JP2011011232A - Method for manufacturing heat-transfer plate and heat-transfer plate - Google Patents

Method for manufacturing heat-transfer plate and heat-transfer plate Download PDF

Info

Publication number
JP2011011232A
JP2011011232A JP2009157644A JP2009157644A JP2011011232A JP 2011011232 A JP2011011232 A JP 2011011232A JP 2009157644 A JP2009157644 A JP 2009157644A JP 2009157644 A JP2009157644 A JP 2009157644A JP 2011011232 A JP2011011232 A JP 2011011232A
Authority
JP
Japan
Prior art keywords
lid member
transfer plate
heat transfer
main body
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157644A
Other languages
Japanese (ja)
Other versions
JP5347774B2 (en
Inventor
Isato Sato
勇人 佐藤
Hisashi Hori
久司 堀
Nobushiro Seo
伸城 瀬尾
Tomohiro Kawamoto
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2009157644A priority Critical patent/JP5347774B2/en
Publication of JP2011011232A publication Critical patent/JP2011011232A/en
Application granted granted Critical
Publication of JP5347774B2 publication Critical patent/JP5347774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat-transfer plate capable of improving watertightness and airtightness, and also to provide the heat transfer plate.SOLUTION: The heat-transfer plate includes a body 2 including recesses 14 formed on a surface 11 and a pair of supply parts 15 and a pair of discharge parts 16 that are opened to the bottom surfaces 14a of the recesses 14, and lid members 3 including protrusions 34 projected from a surface 31 and having hollow at the inside thereof. The method for manufacturing the heat-transfer plate is used for forming the heat-transfer plate 1 on which heat transport fluid flows through the supply parts 15 and the discharge parts 16 at flow passages 36 formed of the bottom surfaces 14a of the recesses 14 and the protrusions 34. The method for manufacturing the heat-transfer plate includes a lid part mounting step for mounting the lid member 3 on the recess 14 of the body 2, a lid member fixing step for carrying out friction stir welding by moving a rotary tool G along a butting part J1, and a sealing step for carrying out the friction stir welding to a superposed part 18 of the bottom surface 14a of the recess 14 and the rear surface 32 of the lid member 3 by moving the rotary tool G around the protrusion 34.

Description

本発明は、伝熱板の製造方法及び伝熱板に関する。   The present invention relates to a method for manufacturing a heat transfer plate and a heat transfer plate.

金属部材同士を接合する方法として、摩擦攪拌接合(FSW=Friction Stir Welding)が知られている。摩擦攪拌接合とは、回転ツールを回転させつつ金属部材同士の突合部に沿って移動させ、回転ツールと金属部材との摩擦熱により突合部の金属を塑性流動させることで、金属部材同士を固相接合させるものである。   Friction stir welding (FSW = Friction Stir Welding) is known as a method for joining metal members. Friction stir welding is a technique in which metal members are fixed to each other by causing the metal at the abutting portion to plastically flow by frictional heat between the rotating tool and the metal member by moving the rotating tool along the abutting portion while rotating the rotating tool. Phase joining is performed.

例えば、特許文献1に示すように、半導体製造装置において冷却用に使用されるヒートプレート(伝熱板)は、板状を呈する本体と、本体の表面に形成された凹部を封止する蓋部材とを摩擦攪拌接合によって一体化して形成されている。   For example, as shown in Patent Document 1, a heat plate (heat transfer plate) used for cooling in a semiconductor manufacturing apparatus is a lid member that seals a plate-shaped main body and a recess formed on the surface of the main body. Are integrated by friction stir welding.

具体的には、本体は、本体の表面に凹設された第一凹部と、第一凹部の底面に凹設された第二凹部とを有する。蓋部材は、第一凹部に隙間無く配置される形状を呈している。伝熱板は、第一凹部の側壁と蓋部材の側面との突合部に対して摩擦攪拌接合を行うことにより一体成形されている。   Specifically, the main body has a first concave portion provided in the surface of the main body and a second concave portion provided in the bottom surface of the first concave portion. The lid member has a shape that is arranged in the first recess without any gap. The heat transfer plate is integrally formed by performing friction stir welding on the abutting portion between the side wall of the first recess and the side surface of the lid member.

特開2002−257490号公報JP 2002-257490 A

従来の伝熱板の製造方法では、第一凹部の側壁と蓋部材の側面との突合部のみを摩擦攪拌接合するだけであるため、例えば第一凹部の底面と蓋部材の裏面との間には微細な隙間が形成されている。かかる隙間は伝熱板の水密性及び気密性を低下させる要因になっていた。   In the conventional method of manufacturing a heat transfer plate, only the abutting portion between the side wall of the first recess and the side surface of the lid member is friction stir welded. For example, between the bottom surface of the first recess and the back surface of the lid member. A fine gap is formed. Such a gap has been a factor of reducing the water tightness and air tightness of the heat transfer plate.

本発明は、かかる問題に鑑みてなされたものであり、水密性及び気密性を高めることが可能な伝熱板の製造方法及び伝熱板を提供することを課題とする。   This invention is made | formed in view of this problem, and makes it a subject to provide the manufacturing method and heat exchanger plate of a heat exchanger plate which can improve watertightness and airtightness.

前記課題を解決するための手段として、本発明は、本体に凹設された凹部の底面に、内部が中空に形成された凸部を備えた蓋部材を載置し、前記凹部の底面と凸部の内面との間に熱輸送流体の流路となる流路部を具備する伝熱板を製造する方法であって、前記本体の前記凹部に前記蓋部材を載置する蓋部材載置工程と、前記凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて摩擦攪拌接合を行う蓋部材固定工程と、前記凸部周りに回転ツールを移動させて、前記凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う密封工程と、を含むことを特徴とする。   As a means for solving the above-mentioned problems, the present invention provides a lid member having a convex portion formed hollow inside on a bottom surface of a concave portion provided in the main body. A lid member placing step of placing a lid member in the recess of the main body, wherein the heat transfer plate is provided with a flow path section serving as a flow path for a heat transport fluid between the inner surface of the section and the inner surface of the section. A lid member fixing step of moving the rotary tool along the abutting portion between the side wall of the concave portion and the side surface of the lid member to perform friction stir welding, and moving the rotary tool around the convex portion to And a sealing step in which friction stir welding is performed on the overlapping portion of the bottom surface of the lid member and the back surface of the lid member.

かかる製造方法によれば、本体に凹設された凹部の側壁と蓋部材の側面との突合部を摩擦攪拌するとともに、凹部の底面と蓋部材の裏面との重ね合わせ部に対して、熱輸送流体が流れる凸部周りに摩擦攪拌接合を行うことにより、流路部周辺の微細な隙間を塞ぐことができる。これにより、伝熱板の水密性及び気密性を高めることができる。   According to this manufacturing method, the abutting portion between the side wall of the concave portion provided in the main body and the side surface of the lid member is frictionally stirred, and heat transport is performed with respect to the overlapping portion of the bottom surface of the concave portion and the back surface of the lid member. By performing friction stir welding around the convex portion through which the fluid flows, it is possible to close a fine gap around the flow path portion. Thereby, the watertightness and airtightness of a heat exchanger plate can be improved.

また、前記密封工程では、前記回転ツールを前記凸部の周りで一周させることが好ましい。また、前記密封工程では、前記回転ツールの移動軌跡を前記凸部の周りでオーバーラップさせて摩擦攪拌接合によって形成させる塑性化領域の一部を重複させることが好ましい。かかる製造方法によれば、流路部周辺の密閉性をさらに高めることができるため、水密性及び気密性を高めることができる。   In the sealing step, it is preferable that the rotating tool makes a round around the convex portion. In the sealing step, it is preferable that a part of the plasticized region formed by friction stir welding is overlapped by overlapping the movement trajectory of the rotating tool around the convex portion. According to this manufacturing method, since the airtightness around the flow path portion can be further improved, water tightness and air tightness can be improved.

また、前記密封工程では、前記回転ツールを前記凸部に対して右回りに移動させるときは前記回転ツールを右回転させ、前記回転ツールを前記凸部に対して左回りに移動させるときは前記回転ツールを左回転させることが好ましい。   Further, in the sealing step, when the rotating tool is moved clockwise with respect to the convex portion, the rotating tool is rotated clockwise, and when the rotating tool is moved counterclockwise with respect to the convex portion, It is preferable to rotate the rotation tool counterclockwise.

かかる製造方法によれば、回転ツールのシアー側が流路部から離間した部位に位置する。このため、空洞欠陥が発生したとしても、本体の流路部から離間した部位(シアー側)に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることがない。   According to such a manufacturing method, the shear side of the rotary tool is located at a site separated from the flow path portion. For this reason, even if a cavity defect occurs, it will occur at a site (shear side) separated from the flow path part of the main body, and the heat transport fluid will be difficult to leak to the outside, so the sealing performance of the joint part will be reduced. There is no.

また、前記密封工程では、前記回転ツールの先端を前記本体に接触させつつ摩擦攪拌接合を行うことが好ましい。かかる製造方法によれば、重ね合わせ部を確実に摩擦攪拌接合することができる。   In the sealing step, it is preferable to perform friction stir welding while bringing the tip of the rotary tool into contact with the main body. According to such a manufacturing method, the overlapping portion can be reliably subjected to friction stir welding.

また、前記密封工程では、前記回転ツールの中心から前記凸部の開口周縁までの距離を前記回転ツールの半径よりも大きく設定することが好ましい。かかる製造方法によれば、摩擦攪拌による凸部の変形を防止することができる。   In the sealing step, it is preferable that the distance from the center of the rotating tool to the peripheral edge of the opening of the convex portion is set larger than the radius of the rotating tool. According to this manufacturing method, deformation of the convex portion due to frictional stirring can be prevented.

また、前記密閉工程では、前記蓋部材の外側から摩擦攪拌を開始するとともに、前記蓋部材の外側で摩擦攪拌を終了することが好ましい。かかる製造方法によれば、蓋部材の外側に摩擦攪拌の開始位置及び終了位置が形成されるため蓋部材の変形を防止することができる。   Further, in the sealing step, it is preferable that the friction stirring is started from the outside of the lid member and the friction stirring is finished outside the lid member. According to this manufacturing method, since the start position and the end position of friction stirring are formed outside the lid member, it is possible to prevent the lid member from being deformed.

また、前記凸部の開口周縁から前記凹部の側壁までの距離を、前記密閉工程で用いる前記回転ツールのショルダ部の外径の2倍以上に設定することが好ましい。かかる製造方法によれば、重ね合わせ部の領域を十分に確保できるため、重ね合わせ部に対して確実に摩擦攪拌接合を行うことができる。   Moreover, it is preferable to set the distance from the opening periphery of the said convex part to the side wall of the said recessed part more than twice the outer diameter of the shoulder part of the said rotary tool used at the said sealing process. According to this manufacturing method, since the region of the overlapping portion can be sufficiently secured, the friction stir welding can be reliably performed on the overlapping portion.

また、前記蓋部材固定工程では、使用する回転ツールの先端が前記凹部の底面に達しない程度に設定して摩擦攪拌接合を行うことが好ましい。かかる製造方法によれば、蓋部材の過度の変形を防止しつつ蓋部材を本体に接合することができる。   In the lid member fixing step, it is preferable to perform friction stir welding by setting the tip of the rotary tool to be used so as not to reach the bottom surface of the recess. According to this manufacturing method, the lid member can be joined to the main body while preventing excessive deformation of the lid member.

また、前記蓋部材固定工程では、前記回転ツールを前記突合部に沿って一周させて摩擦攪拌接合を行うことが好ましい。また、前記蓋部材固定工程では、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成された塑性化領域の一部を重複させることが好ましい。かかる製造方法によれば、蓋部材を確実に密閉することができるため、水密性及び気密性を高めることができる。   In the lid member fixing step, it is preferable to perform friction stir welding by causing the rotary tool to make a round along the abutting portion. In the lid member fixing step, it is preferable that the movement trajectory of the rotating tool is overlapped at the abutting portion, and a part of the plasticized region formed by the friction stir welding is overlapped. According to this manufacturing method, since the lid member can be reliably sealed, water tightness and air tightness can be improved.

また、前記蓋部材固定工程では、前記回転ツールの進行方向右側に前記蓋部材が位置するように設定した場合は、前記回転ツールを右回転させ、前記回転ツールの進行方向左側に前記蓋部材が位置するように設定した場合は、前記回転ツールを左回転させることが好ましい。かかる製造方法によれば、回転ツールのシアー側が流路部から離間した部位に位置する。このため、空洞欠陥が発生したとしても、伝熱板の流路部から離間した部位(シアー側)に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることがない。   Further, in the lid member fixing step, when the lid member is set to be positioned on the right side in the traveling direction of the rotating tool, the rotating tool is rotated to the right, and the lid member is disposed on the left side in the traveling direction of the rotating tool. When set to be positioned, it is preferable to rotate the rotating tool counterclockwise. According to such a manufacturing method, the shear side of the rotary tool is located at a site separated from the flow path portion. For this reason, even if a cavity defect occurs, it will occur in a part (shear side) separated from the flow path part of the heat transfer plate, and the heat transport fluid will be difficult to leak to the outside, thus reducing the sealing performance of the joint part. I will not let you.

また、前記突合部は、平面視矩形を呈しており、前記蓋部材固定工程では、前記突合部の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することが好ましい。また、前記突合部は、平面視矩形を呈しており、前記蓋部材固定工程では、前記突合部の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することが好ましい。かかる製造方法によれば、蓋部材をバランスよく固定することができ、蓋部材の本体に対する位置決め精度が向上する。   In addition, the abutting portion has a rectangular shape in plan view, and in the lid member fixing step, after one diagonal of the abutting portion is first friction stir welded, the other diagonal is friction agitated. Is preferred. The abutting portion has a rectangular shape in plan view, and in the lid member fixing step, the intermediate portion of one opposite side of the abutting portion is friction stir welded, and then the intermediate portion of the other opposite side is friction stir welded. It is preferable. According to this manufacturing method, the lid member can be fixed with good balance, and the positioning accuracy of the lid member with respect to the main body is improved.

