加工表面から前記母材表面若しくは前記下盛り表面までの肉盛り高さを少なくとも6mm以上にした異材肉盛りの構造にするとよい。耐食性に優れた安定なオーステナイト及びフェライトの混合組織を有するステンレス鋼の肉盛り溶接部及びその溶接構造物を得ることができる。また、前記肉盛り溶接部の溶接表面又は切削加工された加工表面が高温水蒸気媒体若しくは腐食性媒体の環境下で長期間適用されても、耐食性が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。さらに、レーザビームや通常TIGを用いた肉盛り溶接と比べて、肉盛り溶接のパス数及び層数を大幅に削減できるので工数低減が図れ、生産性向上及びコスト低減が可能となる。   In addition, on the upper surface of the first layer buildup weld or the second layer buildup weld, a SUS308 or SUS316 welding wire having a different component from the SUS309 welding wire, or other hard-to-harden The welding surface of the weld weld which is welded by melting and welding the austenitic stainless steel welding wire by the hot wire TIG welding and forming one or more layers of the weld overlay, and three or more layers of the weld weld It is preferable to have a structure of different material build-up in which the build-up height from the machined surface after the weld surface is cut to the base material surface or the underfill surface is at least 6 mm or more. A build-up weld of stainless steel having a mixed structure of stable austenite and ferrite excellent in corrosion resistance and its welded structure can be obtained. In addition, even when the weld surface of the build-up weld or the machined machined surface is applied for a long time in an environment of a high-temperature steam medium or a corrosive medium, the corrosion resistance is high, so that an event such as corrosion cracking can be prevented. It can contribute to life extension. Furthermore, compared to overlay welding using a laser beam or normal TIG, the number of passes and the number of layers for overlay welding can be greatly reduced, thereby reducing man-hours and improving productivity and cost.

特に、前記3層以上肉盛りされた肉盛り溶接部及び前記6mm以上の肉盛り高さを有する異材肉盛りの溶接構造物は、原子力機器又は火力機器に使用される大型構造物に組み込まれ、かつ、前記異材肉盛りの溶接表面又は加工表面が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されているとよい。高温水蒸気媒体若しくは腐食性媒体の環境下で長期間適用されても、耐食性が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   In particular, the welded structure of the build-up weld that is built up of three or more layers and the build-up of the dissimilar material having the build-up height of 6 mm or more is incorporated into a large structure used for nuclear equipment or thermal equipment, And it is good to arrange | position to the environmental state which the welding surface or processed surface of the said different material build-up contacts a high temperature steam medium or a corrosive medium. Even when it is applied for a long time in an environment of a high-temperature steam medium or a corrosive medium, the corrosion resistance is high, so that an event such as corrosion cracking can be prevented and it can contribute to a long life.

以下、本発明の内容について、図1〜図9及び表1〜表4に示される実施例を用いてさらに具体的に説明する。   Hereinafter, the contents of the present invention will be described more specifically with reference to Examples shown in FIGS. 1 to 9 and Tables 1 to 4.

図1は、異材肉盛り溶接方法に使用するワイヤ通電加熱方式のホットワイヤTIG溶接の装置構成を示す図である。TIGトーチ1内の電極2(非消耗性のタングステン電極)と被溶接材の母材5(炭素鋼)との間には、給電ケーブル13,14を介して給電するTIG溶接電源3が接続されている。また、前記母材5と溶接ワイヤ6に通電する給電チップ7との間には、他の給電ケーブル15,16を介してワイヤ通電加熱電源10が接続されている。TIGトーチ1又は該TIGトーチ及び給電チップ7の両方から噴出させるシールドガス(省略)の雰囲気内で、前記電極1と母材5との間にアーク4を発生させると共に、TIG溶接電源3から所望の溶接電流Iaを出力させている。アーク4直下の母材5上に形成される溶融プール11内に溶接ワイヤ6を溶接進行方向17の後方から送給すると共に、ワイヤ通電加熱電源10から溶接に適したワイヤ電流Iwを給電できるようにしている。溶融プール11内に送給する溶接ワイヤ6は、ワイヤリール8に巻かれており、ワイヤ送給装置(省略)の送給ローラ9を介して前記溶融プール11内に送給するようにしている。溶接ビード12は、溶接中に進行する溶融プール11の後方に凝固過程で形成される。   FIG. 1 is a diagram showing a device configuration of hot wire TIG welding of a wire current heating method used for a different material build-up welding method. Between the electrode 2 (non-consumable tungsten electrode) in the TIG torch 1 and the base material 5 (carbon steel) of the material to be welded, a TIG welding power source 3 for supplying power via power supply cables 13 and 14 is connected. ing. Further, a wire energization heating power source 10 is connected between the base material 5 and the power feed tip 7 energizing the welding wire 6 through other power feed cables 15 and 16. An arc 4 is generated between the electrode 1 and the base material 5 in the atmosphere of a shield gas (omitted) ejected from the TIG torch 1 or both of the TIG torch and the power feed tip 7, and desired from the TIG welding power source 3. The welding current Ia is output. The welding wire 6 is fed from behind the welding traveling direction 17 into the molten pool 11 formed on the base material 5 immediately below the arc 4, and the wire current Iw suitable for welding can be fed from the wire energization heating power source 10. I have to. The welding wire 6 fed into the molten pool 11 is wound around a wire reel 8 and is fed into the molten pool 11 via a feed roller 9 of a wire feeding device (omitted). . The weld bead 12 is formed in the solidification process behind the molten pool 11 that progresses during welding.

ワイヤ通電加熱方式のワイヤホットワイヤTIG溶接は、溶接ワイヤ6と母材5との間に給電するワイヤ電流Iwによって、加熱(ジュール発熱作用を利用する通電加熱)されて高温になる溶接ワイヤ6をアーク4直下の溶融プール11内に送給して溶融させながら溶接を行う方法であり、通常のTIG溶接方法と比べてワイヤ溶着効率を数倍に増加することができる。炭素鋼の母材5表面に肉盛り溶接する溶接ワイヤ6は、オーステナイト系ステンレス鋼ワイヤであり、例えば、異材溶接に適したSUS309系の溶接ワイヤである。また、前記SUS309系の溶接ワイヤ6を肉盛り溶接した後に、この肉盛り溶接部の上位表面に肉盛り溶接する他の溶接ワイヤ66は、前記SUS309系の溶接ワイヤ6と異なる成分のSUS308系又はSUS316系の溶接ワイヤ、若しくは硬化し難い他のオーステナイト系ステンレス鋼の溶接ワイヤ(例えばSUS321系,SUS347系など)である。このような溶接ワイヤ6,66を溶接進行方向の後方からアーク4近傍の溶融プール11内へ送給しながら溶融させて溶接することにより、ワイヤアークの発生防止と安定なワイヤ溶融及び溶融プール11を保持することができ、融合不良等の欠陥のない良好な溶接ビード12を得ることができる。また、肉盛り溶接効率も向上でき、溶接時間を大幅に短縮することができる。   In the wire hot wire TIG welding of the electric wire heating method, the welding wire 6 heated to a high temperature by the wire current Iw fed between the welding wire 6 and the base material 5 (electric heating using Joule heating action) is heated. This is a method in which welding is performed while being fed and melted into the melt pool 11 directly under the arc 4, and the wire welding efficiency can be increased several times as compared with a normal TIG welding method. A welding wire 6 that is welded on the surface of the base material 5 of carbon steel is an austenitic stainless steel wire, for example, a SUS309 welding wire suitable for dissimilar material welding. In addition, after the SUS309 series welding wire 6 is build-up welded, the other welding wire 66 that is build-up welded to the upper surface of this build-up welded portion is a SUS308 series or a different component from the SUS309 series welding wire 6. SUS316 type welding wire or other austenitic stainless steel welding wire that is hard to harden (for example, SUS321 type, SUS347 type, etc.). Such welding wires 6 and 66 are melted while being fed into the melt pool 11 near the arc 4 from the rear in the welding direction, thereby preventing the occurrence of wire arc and stable wire melting and the melt pool 11. And a good weld bead 12 free from defects such as poor fusion can be obtained. Moreover, build-up welding efficiency can also be improved and welding time can be shortened significantly.

なお、溶接進行方向17の前方から溶接ワイヤ6を送給しながらホットワイヤTIG溶接した時には、平板溶接の場合、前記溶接ワイヤ6が溶融プール11から遊離し易く、このワイヤ遊離に伴ってワイヤアークが発生するため、ワイヤ6の溶融状態及び溶融プール11状態が悪化し、不整ビードや溶接不良の発生に至る可能性が高まり、溶接品質が悪化することになるので好ましくない。   In addition, when hot wire TIG welding is performed while feeding the welding wire 6 from the front in the welding progress direction 17, in the case of flat plate welding, the welding wire 6 is easily released from the molten pool 11. Therefore, the molten state of the wire 6 and the molten pool 11 state are deteriorated, and the possibility of occurrence of irregular beads and poor welding is increased, so that the welding quality is deteriorated.

表1に、本実施例で肉盛り溶接試験に用いた母材及び各溶接ワイヤの化学成分,Ni当量及びCr当量の値を示す。例えば、被溶接材の母材5は、炭素鋼のSM400(溶接構造用圧延鋼材)であり、溶接ワイヤ6,66はオーステナイト系ステンレスワイヤ(SUS309MoL,SUS309L,SUS316L,SUS308L),低炭素鋼のワイヤ(YGW16)である。なお、Ni当量及びCr当量の値は、表1の下段に示した算出式(Ni当量=%Ni+30×%C+0.5×%Mn,Cr当量=%Cr+%Mo+1.5×Si+0.5×%Nb)より求められる。このように算出したNi当量及びCr当量の値は、後述する図3及び図6に示すシェフラーの組織図上に使用している。   Table 1 shows values of chemical components, Ni equivalents and Cr equivalents of the base metal and each welding wire used in the overlay welding test in this example. For example, the base material 5 of the material to be welded is carbon steel SM400 (rolled steel material for welded structure), and the welding wires 6 and 66 are austenitic stainless steel wires (SUS309MoL, SUS309L, SUS316L, SUS308L) and low carbon steel wires. (YGW16). In addition, the value of Ni equivalent and Cr equivalent is the calculation formula shown in the lower part of Table 1 (Ni equivalent =% Ni + 30 ×% C + 0.5 ×% Mn, Cr equivalent =% Cr +% Mo + 1.5 × Si + 0.5 ×% Nb). The values of Ni equivalent and Cr equivalent calculated in this way are used on the Schaeffler organization chart shown in FIG. 3 and FIG.

Figure 2011020134
Figure 2011020134

表2に、純金属及び合金の物性値を示す。炭素鋼は、表2に示すように、ステンレス鋼(例えばSUS304,SUS316)と比べて融点や熱伝達率が高いので溶け難くなる。このため、炭素鋼の母材5表面にステンレス鋼の溶接ワイヤ6を肉盛り溶接する時には、ステンレス鋼母材を溶接する時よりも、溶接電流及び入熱量を高め、ワイヤ送り速度を抑制して前記ホットワイヤTIG溶接することによって、融合不良等の欠陥のない良好な形状の溶接ビード及び肉盛り溶接部を得ることができる。   Table 2 shows the physical property values of pure metals and alloys. As shown in Table 2, carbon steel is difficult to melt because it has a higher melting point and heat transfer coefficient than stainless steel (for example, SUS304, SUS316). For this reason, when overlay welding a stainless steel welding wire 6 on the surface of a carbon steel base material 5, the welding current and heat input are increased and the wire feed rate is suppressed compared to when welding a stainless steel base material. By performing the hot wire TIG welding, it is possible to obtain a weld bead and a build-up weld with a good shape free from defects such as poor fusion.

