JP2011003562A - Printed wiring board and method for manufacturing the same - Google Patents

Printed wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP2011003562A
JP2011003562A JP2009142853A JP2009142853A JP2011003562A JP 2011003562 A JP2011003562 A JP 2011003562A JP 2009142853 A JP2009142853 A JP 2009142853A JP 2009142853 A JP2009142853 A JP 2009142853A JP 2011003562 A JP2011003562 A JP 2011003562A
Authority
JP
Japan
Prior art keywords
via hole
insulating substrate
metal foil
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142853A
Other languages
Japanese (ja)
Inventor
Atsuhiro Uratsuji
淳広 浦辻
Toshiyuki Inaoka
俊幸 稲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2009142853A priority Critical patent/JP2011003562A/en
Publication of JP2011003562A publication Critical patent/JP2011003562A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board and a method for manufacturing the same that can form a via hole of a filled-via structure inexpensively and efficiently filled with plating by a reduced number of processes while utilizing existing equipment.SOLUTION: A via hole 16 is formed from the side of copper foil 13 at the other side of an insulating substrate 12 toward copper foil 14 at one side of the insulating substrate. The copper foil 14 is exposed in the via hole 16 so as to form the bottomed via hole 16. A masking film 24 is stuck to the surface of the copper foil 14 which resides at a side opposite to the side of the via hole 16. The copper foil 14 stuck with the masking film 24 is connected to the side of a negative electrode. The insulating substrate 12 is immersed into a plating liquid so as to deposit copper plating 18 in the via hole 16. The copper plating 18 is filled into the inside of the via hole 16 so as to form an interlayer connection structure by the filled via. After peeling off the masking film 24, two pieces of the copper foil 13, 14 are etched so as to form circuit wiring 13a, 14a.

Description

この発明は、回路配線が絶縁基板を挟んで積層され、各回路配線がフィルドビアによる層間接続部を介して接続されたプリント配線板とその製造方法に関する。   The present invention relates to a printed wiring board in which circuit wiring is laminated with an insulating substrate interposed therebetween, and each circuit wiring is connected via an interlayer connection portion by filled vias, and a method for manufacturing the same.

従来、多層プリント配線板において、絶縁基板で絶縁された各回路配線を電気的に接続するため、内部に導電材が設けられたビアホールが絶縁基板を貫通して形成されている。この層間接続方法として、絶縁基板に形成されたビアホール内に、銅メッキにより銅を充填するフィルドビア構造がある。   2. Description of the Related Art Conventionally, in a multilayer printed wiring board, in order to electrically connect each circuit wiring insulated by an insulating substrate, a via hole having a conductive material provided therein is formed through the insulating substrate. As an interlayer connection method, there is a filled via structure in which copper is filled in a via hole formed in an insulating substrate by copper plating.

この層間接続方法は、本願の図5や特許文献1の図3に開示されているように、ポリイミドやその他樹脂のプリプレグ等による絶縁基板1の両面に、銅箔2,3が貼付された両面銅張り板4を用いる(図5(a))。この両面銅張り板4の表面側の銅箔2に、エッチングにより開口部5を形成し、その開口部5にCO2レーザ等を照射して、絶縁基板1に貫通孔を形成し、銅箔3が底部に露出した有底のビアホール6を形成する(図5(b))。なお、ビアホール6の形成は、銅箔2の表面から直接レーザ光を照射して形成するカッパーダイレクト法を用いても良い。次に、ビアホール6内をデスミア処理し、ビアホール6内に化学メッキ7を施し(図5(c))、この後電解メッキを行い、ビアホール6内に銅メッキ8を充填する(図5(d))。このときのメッキ液は、硫酸銅に加えて複数の添加剤を用いる。これにより、ビアホール6内に効果的に銅が析出し効率よくメッキ銅が充填される。この後、銅箔2,3の表面にエッチングレジストを貼り、所定の回路パターンを露光して、回路配線以外の部分のエッチングレジスト除去し、銅箔2,3をエッチングして、回路配線2a,3aを形成する(図5(e))。 In this interlayer connection method, as disclosed in FIG. 5 of this application and FIG. 3 of Patent Document 1, both surfaces of the insulating substrate 1 made of polyimide or other resin prepreg or the like are attached with copper foils 2 and 3. A copper-clad plate 4 is used (FIG. 5A). An opening 5 is formed in the copper foil 2 on the surface side of the double-sided copper-clad plate 4 by etching, and the opening 5 is irradiated with a CO 2 laser or the like to form a through hole in the insulating substrate 1. A bottomed via hole 6 with 3 exposed at the bottom is formed (FIG. 5B). The via hole 6 may be formed by a copper direct method in which a laser beam is directly irradiated from the surface of the copper foil 2. Next, the inside of the via hole 6 is desmeared, and chemical plating 7 is performed in the via hole 6 (FIG. 5C). Thereafter, electrolytic plating is performed to fill the via hole 6 with the copper plating 8 (FIG. 5D). )). The plating solution at this time uses a plurality of additives in addition to copper sulfate. Thereby, copper effectively deposits in the via hole 6 and is efficiently filled with plated copper. Thereafter, an etching resist is applied to the surfaces of the copper foils 2 and 3, a predetermined circuit pattern is exposed, the etching resist other than the circuit wiring is removed, the copper foils 2 and 3 are etched, and the circuit wiring 2a, 3a is formed (FIG. 5E).