また、前記密封工程を行う前に、前記重ね合わせ部において回転ツールを移動させて前記本体と前記蓋部材とを仮接合する仮接合工程をさらに含むことが好ましい。蓋部材が大きい場合、蓋部材固定工程を行うと摩擦攪拌の熱収縮によって蓋部材の中央部分が浮き上がってしまい、本体と蓋部材との間に隙間ができてしまう可能性があった。しかし、かかる製造方法によれば、突合部の内側において、本体と蓋部材とを仮接合しておくことで、蓋部材固定工程の際の蓋部材の浮き上がりを防止又は矯正することができる。   Moreover, it is preferable to further include a temporary joining step of temporarily joining the main body and the lid member by moving a rotary tool in the overlapping portion before performing the sealing step. When the lid member is large, when the lid member fixing step is performed, the central portion of the lid member is lifted due to the heat shrinkage of the friction stirrer, and there is a possibility that a gap is formed between the main body and the lid member. However, according to this manufacturing method, the main body and the lid member are temporarily joined inside the abutting portion, whereby the lifting of the lid member during the lid member fixing step can be prevented or corrected.

また、回転ツールを用いて前記本体の裏面側から摩擦攪拌を行う矯正工程をさらに含むことが好ましい。かかる製造方法によれば、本体の表面側に行う摩擦攪拌によって熱収縮が発生し、伝熱板が反ったとしても、本体の裏面側からも摩擦攪拌によって熱収縮を発生させることにより伝熱板の平坦性を高めることができる。   Moreover, it is preferable to further include a correction step of performing frictional stirring from the back side of the main body using a rotating tool. According to this manufacturing method, even if heat shrinkage occurs due to frictional stirring performed on the front surface side of the main body and the heat transfer plate warps, the heat transfer plate is generated by causing heat shrinkage also from the back surface side of the main body by friction stirring. Can improve the flatness.

また、前記矯正工程では、前記本体及び蓋部材の表面側への摩擦攪拌による入熱量よりも、前記本体及び蓋部材の裏面側への摩擦攪拌による入熱量を少なく設定することが好ましい。また、前記矯正工程では、前記本体及び前記蓋部材の表面側に形成される塑性化領域の体積よりも、前記本体及び前記蓋部材の裏面側に形成される塑性化領域の体積を少なく設定することが好ましい。   Moreover, in the said correction process, it is preferable to set less heat input by the friction stirring to the back surface side of the said main body and a cover member than the heat input by the friction stirring to the surface side of the said main body and a cover member. In the correction step, the volume of the plasticized region formed on the back side of the main body and the lid member is set to be smaller than the volume of the plasticized region formed on the front surface side of the main body and the lid member. It is preferable.

要するに、摩擦攪拌接合された金属部材に残存する熱量は、残存熱量(J)=入熱量−抜熱量で現され、本体の表面側から行う摩擦攪拌と裏面側から行う摩擦攪拌の残存熱量が等しくなれば伝熱板が平坦になると考えられる。
かかる製造方法によれば、矯正工程における入熱量が、本体の表面側における入熱量よりも少なくなるため、接合された伝熱板に残存する熱量の不均衡を是正することができる。これにより、金属部材が反ってしまうのを防ぐことができ、金属部材の平坦性を高めることができる。
In short, the amount of heat remaining in the friction stir welded metal member is expressed by residual heat amount (J) = heat input amount-heat extraction amount, and the residual heat amount of friction stirring performed from the front side of the main body and friction stirring performed from the back side is equal. If it becomes, it will be thought that the heat transfer plate becomes flat.
According to this manufacturing method, the amount of heat input in the straightening process is smaller than the amount of heat input on the surface side of the main body, so that the imbalance of the amount of heat remaining on the joined heat transfer plates can be corrected. Thereby, it can prevent that a metal member warps and can improve the flatness of a metal member.

また、前記蓋部材固定工程及び前記密封工程で形成された前記本体の裏面側に凸となる反りを、前記本体の表面側に引張応力が発生するような曲げモーメントを作用させて矯正する矯正工程をさらに含むことが好ましい。かかる製造方法によれば、伝熱板の反りを是正して平坦性を高めることができる。   Further, a correction step of correcting the warp convex on the back side of the main body formed in the lid member fixing step and the sealing step by applying a bending moment that generates a tensile stress on the front side of the main body. It is preferable that it is further included. According to this manufacturing method, it is possible to improve the flatness by correcting the warp of the heat transfer plate.

また、本発明は、表面に凹設された凹部を備えた本体と、内部が中空に形成された凸部を備え前記本体に載置された蓋部材と、を有し、前記凹部の底面と前記凸部の内面との間に熱輸送流体の流路となる流路部を具備する伝熱板であって、前記凹部の底面と前記蓋部材の裏面との重ね合わせ部が摩擦攪拌接合により一体成形されており、前記流路部の周囲に摩擦攪拌接合によって形成された塑性化領域が形成されていることを特徴とする。   The present invention also includes a main body having a concave portion provided on the surface thereof, and a lid member provided with the convex portion having a hollow inside and placed on the main body, and a bottom surface of the concave portion. A heat transfer plate provided with a flow path portion serving as a flow path of a heat transport fluid between an inner surface of the convex portion, and an overlapping portion of the bottom surface of the concave portion and the back surface of the lid member is formed by friction stir welding. It is integrally formed, and a plasticized region formed by friction stir welding is formed around the flow path portion.

かかる構成によれば、本体に凹設された凹部の側壁と蓋部材の側面との突合部を摩擦攪拌するとともに、凹部の底面と蓋部材の裏面との重ね合わせ部に対して熱輸送流体が流れる凸部周りに摩擦攪拌接合を行うことにより、流路部周辺の微細な隙間を塞ぐことができる。これにより、水密性及び気密性の高い伝熱板を形成することができる。また、例えば蓋部材にプレス加工等して凸部を形成することにより、熱輸送流体の流れる流路部を比較的容易に形成することができる。つまり、本体側に流路部を形成する場合に比べて設計の自由度を高めることができる。   According to this configuration, the frictional stirring is performed on the abutting portion between the side wall of the concave portion and the side surface of the lid member provided in the main body, and the heat transport fluid is applied to the overlapping portion of the bottom surface of the concave portion and the back surface of the lid member. By performing friction stir welding around the flowing convex portion, it is possible to close a minute gap around the flow path portion. Thereby, a heat-transfer board with high watertightness and airtightness can be formed. Further, for example, by forming a convex portion by pressing or the like on the lid member, the flow path portion through which the heat transport fluid flows can be formed relatively easily. That is, the degree of freedom in design can be increased as compared with the case where the flow path portion is formed on the main body side.

本発明によれば、水密性及び気密性の高い伝熱板を提供することができる。   According to the present invention, it is possible to provide a heat transfer plate having high watertightness and airtightness.

第一実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 1st embodiment. 図1のI−I線断面図である。It is the II sectional view taken on the line of FIG. (a)は、小型回転ツール、(b)は、大型回転ツールを示した側面図である。(A) is the small rotation tool, (b) is the side view which showed the large rotation tool. 第一実施形態に係る蓋部材固定工程を示した図であって、(a)は、平面図、(b)は、(a)のII−II線断面図である。It is the figure which showed the cover member fixing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is the II-II sectional view taken on the line of (a). 第一実施形態に係る密閉工程を示した平面図である。It is the top view which showed the sealing process which concerns on 1st embodiment. 図5のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 第二実施形態に係る伝熱板を示した平面図である。It is the top view which showed the heat exchanger plate which concerns on 2nd embodiment. 密閉工程後を示した図であって、(a)は、斜視図、(b)は、断面図である。It is the figure which showed the sealing process, Comprising: (a) is a perspective view, (b) is sectional drawing. 第三実施形態に係る矯正工程を示した図であって、(a)は、斜視図、(b)は、平面図である。It is the figure which showed the correction process which concerns on 3rd embodiment, Comprising: (a) is a perspective view, (b) is a top view. 第三実施形態に係る矯正工程を説明するための模式断面図であって、(a)は、密閉工程、(b)は、矯正工程を示す。It is a schematic cross section for demonstrating the correction process which concerns on 3rd embodiment, Comprising: (a) is a sealing process, (b) shows a correction process. 第三実施形態に係る矯正工程を示した断面図である。It is sectional drawing which showed the correction process which concerns on 3rd embodiment. 仮接合工程を示した図であって、(a)は、平面図、(b)は、(a)のIV−IV線断面図である。It is the figure which showed the temporary joining process, Comprising: (a) is a top view, (b) is the IV-IV sectional view taken on the line of (a). 実施例を示した図であって、(a)は斜視図、(b)は平面図である。It is the figure which showed the Example, Comprising: (a) is a perspective view, (b) is a top view.

[第一実施形態]
本発明の第一実施形態に係る伝熱板の製造方法及び伝熱板について図面を適宜参照して詳細に説明する。まず、本発明に係る伝熱板の製造方法によって形成される伝熱板1について説明する。
[First embodiment]
A heat transfer plate manufacturing method and a heat transfer plate according to a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate. First, the heat transfer plate 1 formed by the method for manufacturing a heat transfer plate according to the present invention will be described.

伝熱板1は、図1及び図2に示すように、本体2に、蓋部材3を摩擦攪拌接合によって固定して形成される。伝熱板1は、例えば、伝熱板1の周囲に配置される装置を冷却するために使用される。   As shown in FIGS. 1 and 2, the heat transfer plate 1 is formed by fixing a lid member 3 to the main body 2 by friction stir welding. The heat transfer plate 1 is used, for example, for cooling a device arranged around the heat transfer plate 1.

本体2は、略直方体の外観を呈し、本実施形態ではアルミニウム又はアルミニウム合金等摩擦攪拌可能な部材から形成されている。本体2は、本体2の表面(上面)11に凹設された凹部14と、凹部14に開口する複数の供給部15及び排出部16とを有する。   The main body 2 has a substantially rectangular parallelepiped appearance, and in this embodiment, the main body 2 is formed of a member capable of friction stirring such as aluminum or an aluminum alloy. The main body 2 includes a concave portion 14 that is recessed in the surface (upper surface) 11 of the main body 2, and a plurality of supply portions 15 and discharge portions 16 that open to the concave portion 14.

本体2は、本実施形態ではアルミニウム又はアルミニウム合金から形成したが、他の金属部材で形成してもよい。また、本体2は、本実施形態では外観視略直方体としたが、多角柱体、円柱体等であってもよい。   The main body 2 is formed of aluminum or an aluminum alloy in this embodiment, but may be formed of other metal members. Moreover, although the main body 2 is a substantially rectangular parallelepiped in appearance in the present embodiment, it may be a polygonal cylinder, a cylinder, or the like.

凹部14は、蓋部材3が配置される部位である。凹部14は、本体2の表面11に形成されており、平面視矩形を呈する底面14aと、底面14aから垂直に立設する4つの側壁14bとを有する。側壁14bの高さは、蓋部材3の厚みと略同等に形成されている。   The recess 14 is a part where the lid member 3 is disposed. The recess 14 is formed on the surface 11 of the main body 2 and includes a bottom surface 14a that has a rectangular shape in plan view, and four side walls 14b that stand vertically from the bottom surface 14a. The height of the side wall 14 b is formed substantially equal to the thickness of the lid member 3.

供給部15及び排出部16は、本体2の裏面12から凹部14の底面14aまで連通する貫通孔である。供給部15は、本体2の外部から熱輸送流体を流入させる。一方、排出部16は、本体2から外部へ熱輸送流体を流出させる。本実施形態では、一対の供給部15及び排出部16を6群設けているが、個数は適宜設定すればよい。供給部15及び排出部16の断面形状は適宜設定すればよい。熱輸送流体は、本実施形態では水を用いるが、他の液体又は気体であってもよい。   The supply unit 15 and the discharge unit 16 are through holes that communicate from the back surface 12 of the main body 2 to the bottom surface 14 a of the recess 14. The supply unit 15 allows a heat transport fluid to flow from the outside of the main body 2. On the other hand, the discharge unit 16 causes the heat transport fluid to flow out from the main body 2 to the outside. In this embodiment, six groups of the pair of supply units 15 and discharge units 16 are provided, but the number may be set as appropriate. What is necessary is just to set the cross-sectional shape of the supply part 15 and the discharge part 16 suitably. The heat transport fluid uses water in the present embodiment, but may be other liquid or gas.

蓋部材3は、図1及び図2に示すように、本体2の凹部14に載置される部材であって、摩擦攪拌接合によって本体2と一体形成される。蓋部材3の表面31には、表面31から突出する複数の凸部34(本実施形態では6個)が所定の間隔をあけて形成されている。図2に示すように、凸部34の内部は中空に形成されている。凸部34は、平面視した場合に一対の供給部15及び排出部16を内部に含むように配設されている。   As shown in FIGS. 1 and 2, the lid member 3 is a member placed in the recess 14 of the main body 2 and is integrally formed with the main body 2 by friction stir welding. A plurality of convex portions 34 (six in this embodiment) projecting from the surface 31 are formed on the surface 31 of the lid member 3 with a predetermined interval. As shown in FIG. 2, the inside of the convex part 34 is formed hollow. The convex portion 34 is disposed so as to include a pair of the supply portion 15 and the discharge portion 16 in a plan view.

蓋部材3を本体2の凹部14に載置すると、蓋部材3の裏面32が凹部14の底面14aに当接する。また、蓋部材3の側面33が、凹部14の側壁14bに当接する。蓋部材3を本体2の凹部14に載置することで、凸部34の内面34gと凹部14の底面14aとで流路部36が形成される。流路部は、熱輸送流体が流れる部位である。   When the lid member 3 is placed in the recess 14 of the main body 2, the back surface 32 of the lid member 3 comes into contact with the bottom surface 14 a of the recess 14. Further, the side surface 33 of the lid member 3 comes into contact with the side wall 14 b of the recess 14. By placing the lid member 3 in the concave portion 14 of the main body 2, the flow path portion 36 is formed by the inner surface 34 g of the convex portion 34 and the bottom surface 14 a of the concave portion 14. The channel portion is a portion through which the heat transport fluid flows.

