JP2011012299A - Method for producing inner grooved tube - Google Patents

Method for producing inner grooved tube Download PDF

Info

Publication number
JP2011012299A
JP2011012299A JP2009156636A JP2009156636A JP2011012299A JP 2011012299 A JP2011012299 A JP 2011012299A JP 2009156636 A JP2009156636 A JP 2009156636A JP 2009156636 A JP2009156636 A JP 2009156636A JP 2011012299 A JP2011012299 A JP 2011012299A
Authority
JP
Japan
Prior art keywords
rolling
tube
temperature
intermediate annealing
grooved tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009156636A
Other languages
Japanese (ja)
Other versions
JP5451217B2 (en
Inventor
Tetsuya Ando
哲也 安藤
Hirokazu Tamagawa
博一 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2009156636A priority Critical patent/JP5451217B2/en
Publication of JP2011012299A publication Critical patent/JP2011012299A/en
Application granted granted Critical
Publication of JP5451217B2 publication Critical patent/JP5451217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an inner grooved tube by which satisfactory form rollability is obtained in the method of producing the inner grooved tube by form-rolling a Zr-containing copper alloy tube.SOLUTION: The method for producing an inner grooved tube includes: a casting stage where an ingot of a copper alloy comprising, by mass, 0.01 to 0.15% Zr, and the balance Cu with inevitable impurities is obtained; a hot extruding stage; and a form rolling stage, and before the form rolling stage, process annealing treatment is performed; wherein all the conditions of (1) where a temperature rising rate from 500 to 730°C is ≥10°C/s, (2) where the maximum arrival temperature is 750 to 950°C, and (3) where a cooling rate from 730 to 500°C is ≥10°C/s are satisfied.

Description

本発明は、Zrを含有する銅合金管を転造加工して内面溝を形成する内面溝付管の製造方法に関する。   The present invention relates to a method for manufacturing an internally grooved tube in which an internal groove is formed by rolling a copper alloy tube containing Zr.

従来より、ルームエアコン、パッケージエアコン等の空調機、冷凍機等に用いられる熱交換器の伝熱管や、ヒートパイプのコンテナに用いられる管体には、継目無管が多く採用されている。そして、強度、加工性及び伝熱性等の諸特性並びに加工コストにおいてバランスの取れたりん脱酸銅(JIS C1220T)が多く使用されてきた。   Conventionally, many seamless pipes have been used for heat transfer tubes of heat exchangers used for air conditioners such as room air conditioners and packaged air conditioners, refrigerators, and pipes used for heat pipe containers. Further, phosphorus deoxidized copper (JIS C1220T) that is well-balanced in various properties such as strength, workability and heat transfer properties and processing cost has been used.

さらに、その形態としては、熱交換器用伝熱管として熱交換性能が良好であることで、内面溝付管が多く使用されてきた。   Furthermore, as a form thereof, an internally grooved tube has been frequently used because of its good heat exchange performance as a heat exchanger tube for a heat exchanger.

近年、これらの熱交換器等において、重量の低減又はコストダウンの要求による継目無管の薄肉化や、二酸化炭素冷媒を代表とする高圧冷媒への転換等が進んでおり、りん脱酸銅より耐圧強度の高い銅合金への切り替えが検討されている。そして、このような銅合金の候補の一つとして、Zrを含有する析出強化型銅合金が提案されている。例えば、国際公開第2008/041777号(特許文献1)及び特開2008−255381号公報(特許文献2)には、いずれも、Zrを含有する銅合金が開示されている。   In recent years, in these heat exchangers, etc., the seamless pipe has been made thinner due to demands for weight reduction or cost reduction, conversion to a high-pressure refrigerant typified by carbon dioxide refrigerant, etc. Switching to a copper alloy with high pressure resistance is being studied. As one of such copper alloy candidates, a precipitation-strengthened copper alloy containing Zr has been proposed. For example, International Publication No. 2008/041777 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-255531 (Patent Document 2) both disclose a copper alloy containing Zr.

国際公開第2008/041777号(請求の範囲)International Publication No. 2008/041777 (Claims) 特開2008−25538号公報(特許請求の範囲)JP 2008-25538 A (Claims)

しかしながら、Zrを含有する銅合金は、析出硬化による強度向上が可能であるという点においては、有用であるものの、Zrを含有する銅合金には、強度向上の裏返しとして、加工性が悪くなる傾向にある。特に、内面溝付管の加工の際には、強度の高さが、管内面に溝形成を施す転造加工性の障害となり、熱交換性能の向上に効果的な溝形状や、ウィックとして効果的な溝形状を、転造加工では形成できないという問題が生じることがある。   However, although a copper alloy containing Zr is useful in that the strength can be improved by precipitation hardening, the copper alloy containing Zr tends to deteriorate in workability as the reverse of strength improvement. It is in. In particular, when machining internally grooved pipes, the high strength is an obstacle to the rolling processability of forming grooves on the inner surface of the pipe, and is effective as a groove shape and wick that is effective in improving heat exchange performance. In some cases, a typical groove shape cannot be formed by rolling.

そのため、単にZrを添加して強度を向上させただけでは、優れた内面溝付管を得ることはできない。   Therefore, an excellent inner grooved tube cannot be obtained by simply adding Zr to improve the strength.

例えば、特許文献2の実施例(段落番号0053〜0055)では、550〜650℃で中間焼鈍し、これを溝付転造加工しているが、このような中間焼鈍温度は、Zrの析出温度範囲であるため、転造加工前の銅合金は、強度が高くなっており、つまり、加工性が低くなった状態である。特に、Zr含有量が0.04%である実施例においては、転造加工性が限界に近いと考えられ、転造加工を効率良く行うことは困難であると考えられる。すなわち、転造加工ができなかったり、例えできたとしても、歩留りが悪くなったり、生産性が低下してしまったりという問題がある。更にZr含有量が多くなると、転造加工ができない場合も多くなる。   For example, in the Example (paragraph numbers 0053 to 0055) of Patent Document 2, intermediate annealing is performed at 550 to 650 ° C., and this is rolled with a groove. Such intermediate annealing temperature is the precipitation temperature of Zr. Because of the range, the copper alloy before the rolling process has a high strength, that is, a state in which the workability is low. In particular, in Examples where the Zr content is 0.04%, the rolling processability is considered to be close to the limit, and it is considered difficult to perform the rolling process efficiently. That is, even if the rolling process cannot be performed or compared, there is a problem that the yield is lowered or the productivity is lowered. Further, when the Zr content increases, the number of cases where rolling cannot be performed increases.

