JP2010194557A - Method for manufacturing heat transfer plate, and friction stir welding method - Google Patents

Method for manufacturing heat transfer plate, and friction stir welding method Download PDF

Info

Publication number
JP2010194557A
JP2010194557A JP2009039281A JP2009039281A JP2010194557A JP 2010194557 A JP2010194557 A JP 2010194557A JP 2009039281 A JP2009039281 A JP 2009039281A JP 2009039281 A JP2009039281 A JP 2009039281A JP 2010194557 A JP2010194557 A JP 2010194557A
Authority
JP
Japan
Prior art keywords
recess
lid member
friction stir
rotary tool
stir welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009039281A
Other languages
Japanese (ja)
Inventor
Isato Sato
勇人 佐藤
Hisashi Hori
久司 堀
Nobushiro Seo
伸城 瀬尾
Tomohiro Kawamoto
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2009039281A priority Critical patent/JP2010194557A/en
Publication of JP2010194557A publication Critical patent/JP2010194557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat transfer plate capable of enhancing the watertightness and airtightness of the heat transfer plate. <P>SOLUTION: In the method for manufacturing the heat transfer plate, a lid member 30 for sealing a second recess 13 is fixed to a body 10 having a first recess 12 recessed in the surface and the second recess 13 which is recessed in a bottom surface 12a of the first recess 12 while a heat transfer fluid for transferring the heat generated by a heat generating body to the outside flows. The method includes a lid member fixing step of executing the friction stir welding of a part of at least the butted part 40 by moving a rotary tool G along a butted part 40 of a side wall 12b of the first recess 12 of the body 10 to a side part 30a of the lid member 30, and a second recess sealing step of executing the friction stir welding of an overlapped part 18 of the bottom surface 12a of the first recess 12 on a back side 30b of the lid member 30 by moving the rotary tool G along an opening circumferential edge 14 of the second recess 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、伝熱板の製造方法及び摩擦攪拌接合方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate and a friction stir welding method.

金属部材同士を接合する方法として、摩擦攪拌接合(FSW=Friction Stir Welding)が知られている。摩擦攪拌接合とは、回転ツールを回転させつつ金属部材同士の突合部に沿って移動させ、回転ツールと金属部材との摩擦熱により突合部の金属を塑性流動させることで、金属部材同士を固相接合させるものである。   Friction stir welding (FSW = Friction Stir Welding) is known as a method for joining metal members. Friction stir welding is a technique in which metal members are fixed to each other by causing the metal at the abutting portion to plastically flow by frictional heat between the rotating tool and the metal member by moving the rotating tool along the abutting portion while rotating the rotating tool. Phase joining is performed.

例えば、特許文献1に示すように、半導体製造装置において冷却用に使用されるヒートプレート(伝熱板)は、板状を呈する本体と、本体の表面に形成された凹部を封止する蓋部材とを摩擦攪拌接合によって形成されている。   For example, as shown in Patent Document 1, a heat plate (heat transfer plate) used for cooling in a semiconductor manufacturing apparatus is a lid member that seals a plate-shaped main body and a recess formed on the surface of the main body. Are formed by friction stir welding.

具体的には、本体は、本体の表面に凹設された第一凹部と、第一凹部の底面に凹設された第二凹部とを有する。蓋部材は、第一凹部に隙間無く配置される形状を呈している。伝熱板は、第一凹部の側壁と蓋部材の側面との突合部に対して摩擦攪拌接合を行うことにより一体成形されている。摩擦攪拌接合によれば、比較的容易にかつ水密性及び気密性の高い製品を製造することができる。   Specifically, the main body has a first concave portion provided in the surface of the main body and a second concave portion provided in the bottom surface of the first concave portion. The lid member has a shape that is arranged in the first recess without any gap. The heat transfer plate is integrally formed by performing friction stir welding on the abutting portion between the side wall of the first recess and the side surface of the lid member. According to the friction stir welding, a product having high water tightness and air tightness can be manufactured relatively easily.

特開2002−257490号公報JP 2002-257490 A

従来の伝熱板の製造方法では、第一凹部の側壁と蓋部材の側面との突合部のみを摩擦攪拌接合するだけであるため、例えば第一凹部の底面と蓋部材の裏面との間には微細な隙間が形成されている。かかる隙間は伝熱板の水密性及び気密性を低下させる要因になっていた。   In the conventional method of manufacturing a heat transfer plate, only the abutting portion between the side wall of the first recess and the side surface of the lid member is friction stir welded. For example, between the bottom surface of the first recess and the back surface of the lid member. A fine gap is formed. Such a gap has been a factor of reducing the water tightness and air tightness of the heat transfer plate.

本発明は、かかる問題に鑑みてなされたものであり、伝熱板の水密性及び気密性を高めることが可能な伝熱板の製造方法を提供することをと課題とする。   This invention is made | formed in view of this problem, and makes it a subject to provide the manufacturing method of the heat exchanger plate which can improve the watertightness and airtightness of a heat exchanger plate.

前記課題を解決するための手段として、本発明は、表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する本体に、前記第二凹部を封止する蓋部材を摩擦攪拌接合によって固定して形成される伝熱板の製造方法であって、前記本体の前記第一凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う蓋部材固定工程と、前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、を含むことを特徴とする。   As means for solving the above-mentioned problems, the present invention provides a heat transfer fluid for transporting heat generated by a heat generating body that is provided in a bottom surface of the first recess and is formed in a bottom surface of the first recess to the outside. A heat transfer plate formed by fixing a lid member sealing the second recess by friction stir welding to a main body having a second recess through which the first recess of the main body is formed. A lid member fixing step of moving the rotary tool along the abutting portion between the side wall and the side surface of the lid member to perform friction stir welding on at least a part of the abutting portion, and along the opening periphery of the second recess And a second recess sealing step of performing friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member by moving the rotary tool.

かかる製造方法によれば、第一凹部の底面と蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行うことにより、第一凹部の底面と蓋部材の裏面との微細な隙間を塞ぐことができる。これにより、伝熱板の水密性及び気密性を高めることができる。   According to this manufacturing method, the fine gap between the bottom surface of the first recess and the back surface of the lid member is closed by performing friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member. be able to. Thereby, the watertightness and airtightness of a heat exchanger plate can be improved.

また、前記第二凹部の開口周縁から前記第一凹部の側壁までの距離は、前記回転ツールのショルダ部の外径の2倍以上であることが好ましい。かかる製造方法によれば、重ね合わせ部に対して確実に摩擦攪拌接合を行うことができる。   Moreover, it is preferable that the distance from the opening periphery of said 2nd recessed part to the side wall of said 1st recessed part is 2 times or more of the outer diameter of the shoulder part of the said rotary tool. According to this manufacturing method, the friction stir welding can be reliably performed on the overlapped portion.

また、前記蓋部材固定工程の後に、前記第二凹部密封工程を行うことが好ましい。かかる製造方法によれば、本体に蓋部材を固定した状態で、摩擦攪拌接合を行うことができるため、第二凹部密封工程の作業性を高めることができる。   Moreover, it is preferable to perform a said 2nd recessed part sealing process after the said cover member fixing process. According to this manufacturing method, since the friction stir welding can be performed in a state where the lid member is fixed to the main body, the workability of the second recess sealing step can be improved.

また、前記蓋部材固定工程の後に、前記第二凹部密封工程を行うことが好ましい。かかる製造方法によれば、気密性及び水密性をより高めることができる。   Moreover, it is preferable to perform a said 2nd recessed part sealing process after the said cover member fixing process. According to this manufacturing method, airtightness and watertightness can be further improved.

また、前記第二凹部密封工程では、前記第二凹部の開口周縁に沿って前記回転ツールを一周させて、前記重ね合わせ部に対して摩擦攪拌接合を行うことが好ましい。また、前記第二凹部密封工程では、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成される塑性化領域の一部を重複させることが好ましい。   Further, in the second recess sealing step, it is preferable that the rotary tool is rotated once along the opening periphery of the second recess, and the friction stir welding is performed on the overlapping portion. In the second recess sealing step, it is preferable that the movement trajectory of the rotary tool is overlapped at the abutting portion, and a part of the plasticized region formed by friction stir welding is overlapped.

かかる製造方法によれば、第二凹部の周囲に沿って本体と蓋部材とを密着させることができる。また、塑性化領域の一部が重複させることにより、接合部の密閉性能をさらに向上させることができる。   According to this manufacturing method, the main body and the lid member can be brought into close contact with each other around the second recess. Moreover, the sealing performance of a junction part can further be improved by overlapping a part of plasticization area | region.

また、前記第二凹部密封工程では、前記回転ツールを前記第二凹部の開口周縁に対して右回りに移動させるときは前記回転ツールを右回転させ、前記回転ツールを前記第二凹部の開口周縁に対して左回りに移動させるときは前記回転ツールを左回転させることを特徴とすることが好ましい。   In the second recess sealing step, when the rotary tool is moved clockwise with respect to the opening periphery of the second recess, the rotation tool is rotated to the right, and the rotation tool is moved to the opening periphery of the second recess. Preferably, the rotation tool is rotated counterclockwise when moving counterclockwise.

かかる製造方法によれば、回転ツールのシアー側が第二凹部から離間した部位に位置する。このため、空洞欠陥が発生したとしても、本体側であって第二凹部から離間した部位(シアー側)に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることがない。   According to such a manufacturing method, the shear side of the rotary tool is located at a site separated from the second recess. For this reason, even if a cavity defect occurs, it will occur on the main body side and at a site separated from the second recess (shear side), and the heat transport fluid will not leak easily to the outside. There is no reduction.

また、前記第二凹部密封工程で使用される前記回転ツールの攪拌ピンの長さを、前記蓋部材の厚みよりも大きく設定することが好ましい。かかる製造方法によれば、重ね合わせ部に対してより確実に摩擦攪拌接合を行うことができる。   Moreover, it is preferable to set the length of the stirring pin of the rotary tool used in the second recess sealing step to be larger than the thickness of the lid member. According to this manufacturing method, the friction stir welding can be more reliably performed on the overlapping portion.

また、前記第二凹部密封工程では、前記回転ツールの中心から前記第二凹部の開口周縁までの距離を前記回転ツールのショルダ部の半径よりも大きく設定することが好ましい。かかる製造方法によれば、摩擦攪拌により塑性流動化された塑性流動材が第二凹部に流入するのを防ぐことができる。   In the second recess sealing step, it is preferable that the distance from the center of the rotary tool to the opening periphery of the second recess is set larger than the radius of the shoulder portion of the rotary tool. According to this manufacturing method, it is possible to prevent the plastic fluidized material plasticized by friction stirring from flowing into the second recess.