Figure 2011020134
Figure 2011020134

図2は、図1に示した溶接装置の適用によって母材表面に形成した複数の溶接パス部からなる1層目の肉盛り溶接部の一実施例を示す断面図である。図2中には、溶接パスの順序及び配列を示すパス番号(1〜4),母材5側の溶け込み深さL,ビード高さh1及びビード幅wを記してある。図2に示すように、炭素鋼(例えば、SM400やSGV480)の母材5表面に異材のSUS309系の溶接ワイヤ6を前記ホットワイヤTIG溶接によって溶融させて溶接し、複数の溶接パス部b1,b2〜b4からなる1層目N1の肉盛り溶接部を形成させている。   FIG. 2 is a cross-sectional view showing an embodiment of the first build-up welded portion formed of a plurality of weld pass portions formed on the surface of the base material by application of the welding apparatus shown in FIG. In FIG. 2, the pass number (1 to 4) indicating the order and arrangement of the welding passes, the penetration depth L, the bead height h1 and the bead width w on the base metal 5 side are shown. As shown in FIG. 2, dissimilar SUS309 welding wire 6 is melted and welded to the surface of base material 5 of carbon steel (for example, SM400 or SGV480) by hot wire TIG welding, and a plurality of welding pass portions b1, A build-up weld of the first layer N1 consisting of b2 to b4 is formed.

溶接パス毎の溶接パス部b1,b2〜b4(溶接ビード12に該当)のビード高さh1は、2mm以上4mm以下の範囲であり、好ましくは2.5mm以上3.5mm以下の範囲にするとよい。また、母材5側の溶け込み深さLは、1mm以下であり、好ましくは0.7mm程度にするとさらによい。また、理想的な溶接ビード及び断面形状は、例えば、ビード高さh1が3mm前後、溶け込み深さLが0.7mm程度、ビード幅wが12〜15mm程度、ビード立上り角度が30度以下となるような形状である。このような形状の溶接ビードは、ホットワイヤTIG溶接の適正な溶接電流Ia(A),溶接速度v(mm/分)又は適正な溶接入熱量Q(kJ/cm)(Q=溶接電流Ia×アーク電圧Va×6/溶接速度v×10),溶接電流に対応した適正なワイヤ電流Iw及びワイヤ送り速度Wf等の溶接条件を適正に設定してホットワイヤTIG溶接することにより良好に形成させることができる。これにより、炭素鋼母材5側の溶融希釈率が30%以下、好ましくは25%以下となる溶接パス部b1,b2〜b4が確実に得られ、この溶接パス部b1,b2〜b4の溶金組織を耐食性に優れた安定なオーステナイト及びフェライトの混合組織にすることができる。被溶接材の母材5は、上記炭素鋼だけでなく、他の炭素鋼でもかまわない。   The bead height h1 of the weld pass portions b1, b2 to b4 (corresponding to the weld bead 12) for each weld pass is in the range of 2 mm to 4 mm, and preferably in the range of 2.5 mm to 3.5 mm. . Further, the penetration depth L on the base material 5 side is 1 mm or less, preferably about 0.7 mm. The ideal weld bead and cross-sectional shape are, for example, a bead height h1 of about 3 mm, a penetration depth L of about 0.7 mm, a bead width w of about 12 to 15 mm, and a bead rising angle of 30 degrees or less. It is a shape like this. The weld bead having such a shape has an appropriate welding current Ia (A), welding speed v (mm / min) or appropriate welding heat input Q (kJ / cm) (Q = welding current Ia ×) for hot wire TIG welding. Arc voltage Va × 6 / welding speed v × 10), appropriate wire current Iw corresponding to the welding current, wire feed speed Wf, etc. should be properly formed by hot wire TIG welding with appropriate setting of welding conditions Can do. As a result, weld pass portions b1, b2 to b4 having a melt dilution ratio of 30% or less, preferably 25% or less on the carbon steel base material 5 side are surely obtained, and the weld pass portions b1, b2 to b4 are melted. The gold structure can be a stable mixed structure of austenite and ferrite excellent in corrosion resistance. The base material 5 of the material to be welded may be not only the above carbon steel but also other carbon steel.

図3は、シェフラーの組織図上における炭素鋼母材とステンレスワイヤとの金属組織の関係を示す組織図である。例えば、炭素鋼(SM400)の母材5にステンレスワイヤ6(SUS309MoL)を溶接した時の異材溶接では、図3中にプロットしたa点(SM400母材)とb点(SUS309MoLワイヤ)とを結んだ直線上(a,c,d,e,f,g,b点)に溶接金属組織が存在することになる。例えば、炭素鋼母材5の溶融希釈率が70%のc点は、冷却時に硬化し割れが発生し易いマルテンサイト生成組織領域、また、その溶融希釈率が50%のd点では、マルテンサイトとオーステナイトとの混合組織領域になる。一方、炭素鋼母材5の溶融希釈率が30〜10%のe点〜g点では、安全な溶接金属が得られる安定領域のオーステナイト及びフェライトの混合組織領域,溶接割れ防止に有効なフェライト含有量が約3〜13%存在することになり、溶接割れは発生しないことになる。なお、前記溶融希釈率は、溶接パス部b1,b2〜b4の各溶接断面積A(A=ワイヤ溶融断面積A1+母材溶融断面積A2)に対する母材5側の溶融した断面積の割合を示す溶融百分率(B=A2/A×100)である。また、SUS309MoLワイヤに該当するb点は、炭素鋼母材5の溶融希釈率が0%に該当し、ワイヤ6のみが100%溶融した時であり、この時のフェライト含有量は約15%前後(例えば14〜16%)である。   FIG. 3 is a structure diagram showing the relationship between the metal structure of the carbon steel base material and the stainless wire on the Schaeffler structure chart. For example, in dissimilar material welding when a stainless steel wire 6 (SUS309MoL) is welded to a carbon steel (SM400) base material 5, points a (SM400 base material) and b points (SUS309MoL wire) plotted in FIG. 3 are connected. A weld metal structure exists on the straight line (points a, c, d, e, f, g, and b). For example, the point c where the melt dilution rate of the carbon steel base material 5 is 70% is a martensite-producing structure region that is hardened and easily cracked during cooling, and the point d where the melt dilution rate is 50% is martensite. It becomes a mixed structure region of and austenite. On the other hand, when the melt dilution rate of the carbon steel base material 5 is 30 to 10% e point to g point, a stable structure austenite and ferrite mixed structure region where a safe weld metal can be obtained, and containing ferrite effective for preventing weld cracking The amount will be about 3-13% and no weld cracking will occur. The melt dilution rate is the ratio of the melted cross-sectional area on the base metal 5 side to the weld cross-sectional area A (A = wire melt cross-sectional area A1 + base metal melt cross-sectional area A2) of the weld pass portions b1, b2 to b4. The melting percentage shown (B = A2 / A × 100). The point b corresponding to the SUS309MoL wire is when the melt dilution rate of the carbon steel base material 5 corresponds to 0% and only the wire 6 is melted 100%, and the ferrite content at this time is about 15%. (For example, 14 to 16%).

したがって、図2及び図3に示したように、炭素鋼母材5側の溶融希釈率を30%以下(e点〜g点及びb点近傍)になるようにホットワイヤTIG溶接を行うことによって、安定なオーステナイト及びフェライト(含有量3〜15%)の混合組織、所望のビード形状及び溶接割れや脆化組織のない品質良好な溶接パス部b1,b2〜b4及び肉盛り溶接部N1を得ることができ、同時に、肉盛り溶接効率を高めることもできる。好ましくは前記溶融希釈率を25%以下(f点〜g点及びb点近傍)に至るように前記ホットワイヤTIG溶接を行うとさらによい。これにより、さらに安定なオーステナイト及びフェライト(含有量5〜15%)の混合組織、所望のビード形状及び溶接割れや脆化組織のない品質良好な溶接パス部b1,b2〜b4及び肉盛り溶接部N1を確実に得ることができる。   Therefore, as shown in FIGS. 2 and 3, by performing hot wire TIG welding so that the melt dilution rate on the carbon steel base material 5 side is 30% or less (near the points e to g and b). , Stable austenite and ferrite (content 3 to 15%) mixed structure, desired bead shape and weld pass parts b1, b2 to b4 and build-up weld part N1 with good quality without weld cracks and brittle structures At the same time, the overlay welding efficiency can be increased. Preferably, the hot wire TIG welding is performed so that the melt dilution rate reaches 25% or less (in the vicinity of the points f to g and b). As a result, a more stable mixed structure of austenite and ferrite (content 5 to 15%), desired bead shape, and weld pass parts b1, b2 to b4 and build-up weld parts having good quality without weld cracks and brittle structures. N1 can be obtained reliably.

なお、前記ビード高さh1が2mmより小さい時、又は前記溶け込み深さLが1mmより大きい時には、炭素鋼母材5側の溶融希釈率が30%を超えることになり、割れ防止に有効なフェライト組織の含有量(析出量)が3%を下回る溶金組織、若しくは硬化し易いマルテンサイト組織とオーステナイト組織との混合組織が存在する溶金組織に変化する可能性が高まるので好ましくない。また、所望の肉盛り高さが不足状態になるため、肉盛り溶接のパス数及び層数を増加しなければならない。反対に、前記ビード高さh1が4mmより大きい過ぎる時には、例えば、溶接ビードb1の横に他の溶接ビードb2を並べる多パス溶接を行う場合に、前パスのビード境界近傍部に融合不良が発生したり、現パスが不整ビードになったりし易くなるので好ましくない。   When the bead height h1 is smaller than 2 mm, or when the penetration depth L is larger than 1 mm, the melt dilution rate on the carbon steel base material 5 side exceeds 30%, which is effective for preventing cracks. This is not preferable because the possibility that the structure content (precipitation amount) is less than 3%, or a molten structure in which a mixed structure of martensite structure and austenite structure, which is easy to harden, is present is increased. Further, since the desired build-up height becomes insufficient, the number of passes and the number of layers for build-up welding must be increased. On the other hand, when the bead height h1 is too larger than 4 mm, for example, when performing multi-pass welding in which another weld bead b2 is arranged next to the weld bead b1, a poor fusion occurs in the vicinity of the bead boundary of the previous pass. Or the current path becomes an irregular bead.

上記の検討に基づき、溶接条件を変更して各種の溶接試験を行った。表3に各種の肉盛り溶接試験に用いた溶接条件を示す。母材はSM400の炭素鋼、ワイヤはSUS309MoLを使用し、また、多層多パスの肉盛り溶接では、SUS309MoLの他に、下盛り用のYGW16(低炭素鋼)ワイヤ、上層盛り用のSUS316Lワイヤを使用した。溶接パス毎の入熱量は何れも18〜19kJ/cmとした。何れの溶接部、肉盛り溶接及びその近傍に融合不良や割れ等の欠陥はなかった。   Based on the above examination, various welding tests were performed by changing the welding conditions. Table 3 shows welding conditions used in various overlay welding tests. The base material is carbon steel of SM400, and the wire is SUS309MoL. In addition, in multi-layer multipass overlay welding, in addition to SUS309MoL, YGW16 (low carbon steel) wire for lower overlay and SUS316L wire for upper overlay are used. used. The heat input for each welding pass was 18-19 kJ / cm. There was no defect such as poor fusion or cracking in any welded part, build-up weld or its vicinity.