従って、本発明の目的は、Zrを含有する銅合金管を転造加工して内面溝付管を製造する方法であって、良好な転造加工性を得るための内面溝付管の製造方法を提供することにある。   Accordingly, an object of the present invention is a method for producing an internally grooved tube by rolling a copper alloy tube containing Zr, and a method for producing an internally grooved tube for obtaining good rolling processability Is to provide.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、(1)転造加工工程を行う直前の熱処理として、特定条件の中間焼鈍処理工程を行うことにより、転造加工工程での転造加工性が良好になること、(2)そのため、Zrを含有する銅合金管であっても、管内面に、熱交換性能が高い溝形状又は効果的なウィック機能を有する溝形状を形成させることができること等を見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have conducted (1) an intermediate annealing treatment process under specific conditions as a heat treatment immediately before performing the rolling process step. (2) Therefore, even if it is a copper alloy pipe containing Zr, a groove shape with high heat exchange performance or an effective wick function is provided on the inner surface of the pipe. The inventors have found that the groove shape can be formed, and have completed the present invention.

すなわち、本発明(1)は、0.01〜0.15質量%のZrを含有し、残部がCu及び不可避的不純物からなる銅合金の鋳塊を得る鋳造工程と、熱間押出工程と、転造加工工程と、を有し、
該転造加工工程の前に、下記(1)、(2)及び(3):
(1)500℃から730℃までの昇温速度が10℃/秒以上であること
(2)最高到達温度が750〜950℃であること
(3)730℃から500℃までの冷却速度が10℃/秒以上であること
の条件の全てを満たす中間焼鈍処理を行うこと、
を特徴とする内面溝付管の製造方法を提供するものである。
That is, the present invention (1) includes 0.01 to 0.15% by mass of Zr, a casting process for obtaining an ingot of a copper alloy whose balance is made of Cu and inevitable impurities, a hot extrusion process, A rolling process,
Before the rolling process, the following (1), (2) and (3):
(1) The temperature rising rate from 500 ° C. to 730 ° C. is 10 ° C./second or more (2) The highest temperature reached is 750 to 950 ° C. (3) The cooling rate from 730 ° C. to 500 ° C. is 10 Performing an intermediate annealing process that satisfies all of the conditions of being at least ° C / second,
A method for producing an internally grooved tube is provided.

また、本発明(2)は、0.01〜0.15質量%のZrを含有し、更に、Cr、Sn、Zn、Al、Ni、Si及びPから選択される1種又は2種以上の元素を、合計で0.004〜1.0質量%含有し、残部がCu及び不可避的不純物からなる銅合金の鋳塊を得る鋳造工程と、熱間押出工程と、転造加工工程と、を有し、
該転造加工工程の前に、下記(1)、(2)及び(3):
(1)500℃から730℃までの昇温速度が10℃/秒以上であること
(2)最高到達温度が750〜950℃であること
(3)730℃から500℃までの冷却速度が10℃/秒以上であること
の条件の全てを満たす中間焼鈍処理を行うこと、
を特徴とする内面溝付管の製造方法を提供するものである。
Moreover, this invention (2) contains 0.01-0.15 mass% Zr, and also 1 type, or 2 or more types selected from Cr, Sn, Zn, Al, Ni, Si, and P A casting step of obtaining a copper alloy ingot containing a total of 0.004 to 1.0% by mass of elements and the balance being Cu and inevitable impurities, a hot extrusion step, and a rolling step. Have
Before the rolling process, the following (1), (2) and (3):
(1) The temperature rising rate from 500 ° C. to 730 ° C. is 10 ° C./second or more (2) The highest temperature reached is 750 to 950 ° C. (3) The cooling rate from 730 ° C. to 500 ° C. is 10 Performing an intermediate annealing process that satisfies all of the conditions of being at least ° C / second,
A method for producing an internally grooved tube is provided.

本発明によれば、Zrを含有する銅合金管を転造加工して内面溝付管を製造する方法であって、良好な転造加工性を得るための内面溝付管の製造方法を提供することができる。   According to the present invention, there is provided a method for producing an internally grooved tube by rolling a copper alloy tube containing Zr, and a method for producing an internally grooved tube for obtaining good rolling processability. can do.

中間焼鈍処理(A)での該管材料の温度の推移を示す模式的なグラフである。It is a typical graph which shows transition of the temperature of this pipe material in an intermediate annealing process (A).

本発明の内面溝付管の製造方法は、0.01〜0.15質量%のZrを含有し、残部がCu及び不可避的不純物からなる銅合金の鋳塊を得る鋳造工程と、熱間押出工程と、転造加工工程と、を有し、
該転造加工工程の前に、下記(1)、(2)及び(3):
(1)500℃から730℃までの昇温速度が10℃/秒以上であること
(2)最高到達温度が750〜950℃であること
(3)730℃から500℃までの冷却速度が10℃/秒以上であること
の条件の全てを満たす中間焼鈍処理を行う内面溝付管の製造方法である。なお、以下、上記(1)、(2)及び(3)の条件を全て満たす中間焼鈍処理を、「中間焼鈍処理(A)」とも記載する。
The method for producing an internally grooved tube according to the present invention includes a casting process for obtaining an ingot of copper alloy containing 0.01 to 0.15% by mass of Zr, the balance being Cu and inevitable impurities, and hot extrusion. A process and a rolling process,
Before the rolling process, the following (1), (2) and (3):
(1) The temperature rising rate from 500 ° C. to 730 ° C. is 10 ° C./second or more (2) The highest temperature reached is 750 to 950 ° C. (3) The cooling rate from 730 ° C. to 500 ° C. is 10 It is a manufacturing method of an internally grooved tube that performs an intermediate annealing process that satisfies all of the conditions that it is at least ° C / second. Hereinafter, the intermediate annealing treatment that satisfies all the conditions (1), (2), and (3) is also referred to as “intermediate annealing treatment (A)”.

