JP2011017858A - 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置 - Google Patents

画像形成装置用積層ベルト及びその製造方法並びに画像形成装置 Download PDF

Info

Publication number
JP2011017858A
JP2011017858A JP2009161913A JP2009161913A JP2011017858A JP 2011017858 A JP2011017858 A JP 2011017858A JP 2009161913 A JP2009161913 A JP 2009161913A JP 2009161913 A JP2009161913 A JP 2009161913A JP 2011017858 A JP2011017858 A JP 2011017858A
Authority
JP
Japan
Prior art keywords
base material
material layer
endless belt
layer
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009161913A
Other languages
English (en)
Other versions
JP5428598B2 (ja
Inventor
Makoto Morikoshi
誠 森越
Kyoshi Watanabe
恭資 渡邉
Kazuya Mizumoto
和也 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuka Denshi Co Ltd
Original Assignee
Yuka Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuka Denshi Co Ltd filed Critical Yuka Denshi Co Ltd
Priority to JP2009161913A priority Critical patent/JP5428598B2/ja
Publication of JP2011017858A publication Critical patent/JP2011017858A/ja
Application granted granted Critical
Publication of JP5428598B2 publication Critical patent/JP5428598B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】耐クラック性、耐傷性、耐ローラ癖特性に優れ、かつトナー転写性及びトナークリーニング性、トナーフィルミング防止性に優れた、高画質及び高耐久性の画像形成装置用積層エンドレスベルトを提供する。
【解決手段】基材層と、該基材層上に形成された、活性エネルギー線及び/又は熱架橋樹脂よりなるコート層とを備え、印加電圧10V,100V,500V、10秒にて測定した表面電気抵抗率をそれぞれSR(10V),SR(100V),SR(500V)としたとき、以下の条件(1)〜(3)を満たす画像形成装置用積層エンドレスベルト。
(1) 基材層のSR(100V)が、1×10〜1×1012Ω
(2) 基材層のSR(10V)/SR(500V)が、100以下
(3) 基材層のSR(100V)/コート層のSR(100V)が、0.1〜1000
【選択図】図1