また、表4に、表3に示した溶接条件を使用して1パス溶接試験及び多層多パスの肉盛り溶接試験した時の結果を示す。なお、比較のため、従来のTIG溶接(ワイヤ通電加熱なし)の試験条件及びその結果(試験番号No.1,No.5)を表3中及び表4中に併記した。   Table 4 shows the results when a one-pass welding test and a multi-layer multi-pass overlay welding test were performed using the welding conditions shown in Table 3. For comparison, the test conditions and results (test numbers No. 1 and No. 5) of conventional TIG welding (no wire current heating) are also shown in Table 3 and Table 4.

Figure 2011020134
Figure 2011020134

Figure 2011020134
Figure 2011020134

表3及び表4に示すように、試験番号No.1,No.5に記載の1パス溶接及び4パス肉盛り溶接試験では、前記炭素鋼母材にSUS309MoLワイヤを溶接したものであり、ワイヤ送り速度(1m/分)が少なく、溶接速度(80mm/分)も遅いため、溶接効率が低くなっている。また、溶け込み深さ(L=1mm)に対するビード高さh1が1.7〜1.8mmと低く、このため、炭素鋼母材側の溶融希釈率が30%を超える36〜37%であり、また、溶接金属部のフェライト含有量が1〜1.5%であり、3%を下回る結果であった。   As shown in Table 3 and Table 4, in the 1-pass welding and 4-pass build-up welding tests described in test numbers No. 1 and No. 5, SUS309MoL wire was welded to the carbon steel base material. Since the feed speed (1 m / min) is small and the welding speed (80 mm / min) is slow, the welding efficiency is low. Further, the bead height h1 with respect to the penetration depth (L = 1 mm) is as low as 1.7 to 1.8 mm. Therefore, the melt dilution rate on the carbon steel base material side is 36 to 37% exceeding 30%, Moreover, the ferrite content of the weld metal part was 1 to 1.5%, which was a result of less than 3%.

一方、試験番号No.2〜No.4に記載の1パス溶接試験では、前記炭素鋼母材にSUS309MoLワイヤを溶接したものであり、試験番号No.1(従来TIG)と比べて溶接効率を2〜3倍に高めるべく、溶接電流及び溶接速度を増加すると同時に、ワイヤ通電加熱のワイヤ電流(40〜60A),ワイヤ送り速度(2〜3m/分)を増加させている。これにより、溶接効率を2〜3倍に向上でき、また、ワイヤ溶融の増加によるビード高さh1(2.2〜3.0mm)の増加によって炭素鋼母材側の溶融希釈率を30%以下の29〜20%に減少することができた。また、フェライトスコープ(磁気誘導法)を用いて溶接表面から溶接金属部のフェライト含有量を測定(10点の平均値)した結果、SUS309MoLワイヤの溶接部(オーステナイト及びフェライトの混合組織)はフェライト含有量が3.5〜7.3%であり、3%以上を満足することができた。   On the other hand, in the one-pass welding test described in test numbers No. 2 to No. 4, SUS309MoL wire is welded to the carbon steel base material, and the welding efficiency is higher than that of test number No. 1 (conventional TIG). In order to increase the welding current and the welding speed by two to three times, the wire current (40 to 60 A) and the wire feed speed (2 to 3 m / min) for wire energization heating are increased at the same time. As a result, the welding efficiency can be improved 2 to 3 times, and the melt dilution rate on the carbon steel base metal side is reduced to 30% or less by increasing the bead height h1 (2.2 to 3.0 mm) due to the increase in wire melting. It was able to reduce to 29 to 20% of. Moreover, as a result of measuring the ferrite content of the weld metal part from the weld surface using a ferrite scope (magnetic induction method) (average value of 10 points), the weld part of SUS309MoL wire (mixed structure of austenite and ferrite) contains ferrite. The amount was 3.5 to 7.3%, and 3% or more could be satisfied.

また、試験番号No.6,No.7に記載の1層及び2層の肉盛り溶接試験では、前記炭素鋼母材にSUS309MoLワイヤを肉盛り溶接したものであり、従来溶接と比べて溶接効率を3〜4倍に向上でき、炭素鋼母材側の溶融希釈率を19〜20%に減少することができた。また、フェライト含有量の平均値は、1層目の肉盛り溶接部で6.1〜9.1%であり、2層目の肉盛り溶接部で14.5%であり、何れも3%以上を満足することができた。このように、前記炭素鋼の母材側と融合した前記1層目の肉盛り溶接部又は該1層目及び2層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織になるように、前記ホットワイヤTIG溶接によって炭素鋼母材側の溶融希釈率を30%以下にすることにより、溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。   Further, in the 1-layer and 2-layer build-up welding tests described in test numbers No. 6 and No. 7, SUS309MoL wire is build-up welded to the carbon steel base material, and the welding efficiency is higher than that of conventional welding. 3 to 4 times, and the melt dilution rate on the carbon steel base material side could be reduced to 19 to 20%. The average value of the ferrite content is 6.1 to 9.1% in the first layer build-up weld, 14.5% in the second layer build-up weld, and 3% I was able to satisfy the above. Thus, the molten metal structure of the first build-up welded portion or the first and second build-up welds fused with the base material side of the carbon steel is 3% or more and 15% or more of the austenite structure. By making the melt dilution ratio on the carbon steel base metal side 30% or less by hot wire TIG welding so that it becomes a mixed structure with the following ferrite structure, a welding path with good quality without weld cracking and embrittlement structure And a weld overlay can be obtained, and at the same time, the overlay welding efficiency can be improved by the hot wire TIG welding, and the welding time can be greatly shortened.

試験番号No.8は、2種類の溶接ワイヤ(SUS309MoLワイヤ及びSUS316Lワイヤ)を3層肉盛り溶接したものであり、また、試験番号No.9は、3種類の溶接ワイヤ(低炭素鋼の下盛り用YGW16ワイヤ,肉盛り用のSUS309MoLワイヤ及びSUS316Lワイヤ)を4層盛り溶接したものであり、従来溶接と比べて溶接効率を4倍に向上することができる。また、溶接パス毎のビード高さh1が何れも2.9〜3mmあり、フェライト含有量も3%以上を満足する6.2〜13%であった。また、下盛り部を除いた上部3層盛り部の累計の肉盛り高さも6mmを超える8.8〜8.9mmであった。なお、No.8及びNo.9の結果についてはその詳細を後述する。   Test No. 8 is a three-layer build-up weld of two types of welding wires (SUS309MoL wire and SUS316L wire), and Test No. 9 is three types of welding wires (under the low carbon steel). YGW16 wire for filling, SUS309MoL wire and SUS316L wire for overlaying) are welded on four layers, and the welding efficiency can be improved four times as compared with conventional welding. Further, the bead height h1 for each welding pass was 2.9 to 3 mm, and the ferrite content was 6.2 to 13% satisfying 3% or more. Further, the cumulative height of the upper three-layered portion excluding the lower portion was also 8.8 to 8.9 mm exceeding 6 mm. Details of the results of No. 8 and No. 9 will be described later.

図4は、炭素鋼の母材表面にステンレスワイヤを3層15パス溶接した肉盛り溶接部の一実施例を示す断面図である。図4中には、溶接パスの順序及び配列を示すパス番号(1〜15),母材5側の溶け込み深さL,ビード高さh1,ビード幅w,3層累計の肉盛り高さHを記してある。この実施例では、例えば、前記ホットワイヤTIG溶接によって、炭素鋼の母材5表面にSUS309MoLワイヤ6を溶接して1層目N1及び2層目N2の肉盛り溶接部(溶接パス部b1〜b11)を形成した後に、その上位表面に、前記SUS309MoLワイヤ6と成分が異なるSUS316Lワイヤ66を溶接して3層目N3の肉盛り溶接部(溶接パス部b12〜b15)を形成した時の断面を示している。表3及び表4に示した試験番号No.8に該当する結果である。炭素鋼の母材5表面と融合した1層目N1の溶接パス部b1〜b6のビード高さh1は3.0mm、母材5側の溶け込み深さLは0.8mmであり、3層累計の肉盛り高さHは6mmを超える大きさの約8.8mmであった。また、上述したように、フェライトスコープ(磁気誘導法)を用いて溶接表面から溶接金属部のフェライト含有量(10点の最小値〜最大値及び平均値)を測定した結果、1層目N1の肉盛り溶接部で5.3〜7.3%(平均値6.2%)であった。また、前記SUS309MoLワイヤと成分が異なるSUS316Lワイヤを溶接した3層目N3の肉盛り溶接部で12.2〜13.5%(平均値13%)であった。このように、何れの肉盛り溶接部も溶接割れ防止に有効なフェライト含有量が5%以上に確保されていた。   FIG. 4 is a cross-sectional view showing an embodiment of a build-up welded portion in which a stainless steel wire is welded on three layers and 15 passes on the surface of a carbon steel base material. In FIG. 4, the pass number (1 to 15) indicating the order and arrangement of the welding passes, the penetration depth L on the base metal 5 side, the bead height h1, the bead width w, and the cumulative height H of the three layers. Is marked. In this embodiment, for example, the SUS309MoL wire 6 is welded to the surface of the base material 5 of carbon steel by the hot wire TIG welding, and the first and second N1 and N2 overlay welds (welding pass portions b1 to b11). ) Is formed, and a cross-section when the third layer N3 build-up welded portion (welding pass portions b12 to b15) is formed on the upper surface by welding a SUS316L wire 66 having a component different from that of the SUS309MoL wire 6 is formed. Show. The results correspond to the test number No. 8 shown in Tables 3 and 4. The bead height h1 of the weld layer b1 to b6 of the first layer N1 fused with the surface of the carbon steel base material 5 is 3.0 mm, and the penetration depth L on the base material 5 side is 0.8 mm. The build-up height H was about 8.8 mm, which was over 6 mm. Further, as described above, the ferrite content (10 points minimum value to maximum value and average value) of the weld metal part was measured from the weld surface using a ferrite scope (magnetic induction method). It was 5.3 to 7.3% (average value 6.2%) in the weld overlay. Moreover, it was 12.2 to 13.5% (average value 13%) in the build-up weld part of the 3rd layer N3 which welded the SUS316L wire in which a component differs from the said SUS309MoL wire. As described above, the ferrite content effective for preventing weld cracking was ensured to be 5% or more in any of the overlay welds.

なお、前記SUS316Lワイヤの替わりに、SUS308Lワイヤ、若しくは硬化し難い他のオーステナイト系ステンレス鋼の溶接ワイヤ(例えばSUS321系,SUS347系など)を用いて、前記肉盛り溶接部N1,N2の上位表面から肉盛り溶接することもできる。また、1層目N1の肉盛り溶接部(溶接パス部b1〜b6)をSUS309系の溶接ワイヤ6による溶接にて形成し、その後に、2層目N2及び3層目N3の肉盛り溶接部(溶接パス部b7〜b15)をSUS316系又はSUS308系の溶接ワイヤ66、若しくは他のオーステナイト系ステンレス鋼の溶接ワイヤ66による溶接にて形成することもできる。何れの溶接ワイヤ6,66もJIS規格のものであり、市販品を使用すればよい。   In place of the SUS316L wire, a SUS308L wire or other hard austenitic stainless steel welding wire (for example, SUS321 series, SUS347 series, etc.) is used from the upper surface of the build-up welds N1, N2. Overlay welding can also be performed. Moreover, the build-up welds (welding pass parts b1 to b6) of the first layer N1 are formed by welding with the SUS309 welding wire 6, and then the build-up welds of the second layer N2 and the third layer N3 (Welding pass portions b7 to b15) can also be formed by welding with a SUS316 or SUS308 welding wire 66 or another austenitic stainless steel welding wire 66. Any of the welding wires 6 and 66 are JIS standards, and commercially available products may be used.