本発明の内面溝付管の製造方法は、該鋳造工程と、該熱間押出工程と、該中間焼鈍処理(A)と、該転造工程と、を必須の工程及び処理として有するが、本発明の内面溝付管の製造方法では、これらの工程及び処理間に、適宜、種々の加工工程又は熱処理を行うことができる。   The manufacturing method of the internally grooved pipe of the present invention includes the casting process, the hot extrusion process, the intermediate annealing process (A), and the rolling process as essential processes and processes. In the method for manufacturing an internally grooved tube of the invention, various processing steps or heat treatments can be appropriately performed between these steps and treatments.

本発明の内面溝付管の製造方法の形態例としては、以下の工程及び処理を順に行う形態例が挙げられる。
(I)鋳造工程→熱間押出工程→冷間圧延工程→冷間抽伸工程→中間焼鈍処理(A)→転造加工工程→時効処理
(II)鋳造工程→熱間押出工程→冷間抽伸工程→中間焼鈍処理(A)→転造加工工程→時効処理
上記形態例(I)及び(II)中の矢印は、工程順を示すものであるが、矢印の左側の工程(処理)の直後に矢印の右側の工程(処理)を行うということを意味するのではなく、矢印の左側の工程(処理)より後に矢印の右側の工程(処理)を行うということを意味する。そのため、矢印の左側の工程(処理)と矢印の右側の工程(処理)との間では、必要に応じて、適宜、種々の熱処理が行われる。ただし、該中間焼鈍処理(A)及び該転造加工工程については、該中間焼鈍処理(A)を行った後、該転造加工工程を行うまでは、他の熱処理を行わない。
As a form example of the manufacturing method of the inner surface grooved pipe of the present invention, a form example in which the following steps and processes are performed in order is given.
(I) Casting process-> hot extrusion process-> cold rolling process-> cold drawing process-> intermediate annealing process (A)-> rolling process-> aging process (II) casting process-> hot extrusion process-> cold drawing process → Intermediate annealing treatment (A) → Rolling process step → Aging treatment The arrows in the above embodiments (I) and (II) indicate the order of steps, but immediately after the step (treatment) on the left side of the arrow. It does not mean that the process (process) on the right side of the arrow is performed, but means that the process (process) on the right side of the arrow is performed after the process (process) on the left side of the arrow. Therefore, various heat treatments are appropriately performed between the process (process) on the left side of the arrow and the process (process) on the right side of the arrow as necessary. However, about this intermediate annealing process (A) and this rolling process, after performing this intermediate annealing process (A), no other heat processing is performed until this rolling process process is performed.

上記形態例(I)及び(II)では、該冷間抽伸工程を行う回数は、1回でもよく、あるいは、2回以上であってもよい。   In the above embodiments (I) and (II), the number of times of performing the cold drawing process may be one time or may be two or more times.

本発明の内面溝付管の製造方法に係る該鋳造工程は、常法に従って、溶解、鋳造し、所定の元素が所定の含有量で配合されている鋳塊(ビレット)を得る工程である。   The casting step according to the method for producing an internally grooved tube of the present invention is a step of obtaining an ingot (billet) in which a predetermined element is blended in a predetermined content by melting and casting according to a conventional method.

該鋳造工程を行い得られる該鋳塊は、Zrを含有し、残部がCu及び不可避不純物からなる鋳塊であるか、又はZrを含有し、更に、Cr、Sn、Zn、Al、Ni、Si及びPから選択される1種又は2種以上の元素を含有し、残部がCu及び不可避不純物からなる鋳塊である。つまり、該鋳塊は、Zrと、必要に応じて含有されるCr、Sn、Zn、Al、Ni、Si及びPから選択される1種又は2種以上の元素と、残部Cu及び不可避不純物とからなる。   The ingot obtained by performing the casting step contains Zr and the balance is an ingot composed of Cu and inevitable impurities, or contains Zr, and further contains Cr, Sn, Zn, Al, Ni, Si, 1 or 2 or more elements selected from P, and the balance is an ingot made of Cu and inevitable impurities. That is, the ingot is composed of Zr, one or more elements selected from Cr, Sn, Zn, Al, Ni, Si, and P contained as necessary, the remainder Cu and inevitable impurities. Consists of.

該鋳塊中のZr含有量は、0.01〜0.15質量%、好ましくは0.03〜0.09質量%である。該鋳塊中のZrの含有量が、上記範囲内であることにより、内面溝付管の強度が高く且つ転造加工性が良好になる。一方、該鋳塊中のZrの含有量が、上記範囲未満だと、析出による強度寄与がほとんど得られず、また、上記範囲を超えると、転造加工前の中間焼鈍処理での条件選択を行っても、転造加工性に障害をきたし、良好な転造加工が行えない。   The Zr content in the ingot is 0.01 to 0.15 mass%, preferably 0.03 to 0.09 mass%. When the Zr content in the ingot is within the above range, the strength of the internally grooved tube is high and the rolling processability is good. On the other hand, if the Zr content in the ingot is less than the above range, the strength contribution due to precipitation is hardly obtained, and if it exceeds the above range, the condition selection in the intermediate annealing process before the rolling process is selected. Even if it is performed, the rolling processability is hindered and good rolling process cannot be performed.