本実施形態では、凸部34は、平板状の金属部材をプレス成形によって形成しているが、他の方法で成形してもよい。凸部34の形状や個数は伝熱板1の用途に応じて適宜設定すればよい。   In this embodiment, although the convex part 34 forms the flat metal member by press molding, you may shape | mold by the other method. What is necessary is just to set suitably the shape and number of the convex parts 34 according to the use of the heat exchanger plate 1.

次に、後記する摩擦攪拌で用いる小型の回転ツール(以下、「小型回転ツールF」という。)及び小型回転ツールFよりも大型の回転ツール(以下、「大型回転ツールG」という。)について図3を用いて説明する。   Next, a small rotating tool (hereinafter referred to as “small rotating tool F”) and a rotating tool larger than the small rotating tool F (hereinafter referred to as “large rotating tool G”) used in friction stirring described later are illustrated. 3 will be described.

図3の(a)に示す小型回転ツールFは、工具鋼など本体2よりも硬質の金属材料からなり、円柱状を呈するショルダ部F1と、このショルダ部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。小型回転ツールFの寸法・形状は、本体2の材質や厚さ等に応じて設定すればよいが、少なくとも、大型回転ツールG(図3の(b)参照)よりも小型にする。このようにすると、大型回転ツールGを用いる場合よりも小さな負荷で摩擦攪拌接合を行うことが可能となるので、摩擦攪拌装置に掛かる負荷を低減することが可能となり、さらには、小型回転ツールFの移動速度(送り速度)を大型回転ツールGの移動速度よりも高速にすることも可能になるので、摩擦攪拌接合に要する作業時間やコストを低減することが可能となる。   The small rotary tool F shown in FIG. 3A is made of a metal material harder than the main body 2 such as tool steel, and is protruded from a shoulder portion F1 having a columnar shape and a lower end surface F11 of the shoulder portion F1. And a stirring pin (probe) F2. The size and shape of the small rotary tool F may be set according to the material, thickness, etc. of the main body 2, but at least smaller than the large rotary tool G (see FIG. 3B). In this way, it is possible to perform friction stir welding with a smaller load than when the large rotary tool G is used, so it is possible to reduce the load applied to the friction stirrer, and further to the small rotary tool F. Since the moving speed (feeding speed) can be made higher than the moving speed of the large rotary tool G, the working time and cost required for the friction stir welding can be reduced.

ショルダ部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。ショルダ部F1の外径Xの大きさに特に制限はないが、本実施形態では、大型回転ツールGのショルダ部G1の外径Yよりも小さくなっている。 The lower end surface F11 of the shoulder portion F1 is a portion that plays a role of pressing the plastic fluidized metal and preventing scattering to the surroundings, and is formed in a concave shape in this embodiment. There is no particular limitation on the size of the outer diameter X 1 of the shoulder portion F1, in this embodiment, is smaller than the outer diameter Y 1 of the shoulder portion G1 of a large rotating tool G.

攪拌ピンF2は、ショルダ部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。攪拌ピンF2の外径の大きさに特に制限はないが、本実施形態では、最大外径(上端径)Xが大型回転ツールGの攪拌ピンG2の最大外径(上端径)Yよりも小さく、かつ、最小外径(下端径)Xが攪拌ピンG2の最小外径(下端径)Yよりも小さくなっている。攪拌ピンF2の長さLは、蓋部材3の厚み(図2参照)よりも小さく形成されている。 The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2. There is no particular limitation on the size of the outer diameter of the stirring pin F2, in the present embodiment, than the maximum outer diameter of the maximum outer diameter of the stirring pin G2 of (upper diameter) X 2 is large rotating tool G (upper end diameter) Y 2 It is small, and is smaller than the minimum outer diameter minimum outer diameter (bottom diameter) X 3 is the stirring pin G2 (lower diameter) Y 3. The length L A of the stirring pin F2 is formed smaller than the thickness of the lid member 3 (see FIG. 2).

図3の(b)に示す大型回転ツールGは、工具鋼など本体2よりも硬質の金属材料からなり、円柱状を呈するショルダ部G1と、このショルダ部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えて構成されている。ショルダ部G1の下端面G11は、小型回転ツールFと同様に、凹面状に成形されている。攪拌ピンG2は、ショルダ部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。攪拌ピンG2の長さLは、蓋部材3の厚み(図2参照)よりも大きく形成されている。 The large rotary tool G shown in FIG. 3B is made of a metal material harder than the main body 2 such as tool steel, and is protruded from a shoulder portion G1 having a columnar shape and a lower end surface G11 of the shoulder portion G1. A stirring pin (probe) G2 is provided. The lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the small rotary tool F. The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and is formed into a tapered truncated cone shape in this embodiment. The length L B of the stirring pin G2 is larger than the thickness of the lid member 3 (see FIG. 2).

次に、伝熱板の製造方法について説明する。本実施形態に係る伝熱板の製造方法では、
(1)準備工程、(2)蓋部材固定工程、(3)密封工程を行う。
Next, the manufacturing method of a heat exchanger plate is demonstrated. In the manufacturing method of the heat transfer plate according to the present embodiment,
(1) A preparation step, (2) a lid member fixing step, and (3) a sealing step are performed.

(1)準備工程
準備工程では、本体2及び蓋部材3を成形する成形工程と、本体2及び蓋部材3に対して脱脂処理を行う脱脂工程と、本体2に蓋部材3を載置する蓋部材載置工程とを行う。
(1) Preparation Step In the preparation step, a molding step for forming the main body 2 and the lid member 3, a degreasing step for performing a degreasing process on the main body 2 and the lid member 3, and a lid for placing the lid member 3 on the main body 2 A member placing process is performed.

成形工程では、厚板の金属部材を切削加工及び穴あけ加工して本体2を成形する。また、薄板の金属部材にプレス加工を行って蓋部材3を成形する。本体2及び蓋部材3の成形方法は公知の成形方法で行えばよい。   In the molding process, the main body 2 is molded by cutting and drilling a thick metal member. Further, the lid member 3 is formed by pressing a thin metal member. The main body 2 and the lid member 3 may be molded by a known molding method.

脱脂工程では、本体2及び蓋部材3に付着した汚れを除去する。脱脂工程では、本体2及び蓋部材3を脱脂溶液に浸けて本体2及び蓋部材3に付着した油分や切削屑等を除去する。   In the degreasing step, dirt attached to the main body 2 and the lid member 3 is removed. In the degreasing step, the main body 2 and the lid member 3 are immersed in a degreasing solution to remove oil, cutting chips, and the like attached to the main body 2 and the lid member 3.

蓋部材載置工程では、本体2の凹部14に蓋部材3を載置する。図4の(a)に示すように、蓋部材3は、凹部14に隙間なく載置される。凹部14の側壁14bと蓋部材3の側面33とが突き合わされて突合部J1が形成される。また、図4の(b)に示すように、凹部14の底面14aと蓋部材3の裏面32とが重ね合わされて重ね合わせ部18が形成される。   In the lid member placement step, the lid member 3 is placed in the recess 14 of the main body 2. As shown in FIG. 4A, the lid member 3 is placed in the recess 14 without any gap. The side wall 14b of the recess 14 and the side surface 33 of the lid member 3 are abutted to form an abutting portion J1. As shown in FIG. 4B, the bottom surface 14a of the recess 14 and the back surface 32 of the lid member 3 are overlapped to form the overlapping portion 18.

(2)蓋部材固定工程
蓋部材固定工程では、図4の(a)及び(b)に示すように、突合部J1に沿って小型回転ツールFを移動させて本体2と蓋部材3とを接合する。
(2) Lid member fixing step In the lid member fixing step, as shown in FIGS. 4A and 4B, the main body 2 and the lid member 3 are moved by moving the small rotary tool F along the abutting portion J1. Join.

蓋部材固定工程では、図4の(a)に示すように、小型回転ツールFを右回転させつつ、突合部J1上に設定した開始位置s1に挿入した後、突合部J1に沿って移動させる。小型回転ツールFの押込み量、送り速度等は適宜設定すればよい。   In the lid member fixing step, as shown in FIG. 4 (a), the small rotary tool F is rotated clockwise and inserted into the start position s1 set on the abutting portion J1, and then moved along the abutting portion J1. . What is necessary is just to set suitably the pushing amount, feed rate, etc. of the small rotation tool F. FIG.

小型回転ツールFの移動について具体的に説明する。蓋部材固定工程では、小型回転ツールFの中心(軸芯)が突合部J1上を移動するように、突合部J1に沿って小型回転ツールFを移動させる。このとき、突合部J1の周囲の本体2と蓋部材3は、一体的に塑性流動化されて塑性化領域w1が形成される。「塑性化領域」とは、小型回転ツールFの摩擦熱によって加熱されて現に塑性化している状態と、小型回転ツールFが通り過ぎて常温に戻った状態の両方を含むこととする。   The movement of the small rotary tool F will be specifically described. In the lid member fixing step, the small rotary tool F is moved along the abutting portion J1 so that the center (axial core) of the small rotating tool F moves on the abutting portion J1. At this time, the main body 2 and the lid member 3 around the abutting portion J1 are integrally plastically fluidized to form a plasticized region w1. The “plasticization region” includes both a state in which the small rotating tool F is heated by frictional heat and is actually plasticized, and a state in which the small rotating tool F passes and returns to room temperature.

本実施形態の蓋部材固定工程では、突合部J1は、平面視略矩形を呈しており、突合部J1の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合する。このようにすれば、蓋部材3をバランスよく固定することができ、蓋部材3の本体2に対する位置決め精度が向上する。   In the lid member fixing step of the present embodiment, the abutting portion J1 has a substantially rectangular shape in plan view, and after the frictional stir welding of the intermediate portion of one opposite side of the abutting portion J1, the intermediate portion of the other opposite side is friction agitated. Join. In this way, the lid member 3 can be fixed with good balance, and the positioning accuracy of the lid member 3 with respect to the main body 2 is improved.

蓋部材固定工程では、図4の(b)に示すように、攪拌ピンF2の長さが蓋部材3の厚みよりも小さく、塑性化領域w1が凹部14の底面14aに接触しない程度に設定されている。摩擦攪拌接合を行うと、蓋部材3のような比較的薄い部材は、熱収縮によって変形する可能性が高い。したがって、攪拌ピンF2の長さ及び小型回転ツールFの押込み量を小さく設定することにより、蓋部材3の変形を防ぐことができる。   In the lid member fixing step, as shown in FIG. 4B, the length of the stirring pin F2 is set to be smaller than the thickness of the lid member 3 and the plasticized region w1 is not in contact with the bottom surface 14a of the recess 14. ing. When friction stir welding is performed, a relatively thin member such as the lid member 3 is highly likely to be deformed by heat shrinkage. Therefore, the deformation of the lid member 3 can be prevented by setting the length of the stirring pin F2 and the pushing amount of the small rotary tool F small.

本実施形態では、小型回転ツールFを右回転させつつ、進行方向右側に蓋部材3が位置するように摩擦攪拌接合を行う。つまり、塑性化領域w1のうち、シアー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が本体2に位置するように設定する。また、フロー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)が蓋部材3に位置するように設定する。   In the present embodiment, the friction stir welding is performed so that the lid member 3 is positioned on the right side in the traveling direction while rotating the small rotary tool F to the right. That is, in the plasticized region w1, the shear side (the relative speed of the outer periphery of the small rotary tool F with respect to the joined portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential speed on the outer periphery of the small rotary tool F Is set to be located on the main body 2. Further, the flow side (the side where the relative speed of the outer periphery of the small rotary tool F with respect to the joined portion is a value obtained by subtracting the magnitude of the moving speed from the magnitude of the tangential speed on the outer periphery of the small rotary tool F) is the lid member. Set to be located at 3.

シアー側では、メタルが強く攪拌されて高温軟化し、バリとなって排出され易いと考えられる。このため、進行方向左側はメタルが不足するので、トンネル状空洞欠陥が形成される可能性がある。一方、フロー側では、メタルの攪拌が比較的弱く、バリとなって排出され難いと考えられ、比較的緻密な塑性化領域が形成される。つまり、本実施形態によれば、シアー側が本体2に位置するように設定したため、仮に、摩擦攪拌によって空洞欠陥が発生したとしても、本体2側であって突合部J1よりも外側位置の離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   On the shear side, the metal is strongly stirred and softened at a high temperature, and it is thought that it is easily discharged as burrs. For this reason, there is a possibility that a tunnel-like cavity defect is formed because the left side of the traveling direction is short of metal. On the other hand, on the flow side, it is considered that the stirring of the metal is relatively weak and is not easily discharged as burrs, and a relatively dense plasticized region is formed. That is, according to the present embodiment, since the shear side is set to be located on the main body 2, even if a cavity defect occurs due to frictional stirring, the shear side is separated from the abutting portion J1 on the main body 2 side. Since the heat transport fluid is less likely to leak to the outside, the sealing performance of the joint portion is not deteriorated.

なお、蓋部材固定工程では、小型回転ツールFの攪拌ピンF2の長さを大きくしたり、小型回転ツールFを深く押し込んだりして、塑性化領域w1と底面14aとを接触させてもよい。また。本実施形態では、一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合するようにしたが、一方の対角同士を摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌接合してもよい。   In the lid member fixing step, the plasticizing region w1 and the bottom surface 14a may be brought into contact with each other by increasing the length of the stirring pin F2 of the small rotary tool F or by pressing the small rotary tool F deeply. Also. In the present embodiment, after the friction stir welding of the intermediate portion of one opposite side, the friction stir welding of the middle portion of the other opposite side is performed. They may be friction stir welded together.