前記3層以上肉盛りされた肉盛り溶接部N1〜N3の肉盛り高さH(母材5表面から最終層の溶接表面まで累計の肉盛り高さ)は6mmを超える大きさになっており、最終層の溶接表面を平坦に切削加工する場合も、加工代が十分にあり、切削加工後の加工表面から前記母材5表面までの肉盛り高さを6mm以上に確保するができる。また、これにより、耐食性に優れた安定なオーステナイト及びフェライトの混合組織を有するステンレス鋼の肉盛り溶接部及び該肉盛り溶接部を備えた異材肉盛り溶接構造物を得ることができる。なお、前記肉盛り高さが6mmより小さいと、例えば、腐食性環境下での長期間適用時の腐食進捗に対する安全性が確保できなくなるので好ましくない。   The build-up height H (cumulative build-up height from the surface of the base material 5 to the weld surface of the final layer) of the build-up welds N1 to N3 that are built up of three or more layers is over 6 mm. Even when the weld surface of the final layer is cut flat, there is a sufficient machining allowance, and the height of build-up from the processed surface after cutting to the surface of the base material 5 can be secured to 6 mm or more. Thereby, a stainless steel build-up weld having a stable austenite and ferrite mixed structure excellent in corrosion resistance and a dissimilar build-up weld structure including the build-up weld can be obtained. In addition, it is not preferable that the build-up height is smaller than 6 mm because, for example, it becomes impossible to secure safety against the progress of corrosion during long-term application in a corrosive environment.

図5は、図4に示した肉盛り溶接部の溶接表面を切削加工した後の肉盛り溶接部の形状を示す断面図である。肉盛り最終層N3の溶接表面を切削加工(加工代ΔH)することにより、所望の平坦な加工表面を得ることができる。また、3層N1〜N3以上肉盛りされた累計の肉盛り高さHが6mmを超える8.7mmの大きさであるため、溶接表面を平坦に切削加工しても、切削加工後の加工表面から母材5表面までの肉盛り高さ(H−ΔH)を6mm以上に確保することができる。加工代ΔHを含む3層累計の肉盛り高さHが6mmより小さい場合には、特定の肉盛り高さ6mm以上(又は6mm以上9mm以下の範囲)を満足するように、肉盛り溶接の層数を追加すればよい。   FIG. 5 is a cross-sectional view showing the shape of the build-up weld after the weld surface of the build-up weld shown in FIG. 4 is cut. By cutting the welding surface of the build-up final layer N3 (processing allowance ΔH), a desired flat processed surface can be obtained. In addition, since the cumulative height H of the three or more layers N1 to N3 is over 8.7 mm, the processed surface after cutting even if the welded surface is cut flat To the surface of the base material 5 can be secured to 6 mm or more. In the case where the accumulated height H of the three layers including the machining allowance ΔH is smaller than 6 mm, the layer of the overlay welding so as to satisfy a specific height of 6 mm or more (or a range of 6 mm to 9 mm) Add a number.

耐食性に優れたオーステナイト系ステンレス鋼の溶接ワイヤ6,66を前記ホットワイヤTIG溶接によって3層以上の肉盛り溶接部N1〜N3を形成した被溶接材の溶接構造物は、例えば、原子力機器や火力機器に使用される大型構造物である。このような肉盛り溶接部N1〜N3を有する異材肉盛りの溶接構造物は、前記肉盛り溶接部の溶接表面又は該溶接表面が切削加工された後の加工表面が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されることなり、前記環境状態に長期間適用されても、耐食性が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   A welded structure of a welded material in which three or more build-up welds N1 to N3 are formed by welding hot-wire TIG welding of austenitic stainless steel welding wires 6 and 66 having excellent corrosion resistance is, for example, nuclear equipment or thermal power It is a large structure used for equipment. The welded structure of the different material buildup having such buildup welds N1 to N3 has a high-temperature steam medium or a corrosive medium in which the weld surface of the buildup weld or the processed surface after the weld surface is cut Therefore, even when applied to the environmental state for a long period of time, the corrosion resistance is high, so that an event such as corrosion cracking can be prevented and the life can be extended.

図6は、シェフラーの組織図上における炭素鋼母材とステンレスワイヤとの金属組織の関係を示す他の組織図である。図3との主な相違点は、表1に示したNi当量及びCr当量の値に基づいて、SUS308Lワイヤに該当するi点、SUS316Lワイヤに該当するh点を追記したことである。   FIG. 6 is another organization chart showing the relationship of the metal structure of the carbon steel base material and the stainless wire on the Schaeffler organization chart. The main difference from FIG. 3 is that the i point corresponding to the SUS308L wire and the h point corresponding to the SUS316L wire are added based on the values of Ni equivalent and Cr equivalent shown in Table 1.

図1及び図4に示したように、前記ホットワイヤTIG溶接によって炭素鋼の母材5表面にSUS309MoLワイヤ6を肉盛り溶接(1層目N1の肉盛り溶接部b1〜b6を形成)すると、その溶金組織は、図6中にプロットしたf点からg点及びb点近傍を通る線上及び近傍の組織状態となる。このため、安全な溶接金属が得られる安定領域のオーステナイト及びフェライトの混合組織領域、溶接割れ防止に有効なフェライト含有量が約5〜15%存在することになり、溶接割れや脆化組織のない品質良好な肉盛り溶接部N1を得ることができる。さらに、前記1層目N1の肉盛り溶接部の上位表面に、前記SUS309MoLワイヤ6と異なるSUS316Lワイヤ66を肉盛り溶接(2層目N2及び3層目N3の肉盛り溶接部b7〜b15を形成)した場合は、図6中にプロットしたh点と、f点,g点,b点とを結んだ範囲又はその近傍範囲の組織状態となる。このため、安全な溶接金属が得られる安定領域のオーステナイト及びフェライトの混合組織領域、溶接割れ防止に有効なフェライト含有量が約5〜15%存在することになり、溶接割れや脆化組織のない品質良好な肉盛り溶接部N2,N3を得ることができる。また、前記SUS316Lワイヤの替わりに、SUS308Lワイヤを肉盛り溶接した場合には、i点と、f点,g点,b点とを結んだ範囲又はその近傍範囲の組織状態となり、上述したように、安定領域のオーステナイト及びフェライトの混合組織領域、溶接割れ防止に有効なフェライト含有量が約5〜15%存在することになり、溶接割れや脆化組織のない品質良好な肉盛り溶接部N2,N3を得ることができる。また、前記SUS309MoLワイヤ6を2層肉盛り溶接した肉盛り溶接部b1〜b11の上位表面に、SUS316Lワイヤ又はSUS308Lワイヤを肉盛り溶接(3層目N3の肉盛り溶接部b12〜b15を形成)する場合も、上記組織状態となり、上述したように、溶接割れや脆化組織のない品質良好な肉盛り溶接部N3を得ることができる。   As shown in FIG.1 and FIG.4, when the SUS309MoL wire 6 is build-up welded to the surface of the base material 5 of the carbon steel by the hot wire TIG welding (the build-up welds b1 to b6 of the first layer N1 are formed) The molten metal structure becomes a structure state on and near the line passing through the vicinity of the point g and the point b from the point f plotted in FIG. For this reason, a stable structure austenite and ferrite mixed structure region where a safe weld metal can be obtained, and a ferrite content effective for preventing weld cracking is about 5 to 15%, and there is no weld crack or brittle structure. A build-up weld N1 with good quality can be obtained. Further, SUS316L wire 66 different from the SUS309MoL wire 6 is welded on the upper surface of the first layer N1 buildup weld (formation of welds b7 to b15 of the second layer N2 and the third layer N3 is formed). ), The tissue state is in a range where the h point plotted in FIG. 6 is connected to the f point, the g point, and the b point or in the vicinity thereof. For this reason, a stable structure austenite and ferrite mixed structure region where a safe weld metal can be obtained, and a ferrite content effective for preventing weld cracking is about 5 to 15%, and there is no weld crack or brittle structure. The build-up welds N2 and N3 with good quality can be obtained. In addition, when the SUS308L wire is welded in place of the SUS316L wire, the structure is in a range where the i point, the f point, the g point, and the b point are connected or in the vicinity thereof, as described above. , A stable structure austenite / ferrite mixed structure region, and a ferrite content effective to prevent weld cracking is about 5 to 15%, and there is no weld cracking or embrittlement structure. N3 can be obtained. Also, SUS316L wire or SUS308L wire is build-up welded on the upper surface of the build-up welds b1 to b11 where the SUS309MoL wire 6 is build-up welded in two layers (the third layer N3 build-up welds b12 to b15 are formed). Also when it does, it will be in the above-mentioned structure state, and as above-mentioned, the build-up welding part N3 with sufficient quality without a weld crack and an embrittlement structure can be obtained.

なお、前記SUS309MoLワイヤ又はSUS309Lワイヤを使用することなく、これと異なる前記SUS316Lワイヤ又はSUS308Lワイヤを用いて炭素鋼(SM400)母材5表面に肉盛り溶接した場合には、図6中にプロットしたh点(316L)又はi点とa点(SM400)両方を結んだ直線になるため、殆どマルテンサイトとオーステナイトとの混合組織になってしまうことになる。したがって、所望の安全な溶接金属となる安定なオーステナイト及びフェライトの混合組織が得られないので好ましくない。   In addition, when using the SUS316L wire or the SUS308L wire different from this and using the SUS309MoL wire or the SUS309L wire, welding was performed on the surface of the carbon steel (SM400) base material 5 and plotted in FIG. Since it is a straight line connecting both the h point (316L) or the i point and the a point (SM400), it almost becomes a mixed structure of martensite and austenite. Therefore, a stable mixed structure of austenite and ferrite that becomes a desired safe weld metal cannot be obtained, which is not preferable.

図7は、図1に示した溶接方法の適用によって炭素鋼の母材表面に低炭素鋼の溶接ワイヤを1層6パス下盛り溶接した後の下盛り表面にステンレスワイヤを3層12パス溶接した肉盛り溶接部の一実施例を示す断面図である。表3及び表4に示した試験番号No.9に該当する結果である。図7中には、下盛りを含む溶接パスの順序及び配列を示すパス番号(1〜18)、母材5側の溶け込み深さL,溶接パス部のビード高さh1,ビード幅w,下盛り表面から上位の3層累計の肉盛り高さHを記してある。図4との相違点は、前記ステンレスワイヤ6,66を肉盛り溶接する以前に、低酸素鋼の溶接ワイヤ20を炭素鋼母材5表面に下盛り溶接(1層6パス)していることである。   FIG. 7 shows the application of the welding method shown in FIG. 1 to weld a low-carbon steel welding wire on the surface of the carbon steel base metal by one layer and six passes, and then a stainless steel wire on the bottom surface and three layers and 12 passes. It is sectional drawing which shows one Example of the build-up welding part made. This is a result corresponding to the test number No. 9 shown in Tables 3 and 4. In FIG. 7, the pass number (1 to 18) indicating the order and arrangement of the welding pass including the underlay, the penetration depth L on the base material 5 side, the bead height h1, the bead width w, the lower side of the weld pass portion. The accumulated height H of the upper three layers from the surface is marked. The difference from FIG. 4 is that the welding wire 20 of low oxygen steel is welded on the surface of the carbon steel base material 5 (one layer 6 passes) before the stainless steel wires 6 and 66 are welded. It is.