該鋳塊が、Zrに加えて、更に、Cr、Sn、Zn、Al、Ni、Si及びPから選択される1種又は2種以上の元素を含有する場合、該鋳塊中のCr、Sn、Zn、Al、Ni、Si及びPから選択される1種又は2種以上の元素の含有量は、合計で0.004〜1.0質量%である。該鋳塊中のこれらの元素の含有量が、合計で0.004〜1.0質量%であることにより、例えば、Snを含有する場合、Zrの析出強化に、固溶強化を加えることで、加工性、強度、熱伝導度に優れるとともに、これらの良好なバランスを持った銅合金とすることが可能になる。   When the ingot further contains one or more elements selected from Cr, Sn, Zn, Al, Ni, Si and P in addition to Zr, Cr, Sn in the ingot The content of one or more elements selected from Zn, Al, Ni, Si and P is 0.004 to 1.0 mass% in total. When the content of these elements in the ingot is 0.004 to 1.0% by mass in total, for example, when Sn is contained, by adding solid solution strengthening to precipitation strengthening of Zr In addition to excellent workability, strength, and thermal conductivity, it is possible to obtain a copper alloy having a good balance between these.

該鋳造工程では、例えば、該鋳造工程を行い得られる該鋳塊中の各成分の含有量が、内面溝付管を構成する銅合金中の所定の含有量となるように、銅の地金及び本発明の内面溝付管の含有元素の地金又は該含有元素と銅の合金を配合して、成分調整を行い、次いで、高周波溶解炉等を用いて、外径200〜380mmの鋳塊(ビレット)を鋳造する。   In the casting process, for example, a copper metal is used so that the content of each component in the ingot obtained by performing the casting process is a predetermined content in the copper alloy constituting the inner grooved tube. And the ingot of the element contained in the inner grooved tube of the present invention or an alloy of the element and copper is mixed, the components are adjusted, and then an ingot having an outer diameter of 200 to 380 mm is used using a high frequency melting furnace or the like. Cast billet.

Zrは活性な金属なので、溶解時の酸化ロスが多くなるため、成分調整においては、Zrの溶解時の酸化ロスを考慮した配合が必要である。   Since Zr is an active metal, the oxidation loss at the time of dissolution increases. Therefore, in adjusting the components, it is necessary to blend in consideration of the oxidation loss at the time of dissolution of Zr.

本発明の内面溝付管の製造方法に係る該熱間押出工程は、該鋳造工程で得られた該鋳塊を、800〜970℃に加熱した後、800〜970℃で熱間押出加工し、熱間押出素管を得る工程である。   In the hot extrusion step according to the method for producing an internally grooved tube of the present invention, the ingot obtained in the casting step is heated to 800 to 970 ° C. and then hot extruded at 800 to 970 ° C. This is a process for obtaining a hot extruded tube.

該熱間押出工程での熱間押出加工は、マンドレル押出によって行われる。すなわち、加熱前に、冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行なって、熱間押出素管を得る。   The hot extrusion process in the hot extrusion process is performed by mandrel extrusion. That is, hot extrusion is performed in a state where a mandrel is inserted into a billet previously perforated cold before heating or a billet perforated hot before extrusion to obtain a hot extruded element tube.

該熱間押出工程により得られた該熱間押出素管を、冷却した後、上記(I)の形態例では、冷間圧延工程(チューブレデュサーによる)及び冷間抽伸工程を行い、また、上記(II)の形態例では、冷間抽伸工程を行い、管の外径及び肉厚を減じていく。   After cooling the hot extruded element tube obtained by the hot extrusion process, in the embodiment (I), a cold rolling process (by a tube reducer) and a cold drawing process are performed. In the embodiment (II), a cold drawing process is performed to reduce the outer diameter and thickness of the pipe.

本発明の内面溝付管の製造方法では、該転造加工工程の前に、下記(1)、(2)及び(3):
(1)500℃から730℃までの昇温速度が10℃/秒以上であること
(2)最高到達温度が750〜950℃であること
(3)730℃から500℃までの冷却速度が10℃/秒以上であること
の条件を全て満たす中間焼鈍処理(A)を行う。
In the method for producing an internally grooved tube of the present invention, before the rolling step, the following (1), (2) and (3):
(1) The temperature rising rate from 500 ° C. to 730 ° C. is 10 ° C./second or more (2) The highest temperature reached is 750 to 950 ° C. (3) The cooling rate from 730 ° C. to 500 ° C. is 10 An intermediate annealing process (A) is performed that satisfies all the conditions that the temperature is at least ° C / second.

すなわち、該中間焼鈍処理(A)では、処理される管材料を750〜950℃まで加熱し、次いで、該管材料を750〜950℃の温度範囲に一定時間保持し、次いで、該管材料の温度を750℃未満にするが、このとき、該管材料の温度が、500℃に達してから730℃になるまでは、該管材料を10℃/秒以上の昇温速度で加熱し、次いで、更に加熱し、該管材料の温度が750℃に達した後は、該管材料の最高到達温度が950℃を超えないように、該管材料を750〜950℃の温度範囲に所定の時間保持し、次いで、冷却し、そのとき、該管材料の温度が、730℃に達してから500℃になるまでは、該管材料を10℃/秒以上の冷却速度で冷却する。なお、該管材料の500℃から730℃までの昇温速度が10℃/秒以上であるとは、500℃から730℃までの全範囲にわたって、昇温速度が10℃/秒以上であることを指す。また、該管材料の730℃から500℃までの冷却速度が10℃/秒以上であるとは、730℃から500℃までの全範囲にわたって、冷却速度が10℃/秒以上であることを指す。   That is, in the intermediate annealing treatment (A), the tube material to be treated is heated to 750 to 950 ° C., and then the tube material is kept in a temperature range of 750 to 950 ° C. for a certain period of time. The temperature is set to less than 750 ° C. At this time, the tube material is heated at a heating rate of 10 ° C./second or more until the temperature of the tube material reaches 730 ° C. after reaching 500 ° C., and then After further heating and the temperature of the tube material reaches 750 ° C., the tube material is kept in a temperature range of 750 to 950 ° C. for a predetermined time so that the maximum temperature of the tube material does not exceed 950 ° C. Holding and then cooling, the tube material is cooled at a cooling rate of 10 ° C./second or more until the temperature of the tube material reaches 730 ° C. and reaches 500 ° C. Note that the rate of temperature increase from 500 ° C. to 730 ° C. of the tube material is 10 ° C./second or more means that the temperature increase rate is 10 ° C./second or more over the entire range from 500 ° C. to 730 ° C. Point to. Moreover, the cooling rate from 730 ° C. to 500 ° C. of the tube material being 10 ° C./second or more means that the cooling rate is 10 ° C./second or more over the entire range from 730 ° C. to 500 ° C. .