また、前記第二凹部密封工程では、前記蓋部材の外側から摩擦攪拌を開始するとともに、前記蓋部材の外側で摩擦攪拌を終了することが好ましい。かかる製造方法によれば、肉厚の本体に摩擦攪拌の開始位置及び終了位置を設定することで、回転ツールの挿入・離脱時における蓋部材の変形を防ぐことができる。   In the second recess sealing step, it is preferable that the friction stirring is started from the outside of the lid member and the friction stirring is finished outside the lid member. According to this manufacturing method, it is possible to prevent the lid member from being deformed when the rotary tool is inserted / removed by setting the friction stirring start position and end position on the thick main body.

また、前記蓋部材固定工程で使用する前記回転ツールの攪拌ピンの長さを、前記蓋部材の厚みよりも小さく設定することが好ましい。かかる製造方法によれば、蓋部材固定工程における蓋部材の変形を抑えることができる。   Moreover, it is preferable to set the length of the stirring pin of the rotary tool used in the lid member fixing step to be smaller than the thickness of the lid member. According to this manufacturing method, deformation of the lid member in the lid member fixing step can be suppressed.

また、前記蓋部材固定工程では、前記突合部に沿って前記回転ツールを一周させて摩擦攪拌接合を行うことが好ましい。かかる製造方法によれば、本体と蓋部材とを確実に固定することができる。   Further, in the lid member fixing step, it is preferable to perform friction stir welding by making the rotary tool make a round along the abutting portion. According to this manufacturing method, the main body and the lid member can be reliably fixed.

また、前記蓋部材固定工程では、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成された塑性化領域の一部を重複させることが好ましい。かかる製造方法によれば、塑性化領域の一部が重複させることにより、本体と蓋部材とを良好に固定することができる。   In the lid member fixing step, it is preferable that the movement trajectory of the rotating tool is overlapped at the abutting portion, and a part of the plasticized region formed by the friction stir welding is overlapped. According to this manufacturing method, the main body and the lid member can be satisfactorily fixed by overlapping a part of the plasticized region.

また、前記蓋部材固定工程では、前記回転ツールを前記蓋部材に対して右回りに移動させるときは前記回転ツールを右回転させ、前記回転ツールを前記蓋部材に対して左回りに移動させるときは前記回転ツールを左回転させることを特徴とすることが好ましい。   In the lid member fixing step, when the rotation tool is moved clockwise with respect to the lid member, the rotation tool is rotated clockwise, and the rotation tool is moved counterclockwise with respect to the lid member. Preferably, the rotating tool is rotated to the left.

かかる製造方法によれば、回転ツールのシアー側が厚肉の本体側に位置する。このため、空洞欠陥が発生したとしても、本体側であって突合部よりも外側位置の離間した部分(シアー側)に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることがない。   According to this manufacturing method, the shear side of the rotary tool is positioned on the thick body side. For this reason, even if a cavity defect occurs, it will occur on the main body side and in a part (shear side) spaced apart from the abutting part, and the heat transport fluid will be difficult to leak to the outside. The sealing performance is not deteriorated.

また、前記突合部は平面視矩形を呈しており、前記蓋部材固定工程では、前記突合部の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することが好ましい。また、前記突合部は平面視矩形を呈しており、前記蓋部材固定工程では、前記突合部の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することが好ましい。   In addition, the abutting portion has a rectangular shape in plan view, and in the lid member fixing step, after one diagonal of the abutting portion is first friction stir welded, the other diagonal may be friction agitated. preferable. In addition, the abutting portion has a rectangular shape in plan view, and in the lid member fixing step, the intermediate portion of one opposite side of the abutting portion is friction stir welded and then the intermediate portion of the other opposite side is friction stir welded Is preferred.

かかる製造方法によれば、蓋部材をバランスよく固定することができ、蓋部材の本体に対する位置決め精度が向上する。   According to this manufacturing method, the lid member can be fixed with good balance, and the positioning accuracy of the lid member with respect to the main body is improved.

また、前記蓋部材固定工程を行う前に、前記重ね合わせ部において回転ツールを移動させて前記本体と前記蓋部材とを仮接合する仮接合工程を含むことが好ましい。   Moreover, it is preferable to include the temporary joining process of temporarily joining the said main body and the said cover member by moving a rotation tool in the said overlap part, before performing the said cover member fixing process.

蓋部材が大きい場合、蓋部材固定工程を行うと摩擦攪拌の熱収縮によって蓋部材の中央部分が浮き上がってしまい、本体と蓋部材との間に隙間ができてしまう可能性があった。しかし、かかる製造方法によれば、突合部の内側において、本体と蓋部材とを仮接合しておくことで、蓋部材固定工程の際の蓋部材の浮き上がりを防止することができる。   When the lid member is large, when the lid member fixing step is performed, the central portion of the lid member is lifted due to the heat shrinkage of the friction stirrer, and there is a possibility that a gap is formed between the main body and the lid member. However, according to this manufacturing method, the main body and the lid member are temporarily joined inside the abutting portion, so that the lid member can be prevented from being lifted during the lid member fixing step.

また、本発明は、表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する第一金属部材に、前記第二凹部を封止する第二金属部材を摩擦攪拌接合によって固定する摩擦攪拌接合方法であって、前記第一金属部材の前記第一凹部の側壁と前記第二金属部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う第二金属部材固定工程と、前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記第二金属部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、を含むことを特徴とする。   Moreover, this invention has the 1st recessed part recessed in the surface, and the 2nd recessed part through which the heat transport fluid which is recessedly provided in the bottom face of this 1st recessed part, and the heat generating body generate | occur | produces flows to the exterior. A friction stir welding method in which a second metal member for sealing the second recess is fixed to the first metal member by friction stir welding, and the side wall of the first recess of the first metal member and the second metal A second metal member fixing step in which a rotating tool is moved along the abutting portion with the side surface of the member to perform friction stir welding on at least a part of the abutting portion, and the rotation is performed along the opening periphery of the second recess. A second recess sealing step of moving the tool and performing friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the second metal member.

かかる製造方法によれば、第一凹部の底面と第二金属部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行うことにより、第一凹部の底面と第二金属部材の裏面との微細な隙間を塞ぐことができる。これにより、伝熱板の水密性及び気密性を高めることができる。   According to this manufacturing method, the friction stir welding is performed on the overlapping portion of the bottom surface of the first recess and the back surface of the second metal member, thereby finely connecting the bottom surface of the first recess and the back surface of the second metal member. Can close the gap. Thereby, the watertightness and airtightness of a heat exchanger plate can be improved.

本発明によれば、水密性及び気密性の高い伝熱板を提供することができる。   According to the present invention, it is possible to provide a heat transfer plate having high watertightness and airtightness.

第一実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 1st embodiment. (a)は、小型回転ツール、(b)は、大型回転ツールを示した側面図である。(A) is the small rotation tool, (b) is the side view which showed the large rotation tool. 第一実施形態に係る蓋部材固定工程を示した図であって、(a)は、平面図、(b)は、(a)のX1−X1断面図である。It is the figure which showed the cover member fixing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is X1-X1 sectional drawing of (a). 第一実施形態に係る蓋部材固定工程を示した平面図である。It is the top view which showed the cover member fixing process which concerns on 1st embodiment. 第一実施形態に係る第二凹部密封工程を示した図であって、(a)は、平面図、(b)は、(a)のX2−X2断面図である。It is the figure which showed the 2nd recessed part sealing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is X2-X2 sectional drawing of (a). 第一実施形態に係る第二凹部密封工程を示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 1st embodiment. 第二実施形態に係る伝熱板を示した図であって、(a)は、分解斜視図、(b)は断面図を示す。It is the figure which showed the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a disassembled perspective view, (b) shows sectional drawing. 第二実施形態に係る第二凹部密封工程を段階的に示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 2nd embodiment in steps. 第三実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 3rd embodiment. 第三実施形態に係る第二凹部密封工程を示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 3rd embodiment. 第四実施形態に係る本体を示した斜視図である。It is the perspective view which showed the main body which concerns on 4th embodiment. 第四実施形態に係る第二凹部密封工程を示した図であって、(a)は、平面図、(b)は、(a)のX3−X3断面図である。It is the figure which showed the 2nd recessed part sealing process which concerns on 4th embodiment, Comprising: (a) is a top view, (b) is X3-X3 sectional drawing of (a). 仮接合工程を示した図であって、(a)は、平面図、(b)は、(a)のX4−X4断面図である。It is the figure which showed the temporary joining process, Comprising: (a) is a top view, (b) is X4-X4 sectional drawing of (a).

[第一実施形態]
本発明の第一実施形態に係る伝熱板の製造方法及び摩擦攪拌接合方法について図面を適宜参照して詳細に説明する。まず、本発明に係る伝熱板の製造方法及び摩擦攪拌接合方法によって形成される伝熱板1について説明する。
[First embodiment]
A method for manufacturing a heat transfer plate and a friction stir welding method according to a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate. First, the heat transfer plate 1 formed by the heat transfer plate manufacturing method and the friction stir welding method according to the present invention will be described.

伝熱板1は、図1に示すように、本体10に、蓋部材30を摩擦攪拌接合によって固定して形成される。伝熱板1は、例えば、スパッタリング装置において、ターゲット材を冷却するために使用される。   As shown in FIG. 1, the heat transfer plate 1 is formed by fixing a lid member 30 to the main body 10 by friction stir welding. The heat transfer plate 1 is used for cooling the target material in, for example, a sputtering apparatus.

本体10(第一金属部材)は、略直方体の外観を呈し、本実施形態ではアルミニウム又はアルミニウム合金から形成されている。本体10は、本体10の表面(上面)10aに凹設された第一凹部12と、第一凹部12の内部に凹設された第二凹部13,13と、第二凹部13に連通する貫通孔16とを有する。本体10は、例えば、ダイキャスト、鋳造、鍛造などによって作製される。   The main body 10 (first metal member) has a substantially rectangular parallelepiped appearance, and is formed of aluminum or an aluminum alloy in the present embodiment. The main body 10 has a first recess 12 recessed in the surface (upper surface) 10 a of the main body 10, second recesses 13 and 13 recessed in the first recess 12, and a through hole communicating with the second recess 13. And a hole 16. The main body 10 is produced, for example, by die casting, casting, forging, or the like.

本体10は、本実施形態ではアルミニウム又はアルミニウム合金から形成したが、他の金属部材で形成してもよい。また、本体10は、本実施形態では外観視略直方体としたが、多角柱体、円柱体等であってもよい。   The main body 10 is formed of aluminum or an aluminum alloy in this embodiment, but may be formed of other metal members. Moreover, although the main body 10 is a substantially rectangular parallelepiped in appearance in the present embodiment, it may be a polygonal column, a cylinder, or the like.

第一凹部12は、蓋部材30が配置される部位である。第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、平面視矩形を呈する底面12aと、底面12aから垂直に立設する4つの側壁12bとを有する。側壁12bの高さは、蓋部材30の厚みtと略同等に形成されている。   The first recess 12 is a part where the lid member 30 is disposed. The first recess 12 is formed at a position one step lower than the upper surface 10a of the main body 10, and has a bottom surface 12a that has a rectangular shape in plan view and four side walls 12b that stand vertically from the bottom surface 12a. The height of the side wall 12 b is formed substantially equal to the thickness t of the lid member 30.