図7に示すように、この実施例では、最初に、炭素鋼の母材5表面に該母材5と同質で、かつ低酸素鋼(例えば0.1%C以下)の溶接ワイヤ20(例えばYGW16)を前記ホットワイヤTIG溶接によって予め下盛り溶接し、この下盛りS0の溶接パス部b1〜b6のビード高さh1は、2.9mmであり、2mm以上4mm以下の範囲に形成させている。好ましくは前記下盛り溶接部のb1〜b6のビード高さh1を2.5mm以上3.5mm以下の範囲に形成させるとさらによい。この時のビード幅wは12〜15mm程度の大きさである。このように、ホットワイヤTIG溶接によって下盛り溶接することにより、融合不良等の欠陥のない良好な溶接ビード及び下盛り溶接部b1〜b6を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率を向上でき、溶接時間を大幅に短縮することができる。   As shown in FIG. 7, in this embodiment, first, a welding wire 20 (for example, low oxygen steel (for example, 0.1% C or less)) of the same quality as the base material 5 on the surface of the base material 5 for carbon steel is used. YGW16) is preliminarily welded by hot wire TIG welding, and the bead height h1 of the welding pass portions b1 to b6 of this underlay S0 is 2.9 mm, and is formed in the range of 2 mm to 4 mm. . Preferably, the bead height h1 of b1 to b6 of the underlay weld is formed in a range of 2.5 mm to 3.5 mm. The bead width w at this time is about 12 to 15 mm. In this way, by performing underlay welding by hot wire TIG welding, it is possible to obtain good weld beads and underlay welds b1 to b6 without defects such as poor fusion, and at the same time, by hot wire TIG welding, Prime welding efficiency can be improved, and welding time can be greatly shortened.

次に、前記下盛り溶接部b1〜b6の上位表面に、前記低炭素鋼の溶接ワイヤ20と異なるステンレス鋼のSUS309MoLワイヤ6を前記ホットワイヤTIG溶接によって溶融させて溶接し、1層目N1の肉盛り溶接部b7〜b11を形成させている。前記SUS309MoLワイヤ6を2層盛り溶接して、前記1層目N1及び2層目N2の肉盛り溶接部b7〜b15を形成させることもできる。この1層目N1及び2層目N2の肉盛り溶接部b7〜b15のビード高さh1は前記寸法と同様に、2.5mm以上3.5mm以下の寸法に形成され、また、ビード幅wも12〜15mm程度に形成されている。このような形状の溶接ビードは、上述したように、ホットワイヤTIG溶接の適正な溶接電流Ia,溶接速度v又は適正な溶接入熱量Q、溶接電流に対応した適正なワイヤ電流Iw及びワイヤ送り速度Wf等の溶接条件を適正に設定して溶接することにより、良好に形成させることができる。さらに、前記下盛りS0側の溶接パス部b1〜b6と融合した前記1層目N1の肉盛り溶接部b7〜b11は、前記下盛りS0側の溶融希釈率が25%以下の19%に低く形成されているため、この1層目N1の肉盛り溶接部b7〜b11の溶金組織はオーステナイト組織と5%以上15%以下のフェライト組織との混合組織になり、溶接割れや脆化組織のない品質良好な1層目N1の肉盛り溶接部b6〜b11を得ることができ、また、2層目N2の肉盛り溶接部b12〜b15も融合不良等の欠陥のない品質良好な結果を得ることができる。また、従来溶接と比べて肉盛り溶接効率を3〜4倍に向上させることができる。なお、上述したように、炭素鋼はステンレス鋼よりも溶け難くなるため、前記炭素鋼の母材5表面に前記低炭素鋼の溶接ワイヤ20を下盛りS0溶接する時、又は該下盛りS0の溶接表面に異材の前記SUS309MoLワイヤ6を肉盛りN1溶接する時には、例えば、ステンレス鋼同士の溶接時よりも、溶接電流及び入熱量を3割程度増加、ワイヤ送り速度を少量減少させる条件変更のホットワイヤTIG溶接を行うと、前記ステンレス鋼同士の溶接部と同様な形状,融合不良等の欠陥のない良好な形状の溶接ビード、前記下盛り溶接部b1〜b6及び前記1層目N1の肉盛り溶接部b7〜b11を得ることができる。条件変更なしのままの溶接条件(ステンレス鋼同士の溶接時と略同一条件)で溶接した場合には、ビード幅wが減少して12mmより小さくなると共に、ビード高さh1が増加して4mmを越える大きさに形成されるため、凸形状の溶接ビードを横並びさせる肉盛りの溶接時に欠陥発生等の不具合が生じることになるので好ましくない。   Next, a stainless steel SUS309MoL wire 6 different from the low carbon steel welding wire 20 is melted and welded to the upper surface of the lower welded portions b1 to b6 by the hot wire TIG welding, and the first layer N1 is formed. The build-up welds b7 to b11 are formed. The SUS309MoL wire 6 can be welded in two layers to form the welds b7 to b15 of the first layer N1 and the second layer N2. The bead height h1 of the build-up welds b7 to b15 of the first layer N1 and the second layer N2 is formed to be 2.5 mm to 3.5 mm in the same manner as the above dimensions, and the bead width w is also set to It is formed to be about 12 to 15 mm. As described above, the weld bead having such a shape has an appropriate welding current Ia, welding speed v or appropriate welding heat input Q, an appropriate wire current Iw corresponding to the welding current, and a wire feed speed for hot wire TIG welding. It can be formed satisfactorily by welding with appropriate welding conditions such as Wf. Further, the weld welds b7 to b11 of the first layer N1 fused with the weld pass parts b1 to b6 on the underlay S0 side have a melt dilution ratio on the underlay S0 side as low as 19% of 25% or less. Therefore, the molten metal structure of the build-up welds b7 to b11 of the first layer N1 is a mixed structure of an austenite structure and a ferrite structure of 5% or more and 15% or less. The first-layer N1 build-up welds b6 to b11 with good quality can be obtained, and the second-layer N2 build-up welds b12 to b15 also obtain good results without defects such as poor fusion. be able to. Moreover, the build-up welding efficiency can be improved 3 to 4 times compared with conventional welding. As described above, carbon steel is less likely to melt than stainless steel. Therefore, when welding the low-carbon steel welding wire 20 to the surface of the base material 5 of the carbon steel S0, or when the lower S0 When welding the SUS309MoL wire 6 made of a different material on the welding surface, for example, N1 welding, for example, compared to welding between stainless steels, the welding current and heat input are increased by about 30% and the wire feed rate is reduced by a small amount. When wire TIG welding is performed, the same shape as the welded portion between the stainless steels, a well-shaped weld bead having no defects such as poor fusion, the build-up of the lower welds b1 to b6 and the first layer N1 The welds b7 to b11 can be obtained. When welding is performed without changing the conditions (substantially the same conditions as when welding stainless steels), the bead width w decreases to be smaller than 12 mm, and the bead height h1 increases to 4 mm. Since it is formed in a size exceeding, it is not preferable because defects such as defects occur at the time of welding of the build-up in which the convex weld beads are arranged side by side.

次に、前記1層目N1の肉盛り溶接部b7〜b11又は2層目N2の肉盛り溶接部b12〜b15の上位表面に、前記SUS309MoLワイヤ6と異なるSUS316Lワイヤ66を前記ホットワイヤTIG溶接によって溶融させて溶接し、2〜3層目N2,N3又は3層目N3の肉盛り溶接部b16〜b18を形成させている。これにより、融合不良等の欠陥のない良好な溶接ビード及び肉盛り溶接部b16〜n18を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。下盛りS0を除いた上位3層N1〜N3累計の肉盛り高さHは6mmを超える大きさの約8.9mmであった。   Next, the SUS316L wire 66 different from the SUS309MoL wire 6 is formed on the upper surface of the buildup welds b7 to b11 of the first layer N1 or the buildup welds b12 to b15 of the second layer N2 by the hot wire TIG welding. It is melted and welded to form the build-up welds b16 to b18 of the second to third layers N2, N3 or the third layer N3. As a result, it is possible to obtain good weld beads and build-up welds b16 to n18 having no defects such as poor fusion, and at the same time, the build-up welding efficiency can be improved by the hot wire TIG welding, and the welding time is greatly reduced. can do. The cumulative height H of the upper three layers N1 to N3 excluding the lower height S0 was about 8.9 mm, which is a size exceeding 6 mm.

前記2層目N2及び3層目N3の肉盛り溶接では、下層部と溶接ワイヤとの両方がステンレス鋼同士となるため、溶け易く馴染みの良い溶接となる。このため、例えば、前記炭素鋼の母材5表面又は前記下盛りS0の溶接表面を溶接する時よりも、溶接電流及び入熱量を3割程度減少、ワイヤ送り速度を増加させる条件変更のホットワイヤTIG溶接を行うことにより、前記炭素鋼の母材表面に形成済みの1層目N1の肉盛り溶接部と同様な形状,融合不良等の欠陥のない良好な形状の溶接ビード及び肉盛り溶接部b12〜b18を得ることができる。この肉盛り溶接部b12〜b18のビード高さh1は、2.5mm以上3.5mm以下の大きさ、ビード幅wは12〜15mm程度の大きさに形成させることができる。また、肉盛り溶接効率も向上させることができる。前記条件変更なしのままの溶接条件(炭素鋼の溶接時と略同一条件)で溶接した場合には、ビード幅wが増加して15mmを超える大きさになると共に、ビード高さh1が減少して2mm以下の大きさに形成されることになる。また、上述したように、前記SUS316Lワイヤの替わりに、SUS308Lワイヤ若しくは硬化し難い他のオーステナイト系ステンレス鋼の溶接ワイヤ(例えばSUS321系,SUS347系など)を用いて前記ホットワイヤTIG溶接によって肉盛り溶接することもできる。何れの溶接ワイヤ6,66もJIS規格のものであり、市販品を使用すればよい。   In the build-up welding of the second layer N2 and the third layer N3, since both the lower layer part and the welding wire are made of stainless steel, the welding is easy to melt and familiar. For this reason, for example, compared to the case of welding the surface of the carbon steel base material 5 or the weld surface of the underlay S0, the hot wire of the condition change that reduces the welding current and heat input by about 30% and increases the wire feed speed By performing TIG welding, the same shape as the first layer N1 build-up weld formed on the surface of the carbon steel base material, a well-formed weld bead and build-up weld without defects such as poor fusion b12 to b18 can be obtained. The bead height h1 of the build-up welds b12 to b18 can be 2.5 mm to 3.5 mm, and the bead width w can be 12 to 15 mm. Moreover, the build-up welding efficiency can also be improved. When welding is performed without changing the conditions (substantially the same conditions as when carbon steel is welded), the bead width w increases to a size exceeding 15 mm and the bead height h1 decreases. Thus, it is formed in a size of 2 mm or less. Further, as described above, instead of the SUS316L wire, a SUS308L wire or other austenitic stainless steel welding wire that is hard to harden (for example, SUS321 series, SUS347 series, etc.) is used for overlay welding by the hot wire TIG welding. You can also Any of the welding wires 6 and 66 are JIS standards, and commercially available products may be used.

このように、下盛り溶接部S0の上位表面に3層以上肉盛りされた肉盛り溶接部N1〜N3の肉盛り高さH(下盛りS0表面から最終層N3の溶接表面まで累計の肉盛り高さ)を6mm以上に形成するとよい。また、最終層N3の溶接表面を平坦に切削加工する場合も、加工代(ΔH)が十分あるので、切削加工後の加工表面から前記下盛りS0表面までの肉盛り高さHを6mm以上に確保することもできる。これにより、上述したように、耐食性に優れた安定なオーステナイト及びフェライトの混合組織を有するステンレス鋼の肉盛り溶接部及び該肉盛り溶接部を備えた異材肉盛り溶接構造物を得ることができる。なお、前記肉盛り高さが6mmより小さいと、例えば、腐食性環境下での長期間適用時の腐食進捗に対する安全性が確保できなくなるので好ましくない。   Thus, the build-up height H of the build-up welds N1 to N3 that are built up on the upper surface of the lower weld S0 (the cumulative build-up from the lower S0 surface to the weld surface of the final layer N3) The height is preferably 6 mm or more. Further, even when the welding surface of the final layer N3 is cut flat, there is a sufficient machining allowance (ΔH), so that the build-up height H from the processed surface after cutting to the surface of the lower S0 is 6 mm or more. It can also be secured. Thereby, as above-mentioned, the dissimilar material build-up welded structure provided with the build-up weld part of stainless steel which has the mixed structure of the stable austenite and ferrite excellent in corrosion resistance, and this build-up weld part can be obtained. In addition, it is not preferable that the build-up height is smaller than 6 mm because, for example, it becomes impossible to secure safety against the progress of corrosion during long-term application in a corrosive environment.