その他、特許文献2の図9に示すように、上述のように両面銅張り板に有底のビアホールをエッチングやレーザ加工により形成し、この後、ビアホール底部の銅箔をメッキリードとして銅メッキを成長させて、ビアホール内にメッキ銅を充填する方法も提案されている。このときも、効果的にビアホール内にメッキ銅が充填されるように、硫酸銅に加えて反応促進剤と反応抑制剤の添加剤を加えたメッキ液を用いている。   In addition, as shown in FIG. 9 of Patent Document 2, a bottomed via hole is formed on a double-sided copper-clad plate by etching or laser processing as described above, and then copper plating is performed using the copper foil at the bottom of the via hole as a plating lead. A method of growing and filling plated vias in via holes has also been proposed. Also at this time, a plating solution in which an additive of a reaction accelerator and a reaction inhibitor is added in addition to copper sulfate is used so that the plated copper is effectively filled in the via hole.

特開2007−224347号公報JP 2007-224347 A WO2007/007857号公報WO2007 / 007857 Publication

しかしながら、上記背景技術の前者の方法では、ビアホール6の形成後化学メッキ7を施し、さらに電解メッキにより銅メッキ8を形成しなければならず、工程が多く、工数の掛かるものであり、メッキ工程において特殊なメッキ液や添加剤を必要とし、コストのかかるものであった。さらに、廃液も多く環境負荷も大きいものであった。また、ビアホール6以外の銅箔2,3の表面にも銅メッキ8が施され、銅箔による導電層厚さが厚くなり、さらにメッキ銅は弾力性が低いことから、特にフレキシブル基板の銅箔にこのメッキ銅が付着するとフレキシブル基板が硬くなるという問題もあった。   However, in the former method of the background art, the chemical plating 7 must be applied after the via hole 6 is formed, and the copper plating 8 must be formed by electrolytic plating, which requires many steps and man-hours. However, it requires a special plating solution and additive and is expensive. Furthermore, there was a lot of waste liquid and the environmental load was large. Further, the copper plating 8 is also applied to the surfaces of the copper foils 2 and 3 other than the via holes 6, the conductive layer thickness by the copper foil is increased, and the plated copper is low in elasticity. When this plated copper adheres, the flexible substrate becomes hard.

また、上記背景技術の後者の場合は、化学メッキ工程はないが、電解メッキ時に特殊なメッキ液や添加剤を必要とし、さらに銅箔表面にも銅メッキが施され厚さが厚くなり、上記と同様に弾力性が損なわれると言う問題もあった。   In the latter case of the above background art, there is no chemical plating process, but a special plating solution or additive is required at the time of electrolytic plating. Further, copper plating is applied to the copper foil surface to increase the thickness. There was also a problem that the elasticity was lost as well.

この発明は、上記背景技術に鑑みて成されたもので、既存設備を利用して少ない工程数で、安価に効率的にメッキを充填したフィルドビア構造のビアホールを形成することができるプリント配線板とその製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned background art, and is a printed wiring board capable of forming a filled via structure via hole filled with plating efficiently at a low number of steps using existing equipment, and It aims at providing the manufacturing method.

この発明は、絶縁基板のビアホール内にメッキを充填して、フィルドビアを形成し、前記絶縁基板表面の金属箔による回路配線の層間接続を行うプリント配線板の製造方法であって、前記絶縁基板の一方の側の金属箔に向かって他方の側からビアホールを形成し、前記金属箔を前記ビアホール内に露出させ、前記金属箔による有底のビアホールを形成するとともに、前記金属箔の前記ビアホール側とは反対側表面にはマスキングフィルムを貼り付け、この後、前記マスキングフィルムが貼付され前記ビアホールの底面に位置した前記金属箔を負極側に接続して、前記絶縁基板をメッキ処理液中に浸漬し、前記ビアホール内に銅メッキを析出させ、前記ビアホール内を銅メッキで充填し、フィルドビアによる層間接続構造を形成した後、前記マスキングフィルムを剥離し、前記金属箔による回路配線を形成するプリント配線板の製造方法である。   The present invention relates to a method of manufacturing a printed wiring board in which via holes of an insulating substrate are filled with plating to form filled vias, and an interlayer connection of circuit wiring is performed using a metal foil on the surface of the insulating substrate. A via hole is formed from the other side toward the metal foil on one side, the metal foil is exposed in the via hole, a bottomed via hole is formed by the metal foil, and the via hole side of the metal foil is A masking film is affixed to the opposite surface, then the masking film is affixed and the metal foil located on the bottom of the via hole is connected to the negative electrode side, and the insulating substrate is immersed in a plating solution. Then, copper plating is deposited in the via hole, and the via hole is filled with copper plating to form an interlayer connection structure by filled vias. Peeling off the King film, a method for manufacturing a printed wiring board for forming a circuit wiring by the metallic foil.