該最高到達温度が、750℃未満だと、Zr化合物の析出が生じるために、延性が低くなり、転造加工に支障をきたし、また、950℃を超えると、管材料の溶解が懸念される。また、該管材料の500℃から730℃までの昇温速度が10℃/秒未満であると、Zrの析出が生じ、延性が低くなり、転造加工に支障をきたす。また、該管材料の730℃から500℃までの冷却速度が10℃/秒未満であると、Zrの析出が生じ、延性が低くなり、転造加工に支障をきたす。   When the maximum temperature is less than 750 ° C., precipitation of the Zr compound occurs, resulting in low ductility and hindering the rolling process, and when it exceeds 950 ° C., there is a concern about dissolution of the pipe material. . On the other hand, if the rate of temperature rise from 500 ° C. to 730 ° C. of the pipe material is less than 10 ° C./second, Zr is precipitated, the ductility is lowered, and the rolling process is hindered. On the other hand, when the cooling rate of the tube material from 730 ° C. to 500 ° C. is less than 10 ° C./second, precipitation of Zr occurs, the ductility is lowered, and the rolling process is hindered.

また、該管材料の750〜950℃の保持時間は、短時間、例えば、2秒程度あればよい。また、該管材料の750〜950℃の保持時間が長過ぎると、製造効率が低くなり、また、結晶粒の粗大化が起り易くなる。そのため、該管材料の750〜950℃の保持時間は、最高到達温度及び製造効率等を考慮して、適宜選択されるが、最高到達温度が750〜850℃の場合、好ましくは10分以下、特に好ましくは0.01〜1分であり、また、最高到達温度が850℃を超え950℃以下の場合、好ましくは1分以下、特に好ましくは0.01〜0.5分である。なお、該管材料の750〜950℃の保持時間とは、該管材料の温度が750〜950℃になっている時間を指す。   The holding time of the tube material at 750 to 950 ° C. may be a short time, for example, about 2 seconds. On the other hand, if the holding time of the tube material at 750 to 950 ° C. is too long, the production efficiency is lowered and the crystal grains are liable to be coarsened. Therefore, the holding time of the tube material of 750 to 950 ° C. is appropriately selected in consideration of the maximum temperature reached, production efficiency, and the like, but when the maximum temperature reached is 750 to 850 ° C., preferably 10 minutes or less, Particularly preferably, it is 0.01 to 1 minute, and when the maximum temperature is more than 850 ° C. and 950 ° C. or less, it is preferably 1 minute or less, particularly preferably 0.01 to 0.5 minutes. In addition, the 750-950 degreeC holding time of this pipe material refers to the time when the temperature of this pipe material is 750-950 degreeC.

該中間焼鈍処理(A)での管材料の温度について、図1に示すグラフを用いて説明する。図1は、該中間焼鈍処理(A)での該管材料の温度の推移を示す模式的なグラフである。   The temperature of the pipe material in the intermediate annealing process (A) will be described using the graph shown in FIG. FIG. 1 is a schematic graph showing the transition of the temperature of the pipe material in the intermediate annealing treatment (A).

該中間焼鈍処理(A)では、図1に示すように、該管材料を加熱することにより、該管材料の温度は、500℃未満の温度から昇温し、750℃に達し、750℃に達した後は、750〜950℃の温度範囲に一定時間保たれ、その後冷却し、500℃未満になる。このとき、昇温の際に、該管材料の温度が500℃に達するa点から730℃に達するb点までの間の昇温速度が、10℃/秒以上であり(条件1)、該管材料の最高到達温度Xが、750〜950℃であり、950℃超えず(条件2)、且つ、冷却の際に、管材料の温度が730℃に達するe点から500℃に達するf点までの間の冷却速度が、10℃/秒以上である(条件3)。なお、該管材料の温度が750℃に達した後、該管材料の温度が750〜950℃の温度範囲に保持されているc点からd点までの時間が、750〜950℃の保持時間である。   In the intermediate annealing treatment (A), as shown in FIG. 1, by heating the tube material, the temperature of the tube material is increased from a temperature of less than 500 ° C., reaches 750 ° C., and reaches 750 ° C. After reaching this temperature, the temperature is kept in the temperature range of 750 to 950 ° C. for a certain period of time, and then cooled to below 500 ° C. At this time, when the temperature is raised, the rate of temperature rise from the point a at which the temperature of the tube material reaches 500 ° C. to the point b at which the temperature reaches 730 ° C. is 10 ° C./second or more (Condition 1), The maximum reached temperature X of the tube material is 750 to 950 ° C., does not exceed 950 ° C. (Condition 2), and the f material point reaches 500 ° C. from the point e when the temperature of the tube material reaches 730 ° C. during cooling. The cooling rate is up to 10 ° C./second (condition 3). In addition, after the temperature of this pipe material reaches 750 degreeC, the time from the point c to d point where the temperature of this pipe material is hold | maintained in the temperature range of 750-950 degreeC is the holding time of 750-950 degreeC It is.

一方、該管材料の500℃から730℃までの昇温速度が10℃/秒未満の場合は、該中間焼鈍処理(A)には該当しない。また、該管材料の最高到達温度が750℃未満の場合も、該中間焼鈍処理(A)には該当しない。また、該管材料の最高到達温度が950℃を超える場合も、該中間焼鈍処理(A)には該当しない。また、該管材料の730℃から500℃までの冷却速度が10℃/秒未満の場合も、該中間焼鈍処理(A)には該当しない。   On the other hand, when the rate of temperature increase from 500 ° C. to 730 ° C. of the pipe material is less than 10 ° C./second, the intermediate annealing treatment (A) is not applicable. Further, even when the maximum temperature of the pipe material is less than 750 ° C., it does not correspond to the intermediate annealing treatment (A). Moreover, even when the highest temperature of the pipe material exceeds 950 ° C., it does not correspond to the intermediate annealing treatment (A). Further, the case where the cooling rate of the pipe material from 730 ° C. to 500 ° C. is less than 10 ° C./second does not correspond to the intermediate annealing treatment (A).