第二凹部13,13は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部13,13は、平面視矩形を呈し、それぞれ略同等の形状に形成されている。第二凹部13,13は、第一凹部12の内部において所定の間隔をあけて設けられており、上方に開口している。第二凹部13,13の周囲には前記した第一凹部12の底面12aが拡がっている。つまり、第二凹部13,13は、第一凹部12に包囲されている。第二凹部13の形状や設置数は伝熱板1の用途に応じて適宜変更可能である。   The second recesses 13 and 13 are portions through which the heat transport fluid (cooling water in this embodiment) flows. The 2nd recessed parts 13 and 13 exhibit the planar view rectangle, and are each formed in the substantially equivalent shape. The 2nd recessed parts 13 and 13 are provided in the inside of the 1st recessed part 12 at predetermined intervals, and are opened upwards. Around the second recesses 13, the bottom surface 12 a of the first recess 12 extends. That is, the second recesses 13 and 13 are surrounded by the first recess 12. The shape and number of the second recesses 13 can be appropriately changed according to the use of the heat transfer plate 1.

貫通孔16は、図1及び図3の(a)に示すように、本体10の外部と第二凹部13とを連通し、熱輸送流体(冷却水)を循環させる部分である。貫通孔16は、第二凹部13,13に連通しつつ、本体10の対向する側面10b,10b間を貫通して形成されている。貫通孔16の形状、数及び形成位置は、冷却水の種類や流量に応じて適宜変更可能である。   As shown in FIGS. 1 and 3A, the through-hole 16 is a part that communicates the outside of the main body 10 with the second recess 13 and circulates the heat transport fluid (cooling water). The through hole 16 is formed so as to penetrate between the opposing side surfaces 10 b and 10 b of the main body 10 while communicating with the second recesses 13 and 13. The shape, number, and formation position of the through holes 16 can be changed as appropriate according to the type and flow rate of the cooling water.

蓋部材30(第二金属部材)は、図1に示すように、本体10と同等の材料からなる板状部材である。蓋部材30の平面形状は、本体10の第一凹部12の平面形状と同等に形成されている。蓋部材30は、第一凹部12に配置された後に、摩擦攪拌接合されることで第二凹部13の開口部を封止する。   The lid member 30 (second metal member) is a plate-like member made of the same material as the main body 10 as shown in FIG. The planar shape of the lid member 30 is formed equivalent to the planar shape of the first recess 12 of the main body 10. After the lid member 30 is disposed in the first recess 12, the opening of the second recess 13 is sealed by friction stir welding.

次に、後記する摩擦攪拌接合によって用いる小型の回転ツール(以下、「小型回転ツールF」という。)及び小型回転ツールFよりも大型の回転ツール(以下、「大型回転ツールG」という。)について図2を用いて説明する。   Next, a small rotating tool (hereinafter referred to as “small rotating tool F”) and a rotating tool larger than the small rotating tool F (hereinafter referred to as “large rotating tool G”) used by friction stir welding described later. This will be described with reference to FIG.

図2に示す小型回転ツールFは、工具鋼など本体10よりも硬質の金属材料からなり、円柱状を呈するショルダ部F1と、このショルダ部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。小型回転ツールFの寸法・形状は、本体10の材質や厚さ等に応じて設定すればよいが、少なくとも、大型回転ツールG(図2の(b)参照)よりも小型にする。このようにすると、大型回転ツールGを用いる場合よりも小さな負荷で摩擦攪拌接合を行うことが可能となるので、摩擦攪拌装置に掛かる負荷を低減することが可能となり、さらには、小型回転ツールFの移動速度(送り速度)を大型回転ツールGの移動速度よりも高速にすることも可能になるので、摩擦攪拌接合に要する作業時間やコストを低減することが可能となる。   A small rotary tool F shown in FIG. 2 is made of a metal material harder than the main body 10 such as tool steel, and has a columnar shoulder portion F1 and a stirring pin (probe) protruding from a lower end surface F11 of the shoulder portion F1. ) F2. The size and shape of the small rotary tool F may be set according to the material, thickness, etc. of the main body 10, but at least smaller than the large rotary tool G (see FIG. 2B). In this way, it is possible to perform friction stir welding with a smaller load than when the large rotary tool G is used, so it is possible to reduce the load applied to the friction stirrer, and further to the small rotary tool F. Since the moving speed (feeding speed) can be made higher than the moving speed of the large rotary tool G, the working time and cost required for the friction stir welding can be reduced.

ショルダ部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。ショルダ部F1の外径Xの大きさに特に制限はないが、本実施形態では、大型回転ツールGのショルダ部G1の外径Yよりも小さくなっている。 The lower end surface F11 of the shoulder portion F1 is a portion that plays a role of pressing the plastic fluidized metal and preventing scattering to the surroundings, and is formed in a concave shape in this embodiment. There is no particular limitation on the size of the outer diameter X 1 of the shoulder portion F1, in this embodiment, is smaller than the outer diameter Y 1 of the shoulder portion G1 of a large rotating tool G.

攪拌ピンF2は、ショルダ部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。攪拌ピンF2の外径の大きさに特に制限はないが、本実施形態では、最大外径(上端径)Xが大型回転ツールGの攪拌ピンG2の最大外径(上端径)Yよりも小さく、かつ、最小外径(下端径)Xが攪拌ピンG2の最小外径(下端径)Yよりも小さくなっている。攪拌ピンF2の長さLは、蓋部材30の厚みt(図1参照)よりも小さく形成されている。 The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2. There is no particular limitation on the size of the outer diameter of the stirring pin F2, in the present embodiment, than the maximum outer diameter of the maximum outer diameter of the stirring pin G2 of (upper diameter) X 2 is large rotating tool G (upper end diameter) Y 2 It is small, and is smaller than the minimum outer diameter minimum outer diameter (bottom diameter) X 3 is the stirring pin G2 (lower diameter) Y 3. The length L A of the stirring pin F2 is formed to be smaller than the thickness t (see FIG. 1) of the lid member 30.

図2の(b)に示す大型回転ツールGは、工具鋼など本体10よりも硬質の金属材料からなり、円柱状を呈するショルダ部G1と、このショルダ部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えて構成されている。ショルダ部G1の下端面G11は、小型回転ツールFと同様に、凹面状に成形されている。攪拌ピンG2は、ショルダ部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。攪拌ピンG2の長さLは、蓋部材30の厚みt(図1参照)よりも大きく形成されている。 A large-sized rotary tool G shown in FIG. 2B is made of a metal material harder than the main body 10 such as tool steel, and protrudes from a shoulder portion G1 having a columnar shape and a lower end surface G11 of the shoulder portion G1. A stirring pin (probe) G2 is provided. The lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the small rotary tool F. The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and is formed into a tapered truncated cone shape in this embodiment. The length L B of the stirring pin G2 is larger than the thickness of the lid member 30 t (see FIG. 1).

次に、伝熱板の製造方法について図3乃至図6を参照して説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程(第二金属部材固定工程)と、第二凹部密封工程を実行する。   Next, the manufacturing method of a heat exchanger plate is demonstrated with reference to FIG. 3 thru | or FIG. In the method for manufacturing a heat transfer plate according to the present embodiment, a lid member fixing step (second metal member fixing step) and a second recess sealing step are executed.

まず、図3の(a)に示すように、蓋部材30を、本体10の第一凹部12(図1参照)に配置する。第一凹部12の側壁12bと、蓋部材30の側面30aとが突き合わされ、突合部40が構成される。なお、図3の(b)に示すように、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う部分を、重ね合わせ部18とする。   First, as shown to (a) of FIG. 3, the cover member 30 is arrange | positioned in the 1st recessed part 12 (refer FIG. 1) of the main body 10. FIG. The side wall 12b of the first recess 12 and the side surface 30a of the lid member 30 are abutted to form an abutting portion 40. As shown in FIG. 3B, a portion where the bottom surface 12 a of the first recess 12 and the back surface 30 b of the lid member 30 overlap is referred to as an overlapping portion 18.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。図3の(a)に示すように、右回転させた小型回転ツールFを、本体10の上面10aに設定した開始位置s1に挿入した後、突合部40に沿って移動させる。小型回転ツールFの押込み量、送り速度等は適宜設定すればよい。このとき、本体10の外周面に、本体10を四方向から囲む治具(図示せず)を予め当てておくのが好ましい。これによれば、小型回転ツールF及び大型回転ツールGの押圧力によって本体10が変形しにくくなる。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. As shown to (a) of FIG. 3, after inserting the small rotation tool F rotated rightward into the starting position s1 set to the upper surface 10a of the main body 10, it is moved along the abutting part 40. FIG. What is necessary is just to set suitably the pushing amount, feed rate, etc. of the small rotation tool F. FIG. At this time, it is preferable that a jig (not shown) surrounding the main body 10 from four directions is applied in advance to the outer peripheral surface of the main body 10. According to this, the main body 10 is hardly deformed by the pressing force of the small rotary tool F and the large rotary tool G.

小型回転ツールFの移動について具体的に説明する。小型回転ツールFを、開始位置s1から突合部40の真上位置(小型回転ツールFの中心が突合部40と重なる位置)まで回転させながら移動させる。そして、小型回転ツールFの中心(軸芯)が突合部40上を移動するように、突合部40に沿って小型回転ツールFを移動させる。このとき、突合部40の周囲の本体10と蓋部材30は、一体的に塑性流動化されて塑性化領域W1が形成される。「塑性化領域」とは、小型回転ツールFの摩擦熱によって加熱されて現に塑性化している状態と、小型回転ツールFが通り過ぎて常温に戻った状態の両方を含むこととする。なお、図3の(a)に示すように、塑性化領域W1のうち、突合部40上に最初に突入した部分を始端W1aとする。   The movement of the small rotary tool F will be specifically described. The small rotating tool F is moved while rotating from the start position s1 to a position directly above the abutting portion 40 (a position where the center of the small rotating tool F overlaps the abutting portion 40). Then, the small rotating tool F is moved along the abutting portion 40 so that the center (axial center) of the small rotating tool F moves on the abutting portion 40. At this time, the main body 10 and the lid member 30 around the abutting portion 40 are integrally plastically fluidized to form a plasticized region W1. The “plasticization region” includes both a state in which the small rotating tool F is heated by frictional heat and is actually plasticized, and a state in which the small rotating tool F passes and returns to room temperature. In addition, as shown to (a) of FIG. 3, let the part which plunged first on the abutting part 40 among the plasticization area | regions W1 be the start end W1a.

蓋部材固定工程では、図3の(b)に示すように、攪拌ピンF2の長さが蓋部材30の厚みtよりも小さく、塑性化領域W1が第一凹部12の底面12aに接触しない程度に設定されている。摩擦攪拌接合を行うと、蓋部材30のような比較的薄い部材は、熱収縮によって変形する可能性が高い。したがって、攪拌ピンF2の長さ及び小型回転ツールFの押込み量を小さく設定することにより、蓋部材30の変形を防ぐことができる。
なお、蓋部材固定工程では、小型回転ツールFの攪拌ピンF2の長さを大きくしたり、小型回転ツールFを深く押し込んだりして、塑性化領域W1と底面12aとを接触させてもよい。
In the lid member fixing step, as shown in FIG. 3B, the length of the stirring pin F2 is smaller than the thickness t of the lid member 30, and the plasticized region W1 is not in contact with the bottom surface 12a of the first recess 12. Is set to When friction stir welding is performed, a relatively thin member such as the lid member 30 is likely to be deformed by heat shrinkage. Therefore, the deformation of the lid member 30 can be prevented by setting the length of the stirring pin F2 and the pushing amount of the small rotary tool F small.
In the lid member fixing step, the plasticizing region W1 and the bottom surface 12a may be brought into contact with each other by increasing the length of the stirring pin F2 of the small rotary tool F or by pressing the small rotary tool F deeply.

小型回転ツールFの移動方向(図3(a)参照)と同じ方向に小型回転ツールFが回動するシアー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が、本体10上に位置するように、小型回転ツールFを回転、移動させる。つまり、突合部40における小型回転ツールFの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、本実施形態では、小型回転ツールFを第二凹部13に対して右回りに移動させているので、小型回転ツールFも右回転させる。   The shear side where the small rotating tool F rotates in the same direction as the moving direction of the small rotating tool F (see FIG. 3A) (the relative speed of the outer periphery of the small rotating tool F with respect to the joined portion is the small rotating tool F). The small rotating tool F is rotated and moved so that the side of the tangential speed on the outer circumference of the main body 10 is positioned on the main body 10. That is, the rotation direction (spinning direction) of the small rotary tool F in the abutting portion 40 is set to be the same direction as the moving direction (revolution direction). Specifically, in the present embodiment, since the small rotary tool F is moved clockwise with respect to the second recess 13, the small rotary tool F is also rotated clockwise.

なお、小型回転ツールFを第二凹部13に対して左回りに移動させるときは、小型回転ツールFを左回転させることとなる。このようにすることによって、小型回転ツールFのシアー側が厚肉の本体10側に位置する。そして、薄肉の蓋部材30側は、小型回転ツールFのフロー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)となる。このため、蓋部材30側は、メタルの流動量が少なくなり、空洞欠陥が発生しにくくなる。そして、摩擦攪拌によって空洞欠陥が発生したとしても、本体10側であって突合部40よりも外側位置の離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   In addition, when moving the small rotation tool F counterclockwise with respect to the 2nd recessed part 13, the small rotation tool F will be rotated counterclockwise. By doing so, the shear side of the small rotary tool F is positioned on the thick main body 10 side. And the thin lid member 30 side is the flow side of the small rotating tool F (the relative speed of the outer periphery of the small rotating tool F with respect to the joined portion is determined from the magnitude of the tangential speed on the outer periphery of the small rotating tool F. The side that becomes the value obtained by subtracting the size). For this reason, on the lid member 30 side, the amount of metal flow is reduced, and cavity defects are less likely to occur. And even if a cavity defect occurs due to frictional stirring, it will occur on the main body 10 side and at a part spaced apart from the abutting portion 40, and the heat transport fluid will not leak easily to the outside. The sealing performance is not degraded.

小型回転ツールFの回転及び移動を継続し、図4に示すように、小型回転ツールFを、突合部40に沿って一周させる。小型回転ツールFが、塑性化領域W1の始端W1a(図3の(a)参照)を通過したら、小型回転ツールFを本体10の上面10a側に移動させて、終了位置e1で小型回転ツールFを離脱させる。なお、塑性化領域W1のうち、突合部40上に最後に形成される部分を終端W1bとする。   The rotation and movement of the small rotating tool F are continued, and the small rotating tool F is caused to make a round along the abutting portion 40 as shown in FIG. When the small rotary tool F passes the start end W1a (see FIG. 3A) of the plasticizing region W1, the small rotary tool F is moved to the upper surface 10a side of the main body 10, and the small rotary tool F is reached at the end position e1. To leave. In the plasticized region W1, the last portion formed on the abutting portion 40 is referred to as a terminal end W1b.

このように、塑性化領域W1の始端W1a(図3(a)参照)を小型回転ツールFが通り越すことにより、始端W1aと終端W1bとが互いにオーバーラップするため、塑性化領域W1の一部が重複するように構成される。   Thus, since the small rotation tool F passes the start end W1a (see FIG. 3A) of the plasticization region W1, the start end W1a and the end end W1b overlap each other, so that a part of the plasticization region W1 is formed. Configured to overlap.

終了位置e1は、突合部40から外側に外れた位置となっているので、小型回転ツールFの引抜跡が突合部40に形成されることはなく、本体10と蓋部材30との接合性をさらに高めることができる。なお、引抜跡は補修するようにしてもよい。   Since the end position e1 is a position deviated to the outside from the abutting portion 40, the drawing trace of the small rotary tool F is not formed in the abutting portion 40, and the joining property between the main body 10 and the lid member 30 is improved. It can be further increased. In addition, you may make it repair a drawing trace.

第二凹部密封工程では、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、図5の(a)に示すように、回転させた大型回転ツールGを本体10の上面10aに設定した開始位置SM1に挿入した後、第二凹部13の開口周縁14に沿って移動させ、終了位置EM1まで移動させる。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recessed portion sealing step, as shown in FIG. 5A, after the rotated large rotating tool G is inserted into the start position SM1 set on the upper surface 10a of the main body 10, the opening peripheral edge 14 of the second recessed portion 13 is obtained. And move to the end position EM1.

大型回転ツールGの移動について具体的に説明する。本体10の上面10aに設定した開始位置SM1に、右回転させた大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが塑性化領域W1を横断したら、重ね合わせ部18上において、第二凹部13の回りに沿って移動させる。大型回転ツールGを移動させることにより、第二凹部13の周囲には、塑性化領域W2が形成される。図5の(b)に示すように、大型回転ツールGの攪拌ピンG2の長さLが、蓋部材30の厚みtよりも大きくなっているため、重ね合わせ部18を確実に摩擦攪拌接合することができる。 The movement of the large rotary tool G will be specifically described. After inserting the large rotation tool G rotated right into the start position SM1 set on the upper surface 10a of the main body 10, it is moved to the lid member 30 side. When the large rotary tool G crosses the plasticizing region W1, it is moved along the second recess 13 on the overlapping portion 18. By moving the large rotary tool G, a plasticized region W2 is formed around the second recess 13. FIG as shown in (b) of 5, the length L B of the stirring pin G2 of the large rotating tool G is, because larger than the thickness t of the lid member 30 securely friction stir welding the overlapping portion 18 can do.

本実施形態では、第二凹部13の開口周縁14から第一凹部12の側壁12bまでの距離D1は、大型回転ツールGのショルダ部G1の外径Yの2倍以上で形成されているため、重ね合わせ部18の幅を十分に確保することができ確実に摩擦攪拌接合を行うことができる。なお、隣り合う第二凹部13,13の間の距離D2(図3の(a)参照)は、少なくとも大型回転ツールGのショルダ部G1の外径Yよりも大きくければよいが、本実施形態ではショルダ部G1の外径Yの約3倍になっている。 In the present embodiment, the distance D1 from the opening peripheral edge 14 of the second recess 13 to the sidewall 12b of the first recess 12, which is formed by twice or more large rotating tool outer diameter Y 1 of the shoulder portion G1 of G The width of the overlapping portion 18 can be sufficiently secured, and the friction stir welding can be performed reliably. Incidentally, (see (a) in FIG. 3) the distance D2 between the second recess 13, 13 adjacent, may Kere larger than the outer diameter Y 1 of the shoulder portion G1 at least large rotating tool G, but the present embodiment in the form which is about 3 times the outer diameter Y 1 of the shoulder portion G1.

また、図5の(b)に示すように、本実施形態では、大型回転ツールGの中心から第二凹部13の開口周縁14までの距離E1は、ショルダ部G1の外径Yの半径よりも大きくなっている。このようにすれば、摩擦攪拌接合により塑性流動化された塑性流動材が第二凹部13に流入するのを防ぐことができる。 Further, as shown in (b) of FIG. 5, in the present embodiment, the distance E1 from the center of the large rotating tool G to the opening peripheral edge 14 of the second recess 13, than the radius of the outer diameter Y 1 of the shoulder portion G1 Is also getting bigger. In this way, it is possible to prevent the plastic fluidized material plasticized by friction stir welding from flowing into the second recess 13.

また、本実施形態では、第二凹部13の開口周縁14から大型回転ツールGの外周面までの距離E2は、4mmよりも大きくすることが好ましい。距離E2が4mm以下であると、大型回転ツールGと第二凹部13との距離が近くなり、摩擦攪拌接合の際に第二凹部13の内壁が変形する可能性がある。   Moreover, in this embodiment, it is preferable that the distance E2 from the opening peripheral edge 14 of the 2nd recessed part 13 to the outer peripheral surface of the large sized rotary tool G is larger than 4 mm. If the distance E2 is 4 mm or less, the distance between the large rotary tool G and the second recess 13 is reduced, and the inner wall of the second recess 13 may be deformed during friction stir welding.

大型回転ツールGを第二凹部13の回りに一周させたら、図5の(a)の矢印に示すように、塑性化領域W2及び塑性化領域W1を横断させて、本体10の上面10aに設定した終了位置EM1まで移動させる。大型回転ツールGが終了位置EM1に達したら、本体10から大型回転ツールGを離脱させる。なお、引抜跡は補修するようにしてもよい。   When the large-sized rotary tool G makes a round around the second recess 13, the plasticizing region W 2 and the plasticizing region W 1 are traversed and set on the upper surface 10 a of the main body 10 as shown by the arrows in FIG. Move to the finished end position EM1. When the large rotary tool G reaches the end position EM1, the large rotary tool G is detached from the main body 10. In addition, you may make it repair a drawing trace.

第二凹部密閉工程では、大型回転ツールGの移動方向と同じ方向に大型回転ツールGが回動するシアー側(被接合部に対する大型回転ツールGの外周の相対速さが、大型回転ツールGの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が、本体10上の第二凹部13から離間した部位に位置するように、大型回転ツールGを回転、移動させる。つまり、大型回転ツールGの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、本実施形態では、大型回転ツールGを第二凹部13に対して右回りに移動させているので、大型回転ツールGも右回転させる。   In the second recessed portion sealing step, the shear side where the large rotating tool G rotates in the same direction as the moving direction of the large rotating tool G (the relative speed of the outer periphery of the large rotating tool G with respect to the joined portion is The large rotary tool G is rotated and moved so that the tangential speed at the outer circumference is added to the magnitude of the moving speed is located at a position away from the second recess 13 on the main body 10. . That is, the rotation direction (spinning direction) of the large rotary tool G is set to be the same direction as the moving direction (revolution direction). Specifically, in the present embodiment, since the large rotary tool G is moved clockwise with respect to the second recess 13, the large rotary tool G is also rotated clockwise.

なお、大型回転ツールGを第二凹部13に対して左回りに移動させるときは、大型回転ツールGを左回転させる。かかる方法によれば、大型回転ツールGのシアー側が本体10の第二凹部13から離間した部位に位置する。本体10の第二凹部13に近い部位は、大型回転ツールGのフロー側(被接合部に対する大型回転ツールGの外周の相対速さが、大型回転ツールGの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)となる。このため、本体10の第二凹部13に近い部位は、メタルの流動量が少なくなり、空洞欠陥が発生しにくくなる。そして、摩擦攪拌によって空洞欠陥が発生したとしても、第二凹部13から離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   When the large rotary tool G is moved counterclockwise with respect to the second recess 13, the large rotary tool G is rotated counterclockwise. According to such a method, the shear side of the large-sized rotary tool G is located at a site separated from the second recess 13 of the main body 10. The portion of the main body 10 near the second recess 13 is located on the flow side of the large rotating tool G (the relative speed of the outer periphery of the large rotating tool G with respect to the joined portion is moved from the magnitude of the tangential velocity on the outer periphery of the large rotating tool G. The side on which the magnitude of the speed is subtracted). For this reason, the part close | similar to the 2nd recessed part 13 of the main body 10 reduces the flow amount of a metal, and becomes difficult to generate | occur | produce a cavity defect. And even if a cavity defect occurs due to frictional stirring, it will occur in a portion away from the second recess 13 and the heat transport fluid will not leak to the outside, so the sealing performance of the joint will not be reduced.

次に、図6に示すように、他方の第二凹部13の回りに形成された重ね合わせ部18に対して、摩擦攪拌接合を行う。本体10の上面10aに設定した開始位置SM2に大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが塑性化領域W1を横断したら、重ね合わせ部18上において、第二凹部13回りに沿って移動させる。大型回転ツールGを移動させることにより、第二凹部13の周囲に塑性化領域W2が形成される。大型回転ツールGを第二凹部13の回りに一周させたら、図6の矢印に示すように、塑性化領域W2及び塑性化領域W1を横断させて、本体10の上面10aに設定された終了位置EM2まで移動させる。大型回転ツールGが終了位置EM2に達したら、本体10から大型回転ツールGを離脱させる。以上の工程により、伝熱板1が形成される。   Next, as shown in FIG. 6, friction stir welding is performed on the overlapping portion 18 formed around the other second concave portion 13. After the large rotary tool G is inserted into the start position SM2 set on the upper surface 10a of the main body 10, it is moved to the lid member 30 side. When the large rotary tool G crosses the plasticizing region W1, it is moved along the second recess 13 on the overlapping portion 18. By moving the large rotary tool G, a plasticized region W2 is formed around the second recess 13. When the large-sized rotary tool G makes a round around the second recess 13, as shown by the arrows in FIG. 6, the end position set on the upper surface 10 a of the main body 10 across the plasticized region W <b> 2 and the plasticized region W <b> 1. Move to EM2. When the large rotary tool G reaches the end position EM2, the large rotary tool G is detached from the main body 10. The heat transfer plate 1 is formed by the above steps.

なお、第二凹部密封工程において、開始位置SM1,SM2及び終了位置EM1,EM2は、突合部40よりも外側であれば、他の位置であっても構わない。   In the second recess sealing step, the start positions SM1 and SM2 and the end positions EM1 and EM2 may be other positions as long as they are outside the abutting portion 40.

以上説明した伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて、第二凹部13の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの微細な隙間を塞ぐことができる。また、第二凹部13の周囲において、本体10と蓋部材30とを密着させることができる。これにより、伝熱板1の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate described above, in addition to the friction stir welding to the abutting portion 40, the first concave portion is formed by performing the friction stir welding to the overlapping portion 18 around the second concave portion 13. Thus, a minute gap between the bottom surface 12a of the twelve and the back surface 30b of the lid member 30 can be closed. Further, the main body 10 and the lid member 30 can be brought into close contact with each other around the second recess 13. Thereby, the watertightness and airtightness of the heat exchanger plate 1 can be improved.

また、第一凹部12内に第二凹部13,13を内包するように形成されているため、第二凹部13が複数個形成される場合や第二凹部13の形状が複雑になる場合であっても、容易に伝熱板1を製造することができる。従来は、例えば第二凹部が平面視蛇行状を呈する場合、その形状に合わせて平面視蛇行状に蓋部材を成形していた。これにより、蓋部材の成形作業が煩雑になるとともに、本体と蓋部材とを精度よく配置するのが困難になるという問題があった。
しかし、本実施形態によれば、第二凹部13が複数個ある場合であっても、第二凹部13,13を包囲するように平面視矩形の第一凹部12を形成するとともに、第一凹部12の形状に合わせて蓋部材30を矩形に形成することで、蓋部材30の形状を単純化することができる。これにより、蓋部材30を容易に成形できるとともに、第一凹部12に蓋部材30を精度よく配置することができ、伝熱板1を容易に製造することができる。
In addition, since the first recess 12 is formed so as to include the second recesses 13, 13, a plurality of the second recesses 13 are formed or the shape of the second recess 13 is complicated. However, the heat transfer plate 1 can be easily manufactured. Conventionally, for example, when the second recess has a serpentine shape in plan view, the lid member is formed in a serpentine shape in plan view in accordance with the shape. Accordingly, there is a problem that the molding operation of the lid member becomes complicated and it is difficult to accurately arrange the main body and the lid member.
However, according to this embodiment, even when there are a plurality of second recesses 13, the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recesses 13, 13, and the first recess By forming the lid member 30 in a rectangular shape in accordance with the shape of 12, the shape of the lid member 30 can be simplified. Thereby, while being able to shape | mold the cover member 30 easily, the cover member 30 can be accurately arrange | positioned in the 1st recessed part 12, and the heat exchanger plate 1 can be manufactured easily.

また、本実施形態では、第二凹部密封工程の前に蓋部材固定工程を行うため、蓋部材30を本体10に固定した状態で第二凹部密封工程を行うことができるため、作業性を高めることができる。   In this embodiment, since the lid member fixing step is performed before the second concave portion sealing step, the second concave portion sealing step can be performed in a state where the lid member 30 is fixed to the main body 10, thereby improving workability. be able to.

また、本実施形態に係る第二凹部密封工程では、第二凹部13の開口周縁14に沿って大型回転ツールGを一周させるとともに、塑性化領域W2をオーバーラップさせて重複させることにより、第二凹部13の周囲の重ね合わせ部18の気密性及び水密性を高めることができる。   Moreover, in the 2nd recessed part sealing process which concerns on this embodiment, while making the large rotation tool G make one round along the opening peripheral edge 14 of the 2nd recessed part 13, by overlapping the plasticizing area | region W2 and overlapping, it is 2nd. The airtightness and watertightness of the overlapping portion 18 around the recess 13 can be enhanced.

また、大型回転ツールGを金属部材に挿入する際には、金属部材に大きな負荷が作用するため、摩擦攪拌の開始位置SM1,SM2を蓋部材30上に設定すると、蓋部材30が変形してしまう可能性がある。しかし、本実施形態に係る第二凹部密封工程では、摩擦攪拌の開始位置SM1,SM2を突合部40の外側に設定したため、大型回転ツールGの挿入時における蓋部材30の変形を防ぐことができる。また、本実施形態では、摩擦攪拌の終了位置EM1,EM2を肉厚の本体10側に設定したため、大型回転ツールGの引抜跡の補修を容易に行うことができる。   Further, when the large rotating tool G is inserted into the metal member, a large load acts on the metal member. Therefore, when the friction stirring start positions SM1 and SM2 are set on the lid member 30, the lid member 30 is deformed. There is a possibility. However, in the second recess sealing step according to the present embodiment, the friction stirring start positions SM1 and SM2 are set outside the abutting portion 40, so that deformation of the lid member 30 when the large rotary tool G is inserted can be prevented. . Further, in the present embodiment, the friction stirring end positions EM1 and EM2 are set on the thick main body 10 side, so that it is possible to easily repair the extraction trace of the large-sized rotating tool G.

[第二実施形態]
次に、本発明の第二実施形態について説明する。第二実施形態では、本体10に形成された第二凹部51の形状が、平面視矩形枠状を呈する点で第一実施形態と相違する。なお、第二実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In 2nd embodiment, the shape of the 2nd recessed part 51 formed in the main body 10 differs from 1st embodiment by the point which exhibits planar view rectangular frame shape. In the description of the second embodiment, the description of the same parts as those in the first embodiment is omitted.

第二実施形態に係る伝熱板101は、図7の(a)に示すように、本体10と、本体10に摩擦攪拌接合される蓋部材30とを備えている。
本体10は、本体10の上面10aに凹設された第一凹部12と、第一凹部12の中央に凹設された第二凹部51と、第二凹部51に連通する貫通孔16とを有する。
As shown in FIG. 7A, the heat transfer plate 101 according to the second embodiment includes a main body 10 and a lid member 30 that is friction stir welded to the main body 10.
The main body 10 includes a first recess 12 that is recessed in the upper surface 10 a of the main body 10, a second recess 51 that is recessed in the center of the first recess 12, and a through hole 16 that communicates with the second recess 51. .

第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、蓋部材30が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと、底面12aから垂直に立設した4つの側壁12bとを有する。本実施形態では、第二凹部51を平面視矩形枠状に形成したため、底面12aが第二凹部51の内側と外側の両方に形成されている。   The first recess 12 is formed at a position one level lower than the upper surface 10a of the main body 10, and is a part where the lid member 30 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that stand vertically from the bottom surface 12a. In this embodiment, since the 2nd recessed part 51 was formed in planar view rectangular frame shape, the bottom face 12a is formed in both the inner side and the outer side of the 2nd recessed part 51. FIG.

第二凹部51は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部51は、第一凹部12内において、平面視矩形枠状に形成されおり、上方に開口している。第二凹部51の開口部には、開口周縁53a,53bがそれぞれ形成されている。   The second recess 51 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The 2nd recessed part 51 is formed in planar view rectangular frame shape in the 1st recessed part 12, and is opened upwards. Opening rims 53a and 53b are formed in the opening of the second recess 51, respectively.

図7の(b)に示すように、第一凹部12に蓋部材30を配置すると、第一凹部12の側壁12bと蓋部材30の側面30aとで突合部40が形成される。また、第一凹部12の底面12aと蓋部材30の裏面30bとで重ね合わせ部18が形成される。本実施形態では、重ね合わせ部18は、第二凹部51の内側と外側の両方に形成される。   As shown in FIG. 7B, when the lid member 30 is disposed in the first recess 12, the abutting portion 40 is formed by the side wall 12 b of the first recess 12 and the side surface 30 a of the lid member 30. Further, the overlapping portion 18 is formed by the bottom surface 12 a of the first recess 12 and the back surface 30 b of the lid member 30. In the present embodiment, the overlapping portion 18 is formed on both the inside and the outside of the second recess 51.

次に、第二実施形態に係る伝熱板の製造方法について図8を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程とを実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment is demonstrated using FIG. In the method for manufacturing the heat transfer plate according to the present embodiment, the lid member fixing step and the second recess sealing step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。蓋部材固定工程では、図8の(a)に示すように、右回転させた小型回転ツールFを、突合部40上に設定した開始位置s2に挿入し、突合部40に沿って終了位置e2まで摩擦攪拌接合を行う。第一実施形態では、突合部40の全周に亘って摩擦攪拌接合を行ったが、本実施形態では、突合部40を構成する各辺の中間部分のみに対して摩擦攪拌接合を行う。即ち、突合部40を構成する各辺の一点に開始位置s2及び終了位置e2をそれぞれ設定し摩擦攪拌接合を行う。蓋部材固定工程では、突合部40の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することが好ましい。これにより、蓋部材30をバランスよく固定することができ、蓋部材30の本体10に対する位置決め精度が向上する。蓋部材固定工程によって、塑性化領域W1が形成される。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. In the lid member fixing step, as shown in FIG. 8A, the small rotation tool F rotated to the right is inserted into the start position s <b> 2 set on the abutting portion 40, and the end position e <b> 2 along the abutting portion 40. Friction stir welding is performed. In the first embodiment, the friction stir welding is performed over the entire circumference of the abutting portion 40, but in the present embodiment, the friction stir welding is performed only on the intermediate portion of each side constituting the abutting portion 40. That is, the start position s2 and the end position e2 are set at one point on each side of the abutting portion 40, and friction stir welding is performed. In the lid member fixing step, it is preferable that after the frictional stir welding is performed on the middle part of one opposite side of the abutting portion 40, the middle part of the other opposite side is friction stir welded. Thereby, the lid member 30 can be fixed with good balance, and the positioning accuracy of the lid member 30 with respect to the main body 10 is improved. The plasticized region W1 is formed by the lid member fixing step.

第二凹部密封工程では、図8の(a)に示すように、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では本体10の上面10aに設定した開始位置SM3に、左回転させた大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部51の開口周縁53aの外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、第二凹部51の周囲には、塑性化領域W2が形成される。   In the second recess sealing step, as shown in FIG. 8A, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recess sealing step, the large rotation tool G rotated counterclockwise is inserted into the start position SM3 set on the upper surface 10a of the main body 10, and then moved to the lid member 30 side. When the large rotary tool G crosses the abutting portion 40, the large rotary tool G is moved along the outer periphery of the opening peripheral edge 53 a of the second recess 51 on the overlapping portion 18. By moving the large rotary tool G, a plasticized region W2 is formed around the second recess 51.

大型回転ツールGを第二凹部51の回りに一周させたら、図8の(b)に示すように、塑性化領域W2を横断させて、本体10の上面10aに設定した終了位置EM3まで移動させる。大型回転ツールGが終了位置EM3に達したら、本体10から大型回転ツールGを離脱させる。   When the large-sized rotary tool G makes a round around the second recess 51, as shown in FIG. 8B, the plasticizing region W2 is traversed and moved to the end position EM3 set on the upper surface 10a of the main body 10. . When the large rotary tool G reaches the end position EM3, the large rotary tool G is detached from the main body 10.

次に、本実施形態に係る第二凹部密封工程では、第二凹部51の内側の重ね合わせ部18(図7の(b)参照)に対しても摩擦攪拌接合を行う。図8の(b)に示すように、蓋部材30の中央に摩擦攪拌の開始位置SM4を設定し、第二凹部51の開口周縁53bの内側に沿って大型回転ツールGを移動して摩擦攪拌接合を行う。第二凹部51の内側には、塑性化領域W3が形成される。大型回転ツールGが第二凹部51の内側を一周したら、既存の塑性化領域W3と重複するようにして、蓋部材30の中央に設定した終了位置EM4まで大型回転ツールGを移動させる。   Next, in the second recessed portion sealing step according to this embodiment, friction stir welding is also performed on the overlapping portion 18 (see FIG. 7B) inside the second recessed portion 51. As shown in FIG. 8B, the friction stirring start position SM4 is set at the center of the lid member 30, and the large rotating tool G is moved along the inner periphery of the opening peripheral edge 53b of the second recess 51 to thereby friction stir. Join. A plasticized region W <b> 3 is formed inside the second recess 51. When the large rotary tool G goes around the inside of the second recess 51, the large rotary tool G is moved to the end position EM4 set at the center of the lid member 30 so as to overlap with the existing plasticizing region W3.

以上説明した第二実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて、第二凹部51の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの微細な隙間を塞ぐことができる。これにより、伝熱板101の水密性及び気密性を高めることができる。本実施形態では、第二凹部51を平面視矩形枠状に形成したため、第二凹部51の内側に形成された重ね合わせ部18に対しても摩擦攪拌接合を行った。これにより、伝熱板101の水密性及び気密性をさらに高めることができる。   According to the method for manufacturing a heat transfer plate according to the second embodiment described above, in addition to the friction stir welding to the abutting portion 40, the friction stir welding is performed to the overlapping portion 18 around the second recess 51. Thus, a fine gap between the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 can be closed. Thereby, the watertightness and airtightness of the heat transfer plate 101 can be enhanced. In the present embodiment, since the second recess 51 is formed in a rectangular frame shape in plan view, the friction stir welding is also performed on the overlapping portion 18 formed inside the second recess 51. Thereby, the water-tightness and airtightness of the heat transfer plate 101 can be further enhanced.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第三実施形態では、本体10に形成された第二凹部61の形状が、平面視円形状を呈する点で第一実施形態と相違する。なお、第三実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Third embodiment]
Next, a third embodiment of the present invention will be described. In 3rd embodiment, the shape of the 2nd recessed part 61 formed in the main body 10 differs from 1st embodiment by the point which exhibits a planar view circular shape. In the description of the third embodiment, the description of the same parts as those in the first embodiment is omitted.

第三実施形態に係る伝熱板102は、図9に示すように、本体10と、本体10に摩擦攪拌接合される蓋部材30とを備えている。
本体10は、本体10の上面10aに凹設された第一凹部12と、第一凹部12に凹設された第二凹部61と、第二凹部61に連通する貫通孔16とを有する。
As shown in FIG. 9, the heat transfer plate 102 according to the third embodiment includes a main body 10 and a lid member 30 that is friction stir welded to the main body 10.
The main body 10 has a first recess 12 that is recessed in the upper surface 10 a of the main body 10, a second recess 61 that is recessed in the first recess 12, and a through hole 16 that communicates with the second recess 61.

第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、蓋部材30が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと、底面12aから垂直に立設した4つの側壁12bとを有する。   The first recess 12 is formed at a position one level lower than the upper surface 10a of the main body 10, and is a part where the lid member 30 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that stand vertically from the bottom surface 12a.

第二凹部61は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部61は、第一凹部12内において平面視円形状を呈し、上方に開口している。第二凹部61の開口部には開口周縁62が形成されている。   The second recess 61 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 61 has a circular shape in a plan view inside the first recess 12 and opens upward. An opening periphery 62 is formed in the opening of the second recess 61.

次に、第三実施形態に係る伝熱板の製造方法について図10を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程とを実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment is demonstrated using FIG. In the method for manufacturing the heat transfer plate according to the present embodiment, the lid member fixing step and the second recess sealing step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。蓋部材固定工程では、図10に示すように、突合部40の四隅に断続的に摩擦攪拌接合を行う。即ち、突合部40の各四隅に設定された開始位置s3から終了位置e3まで小型回転ツールFを右回転させて摩擦攪拌接合を行う。蓋部材固定工程では、突合部40の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することが好ましい。これにより、蓋部材30をバランスよく固定することができ、蓋部材30の本体10に対する位置決め精度が向上する。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. In the lid member fixing step, friction stir welding is intermittently performed at the four corners of the abutting portion 40 as shown in FIG. That is, friction stir welding is performed by rotating the small rotary tool F to the right from the start position s3 set at each of the four corners of the abutting portion 40 to the end position e3. In the lid member fixing step, it is preferable to first frictionally stir one diagonal of the abutting portion 40 and then stir the other diagonal. Thereby, the lid member 30 can be fixed with good balance, and the positioning accuracy of the lid member 30 with respect to the main body 10 is improved.

第二凹部密封工程では、第一凹部12の底面12a(図9参照)と、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、本体10の上面10aに設定した開始位置SM5に、右回転させた大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部61の外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、塑性化領域W2が形成される。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a (see FIG. 9) of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recess sealing step, the large rotation tool G rotated to the right is inserted into the start position SM5 set on the upper surface 10a of the main body 10, and then moved to the lid member 30 side. When the large rotary tool G crosses the abutting portion 40, the large rotary tool G is moved along the outer periphery of the second recess 61 on the overlapping portion 18. By moving the large rotary tool G, the plasticized region W2 is formed.

大型回転ツールGを第二凹部61回りに一周させたら、図10の矢印にしたがって、塑性化領域W2を横断させ、本体10の上面10aに設定した終了位置EM5まで移動させる。大型回転ツールGが終了位置EM5に達したら、本体10から大型回転ツールGを離脱させる。   When the large rotary tool G makes a round around the second recess 61, the plasticizing region W2 is traversed and moved to the end position EM5 set on the upper surface 10a of the main body 10 according to the arrow in FIG. When the large rotary tool G reaches the end position EM5, the large rotary tool G is detached from the main body 10.

以上説明した第三実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて第二凹部61の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの間の隙間を塞ぐことができる。これにより、伝熱板102の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate according to the third embodiment described above, the friction stir welding is performed on the overlapping portion 18 around the second recess 61 in addition to the friction stir welding on the abutting portion 40. Thus, the gap between the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 can be closed. Thereby, the watertightness and airtightness of the heat transfer plate 102 can be enhanced.

また、本実施形態では、第二凹部61を平面視円形状に形成しているが、第二凹部61の周囲を包囲するように平面視矩形の第一凹部12を形成し、第一凹部12と同等の平面形状からなる蓋部材30で封止している。つまり、第二凹部61の形状が平面視円形であったとしても蓋部材30の形状は平面視矩形のものを用いることができる。これにより、蓋部材30の形状は平面視矩形の単純な形状のものを用いることができるため、蓋部材30の成形を容易に行うことができるとともに、第一凹部12に蓋部材30を精度よく配置することができる。   In the present embodiment, the second recess 61 is formed in a circular shape in plan view, but the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recess 61, and the first recess 12 is formed. It is sealed with a lid member 30 having a planar shape equivalent to the above. That is, even if the shape of the second recess 61 is circular in plan view, the shape of the lid member 30 can be rectangular in plan view. Thereby, since the shape of the lid member 30 can be a simple shape having a rectangular shape in plan view, the lid member 30 can be easily formed, and the lid member 30 can be accurately placed in the first recess 12. Can be arranged.

また、本実施形態に係る蓋部材固定工程では、突合部40の四隅のみに対して摩擦攪拌接合を行うため、作業手間を省略することができる。   Further, in the lid member fixing step according to the present embodiment, since the friction stir welding is performed only on the four corners of the abutting portion 40, work labor can be omitted.

[第四実施形態]
次に、本発明の第四実施形態について説明する。第四実施形態では、本体70に形成された第二凹部71の形状が、平面視U字状を呈する点で第一実施形態と相違する。なお、第四実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. In 4th embodiment, the shape of the 2nd recessed part 71 formed in the main body 70 differs from 1st embodiment by the point which exhibits planar view U shape. In the description of the fourth embodiment, the description of the same parts as those in the first embodiment is omitted.

第四実施形態に係る伝熱板103は、図11及び図12に示すように、本体70と、本体70に配置される蓋部材80とを摩擦攪拌接合によって一体成形される。
本体70は、直方体を呈し、平面視直方形を呈する。本体70は、本体70の上面70aに凹設された第一凹部12と、第一凹部12に凹設された第二凹部71と、第二凹部71に連通する貫通孔16とを有する。蓋部材80は、図12に示すように、第一凹部12と略同等の平面形状を呈する板状部材である。
As shown in FIGS. 11 and 12, the heat transfer plate 103 according to the fourth embodiment is integrally formed by friction stir welding of a main body 70 and a lid member 80 disposed on the main body 70.
The main body 70 has a rectangular parallelepiped shape and a rectangular shape in plan view. The main body 70 includes a first recess 12 that is recessed in the upper surface 70 a of the main body 70, a second recess 71 that is recessed in the first recess 12, and a through hole 16 that communicates with the second recess 71. As shown in FIG. 12, the lid member 80 is a plate-like member that exhibits a planar shape substantially equivalent to that of the first recess 12.

第一凹部12は、本体70の上面70aよりも一段下がった位置に形成されており、蓋部材80が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと底面12aから垂直に立設した4つの側壁12bとを有する。   The first recess 12 is formed at a position lower than the upper surface 70a of the main body 70, and is a part where the lid member 80 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that are erected vertically from the bottom surface 12a.

第二凹部71は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部71は、平面視U字状を呈する。第二凹部71は、上方に開口している。第二凹部71の開口部には、開口周縁72が形成されている。   The second recess 71 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 71 has a U shape in plan view. The second recess 71 is open upward. An opening peripheral edge 72 is formed in the opening of the second recess 71.

次に、第四実施形態に係る伝熱板の製造方法について、図12を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 4th embodiment is demonstrated using FIG. In the method for manufacturing the heat transfer plate according to the present embodiment, the lid member fixing step and the second recess sealing step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体70に蓋部材80を接合する。蓋部材固定工程では、図12の(a)に示すように、小型回転ツールFを用いて突合部40の四隅に断続的に摩擦攪拌接合を行うとともに、突合部40を構成する各辺の中間部分に対して摩擦攪拌接合を行う。蓋部材固定工程によって塑性化領域W1が形成される。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40, and the lid member 80 is bonded to the main body 70. In the lid member fixing step, as shown in FIG. 12A, the friction stir welding is intermittently performed at the four corners of the abutting portion 40 using a small rotary tool F, and the middle of each side constituting the abutting portion 40 is performed. Friction stir welding is performed on the part. The plasticized region W1 is formed by the lid member fixing step.

第二凹部密封工程では、図12に示すように、第一凹部12の底面12aと、蓋部材80の裏面80bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、本体70の上面70aに設定した開始位置SM6に、右回転させた大型回転ツールGを挿入した後、蓋部材80側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部71の開口周縁72の外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、塑性化領域W2が形成される。   In the second recess sealing step, as shown in FIG. 12, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 overlap. In the second recess sealing step, the large rotation tool G rotated to the right is inserted into the start position SM6 set on the upper surface 70a of the main body 70, and then moved to the lid member 80 side. When the large rotating tool G crosses the abutting portion 40, the large rotating tool G is moved along the outer periphery of the opening peripheral edge 72 of the second recess 71 on the overlapping portion 18. By moving the large rotary tool G, the plasticized region W2 is formed.

大型回転ツールGを第二凹部71に沿って一周させたら、図12の(a)の矢印にしたがって、塑性化領域W2を横断させ、本体70の上面70aに設定した終了位置EM6まで移動させる。大型回転ツールGが終了位置EM6に達したら、本体70から大型回転ツールGを離脱させる。   When the large rotary tool G makes a round along the second recess 71, the plasticizing region W2 is traversed and moved to the end position EM6 set on the upper surface 70a of the main body 70 in accordance with the arrow in FIG. When the large rotary tool G reaches the end position EM6, the large rotary tool G is detached from the main body 70.

以上説明した第四実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて第二凹部71の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材80の裏面80bとの微細な隙間を塞ぐことができる。これにより、伝熱板103の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate according to the fourth embodiment described above, the friction stir welding is performed on the overlapping portion 18 around the second recess 71 in addition to the friction stir welding on the abutting portion 40. Thus, a fine gap between the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 can be closed. Thereby, the water-tightness and airtightness of the heat transfer plate 103 can be enhanced.

また、本実施形態では、第二凹部71を平面視U字状に形成しているが、第二凹部71の周囲を包囲するように平面視矩形の第一凹部12を形成し、第一凹部12と同等の平面形状からなる蓋部材80で封止している。つまり、第二凹部71の形状が平面視U字状のような複雑な形状であったとしても、蓋部材80は、平面視矩形のものを用いることができる。これにより、蓋部材80の形状は平面視矩形の単純な形状のものを用いることができるため、蓋部材80の成形を容易に行うことができるとともに、第一凹部12に蓋部材80を精度よく配置することができる。   In the present embodiment, the second recess 71 is formed in a U shape in plan view. However, the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recess 71, and the first recess 12 is sealed with a lid member 80 having a planar shape equivalent to 12. That is, even if the shape of the second recess 71 is a complicated shape such as a U shape in plan view, the lid member 80 can be rectangular in plan view. As a result, since the lid member 80 can be a simple shape having a rectangular shape in plan view, the lid member 80 can be easily formed, and the lid member 80 is accurately placed in the first recess 12. Can be arranged.

以上、本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、第四実施形態のように蓋部材80が比較的大きい場合、蓋部材固定工程を行う前に、仮接合工程を行ってもよい。   Although the embodiments of the present invention have been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, when the lid member 80 is relatively large as in the fourth embodiment, the temporary joining step may be performed before the lid member fixing step.

仮接合工程では、図13の(a)及び(b)に示すように、突合部40の内側であって、かつ、第二凹部71の外側において、蓋部材80の上方から回転した回転ツールHを押し込んで、第一凹部12の底面12aと、蓋部材80の裏面80bとが重ね合わされた重ね合わせ部18に対して摩擦攪拌接合を行う。当該摩擦攪拌接合によって塑性化領域W4が形成される。   In the temporary joining step, as shown in FIGS. 13A and 13B, the rotary tool H rotated from above the lid member 80 inside the abutting portion 40 and outside the second concave portion 71. , And the friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 are overlapped. A plasticized region W4 is formed by the friction stir welding.

仮接合工程により、本体70と蓋部材80とが仮接合される。蓋部材80が大きい場合、蓋部材固定工程を行うと、摩擦攪拌接合の熱収縮により蓋部材が反って蓋部材80の中央部分と本体70とが離間してしまい、第二凹部密封工程の作業が煩雑になる可能性がある。しかし、本実施形態の仮接合工程を行うことで、蓋部材80の反りを抑制することができるため、第二凹部密封工程を好適に行うことができる。   The main body 70 and the lid member 80 are temporarily bonded by the temporary bonding step. When the lid member 80 is large, when the lid member fixing step is performed, the lid member warps due to the heat shrinkage of the friction stir welding, and the central portion of the lid member 80 and the main body 70 are separated from each other. Can be cumbersome. However, since the warp of the lid member 80 can be suppressed by performing the temporary joining step of the present embodiment, the second recess sealing step can be suitably performed.

仮接合工程は、重ね合わせ部18において、連続的に摩擦攪拌接合を行ってもよいし、本実施形態のように断続的に行ってもよい。   The temporary joining step may be performed continuously by friction stir welding in the overlapping portion 18 or may be performed intermittently as in the present embodiment.

また、前記した実施形態では、第二凹部密封工程の前に、蓋部材固定工程を行ったが、第二凹部密封工程を行った後に、蓋部材固定工程を行ってもよい。   In the above-described embodiment, the lid member fixing step is performed before the second recess sealing step. However, the lid member fixing step may be performed after the second recess sealing step.

また、大型回転ツールGを挿入する位置に、挿入時の摩擦抵抗を軽減するために、予め下穴を形成しておいてもよい。   Moreover, in order to reduce the frictional resistance at the time of insertion in the position which inserts the large sized rotation tool G, you may form a pilot hole previously.

また、本実施形態では、第一凹部及び蓋部材の平面形状は矩形としたが、これに限定されるものではなく、平面視円形、楕円系、又は角形であってもよい。第一凹部及び蓋部材の形状は、成形しやすく、かつ、精度良く配置可能な形状であることが好ましい。   In the present embodiment, the planar shape of the first concave portion and the lid member is rectangular, but is not limited thereto, and may be circular, elliptical, or rectangular in plan view. The shapes of the first recess and the lid member are preferably shapes that are easy to mold and can be placed with high precision.

1 伝熱板
10 本体(第一金属部材)
10a 上面
12 第一凹部
12a 底面
12b 側壁
13 第二凹部
14 開口周縁
16 貫通孔
18 重ね合わせ部
30 蓋部材(第二金属部材)
30a 側面
30b 裏面
40 突合部
F 小型回転ツール
F1 ショルダ部
F2 攪拌ピン
G 大型回転ツール
G1 ショルダ部
G2 攪拌ピン
s1 開始位置
e1 終了位置
SM1 開始位置
EM1 終了位置
W1〜W4 塑性化領域


1 Heat transfer plate 10 Main body (first metal member)
10a upper surface 12 first recess 12a bottom surface 12b side wall 13 second recess 14 opening peripheral edge 16 through hole 18 overlapping portion 30 lid member (second metal member)
30a Side 30b Back 40 Joint part F Small rotating tool F1 Shoulder part F2 Stirring pin G Large rotating tool G1 Shoulder part G2 Stirring pin s1 Start position e1 End position SM1 Start position EM1 End position W1-W4 Plasticization region


Claims (17)

表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する本体に、前記第二凹部を封止する蓋部材を摩擦攪拌接合によって固定して形成される伝熱板の製造方法であって、
前記本体の前記第一凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う蓋部材固定工程と、
前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、を含むことを特徴とする伝熱板の製造方法。
The main body having a first recess recessed in the surface and a second recess through which a heat transport fluid that transports heat generated by the heat generating body that is recessed in the bottom surface of the first recess flows. A method of manufacturing a heat transfer plate formed by fixing a lid member for sealing a recess by friction stir welding,
A lid member fixing step of performing friction stir welding on at least a part of the abutting portion by moving a rotary tool along the abutting portion between the side wall of the first recess of the main body and the side surface of the lid member;
A second recess sealing step in which a rotary tool is moved along the opening periphery of the second recess to perform friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member; A method of manufacturing a heat transfer plate, comprising:
前記第二凹部の開口周縁から前記第一凹部の側壁までの距離は、前記回転ツールのショルダ部の外径の2倍以上であることを特徴とする請求項1に記載の伝熱板の製造方法。   2. The manufacture of a heat transfer plate according to claim 1, wherein the distance from the opening periphery of the second recess to the side wall of the first recess is at least twice the outer diameter of the shoulder portion of the rotary tool. Method. 前記蓋部材固定工程の後に、前記第二凹部密封工程を行うことを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 1 or 2, wherein the second recess sealing step is performed after the lid member fixing step. 前記第二凹部密封工程では、前記第二凹部の開口周縁に沿って前記回転ツールを一周させて、前記重ね合わせ部に対して摩擦攪拌接合を行うことを特徴とする請求項1乃至請求項3のいずれか一項に記載の伝熱板の製造方法。   4. The friction stir welding is performed on the overlapping portion by rotating the rotating tool around the opening periphery of the second recess in the second recess sealing step. 5. The manufacturing method of the heat exchanger plate as described in any one of these. 前記第二凹部密封工程では、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成される塑性化領域の一部を重複させることを特徴とする請求項4に記載の伝熱板の製造方法。   The said 2nd recessed part sealing process overlaps the movement locus | trajectory of the said rotation tool in the said abutting part, and overlaps a part of plasticization area | region formed by friction stir welding. Manufacturing method of heat transfer plate. 前記第二凹部密封工程では、
前記回転ツールを前記第二凹部の開口周縁に対して右回りに移動させるときは前記回転ツールを右回転させ、
前記回転ツールを前記第二凹部の開口周縁に対して左回りに移動させるときは前記回転ツールを左回転させることを特徴とすることを特徴とする請求項4又は請求項5に記載の伝熱板の製造方法。
In the second recess sealing step,
When moving the rotating tool clockwise with respect to the opening periphery of the second recess, rotate the rotating tool to the right,
6. The heat transfer according to claim 4, wherein when the rotary tool is moved counterclockwise with respect to the opening periphery of the second recess, the rotary tool is rotated counterclockwise. A manufacturing method of a board.
前記第二凹部密封工程で使用される前記回転ツールの攪拌ピンの長さを、前記蓋部材の厚みよりも大きく設定することを特徴とする請求項1乃至請求項6のいずれか一項に記載の伝熱板の製造方法。   The length of the stirring pin of the rotary tool used in the second recess sealing step is set to be larger than the thickness of the lid member. Manufacturing method of heat transfer plate. 前記第二凹部密封工程では、前記回転ツールの中心から前記第二凹部の開口周縁までの距離を前記回転ツールのショルダ部の半径よりも大きく設定することを特徴とする請求項1乃至請求項7に記載の伝熱板の製造方法。   8. The second recess sealing step, wherein a distance from a center of the rotary tool to an opening peripheral edge of the second recess is set larger than a radius of a shoulder portion of the rotary tool. The manufacturing method of the heat exchanger plate as described in 2. 前記第二凹部密封工程では、前記蓋部材の外側から摩擦攪拌を開始するとともに、前記蓋部材の外側で摩擦攪拌を終了することを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   The friction stirrer is started outside the lid member and friction agitation is finished outside the lid member in the second recess sealing step. The manufacturing method of the heat-transfer board of description. 前記蓋部材固定工程で使用する前記回転ツールの攪拌ピンの長さを、前記蓋部材の厚みよりも小さく設定することを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。   The length of the stirring pin of the rotating tool used in the lid member fixing step is set to be smaller than the thickness of the lid member. Manufacturing method of hot plate. 前記蓋部材固定工程では、前記突合部に沿って前記回転ツールを一周させて摩擦攪拌接合を行うことを特徴とする請求項1乃至請求項10に記載の伝熱板の製造方法。   11. The method for manufacturing a heat transfer plate according to claim 1, wherein in the lid member fixing step, the rotary tool is caused to make a round along the abutting portion to perform friction stir welding. 前記蓋部材固定工程では、前記回転ツールの移動軌跡を前記突合部においてオーバーラップさせ、摩擦攪拌接合によって形成された塑性化領域の一部を重複させることを特徴とする請求項11に記載の伝熱板の製造方法。   12. The transmission according to claim 11, wherein in the lid member fixing step, the movement trajectory of the rotating tool is overlapped at the abutting portion, and a part of the plasticized region formed by the friction stir welding is overlapped. Manufacturing method of hot plate. 前記蓋部材固定工程では、
前記回転ツールを前記蓋部材に対して右回りに移動させるときは前記回転ツールを右回転させ、
前記回転ツールを前記蓋部材に対して左回りに移動させるときは前記回転ツールを左回転させることを特徴とすることを特徴とする請求項11又は請求項12に記載の伝熱板の製造方法。
In the lid member fixing step,
When moving the rotary tool clockwise with respect to the lid member, rotate the rotary tool clockwise,
The method for manufacturing a heat transfer plate according to claim 11 or 12, wherein when the rotary tool is moved counterclockwise with respect to the lid member, the rotary tool is rotated counterclockwise. .
前記突合部は平面視矩形を呈しており、
前記蓋部材固定工程では、前記突合部の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することを特徴とする請求項1乃至請求項10のいずれか一項に記載の伝熱板の製造方法。
The abutting portion has a rectangular shape in plan view,
The said cover member fixing process WHEREIN: After carrying out friction stir welding of the one diagonal of the said butt | matching part previously, the other diagonal is friction stirred, It is any one of Claim 1 thru | or 10 characterized by the above-mentioned. The manufacturing method of the heat exchanger plate as described in a term.
前記突合部は平面視矩形を呈しており、
前記蓋部材固定工程では、前記突合部の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することを特徴とする請求項1乃至請求項10のいずれか一項に記載の伝熱板の製造方法。
The abutting portion has a rectangular shape in plan view,
11. The lid member fixing step according to any one of claims 1 to 10, wherein the intermediate portion of one opposite side of the abutting portion is friction stir welded and then the intermediate portion of the other opposite side is friction stir welded. The manufacturing method of the heat exchanger plate as described in one term.
前記蓋部材固定工程を行う前に、前記重ね合わせ部において回転ツールを移動させて前記本体と前記蓋部材とを仮接合する仮接合工程を含むことを特徴とする請求項1乃至請求項15のいずれか一項に記載の伝熱板の製造方法。   16. The temporary joining step of temporarily joining the main body and the lid member by moving a rotary tool in the overlapping portion before performing the lid member fixing step. The manufacturing method of the heat exchanger plate as described in any one of Claims. 表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する第一金属部材に、前記第二凹部を封止する第二金属部材を摩擦攪拌接合によって固定する摩擦攪拌接合方法であって、
前記第一金属部材の前記第一凹部の側壁と前記第二金属部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う第二金属部材固定工程と、
前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記第二金属部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、を含むことを特徴とする摩擦攪拌接合方法。
A first metal member having a first recess recessed on the surface and a second recess through which a heat transport fluid that transports the heat generated by the heat generating body that is recessed at the bottom of the first recess flows. A friction stir welding method for fixing the second metal member sealing the second recess by friction stir welding,
Secondly, a friction stir welding is performed on at least a part of the abutting portion by moving the rotary tool along the abutting portion between the side wall of the first recess and the side surface of the second metal member of the first metal member. A metal member fixing step;
A second recess sealing step in which a rotary tool is moved along the opening periphery of the second recess to perform friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the second metal member; A friction stir welding method comprising:
JP2009039281A 2009-02-23 2009-02-23 Method for manufacturing heat transfer plate, and friction stir welding method Pending JP2010194557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039281A JP2010194557A (en) 2009-02-23 2009-02-23 Method for manufacturing heat transfer plate, and friction stir welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039281A JP2010194557A (en) 2009-02-23 2009-02-23 Method for manufacturing heat transfer plate, and friction stir welding method

Publications (1)

Publication Number Publication Date
JP2010194557A true JP2010194557A (en) 2010-09-09

Family

ID=42819844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039281A Pending JP2010194557A (en) 2009-02-23 2009-02-23 Method for manufacturing heat transfer plate, and friction stir welding method

Country Status (1)

Country Link
JP (1) JP2010194557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171732A (en) * 2015-06-11 2015-10-01 日本軽金属株式会社 Manufacturing method for liquid-cooled jacket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171732A (en) * 2015-06-11 2015-10-01 日本軽金属株式会社 Manufacturing method for liquid-cooled jacket

Similar Documents

Publication Publication Date Title
JP6036714B2 (en) Manufacturing method of liquid cooling jacket
JP5136516B2 (en) Manufacturing method of sealed container
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
WO2015107716A1 (en) Method of manufacturing liquid-cooled jacket
WO2014057947A1 (en) Method for producing heat exchanger plate and method for friction stir welding
WO2019150610A1 (en) Method for manufacturing liquid cooling jacket
JP2010201447A (en) Method for manufacturing heat transfer plate
JP2010284704A (en) Joining method and method of manufacturing structure having lid
WO2009081731A1 (en) Joining method
WO2015060007A1 (en) Method for manufacturing heat transfer plate and joining method
JP2009148811A (en) Joining method
JP6834925B2 (en) How to manufacture a liquid-cooled jacket
JP5062155B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
JP6337632B2 (en) Manufacturing method of liquid cooling jacket
JP2010284706A (en) Joining method and method of manufacturing structure having lid
JP2015080787A (en) Method for manufacturing heat exchanger plate
JP5177059B2 (en) Manufacturing method of heat transfer plate
JP5233557B2 (en) Joining method
JP2010194557A (en) Method for manufacturing heat transfer plate, and friction stir welding method
JP2021079422A (en) Method of manufacturing liquid-cooled jacket
JP5347774B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2016215206A (en) Joint method
JP5458684B2 (en) Manufacturing method of structure
JP2018065164A (en) Method of manufacturing hollow vessel
WO2019198290A1 (en) Method for manufacturing heat transfer plate