また、本実施形態では、断続的に蓋部材固定工程を行ったが、連続して摩擦攪拌接合を行ってもよい。連続して摩擦攪拌接合を行う場合には、突合部J1における小型回転ツールFの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、小型回転ツールFを蓋部材3に対して右回りに移動させた場合は小型回転ツールFも右回転させる。また、小型回転ツールFを連続させて摩擦攪拌接合を行う場合は、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成された塑性化領域の一部を重複させることが好ましい。かかる製造方法によれば、蓋部材3を確実に密閉することができるため、水密性及び気密性を高めることができる。   Moreover, in this embodiment, although the cover member fixing process was intermittently performed, friction stir welding may be performed continuously. When performing friction stir welding continuously, the rotation direction (spinning direction) of the small rotary tool F at the abutting portion J1 is set to be the same direction as the moving direction (revolution direction). Specifically, when the small rotary tool F is moved clockwise with respect to the lid member 3, the small rotary tool F is also rotated to the right. In addition, when performing friction stir welding with a continuous small rotating tool F, the movement trajectory of the rotating tool is overlapped at the abutting portion, and a part of the plasticized region formed by the friction stir welding is overlapped. Is preferred. According to this manufacturing method, since the lid member 3 can be reliably sealed, water tightness and air tightness can be improved.

(3)密封工程
密封工程では、図5及び図6に示すように、凹部14の底面14aと、蓋部材3の裏面32とが重なり合う重ね合わせ部18に対して蓋部材3に形成された各凸部34周りに摩擦攪拌接合を行う。密封工程では、図5に示すように、本体2の長手方向の一方側に設定した開始位置SM1から終了位置EM1まで大型回転ツールGを移動させる第一密封工程、開始位置SM2から終了位置EM2まで大型回転ツールGを移動させる第二密封工程、開始位置SM3から終了位置EM3まで大型回転ツールGを移動させる第三密封工程を含む。第一密封工程乃至第三密封工程は、開始位置及び終了位置を除いては略同等の工程である。
(3) Sealing step In the sealing step, as shown in FIGS. 5 and 6, each of the lid members 3 formed on the overlapping portion 18 where the bottom surface 14 a of the recess 14 and the back surface 32 of the lid member 3 overlap each other. Friction stir welding is performed around the convex portion 34. In the sealing step, as shown in FIG. 5, the first sealing step of moving the large rotary tool G from the start position SM1 set on one side in the longitudinal direction of the main body 2 to the end position EM1, from the start position SM2 to the end position EM2 A second sealing step for moving the large rotary tool G and a third sealing step for moving the large rotary tool G from the start position SM3 to the end position EM3 are included. The first sealing process to the third sealing process are substantially equivalent processes except for the start position and the end position.

例えば、第二密封工程では、図5に示すように、本実施形態では、本体2の表面11に設定した開始位置SM2に大型回転ツールGを左回転させながら挿入して、下端面G11が(図3の(b)参照)本体2の表面11に接触したら蓋部材3に向けて大型回転ツールGを移動させる。突合部J1を横断したら、凸部34aに対して左回りに大型回転ツールGを移動させて、凸部34a周りに一周させる。さらに、大型回転ツールGを凸部34b側に移動させて、凸部34bに対して左回りに大型回転ツールGを移動させて、凸部34b周りに一周させる。大型回転ツールGが本体2の表面11に設定した終了位置EM2に達したら大型回転ツールGを本体2から離脱させる。大型回転ツールGを離脱させると、本体2の表面11には抜け穴が不可避的に形成されるが、当該抜け穴を肉盛溶接等により補修するのが好ましい。   For example, in the second sealing step, as shown in FIG. 5, in the present embodiment, the large rotary tool G is inserted into the start position SM <b> 2 set on the surface 11 of the main body 2 while rotating counterclockwise, and the lower end surface G <b> 11 is ( When the surface 11 of the main body 2 is contacted, the large rotary tool G is moved toward the lid member 3 (see FIG. 3B). When the abutting portion J1 is crossed, the large rotary tool G is moved counterclockwise with respect to the convex portion 34a to make a round around the convex portion 34a. Further, the large rotary tool G is moved to the convex portion 34b side, and the large rotary tool G is moved counterclockwise with respect to the convex portion 34b to make a round around the convex portion 34b. When the large rotary tool G reaches the end position EM2 set on the surface 11 of the main body 2, the large rotary tool G is detached from the main body 2. When the large-sized rotary tool G is detached, a through hole is inevitably formed on the surface 11 of the main body 2, but it is preferable to repair the through hole by overlay welding or the like.

図5及び図6に示すように、密封工程によれば、各凸部34周りに塑性化領域W1が形成される。図6に示すように、本実施形態では、大型回転ツールGの攪拌ピンG2が凹部14の底面14aに達するように摩擦攪拌接合を行うため、重ね合わせ部18を確実に摩擦攪拌することができる。   As shown in FIGS. 5 and 6, according to the sealing process, a plasticized region W <b> 1 is formed around each convex portion 34. As shown in FIG. 6, in this embodiment, since the friction stir welding is performed so that the stirring pin G2 of the large rotary tool G reaches the bottom surface 14a of the recess 14, the overlapping portion 18 can be reliably frictionally stirred. .

本実施形態では、大型回転ツールGを左回転させつつ、凸部34に対して左回りに移動させる。これにより、前記したシアー側は凸部34から離間した位置に形成される。つまり、仮に塑性化領域内に接合欠陥が形成されたとしても、凸部34の内部に形成される流路部36から離間した位置に形成されるため、熱輸送流体が漏れるのを防止することができる。ちなみに、大型回転ツールGを右回転させた場合は、凸部34に対して右回りに大型回転ツールGを移動させればよい。   In the present embodiment, the large rotary tool G is rotated counterclockwise while being rotated counterclockwise. Thereby, the above-described shear side is formed at a position separated from the convex portion 34. That is, even if a bonding defect is formed in the plasticized region, the heat transport fluid is prevented from leaking because it is formed at a position separated from the flow path portion 36 formed inside the convex portion 34. Can do. Incidentally, when the large rotation tool G is rotated to the right, the large rotation tool G may be moved clockwise with respect to the convex portion 34.

また、図6に示すように、密封工程では、大型回転ツールGの中心から凸部34の開口周縁35までの距離E1を、大型回転ツールGのショルダ部G1の半径よりも大きくなるように設定するのが好ましい。このようにすれば、凸部34の変形を防ぐとともに、流路部36の内部に塑性化領域W1が流入するのを防ぐことができる。   Further, as shown in FIG. 6, in the sealing step, the distance E1 from the center of the large rotating tool G to the opening peripheral edge 35 of the convex portion 34 is set to be larger than the radius of the shoulder portion G1 of the large rotating tool G. It is preferable to do this. In this way, it is possible to prevent the convex portion 34 from being deformed and to prevent the plasticized region W1 from flowing into the flow path portion 36.

また、図6に示すように、凹部14の側壁14bから凸部34の開口周縁35までの距離E2を大型回転ツールGのショルダ部G1の外径の2倍よりも大きく設定することが好ましい。このようにすれば、重ね合わせ部18の領域を十分に確保することができるため摩擦攪拌の作業性を高めることができる。   Further, as shown in FIG. 6, it is preferable to set a distance E2 from the side wall 14b of the concave portion 14 to the opening peripheral edge 35 of the convex portion 34 to be larger than twice the outer diameter of the shoulder portion G1 of the large rotary tool G. In this way, since the region of the overlapping portion 18 can be sufficiently secured, the workability of friction stirring can be improved.

なお、密封工程において、開始位置SM1乃至SM3及び終了位置EM1乃至EM3は、突合部J1よりも外側であれば、他の位置であっても構わない。また、本体2にタブ材を添設して当該タブ材に開始位置及び終了位置を設けてもよい。このようにすれば、伝熱板1に抜け穴が形成されるのを防ぐことができる。また、大型回転ツールGを挿入する開始位置SM1乃至SM3には、予め下穴を形成してもよい。このようにすれば、大型回転ツールGを挿入する際の圧入抵抗を低減することができる。   In the sealing step, the start positions SM1 to SM3 and the end positions EM1 to EM3 may be other positions as long as they are outside the abutting portion J1. Further, a tab material may be attached to the main body 2 and a start position and an end position may be provided on the tab material. If it does in this way, it can prevent that a loophole is formed in the heat exchanger plate 1. In addition, pilot holes may be formed in advance at the start positions SM1 to SM3 where the large rotary tool G is inserted. If it does in this way, press-fit resistance at the time of inserting large rotation tool G can be reduced.

以上説明した伝熱板1によれば、図6に示すように、本体2の凹部14の底面14aと、蓋部材3の凸部34の内面34gとで熱輸送流体が流れる流路部36が形成される。供給部15から流入した熱輸送流体は、流路部36内を流れた後、排出部16を介して本体2の外部に排出される。これにより、凸部34の周囲に配設された装置(図示省略)が冷却される。   According to the heat transfer plate 1 described above, as shown in FIG. 6, the flow path portion 36 through which the heat transport fluid flows between the bottom surface 14 a of the concave portion 14 of the main body 2 and the inner surface 34 g of the convex portion 34 of the lid member 3 is provided. It is formed. The heat transport fluid that has flowed in from the supply unit 15 flows through the flow path unit 36 and is then discharged to the outside of the main body 2 through the discharge unit 16. Thereby, the apparatus (illustration omitted) arrange | positioned around the convex part 34 is cooled.

伝熱板1によれば、突合部J1を摩擦攪拌接合するとともに、凹部14の底面14aと蓋部材3の裏面32との重ね合わせ部18に対して、熱輸送流体が流れる凸部34周りに摩擦攪拌接合を行うことにより、流路部36周辺の微細な隙間を塞ぐことができる。これにより、伝熱板1の水密性及び気密性を高めることができる。   According to the heat transfer plate 1, the abutting portion J <b> 1 is friction stir welded, and around the convex portion 34 where the heat transport fluid flows with respect to the overlapping portion 18 of the bottom surface 14 a of the concave portion 14 and the back surface 32 of the lid member 3. By performing the friction stir welding, a fine gap around the flow path portion 36 can be closed. Thereby, the watertightness and airtightness of the heat exchanger plate 1 can be improved.

また、伝熱板1は、各凸部34周りで塑性化領域W1がオーバーラップするように形成されるため、流路部36を確実に密閉することができる。   Further, since the heat transfer plate 1 is formed so that the plasticized region W1 overlaps around each convex portion 34, the flow path portion 36 can be reliably sealed.

[第二実施形態]
次に、本発明の第二実施形態について説明する。図7に示すように、第二実施形態に係る伝熱板1Aは、蓋部材固定工程及び密閉工程の接合ルート及び蓋部材3に形成された凸部の形状が第一実施形態と相違する。なお、第二実施形態については、第一実施形態と相違する点についてのみ詳細に説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. As shown in FIG. 7, the heat transfer plate 1 </ b> A according to the second embodiment is different from the first embodiment in the shape of the bonding route in the lid member fixing step and the sealing step and the convex portion formed in the lid member 3. In addition, about 2nd embodiment, only the point which is different from 1st embodiment is demonstrated in detail.

本実施形態に係る蓋部材3は、図7に示すように、平面視L字状の四つの凸部61,61・・・と、平面視直線状の三つの凸部62,63,63とを有する。凸部61,62,63は、蓋部材3の表面31に凸設されており内部が中空に形成されている。凸部61は、蓋部材3の各角部と凸部61の各角部とが対向するように配置されている。凸部62は、蓋部材3の中央を横断するように形成されている。凸部63は、凸部62の両脇に一対形成されている。凸部61,62,63は共に、内部に一対の供給部15及び排出部16を内包するように形成される。蓋部材3は、プレス成形により形成されている。   As shown in FIG. 7, the lid member 3 according to the present embodiment includes four convex portions 61, 61... Having a L shape in plan view, and three convex portions 62, 63, 63 having a linear shape in plan view, Have The convex portions 61, 62, and 63 are convexly provided on the surface 31 of the lid member 3, and the inside is formed to be hollow. The convex portion 61 is disposed so that each corner portion of the lid member 3 and each corner portion of the convex portion 61 face each other. The convex portion 62 is formed so as to cross the center of the lid member 3. A pair of convex portions 63 are formed on both sides of the convex portion 62. Both the convex portions 61, 62, and 63 are formed so as to include a pair of the supply portion 15 and the discharge portion 16 therein. The lid member 3 is formed by press molding.

本実施形態に係る蓋部材固定工程では、突合部J1に沿って小型回転ツールFを一周させて摩擦攪拌接合を行う。図7に示すように、蓋部材固定工程では、本体2の表面11上に設定した開始位置s1に小型回転ツールFを右回転させつつ挿入した後、突合部J1に沿って移動させる。小型回転ツールFが突合部J1に対して一周したら、突合部J1上に形成された塑性化領域w1上に沿って小型回転ツールFを所定の距離分オーバーラップさせて突合部J1の外部に設定された終了位置e1で小型回転ツールFを離脱させる。かかる工程によれば、本体2と蓋部材3とを接合するとともに突合部J1を確実に密閉することができる。また、小型回転ツールFを右回転させつつ、蓋部材3に対して右回りに移動させているため、仮に接合欠陥が形成されたとしても本体2側、つまり、流路部から遠い位置に形成されるため熱輸送流体の漏れを防ぐことができる。   In the lid member fixing step according to the present embodiment, friction stir welding is performed by causing the small rotary tool F to make a round along the abutting portion J1. As shown in FIG. 7, in the lid member fixing step, the small rotary tool F is inserted to the start position s <b> 1 set on the surface 11 of the main body 2 while rotating clockwise, and then moved along the abutting portion J <b> 1. When the small rotating tool F makes a round with respect to the abutting portion J1, the small rotating tool F is overlapped by a predetermined distance along the plasticized region w1 formed on the abutting portion J1, and set outside the abutting portion J1. The small rotary tool F is detached at the finished end position e1. According to this process, the main body 2 and the lid member 3 can be joined and the abutting portion J1 can be reliably sealed. Further, since the small rotary tool F is rotated clockwise with respect to the lid member 3, even if a bonding defect is formed, it is formed on the main body 2 side, that is, at a position far from the flow path portion. Therefore, leakage of the heat transport fluid can be prevented.