本発明の内面溝付管の製造方法では、該転造加工工程の前の熱処理として、該中間焼鈍処理(A)を行うことが必須であるが、該中間焼鈍処理(A)より前段で、あるいは、該転造加工工程より後段で、該中間焼鈍処理(A)に該当しないような熱処理を、必要に応じて、適宜行うこともできる。   In the method for producing an internally grooved tube of the present invention, it is essential to perform the intermediate annealing treatment (A) as a heat treatment before the rolling process step, but before the intermediate annealing treatment (A), Alternatively, heat treatment that does not correspond to the intermediate annealing treatment (A) can be appropriately performed as necessary after the rolling process step.

本発明の内面溝付管の製造方法に係る該転造加工工程は、管材料の内面に、内面溝を形成させる転造加工を行う工程である。また、通常、該中間焼鈍処理(A)を行った後、縮径加工を行ってから、該転造加工工程を行う。   The rolling process according to the method for manufacturing an internally grooved pipe of the present invention is a process for performing a rolling process for forming an internal groove on the inner surface of the pipe material. Moreover, after performing this intermediate annealing process (A), after performing a diameter reduction process, this rolling process process is performed.

また、本発明の内面溝付管の製造方法では、該鋳造工程から最終製品である内面溝付管を製造するまでの工程の間に、適宜、溶体化処理、時効処理等の熱処理を行う。   In the method for producing an internally grooved tube of the present invention, heat treatment such as solution treatment and aging treatment is appropriately performed between the casting process and the process of producing the internally grooved tube as the final product.

該溶体化処理及び該時効処理は、Zr化合物の微細な析出物による析出硬化を施す処理として行われる。   The solution treatment and the aging treatment are performed as a treatment for precipitation hardening with fine precipitates of the Zr compound.

該溶体化処理は、銅管を920℃以上に加熱し、冷却速度10℃/秒以上で急冷することにより行われる。また、該熱間押出工程又は均質化処理の際の加熱に、該溶体化処理のための加熱を兼ねさせてもよく、この場合、920℃以上の加工温度で熱間押出工程を行った後の加熱された銅合金、又は該均質化処理を行った後の加熱された銅合金を、冷却速度10℃/秒以上で急冷する。   The solution treatment is performed by heating the copper tube to 920 ° C. or higher and quenching at a cooling rate of 10 ° C./second or higher. Further, the heating during the hot extrusion step or the homogenization treatment may be combined with the heating for the solution treatment. In this case, after performing the hot extrusion step at a processing temperature of 920 ° C. or higher. The heated copper alloy or the heated copper alloy after the homogenization treatment is rapidly cooled at a cooling rate of 10 ° C./second or more.

該時効処理は、該転造加工工程の後に行われ、該転造加工工程を行った後の銅管を、400〜700℃で加熱し、冷却することにより行われる。   The aging treatment is performed after the rolling process, and the copper pipe after the rolling process is heated at 400 to 700 ° C. and cooled.

本発明の内面溝付管の製造方法により製造される内面溝付管は、熱交換器用の伝熱管や、グルーブウィックタイプのヒートパイプのコンテナとして、好適に用いられる。   The internally grooved tube manufactured by the manufacturing method of the internally grooved tube of the present invention is suitably used as a heat transfer tube for a heat exchanger or a container of a groove wick type heat pipe.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1〜6及び比較例1〜6)
(鋳造工程)
表1に示す化学成分を含有する外径254mmの鋳塊を鋳造した。なお、表1中、残部はCu及び不可避不純物である。
(熱間押出工程)
上記のようにして得た鋳塊を、押出温度940℃で、外径80mm×肉厚8mmの管を押出し、押出後ただちに水中へ投入して冷却を行った。溶体化処理を兼ねて行った。
(冷間圧延工程)
上記のようにして熱間押出加工された銅管を、冷間圧延により、外径45mm×肉厚5mmまで加工した。
(冷間抽伸加工工程)
上記のようにして冷間圧延された銅管を、冷間抽伸により、外径12.7mm×肉厚0.4mmまで加工した。
(中間焼鈍処理)
上記のようにして冷間抽伸された銅管を、表1に示す条件で中間焼鈍処理した。炉には、大型塩浴炉を用い、コイル形状のまま浸漬した。
(転造加工工程)
上記のようにして中間焼鈍処理された銅管を転造加工した。転造加工後の外径は9.52mmであり、内面溝形状は表2に示す通りであった。
(時効処理)
上記の転造加工後の内面溝が形成された銅管を、バッチ炉内で、非酸化性雰囲気中、600℃30分間加熱した。
(Examples 1-6 and Comparative Examples 1-6)
(Casting process)
An ingot having an outer diameter of 254 mm containing the chemical components shown in Table 1 was cast. In Table 1, the balance is Cu and inevitable impurities.
(Hot extrusion process)
The ingot obtained as described above was extruded at an extrusion temperature of 940 ° C., and a tube having an outer diameter of 80 mm × wall thickness of 8 mm was extruded and immediately poured into water for cooling. This was also performed as a solution treatment.
(Cold rolling process)
The copper tube hot-extruded as described above was processed by cold rolling to an outer diameter of 45 mm and a wall thickness of 5 mm.
(Cold drawing process)
The copper tube cold-rolled as described above was processed by cold drawing to an outer diameter of 12.7 mm and a wall thickness of 0.4 mm.
(Intermediate annealing treatment)
The copper pipe cold drawn as described above was subjected to intermediate annealing treatment under the conditions shown in Table 1. A large salt bath furnace was used for the furnace, and it was immersed in a coil shape.
(Rolling process)
The copper tube subjected to the intermediate annealing treatment as described above was rolled. The outer diameter after the rolling process was 9.52 mm, and the inner groove shape was as shown in Table 2.
(Aging treatment)
The copper pipe in which the inner groove after the rolling process was formed was heated in a non-oxidizing atmosphere at 600 ° C. for 30 minutes in a batch furnace.