Description

本発明は、耐クラック性、耐傷性、耐ローラ癖特性に優れ、かつトナー転写性及びトナークリーニング性、トナーフィルミング防止性に優れた優れた高画質及び高耐久性の画像形成装置用積層エンドレスベルト(無端ベルト)及びその製造方法と、この画像形成装置用積層エンドレスベルトを含む画像形成装置に関する。
従来より、OA機器等などの画像形成装置として、感光体、トナーを用いた電子写真方式やインクを用いた画像形成装置が考案され上市されている。これらの装置には、感光体ベルト、中間転写ベルト、紙搬送転写ベルト、転写分離ベルト、帯電チューブ、現像スリーブ、定着用ベルト等の、導電性、半導電性、又は絶縁性の各種電気抵抗に制御した、継ぎ目あり(シームありベルト)又は継ぎ目なし(シームレスベルト)のエンドレスベルトが用いられている。
例えば、電子写真方式に用いられる中間転写装置は、中間転写体上にトナー像を一旦形成し、次に紙等へトナーを転写させるように構成されている。この中間転写体の表層におけるトナーへの帯電、除電のためにシームレスベルトよりなるエンドレスベルトが用いられている。このエンドレスベルトは、マシーンの機種毎に異なった表面電気抵抗や厚み方向電気抵抗(以下「体積電気抵抗」という)に設定され、導電、半導電、又は絶縁性に調整されている。
また、紙搬送転写装置は、紙を一旦搬送転写体上に保持した上で感光体からのトナーを搬送転写体上に保持した紙上へ転写させ、更に除電により紙を搬送転写体より離すように構成されている。この搬送転写体表層においては紙への帯電、除電のためにシーム有り、無しのエンドレスベルトが用いられている。このエンドレスベルトは、上記中間転写ベルトと同様にマシーン機種毎に異なった表面電気抵抗や体積電気抵抗に設定されている。
図1は従来の一般的な中間転写装置の側面図である。図中、1は感光ドラム、6は導電性エンドレスベルトである。1の感光ドラムの周囲には、帯電器2、半導体レーザー等を光源とする露光光学系3、トナーが収納されている現像器4及び残留トナーを除去するためのクリーナー5よりなる電子写真プロセスユニットが配置されている。導電性エンドレスベルト6は、搬送ローラ7,8,9に掛け渡されて、矢印方向に回転する感光ドラムと同調して矢印方向に移動するようになっている。
次に、動作について説明する。まず矢印A方向に回転する感光ドラム1の表面を帯電器2により一様に帯電する。次に、光学系3により図示しない画像読み取り装置等で得られた画像に対応する静電潜像を感光ドラム1上に形成する。静電潜像は現像器4でトナー像に現像される。このトナー像を、静電転写機10により導電性エンドレスベルト6へ静電転写し、搬送ローラ9と押圧ローラ12の間で記録紙11に転写する。
ところで、電子写真式複写機、プリンタ等の画像形成装置に用いられる導電性エンドレスベルトの場合には、機能上2本以上のロールにより高張力で高電圧にて長時間駆動されるため、十分な機械的耐久性が要求される。
特に、中間転写装置等に使用される中間転写ベルトの場合は、ベルト上でトナーによる画像を形成して紙へ転写するため、駆動中にベルトが弛んだり、伸びたり、蛇行したりすると、画像ズレの原因となるため、高寸法精度(ベルト幅方向の周長差が少ないことと厚みが均一であること)、高弾性率(ベルト周方向の引張弾性率が高いこと)、高耐屈曲性(割れにくいこと)といった機械特性に優れたものが望まれている。
また、近年カラーレーザプリンタやカラーLEDプリンタ等の電子写真式画像形成装置は、低価格なインクジェット方式の画像形成装置との競争が一層激しくなっている。そのため、電子写真式画像形成装置は、高速での印刷技術でインクジェット方式との差異化を狙い、感光体を4つ並べたタンデム型の紙搬送転写、中間転写方式により高速で印刷する画像形成装置が商品化されてきた。このため、画像形成装置用エンドレスベルトには、より一層の耐久性の向上と耐摩耗性の向上といった耐久性にも優れたものが必要となっている。
さらに、高画質化への要求も高まってきており、特に、広範囲な温度湿度環境において、高画質な画像が得られること、カラープリンタ用の特殊な紙だけではなく、上質紙、再生紙、裏紙、OHPフィルムといった様々な用紙においても高画質を得ることが必要となっている。
ところで、画像形成装置用エンドレスベルトにあっては、トナーが付着するため、トナーの進歩に合わせてエンドレスベルトへの要求特性が変化していく。
近年の高画質に対するトナーの取り組みとして、粒子径が小さく、平均粒径として4〜6μmの小粒径で粒径ばらつきの少ない球形トナーとして重合トナーが商品化されており、また、外添材として酸化ケイ素や酸化チタン等の硬質の球形又は針状の微粒子が大量に添着してあるものが用いられるようになってきている。
この外添材は、時にはエンドレスベルトの表層を傷つけ、その傷跡が起点となって外添材がベルト上に堆積し、フィルム状にベルト表面を覆う所謂トナーフィルミングが発生することがある。このフィルミングが発生すると、表層の光沢性(グロス)が低下し、装置の中に組み込まれる各種トナー濃度センサーにおいて誤作動を引き起こすばかりか、表面の平滑性が損なわれ、エンドレスベルト上に転写されずに残存したトナーをゴムブレードで掻き取るクリーニング機構においては、トナー粒子が掻き取られずにベルト上に残る所謂トナークリーニング不良の問題が発生する。
また、最近では益々小型化しているカラープリンタ、複写機は、転写ベルトと定着熱源との配置位置が近く、このため、転写ベルトはローラーに張架された状態で定着熱源の高熱にさらされやすいため、転写ベルト表面にローラーの跡が残り、画像へ悪影響を起こしやすいことから、エンドレスベルト素材の耐熱性と硬度のバランスをとる必要がある。
さらに、画像形成装置に用いられるエンドレスベルトの中でも特に、中間転写装置等に使用される転写ベルトの場合は、高画質画像に対するエンドレスベルトへの要求は高く、感光体上のトナーを静電気力にて直接転写ベルト上に転写(一次転写)し、転写ベルト上でカラー画像を合成した後トナーを紙へ静電力で転写(二次転写)させるため、転写ベルトの表面方向の表面電気抵抗や厚み方向の体積電気抵抗特性といった電気抵抗特性が重要であると共に、表面物理特性、表面化学特性、耐摩耗性の何れにおいても性能向上への要求が益々高くなってきている。
以上のように、画像形成装置用エンドレスベルト、とりわけ転写ベルトに関しては、高画質化のためのトナー転写性とトナー非固着性の両立、トナーの外添材や紙質の変化等に対するエンドレスベルトの高耐摩耗性への要求、トナーの小粒径化に対するクリーニング性を考慮した表面平滑性への要求等々に対して、各種表層をコーティングした各種積層ベルトが提案されている。
例えば、特許第3608806号公報では、トナーが転写ベルト上に付着堆積したフィルミング現象を防止する目的で、厚み1〜100μmのフッ素系ポリマーコーティング層を設けた中間転写用シームレスベルトが開示されている。しかしながら、フッ素ポリマーはその表面エネルギーが低いため、基材との接着性が悪く、耐久テストにおいて表層剥離の問題があった。また、基層と基層との電気抵抗の比率を適正な値にすることについての検討が全くなされておらず、導電性の基層に絶縁性の表層をコートすることで、低電圧印加時と高電圧印加時の電気抵抗において差が生じ、環境変動があった場合に画像の乱れが発生するといった問題があった。また、フッ素ポリマーは柔らかいために傷がつきやすく、耐久性にも問題があった。
特開2007−11117号公報、特開2007−11118号公報では、中間転写ベルトから紙が剥離する際の剥離放電によるトナー画像の数ミリレベルの転写不良(所謂白抜け)と呼ばれる現象を解決するため、平均粒子径0.5〜25μmの導電性粒子の凝集体をシリコーン樹脂に配合し、約100μm厚みにスプレー塗布した中間転写ベルトが開示されている。しかしながら、これらの公報においても、表層と基材層の表面抵抗率の比率を適正な値にすることについての検討がなされておらず、低電圧印加時と高電圧印加時の電気抵抗において差が生じ、環境変動があった場合に画像の乱れが発生するといった問題があった。また、表層が柔らかいために耐摩耗性にも問題があり、さらにシリコーン樹脂と基材層との接着性も悪く、公報中に記載されるように、表層との剥離を防止するために中間層を設ける必要があり、コストが高い上に、電気抵抗値の制御が難しい問題もあった。
特開2007−17666号公報では、中間転写体の表面にシリコン酸化物や酸化アルミニウム等の無機酸化物層を被覆することにより、トナーの剥離性、トナークリーニング性を向上させたエンドレスベルトが開示されている。しかし、ここでも表層(無機酸化物層)と基材層の表面抵抗率の比率を適正な値にすることについての検討がなされておらず、低電圧印加時と高電圧印加時の電気抵抗において差が生じ、環境変動があった場合に画像の乱れが発生するといった問題があった。
特開2007−78947号公報では、ケイ素、アルミニウム、ジルコニウム又はチタンの金属アルコキシド化合物と、導電性物質としてのカーボンブラックをシリコーン樹脂に配合したコーティング液を基材に塗布して、表面抵抗値1×1010〜1×1012Ωの半導電性の表面層を形成した積層エンドレスベルトが開示されている。しかしながら、ここでも、表層と基材層の表面抵抗率の比率を適正な値にすることについての検討がなされておらず、低電圧印加時と高電圧印加時の電気抵抗において差が生じ、環境変動があった場合に画像の乱れが発生するといった問題があった。また、表面硬度がユニバーサル硬度で85〜130N/mmと比較的柔らかく、耐摩耗性にも問題があった。また、基材層と表面層との剥離を防止するために、接着層として中間層を設ける必要があり、コストが高いという問題もあった。
特開2007−78789号公報には、金属被覆した樹脂微粒子を含有する表面層を設けた中間転写ベルトが開示されており、表面層の表面抵抗率は1×1010〜1×1014Ωが好ましいことが記載されている。
また、特開2005−338246号公報には、最外層に無機物質を含むアクリル系樹脂を用いた導電性樹脂層を形成し、最内層に、加熱、光又は電子線照射した半導電性樹脂層からなる層を形成したシームレス状半導電性ベルトが開示されている。
また、特開2007−316622号公報には、表面層として硬化(メタ)アクリル樹脂層を設けた中間転写体が記載されている。
しかしながら、これらはいずれも最外層(表面層)と最内層(基層)の表面抵抗率の比率を適正な値にすることについての検討がなされておらず、低電圧印加時と高電圧印加時の電気抵抗において差が生じ、環境変動があった場合に画像の乱れが発生するといった問題があった。
特開2007−114754号公報では、表面硬度がユニバーサル硬度で200N/mm以上350N/mm以下である中間転写ベルトが記載されている。しかしながら、ここでも、最外層、最内層の表面抵抗率の比率を適正な値にすることについての検討がなされておらず、低電圧印加時と高電圧印加時の電気抵抗において差が生じ、環境変動があった場合に画像の乱れが発生するといった問題があった。加えて、表面が柔らかいため、耐摩耗性にも問題があった。
特開2008−46463号公報では、基材層にガラス転移温度180℃以下の樹脂を用い、活性光線硬化樹脂としてのアクリル系樹脂の表面層を形成した中間転写体が開示されている。しかし、電気抵抗値に関する記述はなされていない。
特開2007−183401号公報では、導電性粒子を含む厚み0.5〜3μmの樹脂硬化膜を基層に塗布形成した中間転写ベルトが開示されている。しかしながら、このものは、表面の樹脂硬化膜が薄く、かつ樹脂硬化膜の電気抵抗値を制御していないため、特に高電圧印加時において表面抵抗値の低下が大きく、画像乱れを発生させる問題があった。
特許第3608806号公報 特開2007−11117号公報 特開2007−11118号公報 特開2007−17666号公報 特開2007−78947号公報 特開2007−78789号公報 特開2005−338246号公報 特開2007−316622号公報 特開2007−114754号公報 特開2008−46463号公報 特開2007−183401号公報
上述のように、従来、画像形成装置用積層ベルトは各種提案されているものの、何れの文献の積層ベルトも、基層(最内層)と表層(最外層)の電気抵抗値の特性を考慮せずに積層形成しているため、表層の電気抵抗率と基層の電気抵抗率の差及び厚みの差により積層ベルトの電気抵抗値が不安定になり、その結果、積層ベルトの表面電気抵抗率は、印加電圧により大きく変化するものとなり、画像異常を引き起こす原因となりうる問題があった。
即ち、単に従来法に従って押出成形により形成された基層に、単なるコーティングにより表層を積層形成したエンドレスベルトでは、印加電圧の大小による表面電気抵抗率変化の小さい積層ベルトを実現することはできず、この結果、表面電気抵抗率の変化で、画像異常を引き起こしているのが現状である。
その理由は以下の通りである。
導電性フィラーや導電性カーボンブラックを配合した熱可塑性樹脂を押出成形法にて成形した半導電性を有するエンドレスベルトは、通常、表層のスキン層と呼ばれる樹脂層の存在により、ミクロ的には極表層部分は電気抵抗値が高い。これは、粘弾性を有するポリマー樹脂材料に起因する特性であり、押出成形時の表層と中間層(ベルト厚み方向における中間の層)との剪断力差に起因し、表層部と中間層との間で発生する剪断力差のために、表層(スキン層)と中間層とで導電性フィラーや導電性カーボンブラックの分散状態が異なることによる。
このスキン層の存在と、表層と中間層の配向差(導電性フィラーや導電性カーボンブラックの分散状態の差)のために、従来の押出成形エンドレスベルトでは、低電圧を印加したときの電気抵抗値は高く、高電圧印加時の電気抵抗値は低いといった所謂電気抵抗値の印加電圧依存性が大きいといった問題が発生する。
このようなエンドレスベルト上にコーティングによる薄膜の表面層(本発明において、この表面層を「コート層」と称す。)を施すと、コート層の電気抵抗値と基材層であるエンドレスベルトの電気抵抗値の合算された電気抵抗値となり、より一層電気抵抗値の印加電圧依存性が大きくなる。
電気抵抗値の印加電圧依存性が大きいと、低電圧では抵抗値が高いために、紙との剥離放電が発生しやすく、トナーが紙へ転写されるときにトナーが飛散し、画像しみが発生したり、ベタ画像の中央部が抜ける中抜け等のトナー転写に関わる問題が発生する。
また、たとえ抵抗値の印加電圧依存性の小さい基材層が得られ、かつ、このような基材層に対して、抵抗値の印加電圧依存性が小さいコート材を用いてコート層を積層した場合であっても、基材層の抵抗値とコート層の抵抗値との差が極端に大きいと、コート層側の電気抵抗値の印加電圧依存性が大きくなり、やはり上述の問題が発生することとなる。
この問題は、コート層の厚みを厚くすれば解消される傾向にあるが、表面耐傷性を向上させるためには、コート層の表面硬度を高くすることも必要であり、高い表面硬度を有するコート材を基材層の表面に厚く設けた場合、ローラにて張架されて使用されるエンドレスベルトにおいては、コート層は外側部分にあたるため、内側層より歪が大きくなり、この結果、コート層にクラックが発生しやすくなったり、基材層から剥離しやすくなったりするといった問題が発生する。そのため、コート層はできだけ薄くする必要がある。
コート層を薄く形成した場合は、高電圧印加時においても低電圧印加時と同様に基材層に電流が流れるようにするために、基材層の表面電気抵抗率とコート層の表面電気抵抗率との差をできるだけ小さくし、その上でできる限り基材層の方が表面電気抵抗率が高くなるよう設定することが重要となるが、従来の積層ベルトにおいては、この点の考慮はなされていない。
また、従来においては、基材層とコート層の構成材料の選定の適正化がなされていないため、接着不足によるクラック発生の問題があり、また、耐摩耗性と耐クラック性を両立させる積層ベルトは得られていない。即ち、耐摩耗性を重視した場合、表面硬度の高いコート材(所謂ハードコート材)を基層に塗布して架橋硬化させてハードコート層を形成することが考えられるが、この場合には、架橋硬化のための活性エネルギー線や熱の影響を基材層に与えてしまうため、基材層が脆くなり、耐クラック性に問題が生じる。
一方、ソフトなコート材においては、厚みを厚くできるため耐クラック性は優れるが、コート層が柔らかいが故にトナーの外添材による傷が発生しやすく、耐摩耗性が劣るものとなる。
このようなことから、従来において、基材層に対してコート層を形成した積層エンドレスベルトとして、表面電気抵抗率の印加電圧依存性の小さい、環境変動或いは転写ローラ、紙等の電気抵抗値変動に対し、常に安定して画像異常を発生させることなく高品質な画像を安定して得ることができるエンドレスベルトは提供されておらず、更には耐摩耗性、耐クラック性、耐ローラ癖、及び表面平滑性にも優れた積層エンドレスベルトは提供されていないのが現状である。
本発明は、上記課題を解決したものであり、本発明の目的は、耐クラック性、耐傷性、耐ローラ癖特性に優れ、かつトナー転写性及びトナークリーニング性、トナーフィルミング防止性に優れた、高画質及び高耐久性の画像形成装置用積層エンドレスベルトと、この画像形成装置用積層エンドレスベルトを含む画像形成装置を提供することにある。
本発明者等は、上記課題を解決するために鋭意検討した結果、基材層の表面電気抵抗率の印加電圧依存性を小さくしつつコート層の表面電気抵抗率と基材層の表面電気抵抗率をある所定の範囲に設定した積層エンドレスベルトであれば、積層ベルトであっても表面電気抵抗率の印加電圧依存性を小さくすることができること、これにより、紙の剥離放電等による影響を受けることなく、安定的に高画質を得ることができることを見出した。
また、コート層の表面硬度と基材層の表面硬度をそれぞれ所定の範囲に設定すると共に、コート層の厚みと基材層の厚みをそれぞれ所定範囲にすることにより、表面耐傷性と耐クラック性を満たしつつ、感光体とエンドレスベルト間のトナーの圧接による凝集破壊等に起因する画像異常をも低減できることを知見した。
また、基材層として、特定のガラス転移温度を有する熱可塑性ポリマー成分を用い、また、コート層の活性エネルギー線及び/又は熱架橋性材料を選定することにより、耐ローラ癖性に優れた積層エンドレスベルトが得られることを知見した。
また、コート層にアクリル系のハードコート材を用い、好ましくは紫外線による架橋を施すことにより、基材層とコート層との界面との接着性に優れ、耐クラック性と耐摩耗性に優れた積層エンドレスベルトが短時間で得られることを知見した。
また、基材層は押出成形により形成し、この基材層に対してコート層を塗布形成することにより、押出成形に由来する基材層の表面荒れをコート層が補い、積層ベルトであっても接着性に優れると共に表面平滑性に優れ、重合トナーに対してもクリーニング性に優れたエンドレスベルトが得られることを知見した。
本発明はこのような知見に基いて、高画質、高耐摩耗、高耐久、表面平滑性、耐ローラ癖性等のすべての特性において優れた画像形成装置用積層エンドレスベルトと、これを用いた画像形成装置提供するものであり、以下を要旨とするものである。
[1] 画像形成装置に用いられる、基材層と、該基材層上に形成された、活性エネルギー線及び/又は熱架橋樹脂よりなるコート層とを備える積層エンドレスベルトであって、印加電圧10V,10秒にて測定した表面電気抵抗率をSR(10V)、印加電圧100V,10秒にて測定した表面電気抵抗率をSR(100V)、印加電圧500V,10秒にて測定した表面電気抵抗率をSR(500V)としたときに、該基材層の表面電気抵抗率は以下の条件(1),(2)を満たし、該コート層の表面電気抵抗率と基材層の表面電気抵抗率との関係が以下の条件(3)を満たすことを特徴とする画像形成装置用積層エンドレスベルト。
(1) 基材層のSR(100V)が、1×10Ω以上、1×1012Ω以下
(2) 基材層のSR(10V)/SR(500V)が、100以下
(3) 基材層のSR(100V)/コート層のSR(100V)が、0.1以上、1000以下
[2] [1]において、該積層エンドレスベルトのSR(10V)/SR(500V)が44以下であることを特徴とする画像形成装置用積層エンドレスベルト。
[3] [1]又は[2]において、該コート層の厚みが1μm以上、10μm以下であり、コート層の厚み/基材層の厚みの比率が1/150以上、1/8以下であることを特徴とする画像形成装置用積層エンドレスベルト。
[4] [1]ないし[3]のいずれかにおいて、該コート層の表面硬度が、ユニバーサル硬度の塑性変形硬さにおいて、400N/mm以上、800N/mm以下であることを特徴とする画像形成装置用積層エンドレスベルト。
[5] [1]ないし[4]のいずれかにおいて、該基材層の表面硬度が、ユニバーサル硬度の塑性変形硬さにおいて、100N/mm以上、400N/mm未満であることを特徴とする画像形成装置用積層エンドレスベルト。
[6] [1]ないし[5]のいずれかにおいて、該基材層は、熱可塑性樹脂及び/又は熱可塑性エラストマーよりなる熱可塑性ポリマー成分と導電性成分を含み、該基材層のガラス転移温度が0℃以上、90℃以下であり、該コート層は、導電性成分が配合された架橋性液状物を架橋硬化させてなることを特徴とする画像形成装置用積層エンドレスベルト。
[7] [1]ないし[6]のいずれかにおいて、該基材層は、側鎖にエステル結合を有する樹脂、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体、ポリアミド、ポリプロピレン、及び熱可塑性エラストマーよりなる群から選ばれる1種又は2種以上を主成分とする熱可塑性ポリマー成分と導電性成分を加熱混合してなる成形材料を押出成形して得られるシームレスベルトであることを特徴とする画像形成装置用積層エンドレスベルト。
[8] [1]ないし[7]のいずれかにおいて、該コート層は、アクリルモノマー及び/又はアクリルオリゴマーを主成分とする架橋性液状物を架橋硬化させてなることを特徴とする画像形成装置用積層エンドレスベルト。