図1及び図4〜図7に示したように、本実施例の異材肉盛り溶接構造物では、前記母材表面又は前記下盛り表面に異材のSUS309系の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて溶接すると共に、複数の溶接パス部及び該溶接パス部からなる1層目の肉盛り溶接部、又は該1層目及び2層目の肉盛り溶接部を形成させ、かつ前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織になるように、前記溶接パス部の各溶接断面積に対する前記母材側又は前記下盛り側の溶融希釈率を30%以下にした異材肉盛りの構造にすることができる。これにより、上述したように、溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部、並びに該肉盛り溶接部を有する溶接構造物を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。好ましくは前記母材側又は前記下盛り側と融合した前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と5%以上15%以下のフェライト組織との混合組織になるように、前記ホットワイヤTIG溶接によって前記母材側又は前記下盛り側の溶融希釈率を25%以下にした異材肉盛りの構造にすることにより、さらに溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部、並びに該肉盛り溶接部を有する溶接構造物を確実に得ることができる。また、肉盛り溶接効率も向上させることができる。   As shown in FIG. 1 and FIG. 4 to FIG. 7, in the dissimilar material buildup welded structure of the present embodiment, dissimilar SUS309 welding wire is applied to the base material surface or the underlaying surface by the hot wire TIG welding. Melting and welding, and forming a plurality of weld pass portions and a first build-up weld portion composed of the weld pass portions, or the first and second build-up weld portions, and the base material Each weld pass portion so that the molten metal structure of the first layer build-up weld fused to the side or the underlay side becomes a mixed structure of an austenite structure and a ferrite structure of 3% to 15%. It can be made the structure of the different material build-up which made the melt dilution rate of the said base material side or the said underlay side with respect to a welding cross-sectional area 30% or less. As a result, as described above, it is possible to obtain a weld pass portion and a build-up weld portion with good quality free from weld cracks and brittle structures, and a welded structure having the build-up weld portion, and at the same time, the hot wire TIG welding can improve the build-up welding efficiency and can greatly shorten the welding time. Preferably, the molten metal structure of the first layer overlay weld fused with the base material side or the underlay side is a mixed structure of an austenite structure and a ferrite structure of 5% or more and 15% or less. By forming a different material build-up structure with a melt dilution rate of 25% or less on the base material side or the underlay side by hot wire TIG welding, a weld pass portion with good quality free from weld cracks and brittle structures, and A build-up weld and a welded structure having the build-up weld can be reliably obtained. Moreover, the build-up welding efficiency can also be improved.

前記3層N1〜N3以上肉盛りされたステンレス鋼の肉盛り溶接部及び前記6mm以上の肉盛り高さHを有する異材肉盛りの溶接構造物は、原子力機器又は火力機器に使用される大型構造物に組み込まれ、かつ、前記異材肉盛りの溶接表面又は加工表面が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されることなり、上述したように、前記環境状態に長期間適用されても、耐食性が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   The three-layered N1 to N3 or more of the stainless steel build-up welds and the 6-mm or more build-up welding structure with a build-up height H are large structures used for nuclear equipment or thermal equipment. In other words, the dissimilar material build-up welding surface or processing surface is placed in an environmental state where it is in contact with a high-temperature steam medium or corrosive medium. However, since the corrosion resistance is high, events such as corrosion cracking can be prevented, which can contribute to a longer life.

図8は、図1に示した溶接方法の適用によって炭素鋼母材表面にSUS309MoLワイヤを2層6パス溶接した異材ワイヤ2層肉盛り溶接部の深さ方向のビッカース硬さを示す一実施例である。図8中には、溶金1パス目(1層目),溶金5・2パス目(2・1層目)及び溶金6・3パス目(2・1層目)のビッカース硬さ(HV)分布を各々示している。炭素鋼母材(SM400)と融合した1層目溶金部の底面部は硬さが250Hvまで増加しているが、それより内側(左側)の1パス目溶金部及び2パス目溶金部の平均硬さは210〜220HVに減少しており、問題ないことを確認した。一方、SM400母材熱影響の硬さは最も高い箇所(溶金近傍部)で約200HVであり、溶金部から遠ざかる(右側に移行)に従って熱影響が小さくなるので硬さも160〜170HV程度に減少する結果になっていた。溶金部及びその近傍には割れや硬化相がなかった。また、前記ホットワイヤTIG溶接によるSUS309MoLワイヤの溶金部(2層6パスの肉盛り溶接部)には、融合不良等の欠陥もなく、耐食性に優れた安定なオーステナイト及びフェライトの混合組織が形成され、また、溶接割れ防止に有効なフェライト含有量も5%以上15%以下の範囲になっていた。   FIG. 8 is an example showing the Vickers hardness in the depth direction of a dissimilar wire two-layer build-up weld where two layers and six passes of SUS309MoL wire are welded to the surface of a carbon steel base material by applying the welding method shown in FIG. It is. In FIG. 8, the Vickers hardness of the first pass of the molten metal (first layer), the fifth and second passes of the molten metal (second and first layer), and the sixth and third passes of molten metal (second and first layer). (HV) distribution is shown respectively. The bottom part of the first layer molten metal fused with the carbon steel base material (SM400) has increased in hardness up to 250 Hv, but the inner (left side) first pass and second pass molten metal. The average hardness of the part decreased to 210-220 HV, and it was confirmed that there was no problem. On the other hand, the hardness of the SM400 base metal heat effect is about 200 HV at the highest point (the vicinity of the molten metal), and the heat effect becomes smaller as it moves away from the molten metal part (shifts to the right side), so the hardness is also about 160 to 170 HV. The result was decreasing. There were no cracks or hardened phases in the molten metal part and its vicinity. In addition, in the hot metal TIG welded SUS309 MoL wire molten metal part (two-layer, six-pass build-up weld part), there is no defect such as poor fusion, and a stable mixed structure of austenite and ferrite with excellent corrosion resistance is formed. In addition, the ferrite content effective for preventing weld cracking was in the range of 5% to 15%.

図9は、図7に示した下盛り及び肉盛り溶接部(4層18パス)の深さ方向のビッカース硬さを示す他の一実施例である。図9中には、溶金6パス目(1層目)、溶金15・11・5パス目(3・2・1層目)及び溶金17・13・9・3パス目(4・3・2・1層目)のビッカース硬さ(HV)分布を各々示している。1層目の溶金部は、炭素鋼母材と同質の低炭素鋼のYGW16ワイヤを6パス下盛り溶接した部分であり、硬さが210〜270HVまで増加していた。しかし、下層の1層目溶金部は、上層(2層目)のSUS309MoLワイヤによる肉盛り溶接の熱影響によって軟化するため、硬さが30〜50HV程度減少していた。2層目の溶金部は、異材のSUS309MoLワイヤを5パス肉盛り溶接した部分であり、下層溶金部の一部と融合しており、ビッカース硬さが約220〜240HVに減少しており、問題がなかった。また、3層目及び4層目の溶金部は、SUS309MoLワイヤと異なるSUS316Lワイヤを2層7パス肉盛り溶接した部分であり、上位4層目の溶金部の硬さが180HV前後まで減少していた。一方、SM400母材熱影響の硬さは、最も高い箇所(溶金近傍部)で約200HVであり、溶金部から遠ざかるに従って熱影響が小さくなるので硬さが160〜170HV程度に減少する結果になっていた。何れの溶接パス部及び肉盛り溶接部及びその近傍には割れや硬化相がなかった。また、前記ホットワイヤTIG溶接によるYGW16ワイヤの溶金部(下層の1層6パスの下盛り溶接部)は、融合不良等の欠陥のない良好な品質が得られていた。また、前記ホットワイヤTIG溶接によるSUS309MoLワイヤの溶金部(上層の1層5パスの肉盛り溶接部)及びSUS316Lワイヤの溶金部(2層7パスの肉盛り溶接部)には、融合不良等の欠陥もなく、耐食性に優れた安定なオーステナイト及びフェライトの混合組織が形成され、また、溶接割れ防止に有効なフェライト含有量も5%以上15%以下の範囲になっていた。   FIG. 9 is another example showing the Vickers hardness in the depth direction of the underlay and build-up weld (4 layers 18 passes) shown in FIG. In FIG. 9, the 6th pass of the molten metal (first layer), the 15th, 11.5th and 5th passes (3, 2 and 1st layer) of the molten metal and the 17th, 13th, 9th and 3rd passes (4. The Vickers hardness (HV) distribution of (3, 2, 1st layer) is shown respectively. The first layer of molten metal is a portion where YGW16 wire of low carbon steel of the same quality as the carbon steel base material is welded under 6 passes, and the hardness is increased to 210 to 270 HV. However, since the first layer molten metal part of the lower layer is softened due to the heat effect of build-up welding with the upper layer (second layer) SUS309MoL wire, the hardness is reduced by about 30 to 50 HV. The molten metal part of the second layer is a part where a SUS309 MoL wire of different material is welded by 5 passes, fused with a part of the lower layer molten metal part, and the Vickers hardness is reduced to about 220 to 240 HV. There was no problem. The 3rd and 4th layer metallization parts are SUS316L wires different from the SUS309MoL wire and are welded by 2 layers and 7 passes, and the hardness of the upper 4th layer metallization is reduced to around 180HV. Was. On the other hand, the hardness of the SM400 base metal heat effect is about 200 HV at the highest point (the vicinity of the molten metal), and as the heat effect decreases as the distance from the molten metal part increases, the hardness decreases to about 160 to 170 HV. It was. There were no cracks or hardened phases in any of the weld pass portions and the build-up weld portions and in the vicinity thereof. Further, the YGW 16 wire molten metal portion (the lower layer, one-layer, six-pass welded portion) obtained by hot wire TIG welding had good quality without defects such as poor fusion. In addition, in the molten part of the SUS309MoL wire by the hot wire TIG welding (upper weld layer of 1 layer 5 passes) and the molten part of the SUS316L wire (overlay weld part of 2 layers 7 passes), poor fusion A stable mixed structure of austenite and ferrite excellent in corrosion resistance was formed, and the ferrite content effective for preventing weld cracking was in the range of 5% to 15%.

以上述べたように、本実施例の異材肉盛り溶接方法及びその肉盛り溶接構造物によれば、溶接割れや脆化組織のない品質良好な溶接パス部及び肉盛り溶接部、並びに該肉盛り溶接部を有する溶接構造物を得ることができ、同時に、前記ホットワイヤTIG溶接によって肉盛り溶接効率が向上でき、溶接時間を大幅に短縮することができる。   As described above, according to the different material build-up welding method and the build-up welded structure of this embodiment, the weld pass portion and the build-up weld portion with good quality without weld cracks and brittle structures, and the build-up are provided. A welded structure having a welded portion can be obtained, and at the same time, the build-up welding efficiency can be improved by the hot wire TIG welding, and the welding time can be greatly shortened.