Figure 2011012299
1)残部はCu及び不可避不純物
2)500℃から730℃までの最小昇温速度
3)730℃から500℃までの最小冷却速度
Figure 2011012299
1) The balance is Cu and inevitable impurities 2) Minimum heating rate from 500 ° C to 730 ° C 3) Minimum cooling rate from 730 ° C to 500 ° C

Figure 2011012299
Figure 2011012299

(評価方法)
(転造加工性)
転造加工によって正常なフィン形状が得られた場合を「○」と、正常なフィン形状が得られなかった場合を「×」とした。その結果を表3に示す。
なお、正常なフィン形状が得られないとは、転造加工時に、転造プラグの溝にメタルが十分に充満しなかった部分があった場合、又は転造加工が不可能であった場合である。
(機械的性質)
時効処理後の内面溝付管について、JIS Z 2241に準じ、引張強さ及び伸びを測定した。その結果を表3に示す。
(導電率)
時効処理後の内面溝付管について、四端子法にて導電率を測定した。その結果を表3に示す。
(Evaluation methods)
(Rolling workability)
The case where a normal fin shape was obtained by the rolling process was “◯”, and the case where a normal fin shape was not obtained was “x”. The results are shown in Table 3.
The normal fin shape is not obtained when there is a part where the metal is not sufficiently filled in the groove of the rolling plug during the rolling process or when the rolling process is impossible. is there.
(mechanical nature)
With respect to the internally grooved tube after the aging treatment, the tensile strength and the elongation were measured according to JIS Z 2241. The results are shown in Table 3.
(conductivity)
The conductivity of the internally grooved tube after the aging treatment was measured by a four-terminal method. The results are shown in Table 3.


Figure 2011012299
Figure 2011012299

実施例1〜6は、本発明の内面溝付管の製造方法により製造された内面溝付管であり、転造加工性及び機械的性質のいずれも良好であった。
一方、比較例1、3、4及び6は、以下の理由で、転造加工性が良好ではなかった。
比較例1:中間焼鈍処理での最高到達温度が低過ぎたため。
比較例3:500℃から730℃までの昇温速度が低過ぎたため。
比較例4:730℃から500℃までの冷却速度が低過ぎたため。
比較例6:Zr含有量が多過ぎたため。
また、比較例2は、最高到達温度が高過ぎたために、材料の一部に溶融が見られ、転造加工に供することができなかった。
また、比較例5は、Zr含有量が少な過ぎたために、析出強化の効果が得られず、強度が低くなった。
Examples 1 to 6 are inner surface grooved tubes manufactured by the inner surface grooved tube manufacturing method of the present invention, and both the rolling processability and the mechanical properties were good.
On the other hand, Comparative Examples 1, 3, 4 and 6 did not have good rolling processability for the following reasons.
Comparative Example 1: The highest temperature reached in the intermediate annealing process was too low.
Comparative Example 3: The temperature increase rate from 500 ° C. to 730 ° C. was too low.
Comparative Example 4: The cooling rate from 730 ° C. to 500 ° C. was too low.
Comparative Example 6: The Zr content was too much.
In Comparative Example 2, since the maximum temperature reached was too high, some of the material was melted and could not be subjected to rolling.
In Comparative Example 5, since the Zr content was too small, the effect of precipitation strengthening was not obtained, and the strength was low.

本発明によれば、高強度且つ高性能の内面溝付銅合金管を、工業的に有利に製造することができる。   According to the present invention, a high-strength and high-performance internally grooved copper alloy tube can be industrially advantageously produced.

Claims (2)

0.01〜0.15質量%のZrを含有し、残部がCu及び不可避的不純物からなる銅合金の鋳塊を得る鋳造工程と、熱間押出工程と、転造加工工程と、を有し、
該転造加工工程の前に、下記(1)、(2)及び(3):
(1)500℃から730℃までの昇温速度が10℃/秒以上であること
(2)最高到達温度が750〜950℃であること
(3)730℃から500℃までの冷却速度が10℃/秒以上であること
の条件の全てを満たす中間焼鈍処理を行うこと、
を特徴とする内面溝付管の製造方法。
A casting step of obtaining a copper alloy ingot containing 0.01 to 0.15% by mass of Zr, with the balance being Cu and inevitable impurities, a hot extrusion step, and a rolling step ,
Before the rolling process, the following (1), (2) and (3):
(1) The temperature rising rate from 500 ° C. to 730 ° C. is 10 ° C./second or more (2) The highest temperature reached is 750 to 950 ° C. (3) The cooling rate from 730 ° C. to 500 ° C. is 10 Performing an intermediate annealing process that satisfies all of the conditions of being at least ° C / second,
A method for producing an internally grooved tube.
0.01〜0.15質量%のZrを含有し、更に、Cr、Sn、Zn、Al、Ni、Si及びPから選択される1種又は2種以上の元素を、合計で0.004〜1.0質量%含有し、残部がCu及び不可避的不純物からなる銅合金の鋳塊を得る鋳造工程と、熱間押出工程と、転造加工工程と、を有し、
該転造加工工程の前に、下記(1)、(2)及び(3):
(1)500℃から730℃までの昇温速度が10℃/秒以上であること
(2)最高到達温度が750〜950℃であること
(3)730℃から500℃までの冷却速度が10℃/秒以上であること
の条件の全てを満たす中間焼鈍処理を行うこと、
を特徴とする内面溝付管の製造方法。
0.01 to 0.15% by mass of Zr, and further, one or more elements selected from Cr, Sn, Zn, Al, Ni, Si and P, 1.0% by weight, the casting step of obtaining a copper alloy ingot comprising Cu and inevitable impurities, a hot extrusion step, a rolling process step,
Before the rolling process, the following (1), (2) and (3):
(1) The temperature rising rate from 500 ° C. to 730 ° C. is 10 ° C./second or more (2) The highest temperature reached is 750 to 950 ° C. (3) The cooling rate from 730 ° C. to 500 ° C. is 10 Performing an intermediate annealing process that satisfies all of the conditions of being at least ° C / second,
A method for producing an internally grooved tube.
JP2009156636A 2009-07-01 2009-07-01 Manufacturing method of internally grooved tube Active JP5451217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156636A JP5451217B2 (en) 2009-07-01 2009-07-01 Manufacturing method of internally grooved tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156636A JP5451217B2 (en) 2009-07-01 2009-07-01 Manufacturing method of internally grooved tube