[9] [1]ないし[8]のいずれかにおいて、該基材層は、カーボンブラックを主成分とする導電性成分を含み、該コート層は、金属フィラーを主成分とする導電性成分を含むことを特徴とする画像形成装置用積層エンドレスベルト。
[10] [9]において、該コート層に含まれる金属フィラーは、導電性酸化スズを主成分とすることを特徴とする画像形成装置用積層エンドレスベルト。
[11] [1]ないし[10]のいずれかにおいて、シームレス状の中間転写ベルト、搬送転写ベルト、転写定着ベルト、定着ベルト、感光体ベルト、又は現像スリープであることを特徴とする画像形成装置用積層エンドレスベルト。
[12] [1]ないし[11]のいずれかに記載の画像形成装置用積層エンドレスベルトを製造する方法であって、前記基材層の表面に、架橋性液状物を塗布して塗布膜を形成した後、該塗布膜を活性エネルギー線及び/又は熱により架橋硬化させて前記コート層を形成する工程を含むことを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
[13] [12]において、該基材層を押出成形により形成し、前記架橋性液状物を、回転する該基材層にスプレー塗布することを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
[14] [12]又は[13]において、該基材層を、下記(a)〜(c)のうちのいずれか1以上の条件を満たす押出成形により形成することを特徴とする画像形成装置用エンドレスベルトの製造方法。
(a) 押出成形時の溶融チューブの引き取り速度が1.0m/min以上
(b) 基材層の厚み/押出ダイス金型のリップクリアランスの比が0.12以下
(c) 基材層の平均厚みが120μm以下
[15] [12]ないし[14]のいずれかにおいて、該架橋性液状物をスプレー塗布により塗布し、該スプレー塗布時の架橋性液状物の吐出量が0.1g/min以上、10g/min以下であることを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
[16] [12]ないし[15]のいずれかにおいて、該基材層は、熱可塑性樹脂及び/又は熱可塑性エラストマーよりなる熱可塑性ポリマー成分と導電性成分を含み、該基材層のガラス転移温度が0℃以上、90℃以下であり、該コート層を、導電性成分が配合された架橋性液状物の塗布膜に、該塗布膜の表面側から活性エネルギー線及び/又は熱を付与して形成することを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
[17] [1]ないし[11]のいずれかに記載の画像形成装置用積層エンドレスベルト、又は[12]ないし[16]のいずれかに記載の画像形成装置用積層エンドレスベルトの製造方法により製造された画像形成装置用積層エンドレスベルトを含むことを特徴とする画像形成装置。
本発明によれば、耐クラック性、耐ローラ癖性、耐傷性に優れ、かつトナー転写性、トナー非固着性及びトナークリーニング性がいずれも良好で、高耐久性で高品質の画像を安定して得ることができる画像形成装置用積層エンドレスベルトと、この画像形成装置用積層エンドレスベルトを含む画像形成装置を提供することができる。
一般的な中間転写装置の側面図である。
以下に本発明の実施の形態を詳細に説明する。
なお、本発明においては、
印加電圧10V,10秒にて測定した表面電気抵抗率をSR(10V)、
印加電圧100V,10秒にて測定した表面電気抵抗率をSR(100V)、
印加電圧500V,10秒にて測定した表面電気抵抗率をSR(500V)
と表記するが、更に、
印加電圧250V,10秒にて測定した表面電気抵抗率をSR(250V)、
印加電圧1000V,10秒にて測定した表面電気抵抗率をSR(1000V)
と表記する。
また、本発明において、「主成分」とは複数の成分を配合してなる材料において、当該配合材料中で最も多く含まれている成分をさす。
[表面電気抵抗率]
本発明の画像形成装置用積層エンドレスベルトは、基材層の表面電気抵抗率が下記条件(1)を満たす半導電領域であり、また、基材層の表面電気抵抗率の印加電圧依存性が、下記条件(2)を満たすように小さく、かつコート層の表面電気抵抗率と基材層の表面電気抵抗率の比率が、下記条件(3)を満たすように、基材層よりコート層の方が僅かに大きい0.1倍を上限に、コート層の表面電気抵抗率が基材層の表面電気抵抗率より3桁小さいことを特徴とし、好ましくは、更に、基材層とコート層とを備える積層エンドレスベルト自体が、下記条件(4)を満たすように表面電気抵抗率の印加電圧依存性が小さいものである。
(1) 基材層のSR(100V)が、1×10Ω以上、1×1012Ω以下
(2) 基材層のSR(10V)/SR(500V)が、100以下
(3) 基材層のSR(100V)/コート層のSR(100V)が、0.1以上、1000以下
(4) 積層エンドレスベルトのSR(10V)/SR(500V)が、44以下
なお、本発明において、表面電気抵抗率や体積電気抵抗率は例えばダイヤインスツルメンツ(株)製商品名「ハイレスタUP」のURプローブで計測することが好ましいが、「ロレスタ」又は(株)アドバンテスト社製デジタル超高抵抗微少電流計商品名「R8340A」に、JISの電極をつないで測定するなど公知の方法で測定しても良い。
基材層の表面電気抵抗率は、コート層を設けていない基材層のみの状態において、その表面から測定される。この場合、積層エンドレスベルトを構成する基材層が単層であれば、表面電気抵抗率はその裏面から測定しても表面(コート層形成側)から測定してもよい。また、コート層の表面電気抵抗率は、コート層単層の表面電気抵抗率として、例えば、絶縁性の基材、具体的にはポリエステルフィルムなどの基材上へ、コート層の形成材料(後述のハードコート材など)を塗布した後硬化させてコート層を形成し、その表面電気抵抗率を測定することにより求めることができる。
また、積層エンドレスベルトの表面電気抵抗率は、基材層にコート層を形成してなる積層エンドレスベルトの表面(コート層表面)に対して測定される。
基材層のSR(100V)が上記条件(1)の下限よりも小さい場合には、帯電されたトナーがエンドレスベルト上に転写されたときに、紙へ転写されるまでの間に電荷が消失し、トナー画像乱れが発生する。逆に、基材層のSR(100V)が上記条件(1)の上限より大きい場合には、帯電され、トナーが除電されにくくなり、エンドレスベルト上のトナーが紙へ転写させるときの剥離性問題が生じる。
基材層の好ましいSR(100V)の範囲は、エンドレスベルトの使用目的により異なるが、1×10Ω以上、1×1012Ω以下であり、特に好ましい範囲は1×10Ω以上、1×1011Ω以下である。
なお、上記条件(1)は、基材層について、印加電圧100Vで測定した表面電気抵抗率について規定しているが、本発明に係る基材層は、印加電圧10V〜1000Vのいずれの条件においても表面電気抵抗率が上記条件(1)を満たすこと、即ち、SR(100V)のみならず、SR(10V)、SR(250V),SR(500V)、及びSR(1000)がいずれも1×10〜1×1012Ω、特に1×10〜1×1012Ω、とりわけ1×10〜1×1011Ωであることが好ましい。
また、基材層のSR(10V)/SR(500V)の上限を規定する上記条件(2)は、ローラ等により印加される電圧変動に対しても均一にトナーの転写が行われる点で重要であるが、特に10V印加時の表面電気抵抗率は、エンドレスベルト表層の電気抵抗値を表しているため、紙の剥離放電を防止する効果もあるため重要であり、500Vもしくは1000Vの印加電圧は、通常、エンドレスベルトには少なくとも500V程度の電圧を背面或いは表面から印加されトナーの転写を行うため、その表面電気抵抗率が重要であることに基くものであり、従って、基材層のSR(10V)/SR(500V)は100以下、好ましくは80以下、より好ましくは50以下である。
また、同様な理由から、基材層のSR(10V)/SR(1000V)も100以下、特に80以下、とりわけ50以下であることが好ましい。
なお、上記条件(2)を満足させる基材層は市場より入手可能ではあるが(例えばポリイミドにカーボンを分散させたエンドレスベルト、ポリフッ化ビニリデンに帯電防止材を分散させたエンドレスベルト、ポリアルキレンテレフタレートやポリカーボネート、ポリアルキレンナフタレート等のポリマーやポリマーアロイにカーボンブラック等を分散させたエンドレスベルト等)、公知の方法を利用して作製することもできる。特に、好ましい基材層構成材料は、後述する熱可塑性樹脂及び/又は熱可塑性エラストマーまたはそのアロイからなる熱可塑性ポリマー成分を主成分とし、これに導電性成分を配合した材料である。
また、本発明において、基材層のSR(100V)とコート層のSR(100V)の比が上記条件(3)を逸脱してコート層の表面電気抵抗率が基材層の表面電気抵抗率より高すぎると、印加電圧が高くなるに従い、電流が基材層にまで流れ、電気抵抗値が低下するため、装置の印加電圧変動によるトナーへの電界強度が不足になったり、紙の剥離放電が生じたりするため、トナー像が乱れる問題が発生する。また、たとえ条件(3)を満たし、基材層とコート層の表面電気抵抗率の差に問題がなかったとしても、条件(2)を満たす表面電気抵抗率の印加電圧依存性が小さい基材層でなければ、積層エンドレスベルトの表面電気抵抗率は、印加電圧が高くなるに従い電流が基材層にまで流れ、積層エンドレスベルト自体が基材層の表面電気抵抗率の不安定な状態の影響を受け、上述のようにトナー像が乱れる問題が発生する。
本発明において、基材層のSR(100V)/コート層のSR(100V)の好ましい値は0.5〜500、特に1〜100である。
基材層にコート層を積層した本発明の積層エンドレスベルトの表面電気抵抗率の特性としては、SR(10V)/SR(500V)が100以下であることが好ましく、特に好ましくは44以下である。
また、本発明の積層エンドレスベルトの抵抗領域の更に好ましい範囲はその用途により異なるが、例えば感光体ベルトとして用いる場合には必要に応じて外表面の電荷を内表面に逃がせるように、印加電圧10〜500Vにおいて、表面電気抵抗率1×10〜1×10Ωと比較的低い抵抗率が好ましく、中間転写ベルトとして用いる場合には帯電−転写の容易にできる表面電気抵抗率1×10〜1×1011Ωが好ましく、搬送転写ベルトとして用いる場合には帯電しやすく高電圧でも破損しにくい1×1010〜1×1012Ωと高い領域が好ましい。
また、積層エンドレスベルト1本中の表面電気抵抗率の分布は狭い方が好ましく、それぞれの好ましい表面電気抵抗率領域において、1本中の最大値と最小値の差が2桁以内であること(最大値が最小値の100倍以下であること)が好ましく、特に10倍以下であることが好ましい。
なお、積層エンドレスベルトの体積電気抵抗率については、1×10〜1×1013Ω・cm(印加電圧100V)の範囲であることが好ましいが、本発明においては、上記条件(1)、(2)、(3)を満たすことにより、おのずから体積電気抵抗率も定まるため、この限りではない。
[積層構成]
本発明の積層エンドレスベルトは、少なくとも基材層と表面層としてのコート層を有するものであればよく、基材層とコート層との間に中間層があっても良いし、両層の接着性を高めるために、基材層にプライマー処理、プラズマ処理、コロナ処理等の各種表面処理(下地処理ともいう)を施したものであってもかまわない。少なくとも、各種処理を含めた基材層の電気特性が前記条件(1)〜(3)を満たすことが重要である。
本発明において、好ましい積層構成は、基材層にそのままコート層を設けたものが、製造工程が少なく、コストの点で好ましいが、接着性に問題があれば、プライマー層を介して基材層上にコート層を設けるか、基材層にプイラズマ処理を施した上にコート層を設けるか、あるいは、プラズマ処理した基材層にプライマー層を形成した上にコート層を設けたものが、基材層とコート層との接着力が向上し、耐クラック性の向上、コート層の剥離防止において好ましい。
尚、プライマー処理としては、アクリル系のプライマーが接着性の観点で好適である。また、プラズマ処理としては、リモートタイプのプラズマ処理装置が簡便で好適である。
[基材層]
<基材層の材料>
本発明の積層エンドレスベルトにおいて、基材層の構成材料は、前述の条件(1)〜(3)を満たし、また、後述の基材層及び積層エンドレスベルトの好適な物性や特性を満たす基材層を実現することができるものであればよく、特に制限がないが、熱可塑性樹脂及び/又は熱可塑性エラストマーよりなる熱可塑性ポリマー成分を主成分とし、導電性成分を含むことが好ましく、更に酸化防止剤を含むことが好ましい。
(熱可塑性ポリマー成分)
熱可塑性樹脂としては、熱可塑性結晶性樹脂であっても熱可塑性非晶性樹脂であってもよく、ポリプロピレン、ポリエチレン(高密度,中密度,低密度,直鎖状低密度)、プロピレンエチレンブロック又はランダム共重合体、ゴム又はラテックス成分、例えばエチレン・プロピレン共重合体ゴム、スチレン・ブタジエンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加誘導体、ポリブタジエン、ポリイソブチレン、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリアセタール(POM)、ポリアリレート(Par)、ポリカーボネート(PC)、ポリアルキレンテレフタレート(PAT)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリトリメチレンテレフタレート(PTT)、ポリメチルメタクリレート(PMMA)、ポリフェニレンオキシド(PPE)、ポリエーテルサルフォン(PES)、ポリメチルペンテン(TPX)、ポリオキシベンジレン(POB)、ポリイミド(PI)、液晶性ポリエステル、ポリスルフォン(PSF)、ポリフェニレンサルファイド(PPS)、ポリビスアミドトリアゾール、ポリアミノビスマレイミド、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、アクリル、ポリフッ素化ビニリデン(PVDF)、ポリフッ素化ビニル、クロロトリフルオロエチレン、エチレンテトラフルオロエチレン共重合体(ETFE)、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル共重合体、アクリル酸アルキルエステル共重合体、ポリエステルエステル共重合体、ポリエーテルエステル共重合体、ポリエーテルアミド共重合体、ポリウレタン共重合体等が挙げられ、これらは1種を単独で用いてもよく、2種以上を混合物として用いてもよい。
これらのうち、熱可塑性結晶性樹脂としては、PAT(ポリアルキレンテレフタレート)が好ましく、なかでもPBT(ポリブチレンテレフタレート)やPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、PBN(ポリブチレンナフタレート)がより好ましい。PBTは結晶化速度が速いので成形条件による結晶化度の変化が少なく、一般に30%前後と結晶化度で安定しているので特に好ましい。
また、本発明に用いる熱可塑性結晶性樹脂は、本発明の効果を著しく損なわない範囲で共重合成分を導入することもできる。具体的な例として主鎖にエステル結合を有し、ポリテトラメチレングリコールやポリカプロラクトンのような脂肪族ポリエステルやポリシクロヘキサジメチレンなどの脂環式ポリエステルなどを導入したものなどを挙げることができる。
熱可塑性結晶性樹脂の分子量としては、重量平均分子量10,000〜100,000など一般的な分子量の樹脂を用いることができるが、引張破断伸びなどの機械物性の高い要求がある場合には、高分子量のものが好ましい。具体的には20,000以上が好ましく、25,000以上であれば更に好ましく、30,000以上であれば特に好ましい。
一方、熱可塑性非晶性樹脂として好ましいのは、水酸基、カルボン酸基及びエステル結合の少なくとも1つを有するものであり、結晶化度が0%以上、10%未満であれば特に制限はなく汎用の樹脂を用いることができる。
具体的にはPC(ポリカーボネート)やPAr(ポリアリレート)などのポリエステルやPMMA(ポリメチルメタクリレート)などの側鎖にエステル結合を有する樹脂が好適な例として挙げることができる。なかでもポリエステルが好ましく、PCは特に好適に用いることができる。
また、熱可塑性非晶性樹脂には、本発明の効果を著しく損なわない範囲で共重合成分を導入することができる。具体的な例として主鎖にエステル結合を有し、ポリテトラメチレングリコールやポリカプロラクトンのような脂肪族ポリエステルやポリシクロヘキサジメチレンなどの脂環式ポリエステル、ポリメチレングリコールなどエステル結合を導入したものなどを挙げることができる。
一方、本発明で用いられる好ましい熱可塑性エラストマーとしては、ポリエステル系、ポリアミド系、ポリエーテル系、ポリオレフィン系、ポリウレタン系、塩ビ系等の熱可塑性エラストマー等が使用できる。
熱可塑性エラストマーの特徴は、基材層の耐クラック性を大幅に高めることと、柔軟性を付与できる点である。
熱可塑性エラストマーを熱可塑性樹脂とアロイ化する場合、熱可塑性樹脂と共通の官能基を持つなど、熱可塑性樹脂との親和性の高い熱可塑性エラストマーを用いることにより、熱可塑性樹脂と熱可塑性エラストマーのアロイ分散性が良くなり、耐クラック性の飛躍的な向上や引張弾性率の調整が可能となり、優れた表面平滑性や、カーボンブラック等の導電性成分の分散性が得られるため、好ましい。
従って、熱可塑性樹脂としてポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル及び/又はポリカーボネートを用いる場合には、ポリエステル系、又はポリエーテル系の熱可塑性エラストマーを用いることが好ましい。また、ナイロン等のアミド系熱可塑性樹脂には、ポリアミド系の熱可塑性エラストマーを組み合わせることが好ましい。
ポリエステル系エラストマーとしては、ハード成分に芳香族ポリエステル、ソフト成分に脂肪族ポリエーテルを用いたポリエステルポリエーテルブロック共重合体、ハード成分に芳香族ポリエステル、ソフト成分に脂肪族ポリエステルを用いたポリエステルポリエステルブロック共重合体を用いることができる。
本発明に用いられるポリエステル系以外の熱可塑性エラストマーとしては、具体的にはポリスチレン系では、例えば、スチレン−ブタジエン−スチレンコポリマー、スチレン−イソプレン−スチレンコポリマー、スチレン−エチレン−ブチレン−スチレンコポリマー、スチレン−エチレン−プロピレン−スチレンコポリマー等があり、ポリ塩化ビニル系では、架橋(三次元)塩化ビニル−直鎖塩化ビニルポリマー等があり、オレフィン系としては、ポリエチレン−EPDMコポリマー、ポリプロピレン−EPDMコポリマー、ポリエチレン−EPMコポリマーポリプロピレン−EPMコポリマー等があり、ポリエステル系としては、PBT(1,4−ブタジエンジオール−テレフタル酸縮合物)−PTMEGT(ポリテトラメチレングリコール−テレフタル酸縮合物)コポリマー等が挙げられ、ポリアミド系としては、例えばナイロンオリゴマー−ジカルボン酸−ポリエーテルオリゴマーを基本骨格としたコポリマーを挙げることができ、前記ナイロンオリゴマーとしては例えばナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12等があり、ポリエーテルオリゴマーとしては、例えばポリエーテルグリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等を用いることができる。ウレタン系としては例えばポリウレタン−ポリカーボネートポリオールコポリマー、ポリウレタン−ポリエーテルポリオールコポリマー、ポリウレタン−ポリカプロラクトンポリエステルコポリマー、ポリウレタン−アジベートポリエステルコポリマー等が挙げられる。
これらは1種を単独で用いてもよく、2種以上を混合物として用いてもよい。
特に、熱可塑性ポリマー成分として、側鎖にエステル結合を有する樹脂、ポリアミド、熱可塑性エラストマーを用いた場合は、形成される基材層が耐クラック性に優れる上に、ポリマーに極性基があることにより、コート層との密着性に優れるため好ましい。
また、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体、ポリプロピレンを用いた場合は、基材層とコート層との密着性は若干劣るが、基材層が適度なヤング率を有しつつかつ耐クラック性に優れるため好ましい。
(熱可塑性樹脂と熱可塑性エラストマーの重量比)
熱可塑性ポリマー成分としては、熱可塑性樹脂の1種又は2種以上を用いても良く、熱可塑性エラストマーの1種又は2種以上を用いても良く、これらを混合して用いても良いが、本発明のエンドレスベルトの基材層の成形材料に用いる熱可塑性ポリマー成分の中で、最も好ましいのは、熱可塑性樹脂と熱可塑性エラストマーとのアロイ材料である。
このアロイ材料において、熱可塑性樹脂と熱可塑性エラストマーとの重量比に特に制限はない。ただし、一般に熱可塑性樹脂の中で結晶性樹脂は耐薬品性、耐屈曲性に優れ、非晶性樹脂は成形寸法安定性に優れるので、使用目的に応じ、熱可塑性樹脂のアロイ比率(結晶性樹脂と非晶性樹脂の割合)と熱可塑性樹脂と熱可塑性エラストマーとの比率を設定することが好ましく、なかでも、熱可塑性樹脂/熱可塑性エラストマーの重量比が99/1〜30/70の範囲であることが好ましく、95/5〜50/50の範囲であることが更に好ましく、90/10〜55/45の範囲であることが特に好ましい。
特に、熱可塑性樹脂の結晶成分は、後述のコート層形成のためのコート材に含まれる溶媒に対して耐性を有するため、結晶性の熱可塑性樹脂を主成分とした材料が好ましい。
(熱可塑性樹脂と熱可塑性エラストマーの粘度差)