なお、蓋部材固定工程の開始位置s1及び終了位置e1は、本体2の周りにタブ材を添設して当該タブ材上に設定してもよい。   The start position s1 and the end position e1 of the lid member fixing step may be set on the tab material by attaching a tab material around the main body 2.

密閉工程では、図7に示すように、各凸部61,62,63周りに大型回転ツールGを移動させて重ね合わせ部18に対して摩擦攪拌接合を行う。例えば、凸部61に対しては、本体2の表面11に開始位置SM4及び終了位置EM4を設定し、大型回転ツールGを右回転させながら、凸部61に対して右回りに凸部61の形状に沿って大型回転ツールGの移動軌跡を設定する。密閉工程では、密閉工程で形成されたそれぞれの塑性化領域の一部が重複するように摩擦攪拌の開始位置SM4及び終了位置EM4を設定するのが好ましい。   In the sealing step, as shown in FIG. 7, the large rotating tool G is moved around the convex portions 61, 62, 63 to perform friction stir welding on the overlapping portion 18. For example, for the convex portion 61, the start position SM4 and the end position EM4 are set on the surface 11 of the main body 2, and the large rotational tool G is rotated clockwise, while the convex portion 61 is rotated clockwise with respect to the convex portion 61. The movement locus of the large rotating tool G is set along the shape. In the sealing process, it is preferable to set the friction stirring start position SM4 and the end position EM4 so that a part of each plasticized region formed in the sealing process overlaps.

同様に、凸部62では、本体2の表面11に開始位置SM5及び終了位置EM5を設定し、大型回転ツールGを右回転させながら凸部62の周囲に沿って右回りに大型回転ツールGの移動軌跡を設定する。凸部63では、蓋部材3の表面31に開始位置SM6及び終了位置EM6を設定し、大型回転ツールGを右回転させながら凸部63の周囲に沿って右回りに大型回転ツールGの移動軌跡を設定する。   Similarly, in the convex portion 62, the start position SM5 and the end position EM5 are set on the surface 11 of the main body 2, and the large rotary tool G is rotated clockwise around the convex portion 62 while rotating the large rotary tool G to the right. Set the movement trajectory. In the convex portion 63, the start position SM6 and the end position EM6 are set on the surface 31 of the lid member 3, and the large-sized rotary tool G moves in the clockwise direction along the periphery of the convex portion 63 while rotating the large-sized rotary tool G to the right. Set.

第二実施形態によれば、伝熱板1Aの蓋部材3に形成された各凸部61,62,63周りを大型回転ツールGで一周させて摩擦攪拌接合を行うため、各凸部61,62,63と本体2とで形成された流路部(図示省略)周りを確実に密閉することができる。   According to the second embodiment, each convex portion 61, 62, 63 around the convex portions 61, 62, 63 formed on the lid member 3 of the heat transfer plate 1 </ b> A is rotated around the large rotary tool G to perform friction stir welding. The periphery of the flow path portion (not shown) formed by 62 and 63 and the main body 2 can be reliably sealed.

ここで、例えば前記した特許文献1に示すように、従来、熱輸送流体が流れる流路部は本体の表面を切削加工して形成していた。具体的には、例えば、金属部材に対して径の異なる切削工具を複数回移動させて成形していたため、本体2の成形工程が煩雑であるとともに、本体2の材料のロスも大きかった。しかし、本実施形態によれば、蓋部材3をプレス加工により成形するため、複雑な形状の凸部であっても容易に成形することができる。また、本実施形態では、本体2には穴あけ加工のみで済むため材料のロスを少なくすることができる。   Here, for example, as shown in Patent Document 1 described above, conventionally, the flow path portion through which the heat transport fluid flows has been formed by cutting the surface of the main body. Specifically, for example, since a cutting tool having a different diameter is moved and molded with respect to a metal member a plurality of times, the molding process of the main body 2 is complicated and the material loss of the main body 2 is large. However, according to the present embodiment, since the lid member 3 is formed by pressing, even a convex portion having a complicated shape can be easily formed. Moreover, in this embodiment, since the main body 2 only needs to be drilled, material loss can be reduced.

[第三実施形態]
本発明の第三実施形態では、前記した第一実施形態の各工程を行った後、さらに、矯正工程を行う点で第一実施形態と相違する。矯正工程は、伝熱板1を製造した際に、伝熱板1が熱収縮によって反った(歪んだ)場合に適宜行う。本実施形態では、密封工程までの工程は、第一実施形態と同等であるため、矯正工程について詳細に説明する。なお、伝熱板1の表面を表面Za、裏面を裏面Zbとする。
[Third embodiment]
In 3rd embodiment of this invention, after performing each process of above-described 1st embodiment, it is different from 1st embodiment by the point which performs a correction process further. The straightening process is appropriately performed when the heat transfer plate 1 is warped (distorted) by heat shrinkage when the heat transfer plate 1 is manufactured. In the present embodiment, the steps up to the sealing step are the same as those in the first embodiment, and therefore the correction step will be described in detail. In addition, let the surface of the heat exchanger plate 1 be the surface Za, and let the back surface be the back surface Zb.

図8の(a)及び(b)に示すように、第一実施形態では、伝熱板1の表面Za側からのみ摩擦攪拌接合を行ったため、表面Zaに形成された塑性化領域W1,w1が熱収縮すると、伝熱板1は、表面Za側に凹状となるように反って(歪んで)しまう可能性がある。   As shown in FIGS. 8A and 8B, in the first embodiment, since the friction stir welding is performed only from the surface Za side of the heat transfer plate 1, the plasticized regions W1, w1 formed on the surface Za When the heat shrinks, the heat transfer plate 1 may be warped (distorted) so as to be concave on the surface Za side.

矯正工程では、かかる伝熱板1の反りを是正することを目的として行う。矯正工程は、摩擦攪拌を利用して矯正する摩擦攪拌矯正工程と、伝熱板1に曲げ応力を付与して矯正する曲げ矯正工程のいずれかを行えばよい。   In the correction process, the heat transfer plate 1 is corrected for the purpose of correcting the warp. The correction process may be performed by either a friction stirring correction process that corrects using friction stirring or a bending correction process that corrects the heat transfer plate 1 by applying a bending stress.

(摩擦攪拌矯正工程)
摩擦攪拌矯正工程では、図9に示すように、伝熱板1の裏面Zb(本体2の裏面12)側から摩擦攪拌を行って、裏面Zb側にも熱収縮を発生させて伝熱板1の反りを是正する。摩擦攪拌矯正工程は、準備工程と、摩擦攪拌を行う摩擦攪拌矯正工程とを含む。
(Friction stir correction process)
In the friction stir correction step, as shown in FIG. 9, friction stir is performed from the back surface Zb (the back surface 12 of the main body 2) side of the heat transfer plate 1, and heat contraction is also generated on the back surface Zb side to generate the heat transfer plate 1. Correct the warpage. The friction stir correction process includes a preparation process and a friction stir correction process for performing friction stir.

準備工程では、図9の(a)に示すように、伝熱板1の表裏を逆にした後、伝熱板1の表面Za(図8の(b)参照)側に土台Dを配置する土台配置工程と、本体2の側面13にタブ材51を添設するタブ材配置工程とを含む。   In the preparation step, as shown in FIG. 9A, the front and back of the heat transfer plate 1 are reversed, and then the base D is disposed on the surface Za (see FIG. 8B) side of the heat transfer plate 1. A base arrangement step and a tab material arrangement step of attaching the tab material 51 to the side surface 13 of the main body 2.

土台配置工程では、伝熱板1の表裏を逆にするとともに、伝熱板1の外縁と同等の形状からなり枠状に形成された金属製の土台Dに伝熱板1を配置する。土台Dの厚さは少なくとも伝熱板1の凸部34の高さよりも大きく形成する。これにより、伝熱板1を裏返した場合に、凸部34(図8参照)が例えば摩擦攪拌装置のテーブルに接触するのを防止することができる。   In the base arrangement process, the heat transfer plate 1 is reversed, and the heat transfer plate 1 is arranged on a metal base D having a shape equivalent to the outer edge of the heat transfer plate 1 and formed in a frame shape. The thickness of the base D is formed to be at least larger than the height of the convex portion 34 of the heat transfer plate 1. Thereby, when the heat exchanger plate 1 is turned over, it can prevent that the convex part 34 (refer FIG. 8) contacts the table of a friction stirrer, for example.

タブ材配置工程では、図9の(a)に示すように、本体2の側面13にタブ材51を溶接により接合する。タブ材51の表面は、伝熱板1の裏面Zbと面一に形成する。タブ材51は、摩擦攪拌矯正工程の際に、摩擦攪拌の開始位置及び終了位置を設定する部材である。なお、タブ材は必ずしも配置する必要は無く、伝熱板1の裏面Zb内に開始位置及び終了位置を設定してもよい。   In the tab material arranging step, as shown in FIG. 9A, the tab material 51 is joined to the side surface 13 of the main body 2 by welding. The surface of the tab material 51 is formed flush with the back surface Zb of the heat transfer plate 1. The tab material 51 is a member that sets a start position and an end position of friction stirring in the friction stirring correction process. Note that the tab material is not necessarily arranged, and the start position and the end position may be set in the back surface Zb of the heat transfer plate 1.

摩擦攪拌矯正工程では、図9の(a)及び(b)に示すように、小型回転ツールFを用いて伝熱板1の裏面Zbに対して摩擦攪拌を行う。摩擦攪拌矯正工程のルートは、本実施形態では、中心地点j’を囲み、かつ、摩擦攪拌矯正工程によって形成される塑性化領域W3が中心地点j’に対して放射状となるように設定する。   In the friction stir correction process, as shown in FIGS. 9A and 9B, friction stir is performed on the back surface Zb of the heat transfer plate 1 using a small rotary tool F. In this embodiment, the route of the friction stir correction process is set so as to surround the center point j 'and the plasticized region W3 formed by the friction stir correction process is radial with respect to the center point j'.

摩擦攪拌矯正工程では、図9の(a)に示すように、タブ材51の表面に開始位置SK1を設定し、小型回転ツールFの攪拌ピンをタブ材51に押し込む(押圧する)。小型回転ツールFのショルダ部の一部がタブ材51に接触したら、伝熱板1に向かって小型回転ツールFを相対移動させる。そして、伝熱板1の裏面Zbにおける地点f’、地点a’、地点c’及び地点h’付近で平面視凸状となるとともに、地点g‘、地点d’、地点b’及び地点e’付近で平面視凹状となるように小型回転ツールFを相対移動させて摩擦攪拌を行う。図9の(b)に示すように、伝熱板1の中心線(一点鎖線)に対して線対称となるように塑性化領域W3が形成される。本実施形態では、開始位置SK1と終了位置EK1をタブ材51に設け、一筆書きの要領で摩擦攪拌を行う。これにより、摩擦攪拌を効率よく行うことができる。摩擦攪拌矯正工程が終了したら、タブ材51を切除する。摩擦攪拌矯正工程では、伝熱板1の表面Za側に行った摩擦攪拌の入熱量よりも、伝熱板1の裏面Zb側に行った摩擦攪拌の入熱量が小さくなるように摩擦攪拌を行う。   In the friction stir correction step, as shown in FIG. 9A, the start position SK1 is set on the surface of the tab material 51, and the stir pin of the small rotary tool F is pushed (pressed) into the tab material 51. When a part of the shoulder portion of the small rotating tool F comes into contact with the tab material 51, the small rotating tool F is relatively moved toward the heat transfer plate 1. And in the back surface Zb of the heat-transfer plate 1, it becomes convex in plan view near the point f ′, the point a ′, the point c ′, and the point h ′, and the point g ′, the point d ′, the point b ′, and the point e ′. Friction stirring is performed by relatively moving the small rotary tool F so as to have a concave shape in plan view in the vicinity. As shown in FIG. 9B, the plasticized region W <b> 3 is formed so as to be line symmetric with respect to the center line (one-dot chain line) of the heat transfer plate 1. In the present embodiment, a start position SK1 and an end position EK1 are provided on the tab material 51, and friction stirring is performed in the manner of one stroke. Thereby, friction stirring can be performed efficiently. When the friction stir correction process is completed, the tab material 51 is cut out. In the friction stir correction process, the friction stir is performed so that the heat input of the friction stirrer performed on the back surface Zb side of the heat transfer plate 1 is smaller than the heat input of the friction stirrer performed on the surface Za side of the heat transfer plate 1. .

図10の(a)は、第三実施形態に係る矯正工程を説明するための模式断面図であって、(a)は、密閉工程、(b)は、矯正工程を示す。
前記した密閉工程では、図10の(a)に示すように、伝熱板1の表面Za側において、高速回転した大型回転ツールGが挿入されると、伝熱板1内に摩擦熱が伝達される(入熱)。この際、伝熱板1の裏面Zbは摩擦攪拌装置のテーブルHに密接しているため、摩擦熱の一部は、矢印Nに示すように本体2の裏面12の全体からテーブルHに放出(抜熱)される。
FIG. 10A is a schematic cross-sectional view for explaining a correction process according to the third embodiment, where FIG. 10A shows a sealing process and FIG. 10B shows a correction process.
In the sealing process described above, as shown in FIG. 10A, when a large rotating tool G rotated at high speed is inserted on the surface Za side of the heat transfer plate 1, frictional heat is transferred into the heat transfer plate 1. (Heat input). At this time, since the back surface Zb of the heat transfer plate 1 is in close contact with the table H of the friction stirrer, a part of the frictional heat is released from the entire back surface 12 of the main body 2 to the table H as indicated by an arrow N ( (Heat is removed).