Publications (2)

Publication Number Publication Date
JP2011012299A true JP2011012299A (en) 2011-01-20
JP5451217B2 JP5451217B2 (en) 2014-03-26

Family

ID=43591484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156636A Active JP5451217B2 (en) 2009-07-01 2009-07-01 Manufacturing method of internally grooved tube

Country Status (1)

Country Link
JP (1) JP5451217B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151813B1 (en) * 2016-03-23 2017-06-21 株式会社神戸製鋼所 Vapor chamber manufacturing method
CN111197127A (en) * 2018-11-19 2020-05-26 财团法人工业技术研究院 Copper-zirconium alloy heat dissipation element and manufacturing method of copper-zirconium alloy shell
CN115505767A (en) * 2022-09-27 2022-12-23 江苏隆达超合金股份有限公司 Manufacturing method of high-plasticity BFe10-1-1 white copper pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292917A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Method of producing copper alloy smooth tube for heat exchanger, and method of producing copper alloy internally grooved tube for heat exchanger
WO2008041777A1 (en) * 2006-10-04 2008-04-10 Sumitomo Light Metal Industries, Ltd. Copper alloy for seamless pipes
JP2008255381A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Heat resistant and high strength copper alloy tube for heat exchanger
JP2008274421A (en) * 2007-03-31 2008-11-13 Kobelco & Materials Copper Tube Inc Copper alloy member and heat exchanger
JP2009102690A (en) * 2007-10-23 2009-05-14 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger having excellent fracture strength
JP2010156002A (en) * 2008-12-26 2010-07-15 Kobe Steel Ltd Copper alloy tube, method for manufacturing the same, and heat pump water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292917A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Method of producing copper alloy smooth tube for heat exchanger, and method of producing copper alloy internally grooved tube for heat exchanger
WO2008041777A1 (en) * 2006-10-04 2008-04-10 Sumitomo Light Metal Industries, Ltd. Copper alloy for seamless pipes
JP2008255381A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Heat resistant and high strength copper alloy tube for heat exchanger
JP2008274421A (en) * 2007-03-31 2008-11-13 Kobelco & Materials Copper Tube Inc Copper alloy member and heat exchanger
JP2009102690A (en) * 2007-10-23 2009-05-14 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger having excellent fracture strength
JP2010156002A (en) * 2008-12-26 2010-07-15 Kobe Steel Ltd Copper alloy tube, method for manufacturing the same, and heat pump water heater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151813B1 (en) * 2016-03-23 2017-06-21 株式会社神戸製鋼所 Vapor chamber manufacturing method
WO2017164013A1 (en) * 2016-03-23 2017-09-28 株式会社神戸製鋼所 Vapor chamber manufacturing method
JP2017172871A (en) * 2016-03-23 2017-09-28 株式会社神戸製鋼所 Process of manufacture of vapor chamber
CN111197127A (en) * 2018-11-19 2020-05-26 财团法人工业技术研究院 Copper-zirconium alloy heat dissipation element and manufacturing method of copper-zirconium alloy shell
JP2020084315A (en) * 2018-11-19 2020-06-04 財團法人工業技術研究院Industrial Technology Research Institute Copper zirconium alloy heat radiation component, manufacturing method of copper zirconium alloy casing
CN111197127B (en) * 2018-11-19 2021-03-05 财团法人工业技术研究院 Copper-zirconium alloy heat dissipation element and manufacturing method of copper-zirconium alloy shell
JP7016820B2 (en) 2018-11-19 2022-02-07 財團法人工業技術研究院 Manufacturing method of copper zirconium alloy heat dissipation parts and copper zirconium alloy casing
CN115505767A (en) * 2022-09-27 2022-12-23 江苏隆达超合金股份有限公司 Manufacturing method of high-plasticity BFe10-1-1 white copper pipe

Also Published As

Publication number Publication date
JP5451217B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4349640B2 (en) Seamless pipe
JP5534777B2 (en) Copper alloy seamless pipe
JP5451217B2 (en) Manufacturing method of internally grooved tube
JP2017082301A (en) Manufacturing method of copper alloy tube and heat exchanger
TWI608110B (en) Copper alloy seamless tube for heat exchanger tube
EP3521463B1 (en) Highly corrosion-resistant copper pipe, method of manufacturing therefor and use thereof
US20180291491A1 (en) Highly corrosion-resistant copper tube
JP6034727B2 (en) High strength copper alloy tube
JP6541583B2 (en) Copper alloy material and copper alloy pipe
JP6238274B2 (en) Copper alloy seamless pipe for hot and cold water supply
JP2010222692A (en) Copper alloy seamless pipe for supplying water and hot water
JP5792696B2 (en) High strength copper alloy tube
JP2017036468A (en) Copper alloy tube
JP2017036467A (en) Copper alloy tube
JP5208562B2 (en) Seamless pipe
JP2013076123A (en) Copper alloy tube
JP2005089788A (en) Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method
JPH04371541A (en) Aluminum alloy for heat exchanger piping
JP2022025817A (en) Copper alloy tube and manufacturing method thereof
JP2011094176A (en) Copper alloy seamless tube
JP6360363B2 (en) Copper alloy tube
JP2011094175A (en) Copper alloy seamless tube
JP2021021127A (en) Copper alloy material and heat exchanger
JP2023042797A (en) Tube with inner groove and manufacturing method thereof
JP2016180169A (en) Copper alloy tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5451217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350