熱可塑性ポリマー成分として熱可塑性樹脂と熱可塑性エラストマーとを用いる場合、両材料の粘度差が大きすぎると、製造条件を調整しても良好な分散が得られず、均一分散に至ることができなくなることがあるので、粘度差は小さい方が好ましい。具体的には、熱可塑性樹脂と熱可塑性エラストマーを同一条件でMFR測定したときの比が1/20〜20/1程度の範囲に収まることが好ましく、1/10〜10/1の範囲となれば更に好ましい。
なお、MFRの測定方法としてはJIS K−7210に準拠し、測定温度条件は熱可塑性樹脂組成物の加工温度に近い条件を選択することが好ましい。例えば、PBTとポリエステル系エラストマーを選択した場合、加工温度となる240℃を測定温度として設定し、両材料の粘度差を比較することが好ましい。また、荷重としては例えば2.16kgを選択することで好適に測定できる。
(熱可塑性ポリマー成分の融点)
本発明において、基材層を構成する熱可塑性ポリマー成分は、以下のDSC測定による融点が130℃以上、260℃以下のものを用いることが好ましい。
DSC(示差走査熱量)測定:セイコー電子工業(株)製SSC−5200(商品名)を使用し、試料を昇温速度20℃/minにて400℃まで昇温させ、融解ピーク温度をDSC測定による融点とする。
熱可塑性ポリマー成分の融点が低すぎると、得られる基材層の耐熱性が悪くなり、ローラの癖跡がつきやすくなるばかりか、クリープ性が悪くなるため好ましくない。逆に、熱可塑性ポリマー成分の融点が高すぎると、加熱混練時、加熱押し出し時の成形温度が高すぎ、添加成分の揮発で、得られる基材層の表面外観が荒れる場合がある。熱可塑性ポリマー成分のより好ましい融点は180℃以上、250℃以下、更に好ましくは200℃以上240℃以下である。
<導電性成分>
基材層には、導電性フィラー或いは帯電防止剤、イオン導電性物質等の導電性を発現する物質の必要量を配合することにより、所望の導電性を得ることができる。
基材層に含まれる導電性成分としては、用途に要求される性能を満たすものであれば特に制限はなく、各種のものを用いることができ、具体的には、導電性フィラーとして、カーボンブラックやカーボンファイバー、グラファイトなどのカーボン系フィラー、金属系導電性フィラー、金属酸化物系導電性フィラーなどの金属フィラーが用いられ、導電性フィラーの他には、ポリエーテルエステルアミドといった高分子ポリマータイプの帯電防止剤や、イオン導電性物質、例えば四級アンモニウム塩等であっても良く、これらを併用して使用しても良い。
本発明における積層エンドレスベルトの基材層に用いられる導電性成分の選択は、得られる基材層の機械特性、電気特性、寸法特性、化学特性を考慮しつつ、温度や湿度による環境依存性、コストも考慮する必要があるが、少なくとも前述の条件(1)〜(3)を満たすことが必要であり、この点から、導電性成分としては、カーボンブラックの粉体品、もしくは粒状品を主成分とした導電性物質あるいは、高分子ポリマータイプの帯電防止剤であることが好ましい。
勿論、カーボンブラックを主成分とし、帯電防止剤等の非導電性フィラー系のものを副成分としたものであっても良いし、導電性金属フィラーとの複合であってもかまわない。
導電性成分の配合量は用いる導電性成分の種類によっても異なり、例えばカーボンブラックであれば熱可塑性ポリマー成分100重量部に対して0.1〜30重量部とすることが好ましい。この範囲よりも少ないと導電性が発現されなかったり、カーボンブラックの分散状態が粗くなり電気抵抗率がばらつきやすくなり、また、接触抵抗が大きく環境に左右されるようになり、画像形成装置にエンドレスベルトとして搭載した場合、環境によっては画像異常を発生させる場合がある。また、この範囲よりも多すぎると基材層の剛性が大きくなりすぎ、耐久性が損なわれたり、成形性が損なわれたりするため好ましくない。
本発明では、カーボンブラックとしては、以下の理由から、特にDBP吸油量50〜300cm/100g、比表面積35〜500m/g、揮発分0〜20%、平均一次粒径20〜50nmを満たすカーボンブラックを用いることが好ましい。
(カーボンブラックのDBP吸油量について)
カーボンブラックのDBP吸油量が大きいほど、カーボンは数珠状に連なった連鎖(カーボンストラクチャクチャー)を形成しやすく、カーボン凝集体が発生しにくい利点と、少ない添加量で導電性を発現しやすいため低コストな利点があるが、反面、材料配合から成形加工の過程においてカーボンブラックを配合した樹脂に加えられる様々な剪断力によりカーボン連鎖が壊れて電気抵抗率がばらつきやすく、安定しないといった問題点がある。
反対にカーボンブラックのDBP吸油量が少なすぎると、カーボン連鎖を形成しにくいため、導電性を発現させるための必要添加量が多くなりすぎ、材料の耐屈曲性を損なう問題点がある。
従って、好ましいカーボンブラックのDBP吸油量は、50〜300cm/100gである。
(カーボンブラックの粒子径及び比表面積について)
カーボンブラックの比表面積が大きいほど、少ない添加量で導電性が発現するため、機械的強度(耐クラック性)の点で有利となる反面、カーボン添加量により導電性が急激に変化する傾向にあるため、半導電領域にコントロールするためには±0.05%以内の配合精度が必要であり、エンドレスベルトの抵抗ばらつきを±1オーダー以内で均一にすることが難しい。また、比表面積が大きいカーボンブラックは一般に粒径が小さいため、樹脂中に分散させる場合にカーボンブラック粒子がだまになりやすく、その結果、カーボン凝集体が成形品に混在し、カーボン凝集体の箇所に電気が集中し部分的な絶縁破壊を発生させやすい。また、カーボンブラックの比表面積が小さすぎる(カーボン粒子が大きすぎる)と、カーボン凝集体を形成しにくいため成形品の外観は平滑な反面、カーボン粒子間の接触により導電性発現が左右されやすく電気抵抗率がばらつきやすいので、最適化したカーボン粒子径を選択することが重要である。
このような点から、好ましいカーボンブラックの平均一次粒径は20〜50nmであり、比表面積は35〜500m/gである。
(カーボンブラックの揮発分について)
カーボンブラックの揮発分が多いほど、その表面特性により分散性は良好になる反面、加熱混練中にガスを発生させるため、成形上不利である。逆に、カーボンブラックの揮発分が少ないほど、加熱混練中のガスが発生しにくいため成形性は良好である反面、分散性は悪化する傾向にある。従って、好ましいカーボンブラックの揮発分量は、0〜20%である。
カーボンブラックは、上記DBP吸油量、比表面積、揮発分、平均一次粒径を満たすものであれば、その種類には特に制限はなく、また、使用するカーボンブラックは1種類であっても2種類以上であっても良い。
例えば、カーボンブラックの種類としては、アセチレンブラック、ファーネスブラック、チャンネルブラックなどが好適に使用でき、この中でもカリウム、カルシウム、ナトリウムなどの灰分とよばれる不純物が少なく外観不良を発生しにくいアセチレンブラックが特に好適に使用できる。また、樹脂を被覆したカーボンブラックや、加熱処理したカーボンブラックや黒鉛化処理したカーボンブラック等の公知の後処理工程を施したカーボンブラックを、本発明の目的を損なわない範囲で使用することができる。
更に、分散性を向上させる目的、ガス発生を抑制させる目的でシラン系、アルミネート系、チタネート系、及びジルコネート系等のカップリング剤で処理したカーボンブラックを用いても良い。
特に、基材層中のカーボンブラックの含有量(以下「カーボンブラック濃度」と称す場合がある。)が、下記式(i),(ii)を充たすことが、抵抗値の温度湿度依存性への影響が少なくなるため好ましい。
式(i):LogY≧−X+20
式(ii):LogY≦−X+30
ただし、X,Yは次の通り。
X:基材層中のカーボンブラックの含有量(重量%)
Y:基材層の100V印加電圧,10秒での表面電気抵抗率(Ω)(SR(100V))
即ち、例えば、SR(100V)が1×10Ωの基材層の場合は、カーボンブラック濃度は14〜24重量%であり、SR(100V)が1×1010Ωの基材層の場合は、カーボンブラック濃度は10〜20重量%であり、SR(100V)が1×1014Ωの基材層の場合は、カーボンブラック濃度6〜16重量%であることが、高温高湿から低温低湿での環境変動に対する、電気抵抗率の変動が少ない基材層とすることができる点において好ましい。
X,Yは、特に
logY≧−X+21
logY≦−X+29
であることが好ましい。
上記範囲を超えてカーボンブラック濃度が高いと、カーボンブラック自身の分解ガス等の発生により基材層の外観を悪化させると共に、カーボンブラックと熱可塑性ポリマー成分との反応により熱可塑性ポリマー成分が分解して発泡に由来する傷が発生するため、外観上好ましくない。また、耐屈曲性も悪化する。
上記範囲を超えてカーボンブラック濃度が低いと、導電性を発現できなくなる上に、カーボンブラック分散状態が粗くなり電気抵抗率がばらつきやすくなり、また、接触抵抗が大きく環境に左右されるようになり、基材層の電気抵抗値の電圧依存性が大きくなり好ましくない。
カーボンブラック系以外の導電性成分の中では、導電フィラー、例えば、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄などの粉末やアルミドープ酸化亜鉛、アンチモンドープ酸化スズ、リンドープ酸化スズ、スズドープ酸化インジウム等の所謂導電性金属酸化物フィラーの粒状、繊維状、フレーク状のものが好適に用いられる。
これらの導電性フィラーの中でも、アルミドープ酸化亜鉛、アンチモンドープ酸化スズ、リンドープ酸化スズ、スズドープ酸化インジウム所謂導電性金属酸化物フィラーで粒状のものが好ましく、平均粒子径として5μm以下のものが、形成される基材層の表面平滑性が維持できるため好ましい。
また、非フィラー系の導電性成分としては、非イオン系、アニオン系、カチオン系、両性の帯電防止剤が用いられ、耐熱性の観点より、アニオン系、非イオン系、両性、カチオン系の順で好ましい。
高分子型の帯電防止剤としては、非イオン系としては、ポリエーテルエステルアミド型、エチレンオキシド−エピクロルヒドリン型、ポリエーテルエステル型が用いられ、アニオン型としては、ポリスチレンスルホン酸型、カチオン系としては、第四級アンモニウム塩基含有アクリレート重合体型などが好ましく、この中でもポリエーテルエステルアミド型、ポリエーテルエステル型が、耐熱性に優れ、また、熱可塑性ポリマー成分の分解を低減できるため好ましい。
<付加的配合材;任意成分>
本発明の積層エンドレスベルトの基材層には、各種目的に応じて任意の配合成分を配合することができる。
具体的には、イルガホス168,イルガノックス1010,リン系酸化防止剤などの酸化防止剤、熱安定剤、各種可塑剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、スリップ剤、架橋剤、架橋助剤、着色剤、難燃剤、分散剤、ワックス等の各種添加剤を添加することができる。
特に付加的成分としてSi化合物を基材層に配合すると耐久性が飛躍的に向上するため好ましい。特に、コート層の架橋硬化のために活性エネルギー線を照射する場合には、基材層も少なからずとも活性エネルギー線の影響を受けるため、耐クラック性を維持するためにも、Si化合物を材料中に配合すると好ましい。
好ましいSi化合物としては、シリコーンゴム、シリコーンレジン(シリコーン微粒子)、シリコーンオイル、シラン化合物が挙げられるが、特に好ましいのはシリコーンオイルまたはシラン化合物(例えばシランカップリング剤)である。
また、Si化合物の配合手法としては、熱可塑性ポリマー成分とブレンドし、混練機のホッパー投入口から一度にあるいは別々に供給して加熱混練したり、Si化合物のみを熱可塑性ポリマー成分やカーボンブラック等とは別に混練機中に送り込む別フィード方式等が挙げられるが、これに制限されることは無い。
また、カーボンブラックに予めSi化合物を加熱添着させ、Si化合物をカーボンブラック表面に被覆した上で熱可塑性ポリマー成分と混練機を用いて加熱混合することにより、カーボンブラックとSi化合物と熱可塑性ポリマー成分との相互作用をより効果的に引き出すことが可能となる。
この場合、Si化合物としては、シリコーンオイルまたはシラン化合物(例えばシランカップリング剤)を用いることが好ましく、その使用量はカーボンブラックに対して0.1〜10重量%程度とすることが好ましい。
更に、基材層の構成材料には、本発明の効果を著しく損なわない範囲内で、第2,第3成分として各種熱可塑性樹脂、各種エラストマー、熱硬化性樹脂、フィラー等の配合材を配合することができる。
<加熱混練方法>
基材層の成形に先立って前述の熱可塑性ポリマー成分と導電性成分等を加熱混練する手段には特に制限はなく、公知の技術を用いることができる。例えば、熱可塑性ポリマー成分(熱可塑性樹脂及び/又は熱可塑性エラストマー)、導電性成分、及び必要に応じて配合されるその他の添加成分を加熱混練して樹脂組成物とするのであれば、一軸押出機、二軸混練押出機、バンバリーミキサー、ロール、ブラベンダー、プラストグラフ、ニーダーなどを用いることができる。
特に、熱可塑性ポリマー成分、導電性成分、及び必要に応じて配合されるその他の添加成分を例えば二軸混練押出機により混合し、ペレット化した後にエンドレスベルト状となるように成形する手法が好ましく用いられる。
<成形方法>
本発明において、基材層の成形方法については特に限定されるものではなく、連続溶融押出成形法、射出成形法、ブロー成形法、或いはインフレーション成形法、遠心成形法、ゴム押出成形法等の公知の方法を採用して得ることができるが、特に好ましい方法は、連続溶融押出成形法である。特に、環状ダイより押し出した溶融チューブを、冷却又は冷却固化しつつ引き取る押出成形法が好ましく、特にチューブの内径を高精度で制御可能な下方押出方式の内部冷却マンドレル方式或いはバキュームサイジング方式が好ましい。特に、内部冷却マンドレル方式がシームレスベルト状の基材層を容易に得ることができるため画像形成装置用ベルトの成形法としては最も好ましい。この場合、環状ダイとしては、その円周方向に複数の温度調節機構が設けられているものが好ましい。また、溶融チューブの冷却は、30〜150℃の範囲に温度調節した金型を、その内側又は外側に接触させて行うことが好ましく、このようにして、溶融チューブを円筒形状を保持したまま引き取ることが好ましい。
また、インフレーション成形法により一旦折り目有りのフィルムを作製した後、後加工にて折り目を見かけ状無くした状態でエンドレスベルト状の基材層としてもよく、帯状のシートを一旦加工した後、つないでシーム有りの基材層としても良い。
基材層の成形方法として、押出成形法は、コストの点で有利ではあるが、一般に電気抵抗値の印加電圧依存性の良好な基材層を作製しにくい。しかしながら、用いる熱可塑性ポリマー成分や導電性成分の種類の選定、或いは以下のような成形条件の設定により、電気抵抗値の印加電圧依存性を少なくできる。
このような観点から、押出成形法による基材層の成形において、成形条件は、前述の条件(1)〜(3)を満たす基材層を得るために重要な因子である。
特に、(a)押出成形時の溶融チューブを冷却した後にエンドレスチューブを連続的に引き取る際の引き取り速度を1.0m/min以上の高速で引き取り、これにより、厚み方向の全域に導電性成分を高配向させるか、又は、(b)基材層の厚みをダイス金型のリップクリアランスに対し0.12以下となるようにして、導電性成分を分散させた成形材料を極端に低配向で押し出すか、又は(c)基材層を120μm以下の薄膜にすることにより表層と中央の配向差を少なくさせた基材層であれば、前述の条件(1)〜(3)を満たす基材層を容易かつ安価に製造することができ、かつ成形された基材層の表面は僅かに荒れて、コート層の接着性が上がる利点もあり好ましい。
これらの(a),(b),(c)の成形条件は、その1つを満たしていれば良いが、好ましくは2つ又は3つを組み合わせて採用することにより、より一層、表面電気抵抗率の印加電圧依存性の小さい基材層が得られるため好ましい。
特に、(c)の成形条件において、基材層の好ましい厚みは100μm以下であり、90μm以下であれば更に好ましい。基材層の厚みの下限は60μmであり、これ以上薄い場合には、基材層の強度不足となるため好ましくない。
また、(b)の成形条件において、より好ましい基材層の厚み/押出ダイス金型のリップクリアランスの比率は0.10以下である。この比率の下限は0.03であり、これより小さいと、押出成形時に基材層に適度な剪断力が加わらず、表面荒れが大きくなりすぎて、この上にコート層を施しても、得られる積層エンドレスベルトの表面平滑性が劣るものとなり好ましくない。
また、(a)の成形条件において、押出成形時の溶融チューブの好ましい引き取り速度は、1.2m/min以上であり、上限は4m/min以下である。この上限を超えると、押出成形時に成形材料に加わる剪断応力が大きくなりすぎる結果、抵抗値が高くなりすぎ問題がある。
<熱処理>
上述のようにして成形された基材層は、コート層の形成に先立ち熱処理を行ってもよく、これにより、より物性の向上した基材層とすることが可能となり、特に、耐屈曲性、引張弾性率や耐ローラー癖性の改善が見られる。
この場合、熱処理条件は用いる熱可塑性ポリマー成分にもよるが、通常50〜100℃、好ましくは60〜90℃の温度で15分〜5時間であり、好ましくは1時間〜3時間程度である。
基材層の熱処理は、エンドレスベルト状の基材層を2本以上のローラに張架させて駆動させながら熱をかけて行っても良いし、円筒状の型に基材層を装着して行っても良い。更には、基材層を円筒状のそのままの状態で熱処理を施しても良い。
<基材層のガラス転移温度>
本発明において、基材層のガラス転移温度Tgは0℃以上、90℃以下であることが好ましい。これは、以下の理由による。
基材層のガラス転移温度が0℃未満の場合、基材層の弾性率が低いため、このような基材層に架橋硬化によりコート層を形成した場合、基材層の弾性率及び硬度と、コート層の弾性率及び硬度との差が大きくなりすぎ、基材層とコート層との剥離が生じやすくなるため好ましくない。また、得られる積層エンドレスベルトの弾性率も低くなりすぎ、クリープ伸び等も悪化するため好ましくない。
また、コート層の架橋前後での基材層の収縮による周長変化が大きいことによる電気抵抗値の変化が大きくなるため好ましくない。
基材層のガラス転移温度が90℃を超える場合、プリンター等の使用温度である60℃でのポリマーの運動性が制限されてしまい、また、コート層の架橋時に活性エネルギー線を照射すると耐クラック性が著しく低下するため好ましくない。
また、ガラス転移温度が90℃以下であっても結晶化度が10%程度と低い場合は、耐クラック性は高くなるが、耐ローラ癖が悪くなるため好ましくない。
このガラス転移温度とは、後掲の実施例の項で説明するように、エンドレスベルト状の基材層をティーエイインスツルメント社製の動的粘弾性測定装置「RSAIII」を用いて測定した、周波数10.0Hz、昇温速度2℃/分、引っ張り歪0.05%の条件でのtanδのα分散のピーク温度をさす。
本発明において、基材層の好ましいガラス転移温度は0〜70℃であるが、この基材層のガラス転移温度は、基材層の熱可塑性ポリマー成分を構成する熱可塑性樹脂やエラストマーの選択、または配合比を制御することによって調整することができる。
例えば、PAT、PANにて説明すると、熱可塑性ポリマー成分の芳香環含有割合を多くしたり、熱可塑性ポリマー成分中のPAT及び/又はPANの配合割合を多くしたりすれば、熱可塑性ポリマー成分のガラス転移温度は高くなり、基材層のガラス転移温度も高くなる。逆に、熱可塑性ポリマー成分中の芳香環の含有割合を少なくしたり、熱可塑性ポリマー成分中のPAT及び/又はPANの配合割合を少なくしたりすれば、熱可塑性ポリマー成分のガラス転移温度は低くなり、基材層のガラス転移温度も低くなる。
[コート層]
本発明の積層エンドレスベルトにおいて、コート層は、導電性成分が配合された架橋性液状物を、基材層の表面に塗布して塗布膜を形成した後、該塗布膜を活性エネルギー線及び/又は熱により架橋硬化させて形成させることが好ましい。ここで、活性エネルギー放射線とは、必要とする架橋反応を開始し得る化学種を発生させる働きを有する電磁波(ガンマ線、エックス線、紫外線、可視光線、赤外線、マイクロ波等)又は粒子線(電子線、α線、中性子線、各種原子線等)であり、好ましくは紫外線又は電子線が用いられる。
本発明に係るコート層は、特にアクリルモノマー及び/又はアクリルオリゴマーを主成分とする架橋性液状物を架橋硬化させてなることが好ましく、この架橋性液状物は導電性フィラーを主成分とする導電性成分を含むことが好ましい。
<コート層の材料>
本発明のコート層における架橋性液状物(活性エネルギー線及び/又は熱を付与することにより架橋硬化可能な液状物)とは、例えば、メラミン系、ウレタン系、アルキッド系、フッ素樹脂系、アクリルラジカル系、光カチオン系等の有機系のもの;無機微粒子分散アクリルラジカル系、無機微粒子分散有機高分子系、無機微粒子分散オルガノアルコキシシラン系、有機高分子分散シリカ系、アクリルシリコン系、オルガノアルコキシシシラン系、オルガノアルコキシシラン・アルコキシジルコニウム系、含フッ素樹脂・オルガノアルコキシシラン系、ケイ酸塩・有機高分子系等の有機無機ハイブリッド系のもの;アルコキシシラン・アルコキシジルコニウム系、ケイ酸塩系等の無機系のもの;等の熱硬化タイプや、紫外線硬化タイプ、電子線硬化タイプの所謂ハードコート材であり、これらは耐摩耗性向上の点で好ましく、このようなコート材に各種の導電性成分、特に湿度による影響が少ない導電性フィラーを配合した半導電性タイプが好ましい。
これらのハードコート材と導電性成分は公知のものが挙げられるが、中でもハードコート材としては、多官能アクリレートオリゴマー、多官能アクリレートモノマーや、ポリシロキサン系、アクリルシリコン系が好ましく、これらの複合物や、更に光重合開始剤や界面活性剤、防汚成分等の各種添加剤、更には溶剤等が配合されたものを用いても良い。