1 TIGトーチ
2 電極
3 TIG溶接電源
4 アーク
5 母材
6,20,66 溶接ワイヤ
8 ワイヤリール
10 ワイヤ通電加熱電源
11 溶融プール
12 溶接ビード
13,14,15,16 給電ケーブル
DESCRIPTION OF SYMBOLS 1 TIG torch 2 Electrode 3 TIG welding power source 4 Arc 5 Base material 6, 20, 66 Welding wire 8 Wire reel 10 Wire energization heating power source 11 Melting pool 12 Welding beads 13, 14, 15, 16 Feed cable

Claims (17)

炭素鋼の母材の表面にステンレス鋼の溶接ワイヤを肉盛り溶接する肉盛り溶接方法において、
前記ステンレス鋼の溶接ワイヤはSUS309系の溶接ワイヤであり、前記溶接ワイヤをワイヤ通電加熱方式のホットワイヤTIG溶接によって溶融させて溶接し、前記母材の表面に複数の溶接パス部からなる少なくとも1層の第一の肉盛り溶接部を形成させ、前記1層目の肉盛り溶接部の溶接パス部の各溶接断面積に対する前記母材側の溶融希釈率を30%以下とし、前記母材と前記1層目の肉盛り溶接部を融合させ、前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織とすることを特徴とする異材肉盛り溶接方法。
In the build-up welding method of build-up welding a stainless steel welding wire to the surface of a carbon steel base material,
The stainless steel welding wire is a SUS309 welding wire, the welding wire is melted and welded by hot wire TIG welding of a wire current heating method, and at least one consisting of a plurality of welding pass portions on the surface of the base material. Forming a first build-up weld of the layer, a base material side melt dilution ratio with respect to each weld cross-sectional area of the weld pass portion of the first build-up weld is 30% or less, The weld weld of the first layer is fused, and the molten metal structure of the weld overlay of the first layer is a mixed structure of an austenite structure and a ferrite structure of 3% to 15%. Dissimilar material overlay welding method.
請求項1に記載の異材肉盛り溶接方法において、
前記1層目の肉盛り溶接部の溶接パス部の各溶接断面積に対する前記母材側の溶融希釈率を25%以下とし、前記1層目の肉盛り溶接部の溶金組織は、オーステナイト組織と5%以上15%以下のフェライト組織との混合組織とすることを特徴とする異材肉盛り溶接方法。
The dissimilar material overlay welding method according to claim 1,
The base metal side melt dilution ratio with respect to each weld cross section of the weld pass portion of the first layer build-up weld is 25% or less, and the molten metal structure of the first layer build-up weld is an austenite structure And a dissimilar material overlay welding method, characterized in that a mixed structure of 5% to 15% ferrite structure is formed.
請求項1または2に記載の異材肉盛り溶接方法において、
前記SUS309系の溶接ワイヤの肉盛り溶接部の表面に、SUS308系又はSUS316系の溶接ワイヤ、若しくはSUS309系でないオーステナイト系ステンレス鋼の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて1層以上の第二の肉盛り溶接部を形成させ、前記母材表面から前記第一及び第二の肉盛り溶接部の溶接表面までの肉盛り高さを少なくとも6mm以上にすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to claim 1 or 2,
On the surface of the welded portion of the SUS309 welding wire, a SUS308 or SUS316 welding wire or an austenitic stainless steel welding wire that is not SUS309 melting is melted by the hot wire TIG welding to form one or more first layers. Forming a second build-up weld, wherein the build-up height from the surface of the base material to the weld surface of the first and second build-up welds is at least 6 mm or more Method.
請求項1または2に記載の異材肉盛り溶接方法において、
前記SUS309系の溶接ワイヤの肉盛り溶接部の表面に、SUS308系又はSUS316系の溶接ワイヤ、若しくはSUS309系でないオーステナイト系ステンレス鋼の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて1層以上の第二の肉盛り溶接部を形成させ、該溶接表面の少なくとも一部を切削加工し、前記母材表面から前記切削加工された後の加工表面までの肉盛り高さを少なくとも6mm以上にすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to claim 1 or 2,
On the surface of the welded portion of the SUS309 welding wire, a SUS308 or SUS316 welding wire or an austenitic stainless steel welding wire that is not SUS309 melting is melted by the hot wire TIG welding to form one or more first layers. Forming a second build-up weld, cutting at least a portion of the weld surface, and setting the build-up height from the base material surface to the machined surface after the cutting to at least 6 mm or more Dissimilar material overlay welding method characterized.
請求項1ないし4のいずれかに記載の異材肉盛り溶接方法において、
前記肉盛り溶接は、前記溶接ワイヤを溶接進行方向の後方からアーク近傍の溶融プール内へ送給しながら溶融させると共に、溶接パス毎に形成させる溶接パス部のビード高さを2mm以上4mm以下、母材側又は下層側の溶け込み深さを1mm以下とすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to any one of claims 1 to 4,
In the build-up welding, the welding wire is melted while being fed from the rear in the welding direction into the melt pool near the arc, and the bead height of the welding pass portion formed for each welding pass is 2 mm or more and 4 mm or less, A dissimilar material build-up welding method characterized in that the penetration depth on the base material side or lower layer side is 1 mm or less.
請求項1ないし5のいずれかに記載された異材肉盛り溶接方法において、
前記第一の肉盛り層の2層目以降の溶接、前記第二の肉盛り層の溶接は、前記第一の肉盛り層の1層目の溶接に比して、前記ホットワイヤTIG溶接の溶接電流及び入熱量を減少させることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to any one of claims 1 to 5,
The welding of the second and subsequent layers of the first build-up layer and the welding of the second build-up layer are compared with the welding of the first layer of the first build-up layer by the hot wire TIG welding. A dissimilar material overlay welding method characterized by reducing welding current and heat input.
請求項1ないし6のいずれかに記載された異材肉盛り溶接方法において、
前記第一の肉盛り層の2層目以降の溶接、前記第二の肉盛り層の溶接は、前記第一の肉盛り層の1層目の溶接に比して、前記ホットワイヤTIG溶接のワイヤ送り速度を増加させることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to any one of claims 1 to 6,
The welding of the second and subsequent layers of the first build-up layer and the welding of the second build-up layer are compared with the welding of the first layer of the first build-up layer by the hot wire TIG welding. Dissimilar material build-up welding method characterized by increasing wire feed speed.
炭素鋼の母材の表面に低炭素鋼の溶接ワイヤを下盛りし、前記下盛り部の表面にステンレス鋼の溶接ワイヤを肉盛り溶接する肉盛り溶接方法において、
前記ステンレス鋼の溶接ワイヤはSUS309系の溶接ワイヤであり、前記溶接ワイヤをワイヤ通電加熱方式のホットワイヤTIG溶接によって溶融させて溶接し、前記下盛り部の表面に複数の溶接パス部からなる少なくとも1層の第一の肉盛り溶接部を形成させ、前記1層目の肉盛り溶接部の溶接パス部の各溶接断面積に対する前記下盛り部側の溶融希釈率を30%以下とし、前記下盛り部と前記1層目の肉盛り溶接部を融合させ、前記1層目の肉盛り溶接部の溶金組織がオーステナイト組織と3%以上15%以下のフェライト組織との混合組織とすることを特徴とする異材肉盛り溶接方法。
In the overlay welding method of depositing a welding wire of low carbon steel on the surface of the base material of carbon steel, and overlay welding of a welding wire of stainless steel on the surface of the underlying portion,
The stainless steel welding wire is a SUS309 welding wire, the welding wire is melted and welded by hot wire TIG welding of a wire current heating method, and at least comprises a plurality of welding pass portions on the surface of the underlaying portion. The first build-up weld of one layer is formed, and the melt dilution rate on the lower build-up side with respect to each weld cross-sectional area of the weld pass part of the first build-up weld is 30% or less, The heaped portion and the first-layer build-up weld are fused, and the molten metal structure of the first-layer build-up weld is a mixed structure of an austenite structure and a ferrite structure of 3% to 15%. Dissimilar material overlay welding method characterized.
請求項8のいずれかに記載の異材肉盛り溶接方法であって、
前記下盛り部は、前記ホットワイヤTIG溶接によって前記低炭素鋼の溶接ワイヤを前記母材表面に溶接パス部のビード高さが2mm以上4mm以下の範囲になるように下盛り溶接されることを特徴とする異材肉盛り溶接方法。
It is a different material build-up welding method in any one of Claim 8, Comprising:
The underlay portion is welded by hot wire TIG welding so that the low carbon steel welding wire is welded to the base material surface so that the bead height of the weld pass portion is in the range of 2 mm to 4 mm. Dissimilar material overlay welding method characterized.
請求項8または9に記載の異材肉盛り溶接方法において、
前記1層目の肉盛り溶接部の溶接パス部の各溶接断面積に対する前記下盛り部側の溶融希釈率を25%以下とし、前記1層目の肉盛り溶接部の溶金組織は、オーステナイト組織と5%以上15%以下のフェライト組織との混合組織とすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to claim 8 or 9,
The melt dilution rate on the lower overlay side with respect to each weld cross-sectional area of the weld pass portion of the first build-up weld is 25% or less, and the molten metal structure of the first build-up weld is austenite A dissimilar material build-up welding method, wherein the structure is a mixed structure of 5% to 15% ferrite structure.
請求項8ないし10のいずれかに記載の異材肉盛り溶接方法において、
前記SUS309系の溶接ワイヤの肉盛り溶接部の表面に、SUS308系又はSUS316系の溶接ワイヤ、若しくはSUS309系でないオーステナイト系ステンレス鋼の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて1層以上の第二の肉盛り溶接部を形成させ、前記下盛り部表面から前記第一及び第二の肉盛り溶接部の溶接表面までの肉盛り高さを少なくとも6mm以上にすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method in any one of Claims 8 thru | or 10,
On the surface of the welded portion of the SUS309 welding wire, a SUS308 or SUS316 welding wire or an austenitic stainless steel welding wire that is not SUS309 melting is melted by the hot wire TIG welding to form one or more first layers. Forming a second build-up weld, and forming a build-up height from the surface of the lower build-up part to the weld surface of the first and second build-up welds to at least 6 mm or more Welding method.
請求項8ないし10のいずれかに記載の異材肉盛り溶接方法において、
前記SUS309系の溶接ワイヤの肉盛り溶接部の表面に、SUS308系又はSUS316系の溶接ワイヤ、若しくはSUS309系でないオーステナイト系ステンレス鋼の溶接ワイヤを前記ホットワイヤTIG溶接によって溶融させて1層以上の第二の肉盛り溶接部を形成させ、該溶接表面の少なくとも一部を切削加工し、前記下盛り部表面から前記切削加工された後の加工表面までの肉盛り高さを少なくとも6mm以上にすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method in any one of Claims 8 thru | or 10,
On the surface of the welded portion of the SUS309 welding wire, a SUS308 or SUS316 welding wire or an austenitic stainless steel welding wire that is not SUS309 melting is melted by the hot wire TIG welding to form one or more first layers. Forming a second welded portion, cutting at least a portion of the weld surface, and setting the height of the buildup from the surface of the lower portion to the processed surface after the cutting is at least 6 mm or more Dissimilar material overlay welding method characterized by
請求項8ないし12のいずれかに記載の異材肉盛り溶接方法において、
前記肉盛り溶接は、前記溶接ワイヤを溶接進行方向の後方からアーク近傍の溶融プール内へ送給しながら溶融させると共に、溶接パス毎に形成させる溶接パス部のビード高さを2mm以上4mm以下、下盛り部側又は下層側の溶け込み深さを1mm以下とすることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method in any one of Claims 8 thru | or 12,
In the build-up welding, the welding wire is melted while being fed from the rear in the welding direction into the melt pool near the arc, and the bead height of the welding pass portion formed for each welding pass is 2 mm or more and 4 mm or less, A dissimilar material overlay welding method characterized in that the penetration depth on the lower part side or lower layer side is 1 mm or less.
請求項8ないし13のいずれかに記載された異材肉盛り溶接方法において、
前記第一の肉盛り層の2層目以降の溶接、前記第二の肉盛り層の溶接は、前記第一の肉盛り層の1層目の溶接に比して、前記ホットワイヤTIG溶接の溶接電流及び入熱量を減少させることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to any one of claims 8 to 13,
The welding of the second and subsequent layers of the first build-up layer and the welding of the second build-up layer are compared with the welding of the first layer of the first build-up layer by the hot wire TIG welding. A dissimilar material overlay welding method characterized by reducing welding current and heat input.
請求項8ないし14のいずれかに記載された異材肉盛り溶接方法において、
前記第一の肉盛り層の2層目以降の溶接、前記第二の肉盛り層の溶接は、前記第一の肉盛り層の1層目の溶接に比して、前記ホットワイヤTIG溶接のワイヤ送り速度を増加させることを特徴とする異材肉盛り溶接方法。
In the different material build-up welding method according to any one of claims 8 to 14,
The welding of the second and subsequent layers of the first build-up layer and the welding of the second build-up layer are compared with the welding of the first layer of the first build-up layer by the hot wire TIG welding. Dissimilar material build-up welding method characterized by increasing wire feed speed.
請求項1ないし15のいずれかの異材肉盛り溶接方法により製造されたことを特徴とする異材肉盛り溶接構造物。   A dissimilar material buildup welded structure manufactured by the dissimilar material buildup welding method according to any one of claims 1 to 15. 請求項16に記載された異材肉盛り溶接構造物であって、
前記異材肉盛りの溶接表面又は加工表面が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態で、原子力機器又は火力機器に使用される大型構造物に組み込まれていることを特徴とする異材肉盛り溶接構造物。
The dissimilar material build-up welded structure according to claim 16,
The different material build-up is incorporated in a large structure used for nuclear equipment or thermal power equipment in an environmental state where the weld surface or processed surface of the different material build-up contacts a high-temperature steam medium or corrosive medium. Welded structure.
JP2009166266A 2009-07-15 2009-07-15 Dissimilar material overlay welding method and dissimilar material overlay welded structure Active JP5320196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166266A JP5320196B2 (en) 2009-07-15 2009-07-15 Dissimilar material overlay welding method and dissimilar material overlay welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166266A JP5320196B2 (en) 2009-07-15 2009-07-15 Dissimilar material overlay welding method and dissimilar material overlay welded structure