ここで、第三実施形態に係る摩擦攪拌矯正工程では、伝熱板1の表面Za側で行った摩擦攪拌と同等の入熱量で裏面Zbに対しても摩擦攪拌を行えば、伝熱板1の反りが矯正するとも考えられる。しかし、図10の(b)に示すように、前記した密閉工程を終えると、伝熱板1に熱収縮が発生して伝熱板1が裏面Zb側に凸となるように反っているため、伝熱板1の表裏を逆にすると、伝熱板1の表面Zaと土台Dとが当接部U,Uのみで当接する。摩擦攪拌矯正工程時には、当接部U,Uでしか熱が放出(抜熱)されないため、摩擦攪拌矯正工程で伝熱板1の表面Za側と同じ入熱量で摩擦攪拌を行うと、矢印N’に示すように熱が放出されにくく伝熱板1の内部に熱が残存することになる。これにより、伝熱板1の表裏で同等の入熱量で摩擦攪拌を行うと、伝熱板1の裏面Zb側による摩擦攪拌での残存熱量が大きくなってしまい伝熱板1の反りが戻りすぎてしまう。   Here, in the friction stir correction process according to the third embodiment, if the friction stir is performed on the back surface Zb with the same heat input as the friction stir performed on the front surface Za side of the heat transfer plate 1, the heat transfer plate 1. It is considered that the warpage of the sword is corrected. However, as shown in FIG. 10B, when the above-described sealing step is completed, heat shrinkage occurs in the heat transfer plate 1 and the heat transfer plate 1 warps so as to protrude toward the back surface Zb. When the front and back of the heat transfer plate 1 are reversed, the surface Za of the heat transfer plate 1 and the base D abut only at the abutting portions U and U. During the friction stir correction process, heat is released (heat removal) only at the contact portions U, U. Therefore, when the friction stir process is performed with the same heat input as the surface Za side of the heat transfer plate 1 in the friction stir correction process, the arrow N As shown in ', heat is hardly released and heat remains in the heat transfer plate 1. Thereby, if friction stirring is performed on the front and back of the heat transfer plate 1 with the same amount of heat input, the residual heat amount due to friction stirring on the back surface Zb side of the heat transfer plate 1 becomes large, and the warpage of the heat transfer plate 1 returns too much. End up.

つまり、摩擦攪拌接合された伝熱板1に残存する熱量は、残存熱量(J)=入熱量−抜熱量で現され、伝熱板1の表面Za側から行う摩擦攪拌と裏面Zb側から行う摩擦攪拌の残存熱量が等しくなれば伝熱板1が平坦になると考えられる。
したがって、第三実施形態に係る矯正工程では、伝熱板1の表面Za側に行った摩擦攪拌(蓋部材固定工程及び密閉工程)の入熱量よりも、伝熱板1の裏面Zb側に行う摩擦攪拌(摩擦攪拌矯正工程)の入熱量を少なく設定する。摩擦攪拌矯正工程での入熱量を少なくすることで、伝熱板1の表面Za側から行った摩擦攪拌によって伝熱板1に残存する熱量と、伝熱板1の裏面Zbから行った摩擦攪拌によって伝熱板1に残存する熱量の均衡を図ることができる。これにより、伝熱板1の反りが戻りすぎることなく、伝熱板1の平坦性を高めることができる。
That is, the amount of heat remaining on the heat transfer plate 1 subjected to the friction stir welding is expressed as the residual heat amount (J) = the amount of heat input−the amount of heat removed, and is performed from the friction agitation performed from the surface Za side of the heat transfer plate 1 and the back surface Zb side. It is considered that the heat transfer plate 1 becomes flat if the residual heat amount of friction stirring becomes equal.
Therefore, in the correction process according to the third embodiment, the heat input is performed on the back surface Zb side of the heat transfer plate 1 rather than the heat input amount of the friction agitation (the lid member fixing step and the sealing step) performed on the surface Za side of the heat transfer plate 1. Set the amount of heat input for friction stir (friction stir correction process) small. By reducing the amount of heat input in the friction stir correction step, the amount of heat remaining on the heat transfer plate 1 by the friction stir performed from the surface Za side of the heat transfer plate 1 and the friction stir performed from the back surface Zb of the heat transfer plate 1 Thus, the amount of heat remaining in the heat transfer plate 1 can be balanced. Thereby, the flatness of the heat exchanger plate 1 can be improved without the warp of the heat exchanger plate 1 returning too much.

なお、本実施形態では、小型回転ツールFの軌跡、即ち、塑性化領域W3の形状が、中心地点j’を囲み、かつ、中心地点j’に対して略放射状となるように形成したが、これに限定されるものではない。伝熱板1の反り具合に応じて、摩擦攪拌矯正工程のルートを適宜設定すればよい。   In the present embodiment, the trajectory of the small rotary tool F, that is, the shape of the plasticized region W3 is formed so as to surround the central point j ′ and be substantially radial with respect to the central point j ′. It is not limited to this. What is necessary is just to set the route | root of a friction stirring correction process suitably according to the curvature state of the heat exchanger plate 1. FIG.

本実施形態の摩擦攪拌矯正工程では、伝熱板1の表面Za側で用いる大型回転ツールGよりも小型の小型回転ツールFを用いて摩擦攪拌を行うことで、入熱量を少なく設定したが、例えば、伝熱板1の裏面Zbでの回転ツールの移動軌跡を短くしてもよい。言い換えると、伝熱板1の表面Za側に形成される塑性化領域の体積の和よりも、伝熱板1の裏面Zb側に形成される塑性化領域の体積の和を少なく設定することにより、入熱量を調整してもよい。   In the friction stir correction process of the present embodiment, the amount of heat input is set to be small by performing friction stir using a small rotating tool F smaller than the large rotating tool G used on the surface Za side of the heat transfer plate 1. For example, the movement trajectory of the rotating tool on the back surface Zb of the heat transfer plate 1 may be shortened. In other words, by setting the sum of the volume of the plasticized region formed on the back surface Zb side of the heat transfer plate 1 to be smaller than the sum of the volume of the plasticized region formed on the surface Za side of the heat transfer plate 1. The heat input may be adjusted.

(曲げ矯正工程)
曲げ矯正工程では、伝熱板1に対して物理的に応力を作用させて伝熱板1の反りを矯正する。曲げ矯正工程では、伝熱板1の裏面Zbから、表面Za側に引張応力が発生するような曲げモーメントを作用させて、摩擦攪拌により形成された伝熱板1の反りを矯正する。矯正工程では、以下に記すプレス矯正、衝打矯正及びロール矯正の三種類の方法からいずれか一以上の方法を選択して行えばよい。まず、プレス矯正について説明する。
(Bending correction process)
In the bending correction process, the warpage of the heat transfer plate 1 is corrected by applying a physical stress to the heat transfer plate 1. In the bending correction process, a bending moment that generates a tensile stress on the surface Za side is applied from the back surface Zb of the heat transfer plate 1 to correct the warp of the heat transfer plate 1 formed by friction stirring. In the correction process, one or more methods may be selected from the following three methods: press correction, impact correction, and roll correction. First, press correction will be described.

(プレス矯正)
前記した密封工程が終了したら、摩擦攪拌で発生したバリを除去するとともに、図11に示すように、伝熱板1の裏面Zbが上方を向くように裏返し、土台Dの上に載置する。公知のプレス装置Pを用いて、伝熱板1の裏面Zbの中心地点に対して押圧する。プレス装置Pによって伝熱板1に圧力が加えられると、ポンチPaが伝熱板1を下側に押し、土台Dが伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。
(Press correction)
When the sealing process described above is completed, burrs generated by frictional stirring are removed, and as shown in FIG. 11, the heat transfer plate 1 is turned over so that the back surface Zb faces upward and placed on the base D. Using a known press device P, the heat transfer plate 1 is pressed against the center point of the back surface Zb. When pressure is applied to the heat transfer plate 1 by the press device P, the punch Pa pushes the heat transfer plate 1 downward, and the base D pushes both ends of the heat transfer plate 1 upward. A bending moment acts. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.

プレス装置の押圧力は、伝熱板1の厚みや材料によって適宜設定すればよいが、伝熱板1の表面Za側が下に凸となって、表面Zaに引張応力が発生するような曲げモーメントを作用させることが好ましい。   The pressing force of the pressing device may be appropriately set depending on the thickness and material of the heat transfer plate 1, but a bending moment that causes the surface Za of the heat transfer plate 1 to protrude downward and generate a tensile stress on the surface Za. It is preferable to act.

また、プレス矯正では、中心地点だけでなく伝熱板1の裏面Zbの他の地点に対しても押圧を行ってもよい。伝熱板1の反り具合に応じてバランスよく押圧することで平坦性をより高めることができる。また、伝熱板1とポンチPaとの間に例えば平板状の補助部材を設けてもよい。   In press correction, not only the central point but also other points on the back surface Zb of the heat transfer plate 1 may be pressed. Flatness can be further improved by pressing in a balanced manner according to the warpage of the heat transfer plate 1. Further, for example, a flat auxiliary member may be provided between the heat transfer plate 1 and the punch Pa.

(衝打矯正)
次に、衝打矯正について説明する。衝打矯正については、プレス矯正と近似するため、
具体的な図示は省略する。衝打矯正とは、例えばハンマーなどの衝打具を用いて伝熱板に発生した反りを矯正することをいう。衝打矯正は、プレス装置Pに替えてハンマー等の衝打具で伝熱板1を衝打する点を除いては、プレス矯正と略同等である。
(Shock correction)
Next, hit correction will be described. For impact correction, it approximates press correction.
Specific illustration is omitted. The hit correction means correcting a warp generated in the heat transfer plate using a hitting tool such as a hammer. The hit correction is substantially the same as the press correction except that the heat transfer plate 1 is hit with a hitting tool such as a hammer instead of the press device P.

衝打矯正は、プレス矯正と比べると、プレス装置等を準備する手間が省けるため、作業を容易に行うことができる。また、衝打矯正は、作業が容易であるため伝熱板1が小さい場合や薄い場合に有効である。なお、衝打矯正を終了した後は、衝打により発生したバリを除去することが好ましい。   The impact correction can be easily performed because it saves time and labor for preparing a press device or the like, compared with the press correction. Further, the impact correction is effective when the heat transfer plate 1 is small or thin because the work is easy. In addition, it is preferable to remove the burr generated by the hit after the hit correction.

(ロール矯正)
次に、ロール矯正について説明する。ロール矯正については、公知のロール矯正を行うため具体的な図示は省略する。伝熱板の表裏に一対の平板状の補助部材を当接させた後、一対の補助部材を挟むようにして一対のロール状部材を移動させて矯正する。ロール状部材を移動させると伝熱板には曲げモーメントが作用して、伝熱板の表面側に引張応力を発生させるため伝熱板が強制的に撓ませられる。この移動を繰り返して往復動させることによって、反りを矯正していくことが可能になる。
(Roll straightening)
Next, roll correction will be described. About roll correction, since it performs well-known roll correction, specific illustration is abbreviate | omitted. After making a pair of flat auxiliary members contact the front and back of the heat transfer plate, the pair of roll members are moved so as to sandwich the pair of auxiliary members for correction. When the roll-shaped member is moved, a bending moment acts on the heat transfer plate, and a tensile stress is generated on the surface side of the heat transfer plate, so that the heat transfer plate is forcibly bent. By reciprocating this movement repeatedly, it becomes possible to correct the warp.

以上説明した第三実施形態によれば、伝熱板1を製造した際に、摩擦攪拌による熱収縮によって伝熱板1に反りが発生したとしても、当該反りを是正して伝熱板1の平坦性を高めることができる。   According to the third embodiment described above, even when the heat transfer plate 1 is warped due to thermal contraction due to friction stirring when the heat transfer plate 1 is manufactured, the warpage is corrected and the heat transfer plate 1 of the heat transfer plate 1 is corrected. Flatness can be improved.

[第四実施形態]
次に、本発明の第四実施形態について説明する。第四実施形態は、前記した蓋部材固定工程を行う前に、本体2と蓋部材3とを接合する仮接合工程を行う点で第一実施形態と相違する。第四実施形態は、仮接合工程を行う点を除いては、第一実施形態と同等であるため、相違点のみ説明する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. The fourth embodiment is different from the first embodiment in that a temporary joining step for joining the main body 2 and the lid member 3 is performed before the lid member fixing step described above. The fourth embodiment is the same as the first embodiment except that the temporary bonding step is performed, and therefore only the differences will be described.

図12に示すように、前記した蓋部材載置工程を行って本体2に蓋部材3を載置したら仮接合工程を行う。仮接合工程は、摩擦攪拌接合によって本体2に蓋部材3を仮接合する工程である。   As shown in FIG. 12, when the lid member placement step is performed and the lid member 3 is placed on the main body 2, a temporary joining step is performed. The temporary joining step is a step of temporarily joining the lid member 3 to the main body 2 by friction stir welding.

仮接合工程では、図12の(a)及び(b)に示すように、蓋部材3の表面31の上方から適所に大型回転ツールGを押し込んで、凹部14の底面14aと蓋部材3の裏面32との重ね合わせ部18に対して摩擦攪拌接合を行う。仮接合工程は、比較的短いルートを設定して摩擦攪拌接合を行う。仮接合工程によって本実施形態では4箇所の塑性化領域W5が形成される。本実施形態では、蓋部材3の上方から四箇所に仮接合工程を行ったが、ルートや接合箇所数は適宜設定すればよい。   In the temporary joining step, as shown in FIGS. 12A and 12B, the large rotary tool G is pushed into an appropriate position from above the surface 31 of the lid member 3, and the bottom surface 14 a of the recess 14 and the back surface of the lid member 3. Friction stir welding is performed on the overlapping portion 18 with 32. In the temporary joining step, friction stir welding is performed by setting a relatively short route. In the present embodiment, four plasticized regions W5 are formed by the temporary joining step. In the present embodiment, the temporary bonding process is performed at four locations from above the lid member 3, but the route and the number of bonding locations may be set as appropriate.

例えば、蓋部材3が大きい場合、前記した蓋部材固定工程を行うと摩擦攪拌の熱収縮によって蓋部材3の中央部分が浮き上がってしまい、本体2と蓋部材3との間に隙間ができてしまう可能性がある。しかし、仮接合工程によれば、突合部J1の内側において、本体2と蓋部材3とを仮接合しておくことで、蓋部材固定工程の際の蓋部材3の浮き上がりを防止又は矯正することができる。なお、仮接合工程は、本実施形態では、蓋部材固定工程を行う前に行ったが、蓋部材固定工程を行った後に行ってもよい。   For example, when the lid member 3 is large, when the lid member fixing step described above is performed, the central portion of the lid member 3 is lifted by the thermal contraction of the friction stirrer, and a gap is formed between the main body 2 and the lid member 3. there is a possibility. However, according to the temporary joining step, the body 2 and the lid member 3 are temporarily joined inside the abutting portion J1, thereby preventing or correcting the lifting of the lid member 3 during the lid member fixing step. Can do. In addition, although the temporary joining process was performed before performing the lid member fixing process in this embodiment, you may perform it after performing the lid member fixing process.