尚、多官能アクリレートモノマーとしては、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、トリメチロールプロパントリアクリレート等が挙げられる。
また、多官能アクリレートオリゴマーとしては、ノボラック型、ビスフェノール型エポキシ樹脂をアクリレート変性したエポキシアクリレート、ポリイソシアネートとポリオールを反応させて得られるウレタン化合物のアクリレート変性物であるウレタンアクリレート、ポリエステル樹脂をアクリレート変性したポリエステルアクリレート等が挙げられる。
本発明に係るコート層は、半導電性であることが好ましく、具体的にはダイヤインスツルメンツ(株)製「ハイレスタUP」のURプローブにより測定したSR(100V)が1×10Ω以上、1×1012Ω以下であることが好ましく、特に1×10〜1×1011Ωであることが好ましい。
このため、コート層の材料には、コート層をこのような半導電性に調製するための導電性成分を含むことが好ましい。
導電性成分としては、導電性フィラーとして、カーボンブラックやカーボンファイバー、グラファイトなどのカーボン系フィラー、金属フィラーなどが用いられ、導電性フィラーの他には、ポリエーテルエステルアミドといった高分子タイプの帯電防止剤や、イオン導電性物質、例えば四級アンモニウム塩等であっても良く、これらを併用して使用しても良い。
金属フィラーとしては、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄などの粉末や、酸化亜鉛、酸化スズ、酸化チタン、酸化インジウム等の金属酸化物フィラーや、アルミドープ酸化亜鉛、アンチモンドープ酸化スズ、リンドープ酸化スズ、スズドープ酸化インジウム等の所謂導電性金属酸化物フィラーが好適に用いられる。
導電性フィラーの中でも、酸化亜鉛、酸化スズ、酸化インジウム、酸化チタン等の金属酸化物フィラーや、アルミドープ酸化亜鉛、アンチモンドープ酸化スズ、リンドープ酸化スズ、スズドープ酸化インジウムといった導電性金属酸化物フィラーの粒状のものが好ましく、特に好ましいのは、その粉末の体積抵抗が5〜10Ω・cmと半導電領域に近い導電性フィラーである金属酸化物フィラーや導電性金属酸化物フィラーであり、リンドープ酸化スズがその粉末の体積抵抗が10〜10Ω・cmを示し、表面電気抵抗率を半導電レベルに安定的に制御できるため最も好ましい。
また、カーボンブラック系のフィラーでは、アセチレン系、チャンネル系、ファーネス系の各種カーボンブラックの粒状、繊維状、フレーク状のものが好適に用いられる。その中でもカーボンブラックとしてDBP吸油量20〜200cm/100g、比表面積45〜800m/g、揮発分0〜20%、平均一次粒径10〜40nmを満たすカーボンブラックを用いることが好ましい。
また、非フィラー系の導電性成分としては、非イオン系、アニオン系、カチオン系、両性の帯電防止剤が用いられ、耐熱性の観点より、アニオン系、非イオン系、両性、カチオン系の順で好ましい。
高分子型の帯電防止剤としては、非イオン系としては、ポリエーテルエステルアミド型、エチレンオキシド−エピクロルヒドリン型、ポリエーテルエステル型が用いられ、アニオン型としては、ポリスチレンスルホン酸型、カチオン系として、第四級アンモニウム塩基含有アクリレート重合体型などが好ましく、この中でもポリエーテルエステルアミド型、ポリエーテルエステル型が耐熱性に優れ、また、コート材成分の分解を低減できるため好ましい。
導電性フィラーの配合量は用いる種類によっても異なり、例えばカーボンブラックであればハードコート材100重量部中に1〜30重量部とすることが好ましい。金属酸化物フィラー又は導電性金属酸化物フィラーの場合には10〜50重量部とカーボン系より多めに配合して電気抵抗を調整する。
この範囲よりも導電性成分の配合量が少ないと導電性が発現されなかったり、導電性成分の分散状態が粗くなり電気抵抗率がばらつきやすくなり、また、接触抵抗が大きく環境に左右されるようになり、画像形成装置に積層エンドレスベルトとして搭載した場合、環境によっては画像異常を発生させる場合がある。また、この範囲よりも導電性成分の配合量が多すぎると積層エンドレスベルトの剛性が上がり、耐久性が損なわれたり、成形性が損なわれたりするため好ましくない。
特に、本発明に係るコート層に含まれる導電性成分は、導電性金属酸化物フィラーであることが好ましく、とりわけ導電性酸化スズであることが好ましい。
このような導電性成分の配合量は、コート層として好適な半導電性が得られる程度であればよく、特に制限はない。
コート層を形成するためのハーコート材としては、市販品を用いることができ、例えば、JSR社製「オブスター」、「デソライト」、DIC社製「ディフェンサFH−800ME」、三菱レーヨン社製「レイクイーンRQ−5001」、東レダウコーニング社製「AY42−150」、信越シリコーン社製「X−12−2437」、「X−12−2400」、荒川化学工業社製「ビームセット」等が挙げられ、このようなハードコート材は、適宜各種溶媒で希釈し、導電性成分を配合し基材層上に塗布して塗布膜を形成した後、加熱及び/又は活性エネルギー線照射により架橋硬化させて、コート層を形成することができる。
<塗布方法>
本発明において、基材層に上述の架橋性液状物(ハードコート材)を塗布する方法としては、デッピングングコーテイング法、スプレーコーティング法、リングコーティング法、ロールコーティング法や、その他ブレードコーター、ナイフコーター、ダイコーター、グラビアコーター等公知の塗布装置を用いる方法を採用することができるが、デッピングコーティング法又はスプレーコーティング法が好ましく、特に好ましいのは、スプレーコーティング法であり、その場合、架橋性液状物は、吐出量0.1g/min以上、10g/min以下で吐出することが、表面平滑なコート層が得られるため好ましい。特に好ましい架橋性液状物の吐出量は0.5g/min以上、6g/min以下であり、最も好ましいのは1g/min以上、5g/min以下であり、このような吐出量であれば、良好な表面平滑性が得られ、気泡も少なく、好ましい。
本発明においては、特にコート層は、基材層の成形方法と異なる成形方法で形成することが好ましく、特に基材層は押出成形にて、コート層は基材層を回転させながら、コート層形成用の架橋性液状物をスプレーコーテイング法にて塗布して形成すると、各層の導電性成分等の配向方向が異なるものとなり(即ち、押出成形では幅方向に配向し、スプレー塗布では円周方向に配向)、得られる積層エンドレスベルトの面内の微小領域での電気抵抗の欠陥が画像上に現れにくくなるため、好ましい。
また、架橋性液状物を塗布する際の基材層の移動方法としては、2本以上のローラにて基材層を張架させ、ローラの回転で基材層を移動させ、その上にスプレーコートする方法、または円筒状の支持体の外側に基材層をかぶせ、この円筒状の支持体を回転駆動させることにより基材層を移動させつつ、スプレーコートする方法が好ましい。
<架橋硬化>
上述のようにして、基材層に架橋性液状物を塗布して形成した塗布膜の架橋硬化は、活性エネルギー線及び/又は加熱により行われる。
なお、架橋硬化に先立ち、塗布膜の溶媒を除去する目的で乾燥を行ってもよく、この場合の加熱乾燥条件としては、50〜180℃で10秒〜15分程度が好ましい。
(紫外線)
紫外線による架橋硬化を行う場合、公知の紫外線照射装置を用いることができる。例えば、水銀ランプ法、メタルハライドランプ法によるハイキュアランプや低圧水銀ランプを使用することができ、紫外線としては、波長200nm〜500nmの範囲において相対エネルギーのピークを持つものが好ましく用いられる。
また、反射板方式としては、アルミミラー方式、コールドミラー方式、メタルコールドミラー方式、コールドフィルター方式、水冷ジャケット方式、ダブルミラー方式等の公知のものが用いることができ、中でも冷却機構を備えた、コールドミラー方式、メタルコールドミラー方式、コールドフィルター方式が、紫外線を照射している際に、塗布膜及び基材が異常に加熱されることを防ぐことができるため好ましい。
(電子線)
電子線による架橋硬化を行う場合、公知の電子線照射装置を用いることができる。例えば電子線照射線量として50kGy以上1500kGy以下で照射できる能力を備えた電子線照射装置が好ましく用いられる。
(赤外線)
赤外線による架橋硬化を行う場合、公知の赤外線照射装置を用いることができる。例えば、波長0.75μm〜4μmの近赤外線照射装置、波長4μm〜25μmの遠赤外線照射装置、波長25μm〜1000μmの超遠赤外線照射装置が好ましく用いられる。
(熱)
熱による架橋硬化を行う場合、公知のヒーター、オーブン等を用いて50℃以上180℃以下で加熱する方法を用いることができる。
尚、加熱とは、熱架橋の目的以外にも、溶媒の除去を促進させる目的、さらには、基材層の結晶性を促進させたり、非結晶部を緻密化させたりすることによる耐ローラ癖特性を向上させる目的も含まれ、本発明においては重要である。
好ましい加熱の温度と時間は、60℃以上150℃以下であり、加熱時間は15秒以上30分以下、好ましくは30秒以上15分以下である。
尚、紫外線、電子線、赤外線照射の際に発生する熱を利用する方が短時間で架橋を進行させ、製造工程を増やす必要がなくなるため好ましい。
[積層エンドレスベルトの物性及び特性]
以下に、本発明の積層エンドレスベルトの好適な物性及び特性を挙げる。
<厚み>
(コート層厚み)
本発明の積層エンドレスベルトのコート層の厚みは、1μm以上、10μm以下であることが好ましい。コート層の厚みは、好ましくは1〜7μm、より好ましくは3〜6μmである。
コート層の厚みが1μmより薄いと、僅かな傷によりコート層が剥がれ、基材層が表面に出てくることがあり、画像欠陥となり好ましくない。また、通電による絶縁破壊が発生する可能性もあり好ましくない。さらには、印加電圧による表面電気抵抗率の変化が大きく、紙の種類やトナーの帯電量の変化、転写ローラ、帯電ローラ等の画像形成装置における積層エンドレスベルト周辺部品の温度、湿度による電気抵抗値の変化に対し、積層エンドレスベルト上のトナーへの電界強度不足或いは過剰へ変動しやすくなり、画像異常を発生させることとなり好ましくない。
コート層の厚みが10μmより厚いと、ローラ張架時の積層エンドレスベルトの変形による歪が積層エンドレスベルト最外層であるコート層で最も大きくなるため、コート層表面よりクラックが発生しやすくなるといった問題が発生する。
コート層厚みは特に1〜7μm、とりわけ3〜6μmであることが、基材層の表面電気抵抗率の影響を適度に受けて、積層エンドレスベルトとしての印加電圧依存性も小さくすることができ、また、厚みが厚すぎず、ローラ上のコート層の歪も小さくなるため、耐クラック性を長時間維持することが可能となり、好ましい。
(基材層厚み)
本発明の積層エンドレスベルトの基材層の厚みは、その基材層の弾性率(ここで、弾性率とは後述の「引張弾性率」である。)にも関係してくるが、弾性率が2000MPa以上であれば60μm以上、160μm以下が好ましく、弾性率が2000MPaより低ければ、80μm以上、180μm以下が好ましい。特に注意すべき点としては、厚みが厚すぎると厚み偏差が大きくなるため、ベルトの周速が変わり、画像ズレが起こる可能性があるという点と、厚みが厚い場合、基材層における表層と中央部(厚み方向の中央部分)の配向差が大きくなりすぎ、導電性フィラー等の分散の差が大きく、電気抵抗値の差が大きくなるため好ましくない。基材層の好ましい厚みは80〜140μmであり、とりわけ90〜125μm以下であることが好ましい。
ただし、前述の押出成形条件(c)として、本発明に係る条件(1)〜(3)を満たすために、基材層の厚みは120μm以下、特に100μm以下であることが好ましい。
(コート層と基材層の厚み比)
本発明の積層エンドレスベルトのコート層の厚みと基材層の厚みの差(比率)は、コート層の厚み/基材層の厚みで1/150以上、1/8以下である。本発明においてコート層は基本的には基材層より硬いため、コート層を薄く、基材層を厚くすることが好ましいが、コート層の耐摩耗性を重視しつつ、コート層の表面電気抵抗率と基材層の表面電気抵抗率が適度に干渉する厚み比として、1/100以上、1/10以下がより好ましい。
この比率より基材層が厚すぎると基材層の電気抵抗値のコート層への影響が大きく、電気抵抗値の調整が難しくなる。反対にコート層が厚すぎると、コート層の電気抵抗値が積層エンドレスベルトの電気抵抗値として支配的になるため、電気抵抗値が調整しにくくなる。より好ましい厚み比は1/80以上、1/15以下であり、特に好ましくは1/70以上、1/20以下である。
<硬度>
(コート層の硬度)
本発明の積層エンドレスベルトのコート層の表面硬度(この値は、積層エンドレスベルトの表面硬度となる。)は、フィッシャースコープ社製の微小硬度計「HM2000」を用いて、押し込み荷重2.5mN、押し込み時間27秒の条件で測定したHUpl(ユニバーサル硬度の塑性変形硬さ)(以下「微小硬度」と称す場合がある。)において、400N/m以上、800N/m以下であることが好ましい。コート層が微小硬度800N/mより硬いと、積層エンドレスベルトと感光体との間でニップを確保できなくなり、感光体上のトナーを積層エンドレスベルトに転写しにくくなるばかりか、感光体を傷つけてしまう可能性があるため好ましくない。また、400N/mよりコート層の微小硬度が低いと、トナーの外添材、とりわけチタンやシリカにより積層エンドレスベルトの表面が削られて摩耗しやすくなり、表面が荒れやすく、クリーニング性が悪化するため、好ましくない。コート層の微小硬度は好ましくは450〜750N/mである。
尚、コート層の微小硬度は、ダイヤモンド圧子をコート層表面から約1μm+/−0.5μmの深さへ押し込んだ部分の微小硬度を示すものである。
(基材層の硬度)
本発明の積層エンドレスベルトの基材層の表面硬度は、上記微小硬度で100N/m以上、400N/m以下であることが好ましい。
これは、コート層を硬くするために、基材層は弾性力があった方が、感光体と積層エンドレスベルトとの間でのニップを取りやすく、また凹凸の大きい再生紙であっても追従できるため、トナーの一次転写、二次転写とも良好となるため好ましいことによる。特に好ましい基材層の微小硬度は、150〜350N/mである。
尚、基材層の微小硬度は、上述のコート層と同様、基材層表面から約1μm+/−0.5
μmの深さの微小硬度を示すものである。
(基材層とコート層の硬度比)
基材層の硬度とコート層の硬度の差(比率)は、小さ過ぎると弾力性のある基材層に高硬度のコート層を形成する効果を十分に得ることができないが、過度に大きすぎると、エンドレスベルトが高速でローラ張架されつつ駆動した場合に、ローラ部にて伸縮し、コート層と基材層との間での剥離が発生しやすくなるため好ましくなく、その比率は、基材層の微小硬度/コート層の微小硬度で1/8以上、1以下であることが好ましく、特に好ましくは1/4以上、3/4以下である。
<摩擦係数>
(コート層の摩擦係数)
本発明の積層エンドレスベルトのコート層の摩擦係数(この値は、積層エンドレスベルトの摩擦係数となる。)は0.05以上0.4以下が好ましい。コート層の摩擦係数が0.4より大きいと、クリーニングブレードによるクリーニング効果が悪化し、ブレードとベルト間でステックスリップが発生し、トナー、インクのすり抜けが発生するため好ましくない。コート層の摩擦係数が0.05より小さい場合は、感光体上のトナー像を積層エンドレスベルトへ転写させる際にスリップを発生させ、トナー画像の乱れが発生するため好ましくない。コート層の摩擦係数は、より好ましくは0.1〜0.35である。
(基材層の摩擦係数)
本発明の積層エンドレスベルトの基材層の摩擦係数は、大きいほうが好ましい。特に、ローラで張架して駆動した場合、エンドレスベルトがローラとの間でスリップする場合があるため、とりわけ基材層内側にあっては摩擦係数が0.2以上であると好ましく、特に好ましくは0.3以上である。基材層の摩擦係数の上限は通常0.6以下である。
なお、摩擦係数は、後述の実施例の項に示される方法で測定される。
<引張弾性率>
(基材層の引張弾性率)
本発明の積層エンドレスベルトの基材層の引張弾性率は、300MPa以上、4500MPa以下であることが好ましい。基材層の引張弾性率が低いと、コート層との弾性率との差が大きくなりすぎるため、積層エンドレスベルトのローラ張架時の伸縮により基材層とコート層との界面での剥離が発生しやすくなるため好ましくない。また、例えば中間転写ベルトとして画像形成装置に用いる場合に、張力により少し伸びが発生してしまい、色ズレなどの不具合を発生することがある。逆に、引張弾性率が高すぎる場合は、積層エンドレスベルトを駆動する際にモータ負荷がかかるため、厚み設定を薄くする必要が生じ、一旦ローラとベルト間にゴミが入り込んだり、感光体との摩擦による傷等が入るとクラックが入り易く、信頼性に問題があるため好ましくない。また、一次転写におけるトナーの転写効率を向上させるためには、ベルトが伸びない程度の引張弾性率が必要であり、かつエンドレスベルトが硬くならない程度の引張弾性率が必要である。基材層のより好ましい引張弾性率の範囲は800MPa以上、3500MPa以下、特に1000MPa以上、3000MPa以下である。
(積層エンドレスベルトの引張弾性率)
上記と同様な理由から、積層エンドレスベルトの引張弾性率は好ましくは800MPa以上、5000MPa以下、より好ましくは1000〜3500MPa、特に好ましくは1300〜3200MPaである。
<表面粗さ(Ra)>
(基材層の表面粗さ(Ra))
本発明の積層エンドレスベルトの基材層の表面粗さ(Ra)は0.02μm以上、0.5μm以下であることが好ましい。基材層の表面粗さ(Ra)が0.02μm未満であると、コート層との積層の際に積層界面の面積が少なくなるため接着力に問題が発生する場合があるため好ましくない。ただし、その場合は、プライマー処理、プラズマ処理等で接着力を高める公知の手段を採用して対応することもできる。
また、基材層の表面粗さ(Ra)が0.5μmを超えるとコート層を形成して得られる積層エンドレスベルトに基材層の表面粗さの影響がでるため好ましくない。特に好ましい基層の表面粗さ(Ra)は0.02μm以上、0.15μm以下、特に0.03μm以上、0.12μm以下であることが好ましい。
(積層エンドレスベルトの表面粗さ(Ra))
基材層にコート層を形成した後の本発明の積層エンドレスベルトの表面粗さ(Ra)は、0.02μm以上、0.3μm以下が好ましい。特に、コート材に防汚成分を含まなければ、表面粗さ(Ra)は0.02μm以上、0.1μm以下が好ましく、防汚成分を含んでいる場合は表面の凹凸が大きくても、低摩擦係数であるが故にブレードクリーニングしやすくなるため、許容範囲が広くなる。積層エンドレスベルトの表面粗さ(Ra)は特に好ましくは0.02μm以上、0.08μm以下である。
<水との接触角>
(基材層の水との接触角)
本発明の積層エンドレスベルトの基材層の水との接触角は小さい方が好ましく、95°以下であることが摩擦係数の接着力が高くなる点で好ましい。基材層の水との接触角は特に80°以下、とりわけ75°以下であることが好ましい。
(コート層の水との接触角)
本発明の積層エンドレスベルトのコート層の水との接触角(コート層の水との接触角とは、積層エンドレスベルトの水との接触角である。)は基材層よりも大きい方が好ましく、80°以上であればトナー非固着性向上の点で好ましく、特に90°以上であれば、クリーニング性、トナー固着性何れも問題がなくなるため好ましい。
尚、コート層の水との接触角の上限は120°以下であり、これより大きすぎると、感光体との摩擦が小さくなりすぎ、トナーの一次転写効率が悪くなり好ましくない。コート層の水との接触角は90°以上、105°以下であることが最も好ましい。
尚、コート層の表面粗さ(Ra)が小さく、表面が平滑であれば、水との接触角が比較的大きくても、トナークリーニング性、トナー転写性は良好であり、言い換えると表面粗さが粗い場合には、水との接触角を小さくするとクリーニングしやすくなる。
<耐屈曲性(耐折回数)>
本発明の積層エンドレスベルトを例えば中間転写ベルトとして画像形成装置に用いる場合には、耐屈曲性が悪いとクラックが発生して画像が得られなくなるので耐屈曲性の良好な積層エンドレスベルトが好ましい。
耐屈曲性の程度は、JIS P−8115の耐折回数の測定方法に従うことで定量的に評価でき、耐折回数の大きいエンドレスベルトほどクラックが入りにくく、耐屈曲性に優れていると判断することができる。
具体的な数値としては、5000回を超えていれば装置寿命の間、エンドレスベルトとして優れた機能を発揮して使用することができるが、実用的には8000回以上が好ましく、10000回以上であれば更に好ましい。
本発明によれば、基材層への熱可塑性エラストマーの添加量やアロイ化によっては、積層エンドレスベルトとして5万回以上、更には10万以上の耐折回数が得られるので、エンドレスベルトの端部からのクラックを防止するために通常用いられるクラック防止用補強テープ等の二次加工を施さなくても、十分な耐クラック性を得られることができ、好ましい。
なお、上記積層エンドレスベルトの耐屈曲性を得る上で、積層エンドレスベルトの基材層の耐屈曲性としては、上記耐折回数として8000回以上、特に10000回以上であることが好ましい。
<ローラ癖復元率>
本発明の積層エンドレスベルトを例えば中間転写ベルトとして画像形成装置に用いる場合には、プリンター内でローラに張架された状態で60℃程度の高温下にさられた際に、シームレスベルトにローラの跡(ローラ癖)が着くと、画像に悪影響を及ぼすため、好ましくない。