Publications (2)

Publication Number Publication Date
JP2011020134A true JP2011020134A (en) 2011-02-03
JP5320196B2 JP5320196B2 (en) 2013-10-23

Family

ID=43630648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166266A Active JP5320196B2 (en) 2009-07-15 2009-07-15 Dissimilar material overlay welding method and dissimilar material overlay welded structure

Country Status (1)

Country Link
JP (1) JP5320196B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141404B1 (en) * 2011-04-28 2012-05-03 문영호 A thick tube tig welding method
WO2012127900A1 (en) * 2011-03-18 2012-09-27 三菱重工業株式会社 Welding structure and welding method
CN103692055A (en) * 2013-12-31 2014-04-02 江苏江丹特种设备制造有限公司 Leveling process implemented during composite buildup welding on flat plates
CN103817414A (en) * 2014-02-17 2014-05-28 哈尔滨电气动力装备有限公司 Tungsten electrode argon arc hot wire surfacing technique of main pump motor shaft and flywheel
KR20150052291A (en) * 2012-09-07 2015-05-13 누보 피그노네 에스피에이 Method for repairing a turbomachine component
CN104722890A (en) * 2015-03-19 2015-06-24 中国神华能源股份有限公司 T91/T92 and HR3C dissimilar steel welding method
JP2015131326A (en) * 2014-01-14 2015-07-23 三菱重工業株式会社 Welding method, repair method, and nuclear reactor vessel
JP2017214967A (en) * 2016-05-31 2017-12-07 愛三工業株式会社 Valve device and welding method of valve shaft and valve body of valve device
KR20180093728A (en) * 2017-02-14 2018-08-22 한국기술교육대학교 산학협력단 Method of Welding Dissimilar Metals of Stainless Steel and Carbon Steel and Weld Metal by the same
JP2020020020A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Tuyere for blast furnace and manufacturing method thereof
CN111515499A (en) * 2020-01-02 2020-08-11 北京理工大学 Stainless steel electric arc additive manufacturing device and process thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113346A (en) * 1976-03-18 1977-09-22 Kobe Steel Ltd Builddup welding method
JPS52117850A (en) * 1976-03-30 1977-10-03 Kobe Steel Ltd Method of making steel overlaid by stainless steel
JPS60115371A (en) * 1983-11-28 1985-06-21 Mitsubishi Heavy Ind Ltd Build-up welding device for rotating body
JPH05277728A (en) * 1992-03-30 1993-10-26 Kobe Steel Ltd Manufacture of roll cladded by welding excellent in wear resistance, corrosion resistance and bead mark resistance
JPH08206832A (en) * 1995-02-07 1996-08-13 Nippon Steel Corp Cladding by welding method of carbon steel with flux cored austenitic stainless steel wire
JPH09216055A (en) * 1996-02-08 1997-08-19 Hitachi Ltd Heat transfer tube heat exchanger and its production
JP2000246436A (en) * 1999-03-03 2000-09-12 Babcock Hitachi Kk Device for cladding by welding using tig arc
JP2003164982A (en) * 2001-11-27 2003-06-10 Mitsubishi Heavy Ind Ltd Built-up welding method
JP2006247673A (en) * 2005-03-09 2006-09-21 Hitachi Ltd Method of welding procedure for pipe
WO2008111150A1 (en) * 2007-03-12 2008-09-18 Mitsubishi Heavy Industries, Ltd. Valve gear

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113346A (en) * 1976-03-18 1977-09-22 Kobe Steel Ltd Builddup welding method
JPS52117850A (en) * 1976-03-30 1977-10-03 Kobe Steel Ltd Method of making steel overlaid by stainless steel
JPS60115371A (en) * 1983-11-28 1985-06-21 Mitsubishi Heavy Ind Ltd Build-up welding device for rotating body
JPH05277728A (en) * 1992-03-30 1993-10-26 Kobe Steel Ltd Manufacture of roll cladded by welding excellent in wear resistance, corrosion resistance and bead mark resistance
JPH08206832A (en) * 1995-02-07 1996-08-13 Nippon Steel Corp Cladding by welding method of carbon steel with flux cored austenitic stainless steel wire
JPH09216055A (en) * 1996-02-08 1997-08-19 Hitachi Ltd Heat transfer tube heat exchanger and its production
JP2000246436A (en) * 1999-03-03 2000-09-12 Babcock Hitachi Kk Device for cladding by welding using tig arc
JP2003164982A (en) * 2001-11-27 2003-06-10 Mitsubishi Heavy Ind Ltd Built-up welding method
JP2006247673A (en) * 2005-03-09 2006-09-21 Hitachi Ltd Method of welding procedure for pipe
WO2008111150A1 (en) * 2007-03-12 2008-09-18 Mitsubishi Heavy Industries, Ltd. Valve gear

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127900A1 (en) * 2011-03-18 2012-09-27 三菱重工業株式会社 Welding structure and welding method
JP2012196686A (en) * 2011-03-18 2012-10-18 Mitsubishi Heavy Ind Ltd Welded structure and welding method
KR101141404B1 (en) * 2011-04-28 2012-05-03 문영호 A thick tube tig welding method
KR102176957B1 (en) * 2012-09-07 2020-11-11 누보 피그노네 에스피에이 Method for repairing a turbomachine component
KR20150052291A (en) * 2012-09-07 2015-05-13 누보 피그노네 에스피에이 Method for repairing a turbomachine component
CN103692055A (en) * 2013-12-31 2014-04-02 江苏江丹特种设备制造有限公司 Leveling process implemented during composite buildup welding on flat plates
US10354764B2 (en) 2014-01-14 2019-07-16 Mitsubishi Heavy Industries, Ltd. Welding method, repairing method, and nuclear reactor vessel
JP2015131326A (en) * 2014-01-14 2015-07-23 三菱重工業株式会社 Welding method, repair method, and nuclear reactor vessel
WO2015107701A1 (en) * 2014-01-14 2015-07-23 三菱重工業株式会社 Welding method, repair method, and reactor vessel
CN103817414A (en) * 2014-02-17 2014-05-28 哈尔滨电气动力装备有限公司 Tungsten electrode argon arc hot wire surfacing technique of main pump motor shaft and flywheel
CN104722890A (en) * 2015-03-19 2015-06-24 中国神华能源股份有限公司 T91/T92 and HR3C dissimilar steel welding method
JP2017214967A (en) * 2016-05-31 2017-12-07 愛三工業株式会社 Valve device and welding method of valve shaft and valve body of valve device
KR20180093728A (en) * 2017-02-14 2018-08-22 한국기술교육대학교 산학협력단 Method of Welding Dissimilar Metals of Stainless Steel and Carbon Steel and Weld Metal by the same
KR101974012B1 (en) * 2017-02-14 2019-04-30 한국기술교육대학교 산학협력단 Method of Welding Dissimilar Metals of Stainless Steel and Carbon Steel and Weld Metal by the same
JP2020020020A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Tuyere for blast furnace and manufacturing method thereof
JP7215010B2 (en) 2018-08-03 2023-01-31 日本製鉄株式会社 Blast furnace tuyere and manufacturing method thereof
CN111515499A (en) * 2020-01-02 2020-08-11 北京理工大学 Stainless steel electric arc additive manufacturing device and process thereof

Also Published As

Publication number Publication date
JP5320196B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5320196B2 (en) Dissimilar material overlay welding method and dissimilar material overlay welded structure
EP2258493B1 (en) Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor
JP2008161932A (en) Wire, flux and process of welding steel cotaining nickel in high content
JP5861785B2 (en) Narrow groove gas shielded arc welding method
JP2006247673A (en) Method of welding procedure for pipe
US11110546B2 (en) Laser hot wire welding of multi-layered structures
JP2009061483A (en) Two sided welding method and two sided welded structure
JP2011161459A (en) Method of welding material with high-corrosion resistance
JPWO2016143271A1 (en) ERW Welded Stainless Clad Steel Pipe and Manufacturing Method Thereof
JP4912097B2 (en) MULTILAYER WELDING METHOD FOR STAINLESS STEEL PIPE AND MULTILAYER WELDING
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
JP6619232B2 (en) Welding method
US20220063019A1 (en) Improvements in the welding of pipes
JP2013158774A (en) Welding method, weld bonding structure and stainless steel welded structure
EP1390173B1 (en) Method of welding two ductile iron workpieces for achieving highly ductile reduced imperfection weld
CN108067732A (en) A kind of method for inhibiting titanium-steel composite board Butt Joint transition zone crackle
JP6282190B2 (en) Single submerged arc welding method for high Cr system CSEF steel
JP3182672B2 (en) Internal welding method of clad steel pipe
JP5268594B2 (en) Welding method of type I joint, type I welded joint, and welded structure using the same
JP4929096B2 (en) Overlay welding method for piping
JP5473796B2 (en) Stainless steel sheet welding method and welded joint
CN108115256B (en) Automatic TIG welding process for butt joint of stainless steel pipe connecting pipes for ships
JP2006205183A (en) Multi-layer welding structure of stainless steel
JP2005152991A (en) Method of weld-coating of corrosion-resistant thin metal sheet onto surface of thick base metal
KR100629851B1 (en) Flux Cored Arc Welding Method of Inconel 625

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150