以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、密閉工程における大型回転ツールGの移動ルートは、前記したルートに限定されず他のルートであってもよい。   Although the embodiments of the present invention have been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, the movement route of the large-sized rotary tool G in the sealing process is not limited to the above-described route, and may be another route.

[実施例]
次に、本発明の実施例について説明する。本発明に係る実施例は、図13の(a)及び(b)に示すように平面視正方形の金属部材200の表面Za及び裏面Zbにそれぞれ3つの円を描くように摩擦攪拌を行い、表面Za側で発生した反りの変形量と、裏面Zb側で発生した反りの変形量を測定した。表面Za側で発生した反りの変形量の値と、裏面Zb側で発生した反りの変形量の値が近いほど、金属部材200の平坦性が高いことを示す。
[Example]
Next, examples of the present invention will be described. In the embodiment according to the present invention, as shown in FIGS. 13 (a) and 13 (b), friction stirring is performed so that three circles are drawn on each of the front surface Za and the rear surface Zb of the metal member 200 having a square shape in plan view. The amount of warpage deformation generated on the Za side and the amount of warpage deformation generated on the back surface Zb side were measured. It shows that the flatness of the metal member 200 is so high that the value of the deformation amount of the curvature which generate | occur | produced in the surface Za side and the value of the deformation amount of the curvature which generate | occur | produced in the back surface Zb side are close.

金属部材200は、平面視500mm×500mmの直方体であって、厚みが30mm、60mmの二種類の部材を用いてそれぞれ測定を行った。金属部材200の素材は、JIS規格の5052アルミニウム合金である。   The metal member 200 was a rectangular parallelepiped having a plan view of 500 mm × 500 mm, and the measurement was performed using two types of members having a thickness of 30 mm and 60 mm. The material of the metal member 200 is JIS standard 5052 aluminum alloy.

摩擦攪拌の軌跡である3つの円は、金属部材200の中心に設定した地点j又は地点j’を中心とし、表面Za及び裏面Zbともに半径r1=100mm(以下、小円ともいう)、r2=150mm(以下、中円ともいう)、r3=200mm(以下、大円ともいう)に設定した。摩擦攪拌の順序は、小円、中円、大円の順番で行った。   The three circles that are the locus of friction stirring are centered on the point j or the point j ′ set at the center of the metal member 200, and both the surface Za and the back surface Zb have a radius r1 = 100 mm (hereinafter also referred to as a small circle), r2 = It was set to 150 mm (hereinafter also referred to as middle circle) and r3 = 200 mm (hereinafter also referred to as great circle). Friction stirring was performed in the order of small circle, middle circle, and great circle.

回転ツールは、表面Za側及び裏面Zb側ともに同じ大きさの回転ツールを用いた。回転ツールのサイズは、ショルダ部の外径が20mm、攪拌ピンの長さが10mm、攪拌ピンの根元の大きさ(最大径)が9mm、攪拌ピンの先端の大きさ(最小径)が6mmのものを用いた。回転ツールの回転数は、600rpm、送り速度は、300mm/minに設定した。また、表面Za側及び裏面Zb側ともに回転ツールの押込み量は一定に設定した。図13に示すように、表面Za側において形成された塑性化領域を小円から大円に向けてそれぞれ塑性化領域W21乃至塑性化領域W23とする。また、裏面Zb側において形成された塑性化領域を小円から大円に向けて塑性化領域W31乃至W33とする。当該実施例における各測定結果を以下の表1〜表4に示す。   As the rotation tool, a rotation tool having the same size was used on both the front surface Za side and the back surface Zb side. The size of the rotating tool is such that the outer diameter of the shoulder portion is 20 mm, the length of the stirring pin is 10 mm, the base size (maximum diameter) of the stirring pin is 9 mm, and the tip size (minimum diameter) of the stirring pin is 6 mm. A thing was used. The rotational speed of the rotary tool was set to 600 rpm, and the feed rate was set to 300 mm / min. Further, the pressing amount of the rotary tool was set constant on both the front surface Za side and the back surface Zb side. As shown in FIG. 13, the plasticized regions formed on the surface Za side are referred to as a plasticized region W21 to a plasticized region W23 from a small circle to a large circle, respectively. Further, the plasticized regions formed on the back surface Zb side are designated as plasticized regions W31 to W33 from the small circle to the great circle. Each measurement result in the said Example is shown in the following Tables 1-4.

表1は、金属部材200の板厚が30mmであって、表面Za側から摩擦攪拌を行った場合の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j(基準j)と各地点(地点a〜地点h)との高低差を示している。「FSW後」は、基準jをゼロとして、3つの円の摩擦攪拌を行った後において、基準jと各地点との高低差を示している。「表面側変形量」は、各地点における(FSW後−FSW前)の値を示している。「表面側変形量」の最下欄は、地点a〜地点hの平均値を示す。「FSW前」及び「FSW後」のマイナス値は、基準jよりも下方に位置していることを意味する。   Table 1 is a table showing the measured values when the thickness of the metal member 200 is 30 mm and frictional stirring is performed from the surface Za side. “Before FSW” indicates the height difference between the central point j (reference j) and each point (point a to point h) before the friction stir. “After FSW” indicates a difference in height between the reference j and each point after performing frictional stirring of three circles with the reference j being zero. The “surface side deformation amount” indicates a value of (after FSW−before FSW) at each point. The lowermost column of “surface side deformation amount” indicates an average value of the points a to h. Negative values of “before FSW” and “after FSW” mean that they are located below the reference j.

Figure 2011011232
Figure 2011011232

表2は、金属部材200の板厚が30mmであって、表面側から小円、中円、大円の摩擦攪拌を行った後、反って(歪んで)しまった金属部材200に対して、裏面側からも小円、中円、大円のそれぞれの摩擦攪拌を行った場合の金属部材200の各地点の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j’(基準j’)と各地点(a’〜h’)との高低差を示している。
「FSW1」は、図13を参照するように、基準j’をゼロとして、小円(半径r1)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量1」は、各地点における(FSW1−FSW前)の値を示している。「裏面側変形量1」の最下欄は、地点a〜地点hの平均値を示す。
「FSW2」は、基準j’をゼロとして、小円(半径r1)に加えてさらに、中円(半径r2)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量2」は、各地点における(FSW2−FSW前)の値を示している。「裏面側変形量2」の最下欄は、地点a〜地点hの平均値を示す。
「FSW3」は、基準j’をゼロとして、小円(半径r1)、中円(半径r2)に加えてさらに、大円(半径r3)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量3」は、各地点における(FSW3−FSW前)の値を示している。「裏面側変形量3」の最下欄は、地点a〜地点hの平均値を示す。
Table 2 shows that the thickness of the metal member 200 is 30 mm, and the metal member 200 warped (distorted) after performing frictional stirring of a small circle, a middle circle, and a great circle from the surface side. It is the table | surface which showed the measured value of each point of the metallic member 200 at the time of performing each friction stirring of a small circle, a middle circle, and a great circle also from the back side. “Before FSW” indicates the height difference between the central point j ′ (reference j ′) and each point (a ′ to h ′) before the friction stir.
As shown in FIG. 13, “FSW1” indicates a difference in height between the reference j ′ and each point after the frictional stirring of the small circle (radius r1) is performed with the reference j ′ set to zero. “Back side deformation amount 1” indicates a value (before FSW1−FSW) at each point. The bottom column of “back side deformation amount 1” indicates an average value of the points a to h.
“FSW2” indicates a difference in height between the reference j ′ and each point after performing frictional stirring of the middle circle (radius r2) in addition to the small circle (radius r1) with the reference j ′ set to zero. ing. “Back side deformation amount 2” indicates a value (before FSW2−FSW) at each point. The bottom column of “back side deformation amount 2” indicates an average value of the points a to h.
“FSW3” is based on the reference j ′ after the frictional stirring of the great circle (radius r3) in addition to the small circle (radius r1) and the middle circle (radius r2) with the reference j ′ set to zero. The height difference from the point is shown. "Back side deformation amount 3" indicates the value of (before FSW3-FSW) at each point. The bottom column of “back side deformation amount 3” indicates an average value of the points a to h.

Figure 2011011232
Figure 2011011232

表3は、金属部材200の板厚が60mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。表3の各項目は、表1の各項目と略同等の意味を示す。   Table 3 is a table showing the measured values when the thickness of the metal member 200 is 60 mm and frictional stirring is performed from the surface side. Each item in Table 3 has substantially the same meaning as each item in Table 1.

Figure 2011011232
Figure 2011011232

表4は、金属部材200の板厚が60mmであって、表面側から小円、中円、大円の摩擦攪拌を行った後、裏面側から摩擦攪拌を行った場合の測定値を示した表である。表4の各項目は、表2の各項目と略同等の意味を示す。   Table 4 shows the measured values when the thickness of the metal member 200 is 60 mm, and the frictional stirring is performed from the back side after performing the frictional stirring of the small circle, the middle circle, and the great circle from the front side. It is a table. Each item in Table 4 has substantially the same meaning as each item in Table 2.

Figure 2011011232
Figure 2011011232

表1の「表面側変形量」の平均値(1.61)と、表2の「裏面側変形量1」の平均値(2.04)とを比較すると、「裏面側変形量1」の値の方が大きい。同様に、「裏面側変形量2」の平均値(2.95)及び「裏面側変形量3」の平均値(3.53)も、「表面側変形量」の平均値(1.61)よりも大きな値となっている。つまり、金属部材200の板厚が30mmの場合は、裏面側から小円の摩擦攪拌のみを行っただけでも、金属部材200の反りが戻りすぎてしまう。したがって、金属部材200が30mmの場合は、小さい回転ツールを用いるなどして表面側よりも裏面側の入熱量を少なくすれば、金属部材200の平坦性を高めることができる。   Comparing the average value (1.61) of “front side deformation” in Table 1 and the average value (2.04) of “back side deformation 1” in Table 2, the value of “back side deformation 1” is more large. Similarly, the average value (2.95) of “back side deformation 2” and the average value (3.53) of “back side deformation 3” are larger than the average value (1.61) of “front side deformation”. ing. That is, when the plate thickness of the metal member 200 is 30 mm, the warp of the metal member 200 is returned too much only by performing a small circle of friction stirring from the back side. Therefore, when the metal member 200 is 30 mm, the flatness of the metal member 200 can be improved if the amount of heat input on the back surface side is made smaller than that on the front surface side by using a small rotating tool.

表3の「表面側変形量」の平均値(0.98)と、表4の「裏面側変形量2」の平均値(0.91)とを比較すると、両者の変形量が近似している。したがって、金属部材200の板厚が60mmの場合は、裏面側から小円及び中円の摩擦攪拌を行ったときに、金属部材200の平坦性が高いことが確認できた。つまり、板厚が60mmの場合は、小さい回転ツールを用いるなどして表面側よりも裏面側の入熱量を少なくすれば、金属部材200の平坦性を高めることができる。   When the average value (0.98) of “front side deformation amount” in Table 3 and the average value (0.91) of “back side deformation amount 2” in Table 4 are compared, the deformation amounts of both are approximated. Therefore, when the plate thickness of the metal member 200 was 60 mm, it was confirmed that the flatness of the metal member 200 was high when the frictional stirring of the small circle and the middle circle was performed from the back side. That is, when the plate thickness is 60 mm, the flatness of the metal member 200 can be improved by reducing the amount of heat input on the back side rather than the front side by using a small rotating tool.

1 伝熱板
2 本体
3 蓋部材
11 本体の表面
12 本体の裏面
13 本体の側面
14 凹部
14a 凹部の底面
14b 凹部の側壁
15 供給部
16 排出部
18 重ね合わせ部
31 蓋部材の表面
32 蓋部材の裏面
33 蓋部材の側面
34 凸部
35 開口周縁
36 流路部
F 小型回転ツール
G 大型回転ツール
J1 突合部
W 塑性化領域
w 塑性化領域


DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Main body 3 Cover member 11 Main body surface 12 Back surface of main body 13 Side surface of main body 14 Recess 14a Bottom surface of recess 14b Side wall of recess 15 Supply section 16 Discharge section 18 Superposition section 31 Cover member surface 32 Back surface 33 Side surface of lid member 34 Convex portion 35 Opening edge 36 Flow path portion F Small rotating tool G Large rotating tool J1 Abutting portion W Plasticizing region w Plasticizing region


Claims (20)