またこの発明は、絶縁基板のビアホール内にメッキを充填して、フィルドビアを形成し、前記絶縁基板表面の金属箔による回路配線の層間接続を行うプリント配線板の製造方法であって、前記絶縁基板の一方の側の金属箔に向かって他方の側からビアホールを形成し、前記金属箔を前記ビアホール内に露出させ、前記金属箔による有底のビアホールを形成し、前記ビアホールが形成された一対の前記絶縁基板を、前記ビアホール底部の前記金属箔同士を対面させ密着させて固定し、この後、前記ビアホールの底面に位置した金属箔を負極側に接続して、前記絶縁基板をメッキ処理液中に浸漬し前記ビアホール内に銅メッキを析出させ、前記ビアホール内を銅メッキで充填し、フィルドビアによる層間接続構造を形成した後、一対の前記絶縁基板を分離して、前記金属箔による回路配線を形成するプリント配線板の製造方法である。   Further, the present invention is a method for manufacturing a printed wiring board, in which a filled via is formed by filling a plating in a via hole of an insulating substrate, and an interlayer connection of circuit wiring is performed using a metal foil on the surface of the insulating substrate. A via hole is formed from the other side toward the metal foil on one side of the metal foil, the metal foil is exposed in the via hole, a bottomed via hole is formed by the metal foil, and a pair of the via holes are formed. The insulating substrate is fixed in such a manner that the metal foils at the bottom of the via hole face each other and are in close contact with each other, and thereafter, the metal foil located on the bottom surface of the via hole is connected to the negative electrode side, and the insulating substrate is placed in a plating solution. A copper plating is deposited in the via hole, and the via hole is filled with the copper plating to form an interlayer connection structure by filled vias, and then a pair of the insulating groups It was separated, a method for manufacturing a printed wiring board for forming a circuit wiring by the metallic foil.

前記絶縁基板は、その両面に前記金属箔が設けられ、前記ビアホール内のメッキが成長して、前記絶縁性基板の両面の金属箔を前記フィルドビアにより層間接続するものである。又は、前記絶縁基板の片面に前記金属箔が設けられ、前記ビアホール内のメッキが成長して、前記絶縁性基板に積層された他の絶縁基板の金属箔と前記フィルドビアにより層間接続するものである。   The insulating substrate is provided with the metal foil on both surfaces thereof, and plating in the via hole grows, and the metal foils on both surfaces of the insulating substrate are interlayer-connected by the filled via. Alternatively, the metal foil is provided on one surface of the insulating substrate, and plating in the via hole grows, and the metal foil of another insulating substrate stacked on the insulating substrate is connected to the interlayer by the filled via. .

またこの発明は、前記プリント配線板の製造方法により、絶縁基板に設けられた複数層から成る回路配線の層間接続構造が設けられたプリント配線板である。前記絶縁基板は、複数層から成り、前記層間接続構造により前記複数層の回路配線の層間接続が成されたものである。また、前記絶縁基板はポリイミドであり、フレキシブルな基板から成るプリント配線板である。   According to another aspect of the present invention, there is provided a printed wiring board provided with an interlayer connection structure of circuit wirings composed of a plurality of layers provided on an insulating substrate by the method for manufacturing a printed wiring board. The insulating substrate includes a plurality of layers, and the interlayer connection of the plurality of layers of circuit wiring is achieved by the interlayer connection structure. The insulating substrate is a polyimide, and is a printed wiring board made of a flexible substrate.

この発明のプリント配線板とその製造方法によれば、簡単な工程で高価なメッキ液を用いることなくビアホールにフィルドメッキを施すことができる。さらに、回路のパターンも細線化することが可能であり、フレキシブル基板においては、良好な屈曲性を維持することができる。   According to the printed wiring board and the manufacturing method thereof of the present invention, filled plating can be performed on the via hole in a simple process without using an expensive plating solution. Furthermore, the circuit pattern can also be thinned, and good flexibility can be maintained in the flexible substrate.

さらに、背面同士を貼り合わせてメッキすることにより、生産効率が向上し、製造コストの削減にも寄与するものである。   Furthermore, by bonding the back surfaces together and plating, the production efficiency is improved and the manufacturing cost is reduced.

この発明の第一実施形態のプリント配線板の製造工程を示した概略断面図である。It is the schematic sectional drawing which showed the manufacturing process of the printed wiring board of 1st embodiment of this invention. この発明の第二実施形態のプリント配線板の製造工程を示した概略断面図である。It is the schematic sectional drawing which showed the manufacturing process of the printed wiring board of 2nd embodiment of this invention. この発明の第三実施形態のプリント配線板の製造工程を示した概略断面図である。It is the schematic sectional drawing which showed the manufacturing process of the printed wiring board of 3rd embodiment of this invention. この発明の第四実施形態のプリント配線板の製造工程を示した概略断面図である。It is the schematic sectional drawing which showed the manufacturing process of the printed wiring board of 4th embodiment of this invention. 従来のプリント配線板の製造工程を示した概略断面図である。It is the schematic sectional drawing which showed the manufacturing process of the conventional printed wiring board.

以下、この発明のプリント配線板の第一実施形態について、図1を基にして説明する。この実施形態のプリント配線板10は、絶縁基板12の両面に、金属箔である銅箔13,14から成る回路配線13a,14aが形成されている。絶縁基板12は、フレキシブルなポリイミド等の絶縁性のフィルムから成り、両面に銅箔13,14が貼り付けられたものである。絶縁基板12の表裏面の銅箔13,14は、後述する工程を経て、所定の回路パターンに形成され、回路配線13a,14aが構成されている。絶縁基板12には、表裏の回路配線13a,14a間を電気的に接続するためのビアホール16が形成され、銅メッキ18が充填されたフィルドビア構造による層間接続部が形成されている。ここで、絶縁基板12の厚さは100μm以下が好ましく、銅箔13,14の厚さは35μm以下が好ましい。また、ビアホール16の好ましい直径は、300μm以下である。   Hereinafter, a first embodiment of a printed wiring board of the present invention will be described with reference to FIG. In the printed wiring board 10 of this embodiment, circuit wirings 13 a and 14 a made of copper foils 13 and 14 that are metal foils are formed on both surfaces of an insulating substrate 12. The insulating substrate 12 is made of an insulating film such as flexible polyimide, and has copper foils 13 and 14 attached to both sides. The copper foils 13 and 14 on the front and back surfaces of the insulating substrate 12 are formed in a predetermined circuit pattern through steps to be described later, and circuit wirings 13a and 14a are configured. Via holes 16 for electrically connecting the front and back circuit wirings 13 a and 14 a are formed in the insulating substrate 12, and interlayer connection portions having a filled via structure filled with copper plating 18 are formed. Here, the thickness of the insulating substrate 12 is preferably 100 μm or less, and the thickness of the copper foils 13 and 14 is preferably 35 μm or less. The preferred diameter of the via hole 16 is 300 μm or less.

次に、この実施形態のプリント配線板10製造方法について、図1を基にして説明する。ここでは、ポリイミド等のフレキシブルな基板から成る両面銅張り板22を用いる(図1(a))。まず、両面銅張り板22に、銅箔13側からエキシマレーザ等のUVレーザ光を照射し、銅箔13に開口部26を形成し、同時に絶縁基板12に貫通孔を形成し、銅箔14が露出した底面を有する有底のビアホール16を形成する(図1(b))。このレーザ加工は、カッパーダイレクト法と言われる、公知の方法である。なお、ビアホール16の形成は、これ以外に、銅箔13の開口部26をエッチングより形成し、絶縁基板12のビアホール16をレーザ光により形成しても良い。   Next, the manufacturing method of the printed wiring board 10 of this embodiment is demonstrated based on FIG. Here, a double-sided copper-clad plate 22 made of a flexible substrate such as polyimide is used (FIG. 1A). First, the double-sided copper-clad plate 22 is irradiated with UV laser light such as excimer laser from the copper foil 13 side to form an opening 26 in the copper foil 13, and at the same time, a through hole is formed in the insulating substrate 12. A bottomed via hole 16 having a bottom surface exposed is formed (FIG. 1B). This laser processing is a known method called a copper direct method. In addition, the via hole 16 may be formed by forming the opening 26 of the copper foil 13 by etching and forming the via hole 16 of the insulating substrate 12 by laser light.

そして、図1(b)に示すように、銅箔14の表面にマスキングフィルム24を貼付する。マスキングフィルム24は、PETフィルムに粘着剤が塗布されたもので、マスキングフィルム24のラミネート方法としては、例えば真空ラミネート法がある。マスキングフィルム24は、回路が未形成の銅箔14に直接貼り付けられるので、表面が均一で凹凸や段差がなく、容易に良好に貼り付け可能である。   Then, as shown in FIG. 1B, a masking film 24 is pasted on the surface of the copper foil 14. The masking film 24 is obtained by applying an adhesive to a PET film. As a method for laminating the masking film 24, for example, there is a vacuum laminating method. Since the masking film 24 is directly affixed to the copper foil 14 with no circuit formed thereon, it can be easily and satisfactorily affixed with a uniform surface and no irregularities or steps.

次に、ビアホール16内をデスミア処理して、加工カス等を除去して奇麗にし、銅箔14を負極に接続して電解メッキを行う。このとき、銅箔13には給電しない。これにより、ビアホール16内に露出した銅箔14の表面をメッキリードとして、銅メッキ18が析出する(図1(c))。ここで、ビアホール16の形成時に銅箔13に銅のバリがビアホール16内に突出して形成されると、後に、ビアホール16内で成長中の銅メッキ18と前記銅バリが接触し、銅バリを介して銅メッキ18と銅箔13が接続し、銅箔13の表面に不要な銅を析出させる。従って、ビアホール16を形成する際には、銅箔13にバリが形成されないようにしなければならない。また、バリはソフトエッチングを用いて除去しても良い。   Next, the inside of the via hole 16 is desmeared to remove the processing residue and make it clean, and the copper foil 14 is connected to the negative electrode to perform electrolytic plating. At this time, no power is supplied to the copper foil 13. As a result, the copper plating 18 is deposited using the surface of the copper foil 14 exposed in the via hole 16 as a plating lead (FIG. 1C). Here, if a copper burr is formed in the via hole 16 so as to protrude into the via hole 16 when the via hole 16 is formed, the copper plating 18 growing in the via hole 16 and the copper burr come into contact later, and the copper burr is removed. The copper plating 18 and the copper foil 13 are connected to each other, and unnecessary copper is deposited on the surface of the copper foil 13. Therefore, when the via hole 16 is formed, it is necessary to prevent burrs from being formed on the copper foil 13. Further, burrs may be removed using soft etching.

そして、所定時間給電して、ビアホール16内が銅メッキ18により充填され、銅箔13の表面に析出する銅メッキ19と銅メッキ18の表面が面一に平坦となる状態でメッキを止める(図1(d))。しかし、銅箔13の表面に銅メッキ19が厚く付くことは好ましくない。銅箔13及び銅箔13上の銅メッキ19の総厚は、20μm以下であることが好ましい。厚く付いた場合は、ソフトエッチングを用いて薄くしてもよい。なお、ここで用いるメッキ液は、フィルドビア用のメッキ液でなくて良く、通常の銅箔メッキ用の硫酸銅のメッキ液でよい。   Then, power is supplied for a predetermined time, and the inside of the via hole 16 is filled with the copper plating 18, and the plating is stopped in a state where the surface of the copper plating 19 and the copper plating 18 deposited on the surface of the copper foil 13 are flush with each other (see FIG. 1 (d)). However, it is not preferable that the copper plating 19 is thickly attached to the surface of the copper foil 13. The total thickness of the copper foil 13 and the copper plating 19 on the copper foil 13 is preferably 20 μm or less. If it is thick, it may be thinned using soft etching. The plating solution used here may not be a plating solution for filled vias, but may be a plating solution for copper sulfate for normal copper foil plating.

次に、マスキングフィルム24を剥離し、両面銅張り板22にエッチングレジスト28を施し、所定の回路パターンに露光して、回路配線以外のエッチングレジスト28を除去する(図1(e))。この状態で、銅箔13,14をエッチングし、回路配線13a,14aを形成する(図1(f))。以上の工程を経て、両面銅張り板22の両面の回路配線13a,14aが層間接続されたプリント配線板10が形成される。   Next, the masking film 24 is peeled off, an etching resist 28 is applied to the double-sided copper-clad plate 22, and a predetermined circuit pattern is exposed to remove the etching resist 28 other than the circuit wiring (FIG. 1 (e)). In this state, the copper foils 13 and 14 are etched to form circuit wirings 13a and 14a (FIG. 1 (f)). Through the above steps, the printed wiring board 10 in which the circuit wirings 13a and 14a on both sides of the double-sided copper-clad board 22 are interlayer-connected is formed.

この実施形態のプリント配線板とその製造方法によれば、簡単な工程で高価なメッキ液を用いることなくビアホールにフィルドメッキを施すことができる。さらに、表面の銅箔13,14に銅メッキが付かないので、回路配線13a,14aのパターンを細線化することが可能であり、フレキシブル基板においては、良好な屈曲性を維持することができる。しかも、コストの増加も少ないものである。   According to the printed wiring board and the manufacturing method thereof of this embodiment, filled plating can be performed on the via hole in a simple process without using an expensive plating solution. Furthermore, since the copper foils 13 and 14 on the surface are not plated with copper, the pattern of the circuit wirings 13a and 14a can be thinned, and good flexibility can be maintained in the flexible substrate. Moreover, the increase in cost is small.

次に、この発明の第二実施形態について、図2を基にして説明する。ここで、上述の実施形態と同様の構成は同一の符号を付して説明を省略する。この実施形態では、プリント配線板10の製造において、マスキングフィルムを銅箔14に貼り付ける代わりに、図2(a)に示すように、ビアホール16を形成しデスミア処理した2枚の両面銅張り板22を、その銅箔14同士を対面させて治具30で固定し密着させ、銅箔14にメッキ液が付着しないようにする。この状態で、銅箔14を負極にして電解メッキを行う(図2(b))。電解メッキによりフィルドビアが形成された後(図2(c))、上記実施形態と同様に、各両面銅張り板22の銅箔13,14にエッチンレジストを設けて、所定の回路パターンを露光し、エッチングしてプリント配線板10を形成する。なお、治具30は、銅箔14にメッキ液が付着しないようにする機能を備えた構造であれば良く、この実施の形態以外の構造の治具を用いても良い。この実施形態においても、絶縁基板12の厚さは100μm以下が好ましく、銅箔13,14の厚さは35μm以下が好ましい。また、ビアホール16の好ましい直径は、300μm以下である。   Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. In this embodiment, in the production of the printed wiring board 10, instead of attaching the masking film to the copper foil 14, as shown in FIG. The copper foils 14 are faced to each other and fixed with a jig 30 so that the plating solution does not adhere to the copper foil 14. In this state, electrolytic plating is performed using the copper foil 14 as a negative electrode (FIG. 2B). After the filled via is formed by electrolytic plating (FIG. 2C), an etch resist is provided on the copper foils 13 and 14 of each double-sided copper-clad plate 22 to expose a predetermined circuit pattern, as in the above embodiment. The printed wiring board 10 is formed by etching. Note that the jig 30 only needs to have a structure having a function of preventing the plating solution from adhering to the copper foil 14, and a jig having a structure other than this embodiment may be used. Also in this embodiment, the thickness of the insulating substrate 12 is preferably 100 μm or less, and the thickness of the copper foils 13 and 14 is preferably 35 μm or less. The preferred diameter of the via hole 16 is 300 μm or less.

この実施形態のプリント配線板とその製造方法によれば、上記実施形態と同様の効果を得ることができるとともに、二枚の両面銅張り板22を同時にメッキ処理することができ、生産効率が2倍になるものである。   According to the printed wiring board and the manufacturing method thereof of this embodiment, the same effects as those of the above embodiment can be obtained, and the two double-sided copper-clad boards 22 can be plated at the same time, resulting in a production efficiency of 2 It will be doubled.

次に、この発明の第三実施形態について、図3を基にして説明する。ここで、上述の実施形態と同様の構成は同一の符号を付して説明を省略する。この実施形態では、プリント配線板の製造において、片面銅張り板32を用いたものである。この実施形態においても、絶縁基板12の厚さは100μm以下が好ましく、銅箔14の厚さは35μm以下が好ましい。また、ビアホール16の好ましい直径は、300μm以下である。   Next, a third embodiment of the present invention will be described with reference to FIG. Here, the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. In this embodiment, a single-sided copper-clad board 32 is used in the production of a printed wiring board. Also in this embodiment, the thickness of the insulating substrate 12 is preferably 100 μm or less, and the thickness of the copper foil 14 is preferably 35 μm or less. The preferred diameter of the via hole 16 is 300 μm or less.

この実施形態では、まず、有底のビアホール16を形成し、マスキングフィルム24を銅箔14に貼り付ける(図3(a))。次に、ビアホール16内をデスミア処理して、銅箔14を負極に接続して電解メッキを行う。これにより、ビアホール16内に露出した銅箔14の表面をメッキリードとして、銅メッキ18が析出する(図3(b))。この後、ビアホール16の銅箔14とは反対側の開口部まで銅メッキ18が成長した段階でメッキを止め(図3(c))、次の工程に移行する。片面銅張り板32としては、片面に銅箔を配置したBステージ状態のプリプレグシート、片面にエポキシ系接着剤を介して銅箔を配置したポリイミドフィルム、銅箔にポリイミド系接着剤を配置したもの等が例示される。   In this embodiment, first, a bottomed via hole 16 is formed, and a masking film 24 is attached to the copper foil 14 (FIG. 3A). Next, the inside of the via hole 16 is desmeared, and the copper foil 14 is connected to the negative electrode to perform electrolytic plating. Thereby, the copper plating 18 is deposited using the surface of the copper foil 14 exposed in the via hole 16 as a plating lead (FIG. 3B). Thereafter, the plating is stopped when the copper plating 18 has grown up to the opening on the opposite side of the via hole 16 from the copper foil 14 (FIG. 3C), and the process proceeds to the next step. As the single-sided copper-clad plate 32, a prepreg sheet in a B stage state in which a copper foil is arranged on one side, a polyimide film in which a copper foil is arranged on one side via an epoxy-based adhesive, and a polyimide-based adhesive arranged on a copper foil Etc. are exemplified.

次工程では、上記実施形態と同様に、片面銅張り板32の銅箔14にエッチンレジストを設けて、所定の回路パターンを露光し、エッチングしてプリント配線板を形成し、さらに、このプリント配線板を積層して、多層プリント配線板を形成する。多層プリント配線板では、フィルドビア構造の銅メッキ18が積層される他方のプリント配線板の銅箔14に接続し、各層の電気的接続が図られる。   In the next step, as in the above embodiment, an etch resist is provided on the copper foil 14 of the single-sided copper-clad plate 32, a predetermined circuit pattern is exposed and etched to form a printed wiring board, and this printed wiring The boards are laminated to form a multilayer printed wiring board. In a multilayer printed wiring board, it connects to the copper foil 14 of the other printed wiring board by which the copper plating 18 of a filled via structure is laminated | stacked, and the electrical connection of each layer is achieved.

この実施形態のプリント配線板とその製造方法によっても、上記実施形態と同様の効果を得ることができる。   The effect similar to the said embodiment can be acquired also by the printed wiring board of this embodiment and its manufacturing method.

次に、この発明の第四実施形態について、図4を基にして説明する。ここで、上述の実施形態と同様の構成は同一の符号を付して説明を省略する。この実施形態もプリント配線板の製造において、片面銅張り板32を用いたものである。この実施形態においても、上記第二実施形態と同様に、2枚の片面銅張り板32の銅箔14側を対面させて固定し、電解メッキを行うものである。まず、図4(a)に示すように、ビアホール16を形成しデスミア処理した2枚の片面銅張り板32を、その銅箔14同士を対面させて治具30で固定し密着させ、銅箔14にメッキ液が付着しないようにする。この状態で、銅箔14を負極にして電解メッキを行う(図4(b))。電解メッキによりフィルドビアが形成された後(図4(c))、上記実施形態と同様に、各片面銅張り板32の銅箔14にエッチンレジストを設けて、所定の回路パターンを露光し、エッチングして所定の回路配線を有したプリント配線板を形成し、さらに多層プリント配線板を形成する。この実施形態においても、治具30は、銅箔14にメッキ液が付着しないようにする機能を備えた構造であれば良く、この実施の形態以外の構造の治具を用いても良い。さらに、絶縁基板12の厚さは100μm以下が好ましく、銅箔14の厚さは35μm以下が好ましい。また、ビアホール16の好ましい直径は、300μm以下である。   Next, a fourth embodiment of the present invention will be described with reference to FIG. Here, the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. This embodiment also uses a single-sided copper-clad board 32 in the production of a printed wiring board. In this embodiment, similarly to the second embodiment, the copper foil 14 side of the two single-sided copper-clad plates 32 are fixed to face each other, and electrolytic plating is performed. First, as shown in FIG. 4A, two single-sided copper-clad plates 32 formed with via holes 16 and desmeared are fixed to each other with a jig 30 so that the copper foils 14 face each other. 14 is prevented from adhering to the plating solution. In this state, electrolytic plating is performed using the copper foil 14 as a negative electrode (FIG. 4B). After the filled via is formed by electrolytic plating (FIG. 4C), an etch resist is provided on the copper foil 14 of each single-sided copper-clad plate 32, and a predetermined circuit pattern is exposed and etched as in the above embodiment. Thus, a printed wiring board having predetermined circuit wiring is formed, and a multilayer printed wiring board is further formed. Also in this embodiment, the jig 30 may be a structure having a function of preventing the plating solution from adhering to the copper foil 14, and a jig having a structure other than this embodiment may be used. Furthermore, the thickness of the insulating substrate 12 is preferably 100 μm or less, and the thickness of the copper foil 14 is preferably 35 μm or less. The preferred diameter of the via hole 16 is 300 μm or less.

この実施形態のプリント配線板とその製造方法によっても、上記実施形態と同様の効果を得ることができる。   The effect similar to the said embodiment can be acquired also by the printed wiring board of this embodiment and its manufacturing method.

なお、この発明のプリント配線板とその製造方法は、上記実施形態に限定されるものではなく、メッキ液や基板の種類は適宜設定可能なものである。また、本願発明のメッキ方法は、上述のダイレクト加工以外に、コンフォーマル加工、ラージウインドウ加工等によりビアが形成された基板にも適用することができる。   The printed wiring board and the manufacturing method thereof according to the present invention are not limited to the above embodiment, and the type of plating solution and substrate can be set as appropriate. Further, the plating method of the present invention can be applied to a substrate on which vias are formed by conformal processing, large window processing, or the like, in addition to the direct processing described above.

10 プリント配線板
12 絶縁基板
13,14 銅箔
13a,14a 回路配線
16 ビアホール
18 銅メッキ
22 両面銅張り板
24 マスキングフィルム
DESCRIPTION OF SYMBOLS 10 Printed wiring board 12 Insulation board | substrates 13 and 14 Copper foil 13a, 14a Circuit wiring 16 Via hole 18 Copper plating 22 Double-sided copper clad board 24 Masking film

Claims (7)

絶縁基板のビアホール内にメッキを充填して、フィルドビアを形成し、前記絶縁基板表面の金属箔による回路配線の層間接続を行うプリント配線板の製造方法において、
前記絶縁基板の一方の側の金属箔に向かって他方の側からビアホールを形成し、前記金属箔を前記ビアホール内に露出させ、前記金属箔による有底のビアホールを形成するとともに、前記金属箔の前記ビアホール側とは反対側表面にはマスキングフィルムを貼り付け、この後、前記マスキングフィルムが貼付され前記ビアホールの底面に位置した前記金属箔を負極側に接続して、前記絶縁基板をメッキ処理液中に浸漬し、前記ビアホール内に銅メッキを析出させ、前記ビアホール内を銅メッキで充填し、フィルドビアによる層間接続構造を形成した後、前記マスキングフィルムを剥離し、前記金属箔による回路配線を形成することを特徴とするプリント配線板の製造方法。
In a printed wiring board manufacturing method for filling a via hole in an insulating substrate, forming a filled via, and performing interlayer connection of circuit wiring with a metal foil on the surface of the insulating substrate,
A via hole is formed from the other side toward the metal foil on one side of the insulating substrate, the metal foil is exposed in the via hole, and a bottomed via hole is formed by the metal foil. A masking film is affixed to the surface opposite to the via hole side, and then the metal foil located on the bottom surface of the via hole to which the masking film is affixed is connected to the negative electrode side, and the insulating substrate is plated. Immerse in, deposit copper plating in the via holes, fill the via holes with copper plating, form an interlayer connection structure with filled vias, peel off the masking film, and form circuit wiring with the metal foil A method of manufacturing a printed wiring board, comprising:
絶縁基板のビアホール内にメッキを充填して、フィルドビアを形成し、前記絶縁基板表面の金属箔による回路配線の層間接続を行うプリント配線板の製造方法において、
前記絶縁基板の一方の側の金属箔に向かって他方の側からビアホールを形成し、前記金属箔を前記ビアホール内に露出させ、前記金属箔による有底のビアホールを形成し、前記ビアホールが形成された一対の前記絶縁基板を、前記ビアホール底部の前記金属箔同士を対面させ密着させて固定し、この後、前記ビアホールの底面に位置した金属箔を負極側に接続して、前記絶縁基板をメッキ処理液中に浸漬し前記ビアホール内に銅メッキを析出させ、前記ビアホール内を銅メッキで充填し、フィルドビアによる層間接続構造を形成した後、一対の前記絶縁基板を分離して、前記金属箔による回路配線を形成することを特徴とするプリント配線板の製造方法。
In a printed wiring board manufacturing method for filling a via hole in an insulating substrate, forming a filled via, and performing interlayer connection of circuit wiring with a metal foil on the surface of the insulating substrate,
A via hole is formed from the other side toward the metal foil on one side of the insulating substrate, the metal foil is exposed in the via hole, a bottomed via hole is formed by the metal foil, and the via hole is formed. The pair of insulating substrates are fixed by bringing the metal foils at the bottoms of the via holes facing each other and closely contacting each other, and thereafter, the metal foils located on the bottom surfaces of the via holes are connected to the negative electrode side to plate the insulating substrates. After immersing in a treatment solution to deposit copper plating in the via hole, filling the via hole with copper plating, forming an interlayer connection structure with filled vias, separating a pair of the insulating substrates, and using the metal foil A method of manufacturing a printed wiring board, wherein circuit wiring is formed.
前記絶縁基板は、その両面に前記金属箔が設けられ、前記ビアホール内のメッキが成長して、前記絶縁性基板の両面の金属箔を前記フィルドビアにより層間接続する請求項1又は2記載のプリント配線板の製造方法。   The printed wiring according to claim 1, wherein the metal foil is provided on both surfaces of the insulating substrate, plating in the via hole grows, and the metal foil on both surfaces of the insulating substrate is interlayer-connected by the filled via. A manufacturing method of a board. 前記絶縁基板の片面に前記金属箔が設けられ、前記ビアホール内のメッキが成長して、前記絶縁性基板に積層された他の絶縁基板の金属箔と前記フィルドビアにより層間接続する請求項1又は2記載のプリント配線板の製造方法。   The metal foil is provided on one surface of the insulating substrate, and plating in the via hole grows, and an interlayer connection is made between the metal foil of another insulating substrate stacked on the insulating substrate and the filled via. The manufacturing method of the printed wiring board of description. 前記請求項1乃至4のいずれか記載のプリント配線板の製造方法により、絶縁基板に設けられた複数層から成る回路配線の層間接続構造を形成したプリント配線板。   5. A printed wiring board having a circuit wiring interlayer connection structure formed of a plurality of layers provided on an insulating substrate by the method for manufacturing a printed wiring board according to claim 1. 前記絶縁基板は複数層から成り、前記層間接続構造により前記複数層の回路配線の層間接続が成された請求項5記載のプリント配線板。   The printed wiring board according to claim 5, wherein the insulating substrate includes a plurality of layers, and the interlayer connection of the circuit wirings of the plurality of layers is made by the interlayer connection structure. 前記絶縁基板はポリイミドであり、フレキシブルな基板である請求項5記載のプリント配線板。
The printed wiring board according to claim 5, wherein the insulating substrate is polyimide and is a flexible substrate.
JP2009142853A 2009-06-16 2009-06-16 Printed wiring board and method for manufacturing the same Pending JP2011003562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142853A JP2011003562A (en) 2009-06-16 2009-06-16 Printed wiring board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142853A JP2011003562A (en) 2009-06-16 2009-06-16 Printed wiring board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011003562A true JP2011003562A (en) 2011-01-06

Family

ID=43561332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142853A Pending JP2011003562A (en) 2009-06-16 2009-06-16 Printed wiring board and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011003562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130104507A (en) * 2012-03-14 2013-09-25 엘지이노텍 주식회사 The flexible printed circuit board and the method for manufacturing the same
CN103813659A (en) * 2012-11-05 2014-05-21 三星电机株式会社 Method of manufacturing printed circuit board
CN106559963A (en) * 2016-11-17 2017-04-05 深圳崇达多层线路板有限公司 A kind of method for plugging in PCB
WO2024084747A1 (en) * 2022-10-20 2024-04-25 日本メクトロン株式会社 Flexible printed wiring board production method and flexible printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130104507A (en) * 2012-03-14 2013-09-25 엘지이노텍 주식회사 The flexible printed circuit board and the method for manufacturing the same
CN103813659A (en) * 2012-11-05 2014-05-21 三星电机株式会社 Method of manufacturing printed circuit board
CN106559963A (en) * 2016-11-17 2017-04-05 深圳崇达多层线路板有限公司 A kind of method for plugging in PCB
WO2024084747A1 (en) * 2022-10-20 2024-04-25 日本メクトロン株式会社 Flexible printed wiring board production method and flexible printed wiring board

Similar Documents

Publication Publication Date Title
JP4533449B2 (en) Wiring board manufacturing method
JP2006229115A (en) Metal component used in manufacturing wiring substrate and method for manufacturing wiring substrate using it
JP2003046250A (en) Multilayer substrate with via for build-up and its manufacturing method
JP4624217B2 (en) Circuit board manufacturing method
US11690178B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP4460013B2 (en) Wiring board manufacturing method
JP2011003562A (en) Printed wiring board and method for manufacturing the same
JP2010016335A (en) Metal laminate plate and manufacturing method thereof
JP5095117B2 (en) Multilayer circuit board having cable portion and method for manufacturing the same
KR100916646B1 (en) Manufacturing method of PCB
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
JP2009021435A (en) Manufacturing method of wiring board
KR20100109698A (en) Method of manufacturing a printed circuit board
KR20090078518A (en) Pcb and manufacturing method thereof
JP2008205302A (en) Printed wiring board and its manufacturing method
JP2012044093A (en) Printed wiring board manufacturing method
JP5369950B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP2009188154A (en) Printed circuit board and its production process
JP4503698B2 (en) Wiring board manufacturing method
JP2003188532A (en) Method of manufacturing printed wiring board and printed wiring board manufactured thereby
JP2002299386A (en) Double-sided wiring film carrier and manufacturing method therefor
JP2007042993A (en) Method for manufacturing multilayer substrate
CN112118688A (en) Process for increasing layer of back-adhesive copper foil
CN117858383A (en) Stepped circuit board processing method and stepped circuit board
JP2012169523A (en) Manufacturing method of rigid flexible printed wiring board