このため、温度23℃、湿度50%の条件で24時間以上状態調整した積層エンドレスベルトを15mm幅、44mm長さに切り取り、この試験片を、直径14mmのローラに、試験片長さ方向がローラの周方向となるようにセロハンテープ等で固定し、温度60℃、湿度95%の恒温恒湿層に2時間放置後、温度23℃、湿度50%の環境下に24時間放置した後、試験片をローラから開放し、温度23℃、湿度50%で2時間放置した際の試験片の開口幅L(ローラにより断面略C字形に癖付けされた試験片の開口部の幅)から以下の式で求めた値をローラ癖復元率(%)とする。この値は40%以上であることが好ましい。
ローラ癖復元率(%)={開口幅L(mm)/試験片長44(mm)}×100
[画像形成装置用積層エンドレスベルトの用途]
本発明の画像形成装置用積層エンドレスベルトの用途に特に制限はないが、寸法精度、耐屈曲性、引張弾性率など要求物性の厳しいOA機器分野、特に機能部材に好適に用いることができる。この積層エンドレスベルトをシームレスベルト形状とした場合、割れ、伸びなど不具合が少ないので好適である。
本発明の画像形成装置用積層エンドレスベルトは、電子写真式複写機、レーザービームプリンター、ファクシミリ機等の画像形成装置の、特に中間転写ベルト、搬送転写ベルト、転写定着ベルト、定着ベルト、感光体ベルト、現像スリープなどとして好適に用いることができる。
本発明の積層エンドレスベルトはそのままベルトとして使用しても良いし、ドラム或いはロール等に巻き付けて使用しても良い。
また、端面補強等の目的のために、この積層エンドレスベルトの外側及び/又は内側に、必要に応じて側縁に沿って耐熱テープ等の補強テープを貼り合わせても良い。補強テープとしては、2軸延伸ポリエステルテープがコスト、強度の点で好ましく、そのテープ幅は4mm以上、20mm以下が装置レイアウト上コンパクトになり好ましい。補強テープの厚みは、20μm以上、200μm以下がフレキシブルを維持するため低テンションでエンドレスベルトが駆動できる点と耐クラック発生防止の点で好ましい。
また、積層エンドレスベルトの蛇行防止目的で、エンドレスベルトの側縁に、ウレタンゴムやシリコンゴム等のゴム製のシート(蛇行防止ガイド)を接着剤にて張り合わせても良い。この場合、用いるゴム製シートの好ましいシート幅は2〜10mmで装置のレイアウト上及び接着強度の点より3〜8mmが特に好ましい。また、蛇行防止の観点より蛇行防止ゴムの厚みは0.5〜3mmが好ましく、特に0.7〜2mmが蛇行防止の貼り合わせの簡易さと蛇行防止効果の点より好ましい。
更には、上記補強テープと組み合わせて、補強テープを積層エンドレスベルトに貼り合わせた上で蛇行防止ガイドを貼り合わせた方がベルト耐クラック発生防止効果とベルト蛇行防止効果があるため好ましい。
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
[原料]
原料は下記のものを用い、配合割合は表1,2の通りとした。
<熱可塑性エラストマー>
(PEER)
東洋紡積(株)製 ポリエステル−ポリエステルエラストマー「ペルプレンS3001」
MFR(240℃、2.16kgf荷重):21g/10分、
DSC結晶融点:216℃
<熱可塑性樹脂>
(PBT)
三菱エンジニアリングプラスチックス(株)製 ポリブチレンテレフタレート
「ノバデュラン5040ZS」
重量平均分子量:40,000
MFR(240℃、2.16kgf荷重):4g/10分
DSC結晶融点:229℃
(ETFE)
旭硝子社製 エチレンテトラフルオロエチレン共重合体「アフロン C55AP」
(PVDF)
アルケマ社製 ポリフッ化ビニリデン「カイナー720」
(PP)
日本ポリプロ社製 ポリプロピレン「ノバテックFY4」
(PA)
宇部興産社製 ポリアミド(ナイロン12)「UBESTA3030U」
<カーボンブラック>
(CB1)
電気化学(株)製 アセチレンブラック「デンカブラック」
DBP吸油量:180ml/100g
比表面積:65m/g
揮発分:0%
平均一次粒径:39nm
pH:9
(CB2)
デグサ社製 チャンネルブラック「NIPEX150」
DBP吸油量:110ml/100g
比表面積:110m/g
揮発分:10%
平均一次粒径:29nm
pH:6
<導電性金属酸化物フィラー>
白水化学社製 アルミドープ酸化亜鉛「23−KB」平均粒子径1.5μm
<帯電防止剤>
チバスペシャリティケミカルズ社製 ポリエーテルエステルアミド
「IRGAATAT P16」
<酸化防止剤>
クラリアントジャパン(株)製 リン系酸化防止剤「PEPQ」
<付加的成分>
(シリコーンオイル)
東レダウコーニング(株)製 ジメチルシリコーンオイル「SH200」
官能基当量:5000以上
平均分子量:4400
(カーボンブラックCB1に2.5重量%添着させ、180℃で12時間加熱処理して使用。)
(シラン化合物)
信越化学工業(株)製 パーフロロアルキルシラン「KBM−7103」
(導電性酸化亜鉛に0.3重量%添着させ加熱処理して使用。)
<コート材1>
JSR社製「オプスターTU4106」(リンドープ酸化スズ20重量%を配合した
アクリレートモノマー及びアクリレートオリゴマーを含む固形分濃度48
重量%のコート材(固形分以外の成分はプロピレングリコールモノメチル
エーテル)50重量部を、プロピレングリコールモノメチルエーテル)
50重量部で希釈したもの。)
<コート材2>
JSR社製「オプスターZ7535」(多官能アクリレートモノマー及びアクリレート
オリゴマーを含む固形分濃度49重量%のコート材(固形分以外の成分
メチルイソブチルケトン)50重量部を、プロピレングリコールモノメチ
ルエーテル50重量部で希釈したもの。)
[加熱混練]
表1〜3に記載の各基材層成形材料を、二軸混練押出機(IKG(株)製「PMT32」)を用いてペレット化した。混練条件は、実施例1〜7及び比較例1〜3ではシリンダー温度260℃を基本としたが、途中溶融樹脂の温度が上昇するニーディング部のシリンダー温度を230℃から250℃に設定すること以外は220℃から270℃の範囲で調整した。
実施例8ではシリンダー温度280℃、実施例9ではシリンダー温度210℃、実施例10ではシリンダー温度200℃、実施例11ではシリンダー温度270℃とした。
なお、この基材層成形材料の熱可塑性ポリマー成分について、以下の方法で測定した融点及びガラス転移温度は表1〜3に示す通りであった。
融点:セイコー電子工業(株)製SSC−5200(商品名)を使用し、試料を昇温速度20℃/minにて400℃まで昇温させ、融解ピーク温度をDSC(示差走査熱量)測定による融点とした。
ガラス転移温度:ティーエイインスツルメント製の動的粘弾性測定装置「RSAIII」を用いて、シームレスベルト状の基材層について、周波数10.0Hz、2℃/分の昇温速度、引っ張り歪0.05%の条件で測定したtanδのα分散ピーク温度をガラス転移温度とした。
[基材層の成形]
上記で得られた各基材層の成形材料のペレットを130℃で乾燥し、直径φ210mmの6条スパイラル型環状ダイ付き40mmφの押出機により、環状ダイ下方に溶融チューブ状態で押し出し、押し出した溶融チューブを、環状ダイと同一軸線上に支持棒を介して装着した外径208mmの冷却マンドレルの外表面(温度90℃)に接しめて冷却固化させつつ、次に、溶融チューブの中に設置されている円筒形の中子と外側に設置されている4点式ベルト式引取機により、シームレスベルト状の基材層を円筒形を保持した状態で引き取りつつ、長さ300mmに輪切りにした。引き取り速度は1.2m/minとし、表1〜3に示す基材層厚み(100〜170μmの範囲)で、表1〜3に示す表面電気抵抗率(SR(100)が1×10〜5×1011Ωの範囲)となるよう、押出量と押出温度、冷却温度を調整しつつ、内径207mmの基材層を得た。
尚、押出条件は、実施例1〜7、比較例1〜3では、シリンダー、ダイス温度をいずれも260℃を基本条件とし、実施例8では300℃とし、実施例9、10では200℃とし、実施例11では270℃とした。
また、ダイス金型条件は、実施例5では、ダイス金型リップクリアランスは2.0mmとし、実施例7、9、10、比較例1,2ではダイス金型リップクリアランスを1mmとし、実施例1〜4,6、8、11と比較例3では1.5mmとした。従って、基材層の厚み/押出ダイス金型のリップクリアランスの比は、表1〜3に示す通りである。
なお、表1〜3に示す基材層厚さは、電気マイクロ計により、基材層周方向に3mmピッチで計測した平均厚みである。
[コート層の形成]
<プラズマ処理>
実施例2〜10及び比較例1〜2においてはコート層を塗布する前に、基材層の外表面に以下の条件にてプラズマ処理を実施した。
基材層の内径より1mm小さい外径を有する円筒ドラムに基材層を外装し、基材層の回転速度が10m/minとなるよう円筒ドラムを回転させつつ、日本プラズマトリート社製リモートタイプ常圧プラズマ処理装置により、基材層の外表面にプラズマ処理を施した。プラズマ処理に用いたノズルのノズル径は20mmであり、ノズルは一軸ロボットに装着し、ノズル先端と基材層との距離は6mmで、基材層の幅方向(軸方向)に5mm/秒の移動速度で移動させた。
実施例1,11及び比較例3についてはプラズマ処理は行わなかった。
<コート材塗布>
基材層を、外径207mmの円筒型のドラムの外側に装着し、基材層の回転速度が100m/minとなるよう、このドラムを回転させ、スプレー式コーティング装置を用いて、吐出量2.5g/minにてコート材1又はコート材2を基材層の外表面に表1〜3に示す厚みのコート層が形成されるようにスプレー塗布した。
スプレーノズルは一軸ロボットに装着し、基材層幅方向(軸方向)に5mm/秒の移動速度で移動させた。
<紫外線架橋硬化>
コート材が塗布された基材層を、回転速度10m/minでドラムを回転させつつ、100℃の熱風乾燥機で3分乾燥し、その後、GSユアサ社製ハンディ600WUV装置を用い、コート材塗布膜との距離を50mmとし、紫外線を3分間照射させてコート材塗布膜を架橋硬化させることによりコート層を形成し、積層エンドレスベルトを得た。
[評価]
得られた積層エンドレスベルト及びその構成層について評価を行い、結果を表1〜3に示した。
<表面電気抵抗率>
ダイヤインスツルメント(株)製 商品名「ハイレスタ(UR端子)」を使用し、印加電圧10V,100V,250V,500V,又は1000V、各10秒の条件にて測定した。
ただし、10V値の測定において、1×1013Ω以上は計測不能なため、その場合は1×1013Ωとした。
基材層の表面電気抵抗率は、押出成形により得られた基材層の外表面に対して測定した。
コート層(コート材)の表面電気抵抗率は、コート層を形成する前の基材層に100μm厚さのPETフィルムを巻き付け、このPETフィルム上に、コート材を、基材層上にコート層を作製する条件と同一条件で塗布、硬化させてコート層を形成し、このコート層に対して測定した。
積層エンドレスベルトの表面電気抵抗率は、基材層にコート層を形成して得られた積層エンドレスベルトの外表面(コート層表面)に対して測定した。
<微小硬度>
基材層及び積層エンドレスベルトについて、それぞれフィッシャースコープ社製の微小硬度計「HM2000」を用いて、押し込み荷重2.5mN、押し込み時間27秒の条件でHUpl(ユニバーサル硬度の塑性硬さ)を測定した。
尚この測定においては、1μN単位で徐々に押し込む力を上げ、0.1nm単位の深さを連続的に読み取り、表面から約1μm+/−0.5μmの深さの微小硬度を測定した。
<表面粗さRa>
基材層及び積層エンドレスベルトについて、それぞれ約50mm×50mmの大きさの試験片を切り出し、その表面(外側面)を、(株)キーエンス製超深度形状測定顕微鏡「VK8500」を用い、レンズ100倍、ピッチ0.01μm、シャッタースピードAUTO、ゲイン835の測定条件にて40μm×40μmのエリアの表面粗さRaを4点測定し、その平均値を表面粗さの測定値とした。
<水との接触角>
基材層及び積層エンドレスベルトについて、それぞれ外表面に水を一滴たらし、エルマー製ゴニオメーター「G−1」を用いて1分後の水の接触角を測定した。
<摩擦係数>
基材層及び積層エンドレスベルトの外表面について、新東化学(株)製「HEIDON トライホギアμ TYPE94i」を用い黄銅にハードクロムメッキした板との静摩擦係数を測定した。
<引張弾性率>
ISO R1184−1970に準拠し、基材層及び積層エンドレスベルトから、それぞれ幅15mm、長さ150mmの大きさの試験片を切り取り、この試験片に対して引張速度1mm/min、つかみ具間距離100mmとして測定した。
<耐屈曲性(耐折回数)>
JIS P−8115に準拠し、基材層及び積層エンドレスベルトから、それぞれ幅15mm、長さ100mmの大きさの試験片を切断し、この試験片に対して、MIT試験機にて折り曲げ速度175回/分、回転角度135°左右、引張荷重1.0kgfの条件にて、先端部の曲率半径R=0.38mmの折り曲げ治具を用い、それぞれの破壊に至る折り曲げ回数を測定した。数値は3点の平均値を用いた。
<ローラ癖復元率>
積層エンドレスベルトを、温度23℃、湿度50%で24時間以上状態調整した後、このエンドレスベルトから幅15mm、長さ44mm試験片を切り取り、これを直径14mmのローラにセロハンテープ等で固定し、温度60℃、湿度95%の恒温恒湿層に2時間放置後、温度23℃、湿度50%の環境下に24時間放置した後、試験片をローラから開放し、温度23℃、湿度50%で2時間放置した際の試験片の開口幅(L)から以下の式でローラ癖復元率(%)算出した。
ローラ癖復元率(%)={開口幅L(mm)/サンプル長44(mm)}×100
<耐久性>
積層エンドレスベルトをφ20mmのローラー2本にテンション4kgにて張架させて回転駆動させ、3万回回転させたときに積層エンドレスベルトにクラックが発生するかを評価し、クラックが発生しないものを「○」とした。
<クリーニング性>
リコー社製中間転写タンデム機「IPsio spc220」の転写ベルトユニットに、積層エンドレスベルトを装着し、クリーニングブレードをつけ、廃トナーをベルト表面に接触するような状態にてから回し試験を実施し、ベルト10回転後にトナーがブレードにクリーニングされずにスジ状に残る本数を数え、3箇所以下であれば「○」とし、3箇所を超え10箇所以下であれば「△」とし、10箇所を超える場合は「×」とした。
<画像評価>
リコー社製中間転写タンデム機「IPSiO SP C220」の転写ベルトユニットに、積層エンドレスベルトを装着し、4cm×5cmの黒ベタ画像をプリントした。ベタ画像の白抜け度を目視で確認し、購入時のプリンタ画像より向上していれば「○」とし、向上していなければ「×」とした。
Figure 2011017858
Figure 2011017858
Figure 2011017858
[考察]
<実施例1>
PBT70重量%に熱可塑性エラストマーを30重量%配合した熱可塑性ポリマー成分100重量部に対し、シリコーンオイルで表面処理したアセチレンブラックを13.5重量部配合し、厚み120μm、SR(100V)4.8×1010Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例2>
PBT90重量%に熱可塑性エラストマーを10重量%配合した熱可塑性ポリマー成分100重量部に対し、シリコーンオイルで表面処理したアセチレンブラックを13.5重量部配合し、厚み120μm、SR(100V)5.3×1010Ωに押出成形した基材層に、厚み3.5μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例3>
PBT70重量%に熱可塑性エラストマーを30重量%配合した熱可塑性ポリマー成分100重量部に対し、シリコーンオイルで表面処理したアセチレンブラックを13.7重量部配合し、厚み120μm、SR(100V)1.8×10Ωに押出成形した基材層に、厚み4.5μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例4>
PBT70重量%に熱可塑性エラストマーを30重量%を配合した熱可塑性ポリマー成分100重量部に対し、シリコーンオイルで表面処理したアセチレンブラックを13.9重量部配合し、厚み120μm、SR(100V)1.9×10Ωに押出成形した基材層に、厚み3.5μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例5>
PBT70重量%に熱可塑性エラストマーを30重量%配合した熱可塑性ポリマー成分100重量部に対し、シリコーンオイルで表面処理したアセチレンブラックを13.5重量部配合し、厚み120μm、SR(100V)4.2×1010Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例6>
PBT100重量%とした熱可塑性ポリマー成分100重量部に対し、シリコーンオイルで表面処理したアセチレンブラックを13.5重量部配合し、厚み100μm、SR(100V)1.8×10Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例7>
PBT100重量%とした熱可塑性ポリマー成分100重量部に対し、チャンネルブラックを17.5重量部配合し、厚み100μm、SR(100V)2.7×1011Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例8>
ETFE100重量%とした熱可塑性ポリマー成分100重量部に対し、アセチレンブラックを12.0重量部配合し、パーフロロアルキルシラン処理したAlドープ酸化亜鉛を10.0重量部配合し、厚み120μm、SR(100V)3.2×1011Ωに押出成形した基材層に、厚み5μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例9>
PVDF100重量%とした熱可塑性ポリマー成分100重量部に対し、非カーボン系帯電防止剤としてポリエーテルエステルアミドを15.0重量部配合し、厚み170μm、SR(100V)4.4×1011Ωに押出成形した基材層に、厚み5μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例10>
PP100重量%とした熱可塑性ポリマー成分100重量部に対し、非カーボン系帯電防止剤としてポリエーテルエステルアミド18.0重量部配合し、厚み170μm、SR(100V)5.0×1011Ωに押出成形した基材層に、厚み5μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
<実施例11>
PA100重量%とした熱可塑性ポリマー成分100重量部に対し、アセチレンブラックを25.0重量部配合し、厚み140μm、SR(100V)1.9×1010Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)をすべて満たす構成となったため、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が少ないものとすることができ、良好な画像が得られた。
また、表面平滑性に優れ、表面硬度も高く、トナークリーニング性に優れたエンドレスベルトであった。
このように、実施例1〜11の積層エンドレスベルトは、何れも、本発明の条件(1),(2),(3)をすべて満たし、積層エンドレスベルトとして良好な電気抵抗の印加電圧非依存性を有しており、その結果、良好な画像が得られたものと考える。
<比較例1>
PBT70重量%に熱可塑性エラストマーを30重量%配合した熱可塑性ポリマー成分100重量部に対し、アセチレンブラックを13.5重量部配合し、厚み140μm、電圧依存性の大きいSR(100V)1.0×1011Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×10Ωの半導電性コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)のうち、条件(2)を満たす構成とならなかった。この積層エンドレスベルトは、表面電気抵抗率の印加電圧依存性の小さいものとするができず、部分的にトナーが白抜けした画像しか得られなかった。
<比較例2>
PBT70重量%に熱可塑性エラストマーを30重量%配合した熱可塑性ポリマー成分100重量部に対し、アセチレンブラックを13.5重量部配合し、厚み140μm、電圧依存性の大きいSR(100V)1.0×1011Ωに押出成形した基材層に、厚み2μm、SR(100V)1.0×1012Ωの誘電体コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)のうち、条件(2)を満たす構成とならなかった。この積層エンドレスベルトは、表面電気抵抗率の印加電圧依存性の小さいものとするができず、部分的にトナーが白抜けした画像しか得られなかった。
<比較例3>
PBT70重量%に熱可塑性エラストマーを30重量%配合した熱可塑性ポリマー成分100重量部に対し、アセチレンブラックを13.4重量部配合し、厚み140μm、電圧依存性の小さいSR(100V)1.9×10Ωに押出成形した基材層に、厚み4μm、SR(100V)1.0×1012Ωの誘電体コート層を形成した積層エンドレスベルトは、条件(1),(2),(3)のうち条件(3)を満たす構成とならなかった。この積層エンドレスベルトは表面電気抵抗率の印加電圧依存性が大きく、トナーが白抜けした画像しか得られなかった。
比較例1〜3の積層エンドレスベルトは、何れも、基材層とコート層の表面電気抵抗値の差の大きい組み合わせにしたか、或いは、基材層として表面電気抵抗値の印加電圧依存性の大きいものを選定したために、積層エンドレスベルトの表面電気抵抗率の印加電圧依存性が大きくなってしまい、電気抵抗値が不安定なため、画像異常が発生した。これは、紙とエンドレスベルトとの間で発生する放電に起因するものと推察される。
1 感光ドラム
2 帯電器
3 露光光学系
4 現像器
5 クリーナー
6 導電性エンドレスベルト
7,8,9 搬送ローラ

Claims (17)

  1. 画像形成装置に用いられる、基材層と、該基材層上に形成された、活性エネルギー線及び/又は熱架橋樹脂よりなるコート層とを備える積層エンドレスベルトであって、
    印加電圧10V,10秒にて測定した表面電気抵抗率をSR(10V)、
    印加電圧100V,10秒にて測定した表面電気抵抗率をSR(100V)、
    印加電圧500V,10秒にて測定した表面電気抵抗率をSR(500V)としたときに、
    該基材層の表面電気抵抗率は以下の条件(1),(2)を満たし、該コート層の表面電気抵抗率と基材層の表面電気抵抗率との関係が以下の条件(3)を満たすことを特徴とする画像形成装置用積層エンドレスベルト。
    (1) 基材層のSR(100V)が、1×10Ω以上、1×1012Ω以下
    (2) 基材層のSR(10V)/SR(500V)が、100以下
    (3) 基材層のSR(100V)/コート層のSR(100V)が、0.1以上、1000以下
  2. 請求項1において、該積層エンドレスベルトのSR(10V)/SR(500V)が44以下であることを特徴とする画像形成装置用積層エンドレスベルト。
  3. 請求項1又は2において、該コート層の厚みが1μm以上、10μm以下であり、コート層の厚み/基材層の厚みの比率が1/150以上、1/8以下であることを特徴とする画像形成装置用積層エンドレスベルト。
  4. 請求項1ないし3のいずれか1項において、該コート層の表面硬度が、ユニバーサル硬度の塑性変形硬さにおいて、400N/mm以上、800N/mm以下であることを特徴とする画像形成装置用積層エンドレスベルト。
  5. 請求項1ないし4のいずれか1項において、該基材層の表面硬度が、ユニバーサル硬度の塑性変形硬さにおいて、100N/mm以上、400N/mm未満であることを特徴とする画像形成装置用積層エンドレスベルト。
  6. 請求項1ないし5のいずれか1項において、該基材層は、熱可塑性樹脂及び/又は熱可塑性エラストマーよりなる熱可塑性ポリマー成分と導電性成分を含み、該基材層のガラス転移温度が0℃以上、90℃以下であり、該コート層は、導電性成分が配合された架橋性液状物を架橋硬化させてなることを特徴とする画像形成装置用積層エンドレスベルト。
  7. 請求項1ないし6のいずれか1項において、該基材層は、側鎖にエステル結合を有する樹脂、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体、ポリアミド、ポリプロピレン、及び熱可塑性エラストマーよりなる群から選ばれる1種又は2種以上を主成分とする熱可塑性ポリマー成分と導電性成分を加熱混合してなる成形材料を押出成形して得られるシームレスベルトであることを特徴とする画像形成装置用積層エンドレスベルト。
  8. 請求項1ないし7のいずれか1項において、該コート層は、アクリルモノマー及び/又はアクリルオリゴマーを主成分とする架橋性液状物を架橋硬化させてなることを特徴とする画像形成装置用積層エンドレスベルト。
  9. 請求項1ないし8のいずれか1項において、該基材層は、カーボンブラックを主成分とする導電性成分を含み、該コート層は、金属フィラーを主成分とする導電性成分を含むことを特徴とする画像形成装置用積層エンドレスベルト。
  10. 請求項9において、該コート層に含まれる金属フィラーは、導電性酸化スズを主成分とすることを特徴とする画像形成装置用積層エンドレスベルト。
  11. 請求項1ないし10のいずれか1項において、シームレス状の中間転写ベルト、搬送転写ベルト、転写定着ベルト、定着ベルト、感光体ベルト、又は現像スリープであることを特徴とする画像形成装置用積層エンドレスベルト。
  12. 請求項1ないし11のいずれか1項に記載の画像形成装置用積層エンドレスベルトを製造する方法であって、前記基材層の表面に、架橋性液状物を塗布して塗布膜を形成した後、該塗布膜を活性エネルギー線及び/又は熱により架橋硬化させて前記コート層を形成する工程を含むことを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
  13. 請求項12において、該基材層を押出成形により形成し、前記架橋性液状物を、回転する該基材層にスプレー塗布することを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
  14. 請求項12又は13において、該基材層を、下記(a)〜(c)のうちのいずれか1以上の条件を満たす押出成形により形成することを特徴とする画像形成装置用エンドレスベルトの製造方法。
    (a) 押出成形時の溶融チューブの引き取り速度が1.0m/min以上
    (b) 基材層の厚み/押出ダイス金型のリップクリアランスの比が0.12以下
    (c) 基材層の平均厚みが120μm以下
  15. 請求項12ないし14のいずれか1項において、該架橋性液状物をスプレー塗布により塗布し、該スプレー塗布時の架橋性液状物の吐出量が0.1g/min以上、10g/min以下であることを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
  16. 請求項12ないし15のいずれか1項において、該基材層は、熱可塑性樹脂及び/又は熱可塑性エラストマーよりなる熱可塑性ポリマー成分と導電性成分を含み、該基材層のガラス転移温度が0℃以上、90℃以下であり、該コート層を、導電性成分が配合された架橋性液状物の塗布膜に、該塗布膜の表面側から活性エネルギー線及び/又は熱を付与して形成することを特徴とする画像形成装置用積層エンドレスベルトの製造方法。
  17. 請求項1ないし11のいずれか1項に記載の画像形成装置用積層エンドレスベルト、又は請求項12ないし16のいずれか1項に記載の画像形成装置用積層エンドレスベルトの製造方法により製造された画像形成装置用積層エンドレスベルトを含むことを特徴とする画像形成装置。
JP2009161913A 2009-07-08 2009-07-08 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置 Active JP5428598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161913A JP5428598B2 (ja) 2009-07-08 2009-07-08 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161913A JP5428598B2 (ja) 2009-07-08 2009-07-08 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置

Publications (2)

Publication Number Publication Date
JP2011017858A true JP2011017858A (ja) 2011-01-27
JP5428598B2 JP5428598B2 (ja) 2014-02-26

Family

ID=43595702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161913A Active JP5428598B2 (ja) 2009-07-08 2009-07-08 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置

Country Status (1)

Country Link
JP (1) JP5428598B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128329A1 (ja) * 2011-03-24 2012-09-27 コニカミノルタビジネステクノロジーズ株式会社 中間転写ベルトの製造方法
JP2014122958A (ja) * 2012-12-20 2014-07-03 Canon Inc 画像形成装置
JP2017040871A (ja) * 2015-08-21 2017-02-23 油化電子株式会社 画像形成装置用積層ベルト及び画像形成装置
JP2017080949A (ja) * 2015-10-26 2017-05-18 キヤノン株式会社 環状ダイスおよびチューブ状物の製造方法
JP2017129846A (ja) * 2016-01-18 2017-07-27 油化電子株式会社 画像形成装置用シート状部材及びその押出成形方法
JP2019128414A (ja) * 2018-01-23 2019-08-01 コニカミノルタ株式会社 中間転写ベルトの製造方法および画像形成装置
JP2020066175A (ja) * 2018-10-25 2020-04-30 東レ株式会社 積層フィルム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006260A (ja) * 1998-06-23 2000-01-11 Sumitomo Rubber Ind Ltd 導電性ベルト及び導電性ローラ
JP2002148951A (ja) * 2000-11-14 2002-05-22 Fuji Xerox Co Ltd 中間転写体、画像形成装置、及び中間転写体の製造方法
JP2002341670A (ja) * 2001-05-15 2002-11-29 Shin Etsu Polymer Co Ltd シームレスベルト
JP2005062822A (ja) * 2003-07-25 2005-03-10 Mitsubishi Chemicals Corp 画像形成装置用ベルト及び画像形成装置
JP2005084247A (ja) * 2003-09-05 2005-03-31 Yuka Denshi Co Ltd 画像形成装置用ベルト及び画像形成装置
JP2006133510A (ja) * 2004-11-05 2006-05-25 Nitto Denko Corp 半導電性ポリイミドベルトおよびその製造方法
JP2006267626A (ja) * 2005-03-24 2006-10-05 Yuka Denshi Co Ltd 画像形成装置用エンドレスベルト及び画像形成装置
JP2008046463A (ja) * 2006-08-18 2008-02-28 Konica Minolta Business Technologies Inc 中間転写体とそれを用いた画像形成方法及び画像形成装置
JP2008216742A (ja) * 2007-03-06 2008-09-18 Tokai Rubber Ind Ltd 電子写真機器用無端ベルトおよびその製法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006260A (ja) * 1998-06-23 2000-01-11 Sumitomo Rubber Ind Ltd 導電性ベルト及び導電性ローラ
JP2002148951A (ja) * 2000-11-14 2002-05-22 Fuji Xerox Co Ltd 中間転写体、画像形成装置、及び中間転写体の製造方法
JP2002341670A (ja) * 2001-05-15 2002-11-29 Shin Etsu Polymer Co Ltd シームレスベルト
JP2005062822A (ja) * 2003-07-25 2005-03-10 Mitsubishi Chemicals Corp 画像形成装置用ベルト及び画像形成装置
JP2005084247A (ja) * 2003-09-05 2005-03-31 Yuka Denshi Co Ltd 画像形成装置用ベルト及び画像形成装置
JP2006133510A (ja) * 2004-11-05 2006-05-25 Nitto Denko Corp 半導電性ポリイミドベルトおよびその製造方法
JP2006267626A (ja) * 2005-03-24 2006-10-05 Yuka Denshi Co Ltd 画像形成装置用エンドレスベルト及び画像形成装置
JP2008046463A (ja) * 2006-08-18 2008-02-28 Konica Minolta Business Technologies Inc 中間転写体とそれを用いた画像形成方法及び画像形成装置
JP2008216742A (ja) * 2007-03-06 2008-09-18 Tokai Rubber Ind Ltd 電子写真機器用無端ベルトおよびその製法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128329A1 (ja) * 2011-03-24 2012-09-27 コニカミノルタビジネステクノロジーズ株式会社 中間転写ベルトの製造方法
JPWO2012128329A1 (ja) * 2011-03-24 2014-07-24 コニカミノルタ株式会社 中間転写ベルトの製造方法
JP5880543B2 (ja) * 2011-03-24 2016-03-09 コニカミノルタ株式会社 中間転写ベルトの製造方法
JP2014122958A (ja) * 2012-12-20 2014-07-03 Canon Inc 画像形成装置
JP2017040871A (ja) * 2015-08-21 2017-02-23 油化電子株式会社 画像形成装置用積層ベルト及び画像形成装置
JP2017080949A (ja) * 2015-10-26 2017-05-18 キヤノン株式会社 環状ダイスおよびチューブ状物の製造方法
JP2017129846A (ja) * 2016-01-18 2017-07-27 油化電子株式会社 画像形成装置用シート状部材及びその押出成形方法
JP2021009400A (ja) * 2016-01-18 2021-01-28 Mccアドバンスドモールディングス株式会社 画像形成装置用シート状部材
JP2019128414A (ja) * 2018-01-23 2019-08-01 コニカミノルタ株式会社 中間転写ベルトの製造方法および画像形成装置
JP2020066175A (ja) * 2018-10-25 2020-04-30 東レ株式会社 積層フィルム
JP7326718B2 (ja) 2018-10-25 2023-08-16 東レ株式会社 積層フィルム

Also Published As

Publication number Publication date
JP5428598B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5742200B2 (ja) 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置
JP5428598B2 (ja) 画像形成装置用積層ベルト及びその製造方法並びに画像形成装置
JP5725409B2 (ja) 中間転写ベルト及び画像形成装置
JP5899852B2 (ja) 画像形成装置用ベルト、及びそれを用いた画像形成装置
JP2014130215A (ja) シームレスベルト及びその製造方法、並びに画像形成装置
JP5482772B2 (ja) ベルト部材、定着装置および画像形成装置
JP2014002203A (ja) 画像形成装置
JP2018155953A (ja) 中間転写体、及び画像形成装置
JP2017040871A (ja) 画像形成装置用積層ベルト及び画像形成装置
JP4337606B2 (ja) 画像形成装置用ベルト及び画像形成装置
JP5162911B2 (ja) 画像形成装置用エンドレスベルト及び画像形成装置
JP5347356B2 (ja) 画像形成装置用エンドレスベルト及び画像形成装置
JP3891160B2 (ja) 画像形成装置用ベルト及び画像形成装置
JP4315045B2 (ja) 画像形成装置用ベルト及び画像形成装置
JP5962813B2 (ja) 画像形成装置用積層ベルト及び画像形成装置
JP2014145817A (ja) 中間転写ベルト、画像形成装置、及び、中間転写ベルトの製造方法
JP2014149479A (ja) 中間転写ベルト及びそれを用いた電子写真装置
JP6286881B2 (ja) 中間転写ベルト、及びそれを用いた画像形成装置
JP2012194223A (ja) 中間転写体、及びそれを用いた画像形成装置
JP7183026B2 (ja) 中間転写ベルト及び画像形成装置
JP2019032463A (ja) 中間転写ベルト及び画像形成装置
JP7175742B2 (ja) 中間転写ベルト及び画像形成装置
JP2013092668A (ja) 中間転写ベルト、画像形成装置及び中間転写ベルトの製造方法
JP2016133763A (ja) 中間転写ベルト、中間転写ベルトの製造方法、及び該中間転写ベルトを用いた画像形成装置
CN107168023B (zh) 充电元件、处理盒以及图像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250