本体に凹設された凹部の底面に、内部が中空に形成された凸部を備えた蓋部材を載置し、前記凹部の底面と凸部の内面との間に熱輸送流体の流路となる流路部を具備する伝熱板を製造する方法であって、
前記本体の前記凹部に前記蓋部材を載置する蓋部材載置工程と、
前記凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて摩擦攪拌接合を行う蓋部材固定工程と、
前記凸部周りに回転ツールを移動させて、前記凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う密封工程と、を含むことを特徴とする伝熱板の製造方法。
A lid member provided with a convex portion formed hollow inside is placed on the bottom surface of the concave portion provided in the main body, and a heat transport fluid channel is provided between the bottom surface of the concave portion and the inner surface of the convex portion. A method of manufacturing a heat transfer plate having a flow path portion comprising:
A lid member placing step of placing the lid member in the recess of the main body;
A lid member fixing step of performing friction stir welding by moving the rotary tool along the abutting portion between the side wall of the recess and the side surface of the lid member;
A sealing step of moving the rotating tool around the convex portion and performing friction stir welding on the overlapping portion of the bottom surface of the concave portion and the back surface of the lid member. Production method.
前記密封工程では、前記回転ツールを前記凸部の周りで一周させることを特徴とする請求項1に記載の伝熱板の製造方法。   2. The method for manufacturing a heat transfer plate according to claim 1, wherein in the sealing step, the rotating tool is caused to make a round around the convex portion. 前記密封工程では、前記回転ツールの移動軌跡を前記凸部の周りでオーバーラップさせて摩擦攪拌接合によって形成させる塑性化領域の一部を重複させることを特徴とする請求項2に記載の伝熱板の製造方法。   3. The heat transfer according to claim 2, wherein in the sealing step, a part of a plasticized region formed by friction stir welding is overlapped by overlapping a movement locus of the rotary tool around the convex portion. A manufacturing method of a board. 前記密封工程では、
前記回転ツールを前記凸部に対して右回りに移動させるときは前記回転ツールを右回転させ、
前記回転ツールを前記凸部に対して左回りに移動させるときは前記回転ツールを左回転させることを特徴とする請求項1乃至請求項3のいずれか一項に記載の伝熱板の製造方法。
In the sealing step,
When moving the rotation tool clockwise with respect to the convex portion, rotate the rotation tool to the right,
The method for manufacturing a heat transfer plate according to any one of claims 1 to 3, wherein when the rotating tool is moved counterclockwise with respect to the convex portion, the rotating tool is rotated counterclockwise. .
前記密封工程では、前記回転ツールの先端を前記本体に接触させつつ摩擦攪拌接合を行うことを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   5. The method of manufacturing a heat transfer plate according to claim 1, wherein in the sealing step, friction stir welding is performed while a tip of the rotary tool is in contact with the main body. 6. 前記密封工程では、前記回転ツールの中心から前記凸部の開口周縁までの距離を前記回転ツールの半径よりも大きく設定することを特徴とする請求項1乃至請求項5のいずれか一項に記載の伝熱板の製造方法。   6. The sealing step according to claim 1, wherein a distance from a center of the rotary tool to an opening peripheral edge of the convex portion is set larger than a radius of the rotary tool. Manufacturing method of heat transfer plate. 前記密閉工程では、前記蓋部材の外側から摩擦攪拌を開始するとともに、前記蓋部材の外側で摩擦攪拌を終了することを特徴とする請求項1乃至請求項6のいずれか一項に記載の伝熱板の製造方法。   7. The transmission according to claim 1, wherein in the sealing step, friction agitation is started from the outside of the lid member, and friction agitation is terminated outside of the lid member. Manufacturing method of hot plate. 前記凸部の開口周縁から前記凹部の側壁までの距離を、前記密閉工程で用いる前記回転ツールのショルダ部の外径の2倍以上に設定することを特徴とする請求項1乃至請求項7のいずれか一項に記載の伝熱板の製造方法。   The distance from the opening periphery of the said convex part to the side wall of the said recessed part is set to 2 times or more of the outer diameter of the shoulder part of the said rotary tool used at the said sealing process, The Claim 1 thru | or 7 characterized by the above-mentioned. The manufacturing method of the heat exchanger plate as described in any one of Claims. 前記蓋部材固定工程では、使用する回転ツールの先端が前記凹部の底面に達しない程度に設定して摩擦攪拌接合を行うことを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   9. The friction stir welding is performed in the lid member fixing step by setting the tip of the rotary tool to be used so as not to reach the bottom surface of the concave portion. Manufacturing method of heat transfer plate. 前記蓋部材固定工程では、前記回転ツールを前記突合部に沿って一周させて摩擦攪拌接合を行うことを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。   The heat transfer plate manufacturing method according to any one of claims 1 to 9, wherein, in the lid member fixing step, the rotary tool is caused to make a round along the abutting portion to perform friction stir welding. Method. 前記蓋部材固定工程では、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成された塑性化領域の一部を重複させることを特徴とする請求項10に記載の伝熱板の製造方法。   11. The transmission according to claim 10, wherein in the lid member fixing step, the movement trajectory of the rotating tool is overlapped at the abutting portion, and a part of the plasticized region formed by friction stir welding is overlapped. Manufacturing method of hot plate. 前記蓋部材固定工程では、
前記回転ツールの進行方向右側に前記蓋部材が位置するように設定した場合は、前記回転ツールを右回転させ、
前記回転ツールの進行方向左側に前記蓋部材が位置するように設定した場合は、前記回転ツールを左回転させることを特徴とする請求項1乃至請求項11のいずれか一項に記載の伝熱板の製造方法。
In the lid member fixing step,
When the lid member is set to be located on the right side in the traveling direction of the rotating tool, the rotating tool is rotated to the right,
The heat transfer according to any one of claims 1 to 11, wherein when the lid member is set so as to be positioned on the left side in the traveling direction of the rotary tool, the rotary tool is rotated counterclockwise. A manufacturing method of a board.
前記突合部は、平面視矩形を呈しており、
前記蓋部材固定工程では、前記突合部の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。
The abutting portion has a rectangular shape in plan view,
The said cover member fixing process WHEREIN: After carrying out friction stir welding of one diagonal of the said abutting part previously, friction stirring of the other diagonal is carried out, The any one of Claims 1 thru | or 9 characterized by the above-mentioned. The manufacturing method of the heat exchanger plate as described in a term.
前記突合部は、平面視矩形を呈しており、
前記蓋部材固定工程では、前記突合部の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。
The abutting portion has a rectangular shape in plan view,
10. In the lid member fixing step, the friction stir welding is performed on the intermediate portion of the opposite side after the middle portion of the opposite side of the abutting portion is friction stir welded. The manufacturing method of the heat exchanger plate as described in one term.
前記密封工程を行う前に、前記重ね合わせ部において回転ツールを移動させて前記本体と前記蓋部材とを仮接合する仮接合工程をさらに含むことを特徴とする請求項1乃至請求項14のいずれか一項に記載の伝熱板の製造方法。   15. The method according to claim 1, further comprising a temporary joining step of temporarily joining the main body and the lid member by moving a rotary tool in the overlapping portion before performing the sealing step. The manufacturing method of the heat exchanger plate as described in one. 回転ツールを用いて前記本体の裏面側から摩擦攪拌を行う矯正工程をさらに含むことを特徴とする請求項1乃至請求項15のいずれか一項に記載の伝熱板の製造方法。   The method of manufacturing a heat transfer plate according to any one of claims 1 to 15, further comprising a correction step of performing frictional stirring from the back side of the main body using a rotary tool. 前記矯正工程では、前記本体及び蓋部材の表面側への摩擦攪拌による入熱量よりも、前記本体及び蓋部材の裏面側への摩擦攪拌による入熱量を少なく設定することを特徴とする請求項16に記載の伝熱板の製造方法。   The amount of heat input by frictional stirring to the back side of the main body and lid member is set to be smaller than the amount of heat input by frictional stirring to the front surface side of the main body and lid member in the correction step. The manufacturing method of the heat exchanger plate as described in 2. 前記矯正工程では、前記本体及び前記蓋部材の表面側に形成される塑性化領域の体積よりも、前記本体及び前記蓋部材の裏面側に形成される塑性化領域の体積を少なく設定することを特徴とする請求項16に記載の伝熱板の製造方法。   In the correction step, the volume of the plasticized region formed on the back side of the main body and the lid member is set to be smaller than the volume of the plasticized region formed on the surface side of the main body and the lid member. The method for manufacturing a heat transfer plate according to claim 16, wherein the heat transfer plate is a heat transfer plate. 前記蓋部材固定工程及び前記密封工程で形成された前記本体の裏面側に凸となる反りを、前記本体の表面側に引張応力が発生するような曲げモーメントを作用させて矯正する矯正工程をさらに含むことを特徴とする請求項1乃至請求項15のいずれか一項に記載の伝熱板の製造方法。   A correction step of correcting a warp convex on the back surface side of the main body formed in the lid member fixing step and the sealing step by applying a bending moment that generates a tensile stress on the front surface side of the main body. The manufacturing method of the heat exchanger plate as described in any one of Claims 1 thru | or 15 characterized by the above-mentioned. 表面に凹設された凹部を備えた本体と、
内部が中空に形成された凸部を備え前記本体に載置された蓋部材と、を有し、
前記凹部の底面と前記凸部の内面との間に熱輸送流体の流路となる流路部を具備する伝熱板であって、
前記凹部の底面と前記蓋部材の裏面との重ね合わせ部が摩擦攪拌接合により一体成形されており、前記流路部の周囲に摩擦攪拌接合によって形成された塑性化領域が形成されていることを特徴とする伝熱板。
A body provided with a recess recessed on the surface;
A lid member provided on the main body with a convex portion formed hollow inside, and
A heat transfer plate comprising a flow path portion serving as a flow path of a heat transport fluid between the bottom surface of the concave portion and the inner surface of the convex portion,
The overlapping portion of the bottom surface of the recess and the back surface of the lid member is integrally formed by friction stir welding, and a plasticized region formed by friction stir welding is formed around the flow path portion. Heat transfer plate featuring.
JP2009157644A 2009-07-02 2009-07-02 Heat transfer plate manufacturing method and heat transfer plate Expired - Fee Related JP5347774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157644A JP5347774B2 (en) 2009-07-02 2009-07-02 Heat transfer plate manufacturing method and heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157644A JP5347774B2 (en) 2009-07-02 2009-07-02 Heat transfer plate manufacturing method and heat transfer plate

Publications (2)

Publication Number Publication Date
JP2011011232A true JP2011011232A (en) 2011-01-20
JP5347774B2 JP5347774B2 (en) 2013-11-20

Family

ID=43590604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157644A Expired - Fee Related JP5347774B2 (en) 2009-07-02 2009-07-02 Heat transfer plate manufacturing method and heat transfer plate

Country Status (1)

Country Link
JP (1) JP5347774B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139800A (en) * 2014-01-28 2015-08-03 日本軽金属株式会社 Production method of heat transfer plate and friction stir welding method
JP2021079424A (en) * 2019-11-21 2021-05-27 日本軽金属株式会社 Friction stir welding method
JP2021079423A (en) * 2019-11-21 2021-05-27 日本軽金属株式会社 Friction stir welding method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP2003101277A (en) * 2001-09-26 2003-04-04 Toyota Motor Corp Structural body for cooling heating element and manufacturing method thereof
JP2004009113A (en) * 2002-06-10 2004-01-15 Hitachi Ltd Joint structure of main body and lid
JP2004028442A (en) * 2002-06-25 2004-01-29 Furukawa Electric Co Ltd:The Plate type heat pipe, and its mounting structure
JP2006026721A (en) * 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Passage built-in mount and its production method
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2007044755A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Friction stir welding method and hollow body manufacturing method
JP2007203347A (en) * 2006-02-02 2007-08-16 Fuji Electric Systems Co Ltd Cooling body and its manufacturing method
JP2008254046A (en) * 2007-04-06 2008-10-23 Mitsubishi Heavy Ind Ltd Heat exchanging plate
JP2009115448A (en) * 2008-12-09 2009-05-28 Nippon Light Metal Co Ltd Heat plate and its manufacturing method
JP2009135477A (en) * 2007-11-02 2009-06-18 Calsonic Kansei Corp Heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP2003101277A (en) * 2001-09-26 2003-04-04 Toyota Motor Corp Structural body for cooling heating element and manufacturing method thereof
JP2004009113A (en) * 2002-06-10 2004-01-15 Hitachi Ltd Joint structure of main body and lid
JP2004028442A (en) * 2002-06-25 2004-01-29 Furukawa Electric Co Ltd:The Plate type heat pipe, and its mounting structure
JP2006026721A (en) * 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Passage built-in mount and its production method
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2007044755A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Friction stir welding method and hollow body manufacturing method
JP2007203347A (en) * 2006-02-02 2007-08-16 Fuji Electric Systems Co Ltd Cooling body and its manufacturing method
JP2008254046A (en) * 2007-04-06 2008-10-23 Mitsubishi Heavy Ind Ltd Heat exchanging plate
JP2009135477A (en) * 2007-11-02 2009-06-18 Calsonic Kansei Corp Heat exchanger
JP2009115448A (en) * 2008-12-09 2009-05-28 Nippon Light Metal Co Ltd Heat plate and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139800A (en) * 2014-01-28 2015-08-03 日本軽金属株式会社 Production method of heat transfer plate and friction stir welding method
JP2021079424A (en) * 2019-11-21 2021-05-27 日本軽金属株式会社 Friction stir welding method
JP2021079423A (en) * 2019-11-21 2021-05-27 日本軽金属株式会社 Friction stir welding method

Also Published As

Publication number Publication date
JP5347774B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP6927067B2 (en) How to manufacture a liquid-cooled jacket
JP6036714B2 (en) Manufacturing method of liquid cooling jacket
JP6927068B2 (en) How to manufacture a liquid-cooled jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
JP5177017B2 (en) Manufacturing method of heat transfer plate
WO2016072211A1 (en) Method of manufacturing liquid-cooled jacket and liquid-cooled jacket
KR101194097B1 (en) Method of manufacturing heat transfer plate
JP5957719B2 (en) Friction stir welding method
JP6036715B2 (en) Manufacturing method of liquid cooling jacket
WO2019064848A1 (en) Method for producing liquid-cooled jacket
JP6471461B2 (en) Manufacturing method of liquid cooling jacket
TWI579085B (en) The method of manufacturing heat transfer plate and the joining method thereof
JP5347774B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6015622B2 (en) Manufacturing method of heat transfer plate
JP5915802B2 (en) Friction stir welding method
JP2019098377A (en) Method for manufacturing liquid-cooled jacket
JP5177059B2 (en) Manufacturing method of heat transfer plate
JP2010240718A (en) Method for manufacturing heat transfer plate
JP5267381B2 (en) Manufacturing method of heat transfer plate
JP2015116593A (en) Joint method
JP5962807B2 (en) Friction stir welding method
JP2010194557A (en) Method for manufacturing heat transfer plate, and friction stir welding method
JP6015638B2 (en) Manufacturing method of heat transfer plate
JP2015196180A (en) Manufacturing method for heat transfer plate and friction agitation joint method
JP2020011273A (en) Manufacturing method of heat transfer plate and friction agitation joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees