JP2010518741A - 同期処理及びセルサーチのためのプリアンブル設計 - Google Patents

同期処理及びセルサーチのためのプリアンブル設計 Download PDF

Info

Publication number
JP2010518741A
JP2010518741A JP2009549033A JP2009549033A JP2010518741A JP 2010518741 A JP2010518741 A JP 2010518741A JP 2009549033 A JP2009549033 A JP 2009549033A JP 2009549033 A JP2009549033 A JP 2009549033A JP 2010518741 A JP2010518741 A JP 2010518741A
Authority
JP
Japan
Prior art keywords
pilot
frequency offset
base station
mobile station
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009549033A
Other languages
English (en)
Inventor
アブダルロフ ハフィーズ,
チャン−チン ゲイ,
Original Assignee
テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エル エム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Publication of JP2010518741A publication Critical patent/JP2010518741A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7083Cell search, e.g. using a three-step approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/266Fine or fractional frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

無線ネットワークにおける信号を同期させる方法は、基地局と移動局との間の下りリンクで送信される2つ部分から成るプリアンブルを使用する。当該プリアンブルは、複数の基地局に対して共通の共通パイロットと、送信基地局に対して固有の専用パイロットとを含む。移動局は、共通パイロットに基づく粗同期と専用パイロットに基づく精密同期とを実行する。移動局はまた、隣接するセルによって送信される専用パイロットにおける固有のパイロット・トーンに基づいて、1つ以上の近隣のセルを識別する。

Description

本発明は、概して無線通信システムに関するものであり、具体的には、無線通信システムにおけるセル同期に関するものである。
直交周波数分割多重(OFDM)システムは、データ・ストリームの異なる複数の部分を、異なる周波数を使用して変調して、伝送用の複数の直交するデータ・ストリームを生成する。その際、OFDMシステムは、広帯域無線伝送リンクを生成する。複数のアクセスシステムがOFDMを使用する際に、各リモート装置は、周波数多重化された信号を基地局へ送信する。直交性を維持し、かつ、干渉を最小化するために、OFDMシステムは、異なるリモート装置からの周波数多重化された信号が基地局に同時に届くことを必要とする。従って、異なるリモート装置からのデータ・ストリームの受信を同期させることが重要である。
スーパーフレームに属するプリアンブルは、同期化の1つの方法を提供する。当該プリアンブルは、基地局制御装置からのいかなる支援もなしに、移動局を使用した自立したセル間同期のために使用され得る。この場合、移動局は、複数の基地局を識別し、それらのフレーム・タイミング及びキャリヤ周波数オフセットを推定するためのプリアンブルを含む、下りリンク信号を使用する。各移動局は、当該推定値を、当該移動局の待ち受け基地局へ報告する。各基地局は、受信した推定値に基づいて、タイミング及び周波数の情報を補正する。
従来のプリアンブルは、これまでのところ、セル間及びセル内の両方の同期について、十分な同期を提供していない。例えば、セル内の同期用に設計されたプリアンブルによって、当該移動局の自セルから受信する信号と隣接セルの信号とを、移動局が区別することを可能にすることはできない。
別のプリアンブルは、3つのOFDMシンボルを含み得る。当該3つのOFDMシンボルの各々は、各セルについて、連続するキャリヤで2つの固有のパイロット・トーンを含む。この種のプリアンブルは、複数の強いセル間における曖昧性を排除し、それによりセル間の同期に適している。一方で、2つのパイロット・トーンのみが各セルで使用されるため、セル検出及びセル同期は、周波数選択性の影響を極めて受けやすい。さらに、この例のプリアンブルは、1つのシンボル・オフセットにおいて、高いタイミングの曖昧性を有するため、フレーム・タイミングの測定に使用することができない。
別の例において、各セルに固有の擬似雑音(PN)符号が、セルの識別用及び粗同期用のプリアンブルを設計するために使用され得る。この種のプリアンブルを使用したセル識別及びセル同期は、高度な複雑性を有する。これは、セルを検出するために、移動局が、全てのタイミングの候補について、全ての符号に対して受信信号を相関処理しなければならないためである。さらに、発振器のドリフトに起因した周波数オフセットが、PN符号の相互相関に対して不利に作用する。
繰り返し(repeated)トレーニング系列を有するプリアンブルは、WiFiシステムに対して同期に関する別の選択肢を提供する。繰り返しトレーニング系列は、周期性メトリックを使用して検出され、それにより、単一のステップでタイミング及び周波数オフセットを与える。この解決手法は、PN符号による解決手法よりも低い複雑性を有し、かつ、周波数オフセットに対してより耐性を有する(robust)。一方で、繰り返しトレーニング系列による解決手法は、非常に低いタイミング分解能を有する。
このように、同期処理及びセルの識別の代替的な解決手法の必要性が依然として残存している。
本発明は、無線通信ネットワークにおける基地局によって送信される、自セルの同期、セルサーチ及びセル識別、並びにセル間の同期のために使用され得るプリアンブルを提供する。当該プリアンブルは、粗同期のために使用される共通パイロットと、セルの識別及び精密同期のために使用される専用パイロットとを含む。共通パイロットは、バーカー符号化(Barker-encoded)され、繰り返されたトレーニング系列を含み、専用パイロットは、各セルに固有のパイロット・トーンを密に配置された2つのOFDMシンボルを含む。移動局は、共通パイロットを使用する粗同期を実行し、かつ、隣接する基地局から送信される専用パイロットにおける固有のパイロット・トーンを検出することによって、1つ以上の強いセルを識別する。移動局は、基地局からの専用パイロット・トーンにおける位相の変化を観測することによって、検出した各セルについて精密同期を実行する。
本発明に適用可能な無線通信システムを示す図である。 本発明に係る1つの典型的なプリアンブルを示す図である。 基地局で実行される、下りリンクでプリアンブルを送信するための典型的な手順を示す図である。 移動局で実行される、セル識別及びセル同期のための典型的な手順を示す図である。 移動局で実行される粗同期の典型的な手順を示す図である。 移動局で実行される精密同期及びセル識別のための典型的な手順を示す図である。 本発明に係る典型的な無線通信装置を示す図である。
図1は、符号10で一般に示される典型的な無線通信ネットワークを示す。無線通信ネットワーク10は、直交周波数分割多重(OFDM)ネットワークで構成される。無線通信ネットワーク10の地理的領域はセル12に分割される。セル12は、セクタにさらに分割されてもよい。少なくとも1つの基地局14は、セル12における移動局16と通信するために、各セル12に位置付けられる。セル12がセクタに分割される場合、セル12は全てのセクタに対して1つの基地局を含んでもよく、又はセルの各セクタに対して別個の基地局14を含んでもよい。本発明の説明を簡単にするために、各セル12は、単一の基地局14を有する単一のセクタで構成されていることを前提とする。説明する原理は、複数セクタセル12に対して簡単に拡張することができる。
基地局14からの下りリンク伝送はフレームに分割されて、それらはスーパーフレームにグループ化される。基地局14は、セルサーチ及びセル同期のために各スーパーフレームにおいてプリアンブルを送信する。基地局14からの下りリンク伝送は、実線で示されている。下りリンクで伝送されるプリアンブルは、移動局16が、近隣の基地局14からの強い信号を検出し、それらのフレーム・タイミング及びキャリヤ周波数オフセットを推定することを可能にする。各移動局16は、これらの推定値を待ち受け基地局14へ報告し、基地局14は、セル間同期のために当該推定値を使用し得る。移動局16からの上りリンク伝送は、破線で示されている。基地局16は、自らのタイミング及び周波数を調整するために、移動局16から受信されたタイミング及び周波数の推定値を使用し得る。従って、セル間同期は、いかなる基地局制御装置による介入なしに、自立した手法でなされ得る。
図2は、自セルの同期、セルサーチ及びセル識別、並びにセル間同期のために設計された典型的な1つのプリアンブル20を示す。プリアンブル20は、2つの部分を含み、それらは、粗同期のために使用される共通パイロットと、セル識別及び精密同期のために使用される専用パイロットとである。共通パイロットは、バーカー符号化され、繰り返されたトレーニング系列を含み、専用パイロットは、各セル12に固有の密に配置されたパイロット・トーンを有する2つのOFDMシンボルを含む。移動局16は、共通パイロット16を使用した粗同期を実行するとともに、近隣の基地局14から送信された専用パイロット24の、固有のパイロット・トーンを検出することによって、1つ以上の強いセル12を識別する。移動局16は、基地局14からの当該専用パイロット・トーンにおける位相の変化を観測することによって、検出されたセル12の各々について精密同期を実行する。
共通パイロット22の、繰り返されたトレーニング系列は、長さMを有し、L回繰り返される時間ブロックを含む。当該繰り返しトレーニング系列は、長さNcのOFDMシンボルにおいて、L個の連続するサブキャリヤごとに1つのパイロット・トーンを挿入することによって、生成され得る。ここで、Lはパイロットの間隔を表し、OFDMシンボルの逆高速フーリエ変換(IFFT)を用いる。結果として生じる繰り返しトレーニング系列は、長さNc=LMを有し、Mは挿入されたパイロット・トーンの数を表す。ある実施形態において、挿入されたパイロット・トーンは、異なるセルによって異なる各ブロックを作成するためにIFFTを用いる前に、ランダムに、又は擬似ランダムに位相変調され得る。次に、全てのセルで共通の、長さLの一般化された差動バーカー系列を、位相変調されたOFDMシンボル(又は単なるOFDMシンボル)に対して乗算することによって、共通パイロットが生成される。一般化されたバーカー系列は、1以下の、0でない時間差の自己相関の振幅が1以下の、単位振幅の複素数の系列である。長さLの一般化された差動バーカー系列は、本明細書において引用する、“Sixty-phase generalized Barker sequences”by N. Zhang and S.W. Golomb in IEEE Trans. Inform. Theory, vol. 35, no. 4, pp.911-912, August 1989 に述べられているように、L−1の長さを有する一般化されたバーカー系列から取得されてもよい。
専用パイロット24は、大きさNdのFFT(高速フーリエ変換)と、大きさNcpのサイクリック・プレフィックスを有する2つの連続するOFDMシンボル26,28を含む。OFDMシンボル26,28は、図2において実線及び破線で示すように、交互に配置されたパターン(alternating pattern)で、各セルについて固有のパイロット・トーンを運ぶ。交互に配置されたパターンを使用する理由は、以下でさらに述べるセル識別方法の中で、直ちに明らかになろう。
同期処理を実行するために、プリアンブル20は、タイミング及び周波数オフセットへの十分な耐性(robustness)を有しなければならない。共通パイロット22は、Wを信号の帯域幅として表すと、最大でM/W秒までの遅延スプレッド、及び最大でW/(2M)Hzまでの周波数オフセットに対して耐性を有するように設計される。そのため、共通パイロット22のタイミングの分解能は、M/W秒であり、ピーク対再度ローブ比はPs=20Log10(L)である。専用パイロット24は、Spを専用パイロットのパイロット間隔とすると、最大でN0/(WSp)秒までの遅延スプレッドに対して耐性を有する。専用パイロット24は、2Sp/3セルを、精密な周波数分解能W/(2Nd)Hzで識別することを可能にする。
共通パイロット22は、全てのセルで共通の1つの次元を有する。専用パイロット24は、異なるセルを識別するための(2/3)Spの固有の次元を有し、ここで、係数2/3は、交互に配置されたパイロット・パターンに起因する。識別されるセルの数が一定である場合、専用パイロット24を周波数選択性に対してより耐性を有するために、専用パイロットの大きさNdは増加され得る。Ndの増加は、プリアンブルのオーバヘッドを増加させ、周波数オフセットに対する耐性を減少させることが理解されよう。あるいは、専用パイロット24を周波数オフセットに対してより耐性を有し、かつ、プリアンブルのオーバヘッドを減少させるために、専用パイロットの大きさNdは、減少され得る。
プリアンブル20が、Nbs個のセルを識別するために設計され、ガード時間Tg及び所望のピーク対サイドローブ比Psを有する場合の一例について検討する。これらの拘束条件を満足するプリアンブル20は、以下の特性を有する。
Figure 2010518741
ここで、Cc≧1及びCd≧1は、それぞれ、共通パイロット及び専用パイロットについて、(少ないプリアンブルのオーバヘッドと同様に)周波数オフセットへの耐性と、周波数選択性への耐性との間のトレードオフを可能にする設計パラメータを表す。Cc及びCdの少なくとも1つが1に等しい場合、周波数選択性への耐性は最大である。Cc及びCdの少なくとも1つが増加すると、周波数選択性への耐性が減少する一方で、周波数オフセットへの耐性が増加する。
この例について、Nfftがデータ・シンボルの高速フーリエ変換(FFT)の大きさを表す場合に、W=20MHz、Tg=3.2μ秒、Nbs=64、Ps=30dB、Cc=2、Cd=3、及びNfft=512と想定する。この場合、プリアンブル20は、M=32、L=32、Sp=96、Nc=LM=1024、及びNd=2048となるように設計され得る。結果として生じる共通パイロット22は、fsubがデータ・シンボルにおけるサブキャリヤ間隔である場合に、最大で1.6μ秒までの遅延スプレッド、及び最大で8fsubHzまでの周波数オフセットに対して耐性を有する。結果として生じる専用パイロット24は、最大で1.067μ秒、及び最大でfsub/8Hzまでの周波数オフセットに対して耐性を有する。Cd=6の場合、Nd=1024であり、かつ、専用パイロット24は、最大で0.533μ秒までの遅延スプレッド、及び最大でfsub/4Hzまでの周波数オフセットに対して耐性を有する。周波数オフセットは、基地局よりも移動局の方がずっと大きいことが理解されよう。従って、共通パイロット22は、大きなキャリヤ周波数オフセットを除去するために使用され得る。ここで、当該パイロットは、全ての受信信号で共通であって、移動局において受信される全ての信号に存在する。さらに、専用パイロット24は、個別の基地局によって引き起こされる非常に小さな周波数オフセットを除去するために使用され得る。結果として、専用パイロット24は、周波数オフセットに対して、共通パイロット22と同じように耐性を有する必要はない。
図3は、基地局14において実行される、プリアンブル20を送信する方法50を示す。基地局14は、スーパーフレームの最初の部分を検出する(ブロック52)。スーパーフレームの最初の部分が検出された場合、基地局14は、共通パイロットを生成及び送信し(ブロック54)、次に、専用パイロットを生成及び送信する(ブロック56)。当該処理は、スーパーフレームが検出されるごとに繰り返される(ブロック52)。
移動局16は、上述のプリアンブル20を含む受信信号を処理して、セル12を検出するとともに、当該セル12に対応するタイミング及び周波数オフセットを推定する。移動局16は、受信したプリアンブル20の共通パイロット22を処理して、粗同期を実行するとともに、受信したプリアンブル20の専用パイロット24を処理して、セル識別及び精密同期を実行する。ある実施形態において、移動局16は、検出したセル12に関する周波数オフセットをも推定し得る。各移動局16は、タイミングの推定値及び周波数の推定値の少なくとも1つを、当該移動局の待ち受け基地局14に対して報告する。基地局14は、受信した推定値に基づいて、タイミング及び周波数の情報を修正する。
図4は、移動局16で実行される、同期を実現するために受信信号を処理する手順を示す。移動局16は、1つ以上の近隣の基地局16から信号を受信し(ブロック62)、共通パイロット22を用いた時間及び周波数の粗同期を実行する(ブロック64)。その後、移動局16は、専用パイロット24における固有のパイロット・トーンを検出することによって1つ以上のセル12を識別する。移動局16は、1つ以上のセル12を選択し、選択したセルについて精密同期を実行し得る(ブロック68)。次に、移動局16は、待ち受け基地局14と同期するために、自らのタイミング及び周波数を調整し得る(ブロック70)。移動局16は、1つ以上の近隣の基地局に関する時間オフセット及び周波数オフセットを、待ち受け基地局14へ報告してもよい(ブロック72)。次に、当該処理は、終了するか、あるいは、例えばスーパーフレームごとに繰り返される(ブロック74)。
図5は、受信信号の共通パイロット22を使用する、1つの典型的な粗同期処理100を示す。一般的に、移動局16は、受信信号に基づいて周期性メトリックΛ(n)を算出し(ブロック110)、当該周期性メトリックを最大化する粗タイミングの仮推定値n^を特定する(ブロック120)。粗タイミングの仮推定値n^の各々について、移動局16は、粗周波数オフセットf^を推定する(ブロック130)。
移動局16は、周期性メトリックΛ(n)を、
Figure 2010518741
によって算出し得る(ブロック110)。ここで、E(n)は受信信号の電力を表し、
Figure 2010518741
によって与えられ得る。また、P(n)は受信信号に対応する自己相関を表し、
Figure 2010518741
によって与えられ得る。式(3)及び(4)において、r(n)は、チップレートでサンプリングされた受信信号のn番目のチップを表し、d(k)は、一般化された差動バーカー系列を表す。受信信号r(n)は、上述のプリアンブル20の共通パイロット22及び専用パイロット24を含む。差動バーカー系列d(k)は、
Figure 2010518741
によって与えられ得る。ここで、k=0,1,...,L−1について、b(k)は、一般化されたバーカー系列を表し、b(−1)は、任意に1に設定される。
粗タイミング推定値n^を仮推定するために(ブロック120)、移動局16は、周期性メトリックΛ(n)を最大化する粗タイミング推定値n^を選択する。粗タイミング推定値n^が異なるセルに対応することを保証するために、移動局16は、K1個のタイミング推定値n^を選択する。ここで、選択されるタイミング推定値は、少なくともMサンプル離れている。選択された粗タイミング推定値n^の各々について、移動局16は、粗周波数オフセットf^を、
Figure 2010518741
によって任意に推定してもよい。ここで、RP(n^)はP(n^)の位相をラジアンで表す。
図6は、セル識別及び精密同期を実行するために、受信信号の専用パイロット24を使用する1つの典型的な処理200を示す。K1個のタイミング推定値の各々について、移動局16は、専用パイロット24に基づいて各セル12に関する検出メトリックΓ(j)を決定し(ブロック210)、当該検出メトリックを最大化するセル12として最も強いセルを識別する(ブロック220)。次に、移動局16は、識別した各セル12について、専用パイロット24に基づいて精密タイミング推定値t(j)を算出する(ブロック230)。移動局16は、部分周波数オフセットf(j)を任意に推定してもよい(ブロック240)。
検出メトリックΓ(j)を算出するために(ブロック210)、移動局16は、専用パイロット24における2個のOFDMシンボル26,28のFFTを、
Figure 2010518741
によって計算する。次に、移動局16は、j番目のセルについて、検出メトリックΓ(j)を、
Figure 2010518741
によって算出する(ブロック210)。ここで、lk(j)はj番目のセルに属するk番目のシンボルにおけるパイロット・トーンの指数のセットを表す。式(8)は、検出メトリックΓ(j)がj番目のセルに属する全てのパイロット・トーンにおける累積的なエネルギーを表すことを示している。移動局16は、検出メトリックΓ(j)を最大化する、最も強いK2個のセルを選択する。K1個の粗タイミングの仮推定値と、K2個のセルの仮推定に基づいて、移動局16は、K12個のセルの仮推定の候補から、K個のセルを識別する。
識別されたセル12の各々について、移動局16は、精密タイミング推定値t(j)を算出する(ブロック230)。そのために、移動局16は、部分的な残留タイミング推定値n(j)を、
Figure 2010518741
によって算出する。ここで、l'k(j)は、連続するサブキャリヤにおいてパイロット・トーンを有するj番目のセルに属するシンボルkにおける、パイロット・トーンの指数のセットを表し、また、w'k(i)は、
Figure 2010518741
によって与えられる重みを表す。式(9)に示すように、部分タイミング推定値n(j)は、専用パイロット24の2個のOFDMシンボル26,28の連続するサブキャリヤにおける、j番目のセルに属する全てのパイロット・トーンの間の位相差の、重み付けされた合計値を表す。次に、移動局16は、各セル12について、精密タイミング推定値t(j)を、
Figure 2010518741
によって算出する(ブロック230)。
移動局16は、識別された各セル12について、2個のシンボル26,28の同一のサブキャリヤにおける、j番目のセルに属する全てのパイロット・トーン間の位相差の、重み付けされた合計値として、部分周波数オフセットf(j)を任意に算出してもよい(ブロック240)。式(12)は、部分周波数オフセットf(j)を算出するための1つの方法を示す。
Figure 2010518741
ここで、l"(j)は、専用パイロット24の両方のシンボル26,28における、j番目のセルに属するパイロット・トーンの指数のセットを表し、また、w"(i)は、
Figure 2010518741
によって与えられる重みを表す。f^<W/(2Nd)の場合、精密周波数オフセットf(j)は、部分周波数オフセットf(j)と等しい。f^>W/(2Nd)の場合、移動局16は、式(7)によってR1及びR2を算出する前に、受信信号r(n)における粗周波数オフセットf^を補償し、次に、精密周波数オフセットf(j)を、
Figure 2010518741
によって算出する。
上述の同期及びセル識別は、セル内(自セル)の同期のためにも使用され得る。より具体的には、移動局16は、j番目のセルに属するh番目のスーパーフレームについて算出された、検出メトリックΓj(h)、精密タイミング推定値tj(h)、及び精密周波数オフセットfj(h)を平滑化することによって、各セル12について、平滑化された検出メトリックΓ'j(h)、及び平滑化された周波数オフセットf'j(h)を決定し得る。式(15)は、平滑化された検出メトリックΓ'j(h)、及び平滑化された周波数オフセットf'j(h)を算出するための、1つの典型的な方法を提供する。
Figure 2010518741
式(15)において、μΓ及びμは、平滑化フィルタの極である。平滑化された検出メトリックΓ'j(h)、及び平滑化された周波数オフセットf'j(h)の初期値は、最初のスーパーフレームで算出される検出メトリックΓj(1)及び周波数オフセット値fj(1)と等しく設定されてもよい。移動局16は、最も大きな平滑化検出メトリックΓ'j(h)を有するセル12を、待ち受けセルとして識別する。それに応じて、移動局16は、識別した待ち受けセル12の平滑化周波数オフセットf'j(h)に基づいて、局部発振器を調整する。
上述の同期及びセル識別は、セル間の同期及びセル識別のためにも使用され得る。より具体的には、各移動局16は、待ち受けセルに対する隣接セル12の、平滑化検出メトリックの差分ΔΓ'、精密タイミングの差分Δt'、及び精密周波数オフセットの差分Δf'を算出及び報告する。例えば、セルjが移動局の待ち受けセル12を表し、かつ、セルkが2番目に強いセル12を表す場合、h番目のスーパーフレームに関する差分値は、
Figure 2010518741
によって算出され得る。
各基地局14は、受信した差分値を使用して、当該基地局のタイミングを、隣接基地局14のタイミングに対して同期させる。例えば、Tmが、選択された閾値を表す場合に、ΔΓ'j,k(h)<Tmを満たす全ての隣接セル12のセットをAj(h)と表す。従って、セットAj(h)は、十分に強い信号を送信する基地局14を有する全てのセル12を含む。Aj(h)のセル12は、信頼性の高い同期推定値を提供すると考えられる。待ち受け基地局14は、h番目のスーパーフレームについて、そのフレーム・タイミング及びキャリヤ周波数オフセットを、
Figure 2010518741
によって算出する。ここで、μt*及びμf*は、平滑化フィルタの極を表し、また、EΔtj及びEΔfjは、それぞれ、時間及び周波数の差分の平均値を表し、
Figure 2010518741
によって与えられる。式(18)において、Nj(h)は、セットAj(h)の大きさを表す。また、wj,k(h)は、タイミング及び周波数オフセットの各推定値の重み又は信頼性を表し、
Figure 2010518741
によって算出され得る。
セル間同期は、2つのフェーズを有していてもよく、それらは、位相の捕捉と、位相のトラッキングである。位相捕捉の間は、パラメータを迅速に適応させる必要がある。従って、位相捕捉の間に、基地局14は、平滑化の極μt*及びμf*に大きな値を使用する。位相捕捉の間に、パラメータが既に捕捉されていると、それらを迅速に適応させる必要はない。その結果、位相捕捉の間に、基地局14は、平滑化の極μt*及びμf*に小さな値を使用する。
基地局14は、2つのフェーズを区別するために、タイミングの分散を使用してもよい。例えば、待ち受けセル14は、待ち受け基地局14のh番目のスーパーフレームについて、タイミング誤差VΔtj(h)、及び周波数誤差VΔfj(h)を、
Figure 2010518741
によって算出してもよい。Ttがタイミングの閾値であり、式(21)が満たされる場合、待ち受け基地局14のタイミングは、位相捕捉のフェーズにある。それ以外の場合、待ち受け基地局14のタイミングは、トラッキングのフェーズにある。
Figure 2010518741
fが周波数の閾値であり、式(22)が満たされる場合、待ち受け基地局14の周波数は、位相捕捉のフェーズにある。それ以外の場合、待ち受け基地局14の周波数は、トラッキングのフェーズにある。
Figure 2010518741
図7は、本発明の同期処理及びセル識別処理を実行するために使用され得る、典型的な無線通信装置300のブロック図を示す。図示した無線通信装置300は、基地局14又は移動局16で構成されることが理解されよう。通信装置300は、通信インタフェース302、プロセッサ304、及び記憶装置306を含む。通信インタフェース302は、OFDMを使用する既知の標準規格に従って無線信号を送信及び受信する、任意の既知の無線インタフェースで構成され得る。プロセッサ304は、記憶装置306に格納されたプログラムに従って通信装置300の動作を制御する。さらに、プロセッサ304は、上述の同期処理及びセル識別処理を実行する。当該プロセッサは、他のセルのタイミング及び周波数オフセットを平滑化することができる。瞬時的な推定値よりも信頼性が高い、他のセルの平滑化された推定値は、セル間の同期を改善するために使用され得る。
上記では、1つ以上の基地局16に関連するタイミング、周波数オフセット、及び識別情報を決定する移動局16に関して、本発明を説明している。当該移動局16が、他の移動局16に関連する識別情報を決定するための上述の技術をも使用し得ることは、理解されよう。
さらに、同期処理及びセル識別処理をさらに改善するためのプリアンブル20とともに、チャネル推定用のパイロットも使用し得ることが、理解されよう。また、上記では、共通パイロット及び専用パイロットに関する同期処理及びセル識別処理を説明しているものの、専用パイロット24の代わりに、共通パイロット22とともにチャネル推定用のパイロットを使用し得ることが、理解されよう。
プリアンブル20は、セル識別、セル内の同期、及びセル間の同期のための、新たな、かつ、改善した手段を提供し、簡易で、かつ周波数に多様性がある。より具体的には、プリアンブル20は、セル間同期のために使用され得るため、従来のプリアンブルに対する改良である。また、プリアンブル20は、周波数に多様性があるため、周波数選択性の悪影響を受けない。さらに、プリアンブル20は、全てのセルの粗タイミングをサーチするために共通の符号を使用するため、マルチコードPNによる解決手法よりも低い複雑性を有する。最後に、プリアンブル20と関連するバーカー符号化された繰り返しトレーニング系列は、WiFi用に使用されている従来の繰り返しトレーニング系列よりも、高いタイミングの分解能を有する。従って、本発明のプリアンブル20は、先行技術に対して改善された解決手法を提供する。
本発明は、当然ながら、本発明の本質的な特徴から逸脱することなく、本明細書で具体的に説明した手段以外の手段によっても実行され得る。本実施形態は、あらゆる点で例示として考慮され、限定的するものではなく、添付した特許請求の範囲の意義及び均等の範囲内から生じる全ての変更は、本発明の範囲に包含されることを意図している。

Claims (67)

  1. 無線ネットワークにおける信号を同期させる方法であって、
    複数の基地局で共通する共通パイロットと、送信基地局に固有の専用パイロットとを含む信号を、該送信基地局から受信するステップと、
    前記送信基地局に対する粗タイミングの推定値を決定するために、前記共通パイロットに基づいて粗同期を実行するステップと、
    前記送信基地局に対する精密タイミングの推定値を決定するために、前記専用パイロットに基づいて精密同期を実行するステップと
    を含むことを特徴とする方法。
  2. 粗同期を実行する前記ステップは、
    前記共通パイロットに基づいて周期性メトリックを算出するステップと、
    前記周期性メトリックに基づいて前記粗タイミングの推定値を決定するステップと
    を含むことを特徴とする請求項1に記載の方法。
  3. 前記周期性メトリックを算出する前記ステップは、
    相関値を決定するために、受信した前記信号と当該信号自体との相関処理を実行するとともに、受信した前記信号と前記共通パイロットに関連付けられた既知の符号化系列との相関処理を実行するステップと、
    前記相関値に基づいて前記周期性メトリックを算出するステップと
    を含むことを特徴とする請求項2に記載の方法。
  4. 前記粗タイミングの推定値を決定する前記ステップは、
    前記周期性メトリックを最大化する、粗タイミングの1つ以上の推定値を特定するステップを含むことを特徴とする請求項2に記載の方法。
  5. 精密同期を実行する前記ステップは、
    前記専用パイロットに基づいて部分的なタイミングの推定値を算出するステップと、
    前記部分的なタイミングの推定値と前記粗タイミングの推定値とに基づいて、前記精密タイミングの推定値を決定するステップと
    を含むことを特徴とする請求項1に記載の方法。
  6. 前記部分的なタイミングの推定値を算出する前記ステップは、
    前記専用パイロットにおける複数のパイロット・トーン間の位相差を決定するステップと、
    決定された前記位相差に基づいて前記部分的なタイミングの推定値を算出するステップと
    を含むことを特徴とする請求項5に記載の方法。
  7. 前記精密タイミングの推定値を決定する前記ステップは、
    前記部分的なタイミングの推定値に基づいて前記粗タイミングの推定値を調整するステップを含むことを特徴とする請求項5に記載の方法。
  8. 前記共通パイロットに基づいて粗周波数オフセットを算出するステップをさらに含むことを特徴とする請求項1に記載の方法。
  9. 前記粗周波数オフセットを算出する前記ステップは、
    相関値を決定するために、受信した前記信号と当該信号自体との相関処理を実行するとともに、受信した前記信号と前記共通パイロットに関連付けられた既知の符号化系列との相関処理を実行するステップと、
    前記相関値の位相を決定するステップと、
    前記相関値の前記位相に基づいて、前記粗周波数オフセットを算出するステップと
    を含むことを特徴とする請求項8に記載の方法。
  10. 前記専用パイロットに基づいて精密周波数オフセットを算出するステップをさらに含むことを特徴とする請求項8に記載の方法。
  11. 前記精密周波数オフセットを算出する前記ステップは、
    前記専用パイロットに基づいて部分的な周波数オフセットを算出するステップと、
    前記部分的な周波数オフセットに基づいて前記精密周波数オフセットを決定するステップと
    を含むことを特徴とする請求項10に記載の方法。
  12. 前記部分的な周波数オフセットを算出する前記ステップは、
    前記専用パイロットにおける同一のキャリヤ周波数を有する複数のパイロット・トーン間の位相差を決定するステップと、
    決定された前記位相差に基づいて前記部分的な周波数オフセットを算出するステップと
    を含むことを特徴とする請求項11に記載の方法。
  13. 前記精密周波数オフセットを決定する前記ステップは、
    前記部分的な周波数オフセットを使用して前記粗周波数オフセットを調整するステップを含むことを特徴とする請求項11に記載の方法。
  14. 待ち受けセルに関連する前記粗周波数オフセット及び前記精密周波数オフセットのうちの1つに基づいて、前記移動局の周波数を調整するステップをさらに含むことを特徴とする請求項13に記載の方法。
  15. 1つ以上の隣接する基地局に関する前記粗周波数オフセット及び前記精密周波数オフセットのうちの1つを、待ち受けセルに報告するステップをさらに含むことを特徴とする請求項13に記載の方法。
  16. 1つ以上の隣接する基地局に関する前記粗タイミングの推定値及び前記精密タイミングの推定値のうちの1つを、待ち受けセルに報告するステップをさらに含むことを特徴とする請求項1に記載の方法。
  17. 前記専用パイロットのパイロット・トーンに基づいて基地局を識別するステップをさらに含むことを特徴とする請求項1に記載の方法。
  18. 前記専用パイロットのパイロット・トーンに基づいて前記基地局を識別する前記ステップは、
    各基地局から受信される前記信号の前記専用パイロットに基づいて、1つ以上の基地局の各々について検出メトリックを決定するステップと、
    最大の検出メトリックを有する前記基地局を、前記移動局に関する待ち受け基地局として選択するステップと
    を含むことを特徴とする請求項17に記載の方法。
  19. 1つ以上の基地局の各々について前記検出メトリックを平滑化するステップと、
    平滑化された前記検出メトリックに基づいて前記待ち受けセルを選択するステップと
    をさらに含むことを特徴とする請求項18に記載の方法。
  20. 前記専用パイロットに基づいて精密周波数オフセットを決定するステップと、
    前記精密周波数オフセットを平滑化するステップと、
    平滑化された前記精密周波数オフセットに基づいて、前記移動局の周波数を調整するステップと
    をさらに含むことを特徴とする請求項19に記載の方法。
  21. 前記検出メトリックに基づいて1つ以上の隣接する基地局を識別するステップをさらに含むことを特徴とする請求項18に記載の方法。
  22. 1つ以上の基地局から信号を受信する、無線ネットワークにおける移動局であって、
    複数の基地局で共通する共通パイロットと、送信基地局に固有の専用パイロットとを含む信号を、該送信基地局から受信する送受信機と、
    前記共通パイロットに基づいて前記送信基地局に対する粗タイミングの推定値を決定するとともに、前記専用パイロットに基づいて前記送信基地局に対する精密タイミングの推定値を決定するプロセッサと
    を備えることを特徴とする移動局。
  23. 前記プロセッサは、
    前記共通パイロットに基づいて周期性メトリックを算出し、
    前記周期性メトリックに基づいて前記粗タイミングの推定値を決定することによって、
    前記粗タイミングの推定値を決定することを特徴とする請求項22に記載の移動局。
  24. 前記プロセッサは、
    相関値を決定するために、受信した前記信号と当該信号自体との相関処理を実行するとともに、受信した前記信号と前記共通パイロットに関連付けられた既知の符号化系列との相関処理を実行し、
    前記相関値に基づいて前記周期性メトリックを算出することによって、
    前記周期性メトリックを算出することを特徴とする請求項23に記載の移動局。
  25. 前記プロセッサは、
    前記周期性メトリックを最大化する、粗タイミングの1つ以上の推定値を特定することによって、
    前記粗タイミングの推定値を決定することを特徴とする請求項23に記載の方法。
  26. 前記プロセッサは、
    前記専用パイロットに基づいて部分的なタイミングの推定値を算出し、
    前記部分的なタイミングの推定値と前記粗タイミングの推定値とに基づいて、前記精密タイミングの推定値を決定することによって、
    前記精密タイミングを決定することを特徴とする請求項22に記載の移動局。
  27. 前記プロセッサは、
    前記専用パイロットにおける複数のパイロット・トーン間の位相差を決定し、
    決定された前記位相差に基づいて前記部分的なタイミングの推定値を算出することによって、
    前記部分的なタイミングの推定値を算出することを特徴とする請求項26に記載の移動局。
  28. 前記プロセッサは、前記部分的なタイミングの推定値に基づいて前記粗タイミングの推定値を調整することによって、前記精密タイミングの推定値を決定することを特徴とする請求項26に記載の移動局。
  29. 前記プロセッサは、前記共通パイロットに基づいて粗周波数オフセットを算出することを特徴とする請求項22に記載の方法。
  30. 前記プロセッサは、
    相関値を決定するために、受信した前記信号と当該信号自体との相関処理を実行するとともに、受信した前記信号と前記共通パイロットに関連付けられた既知の符号化系列との相関処理を実行し、
    前記相関値の位相を決定し、
    前記相関値の前記位相に基づいて、前記粗周波数オフセットを算出することによって、
    前記粗周波数オフセットを算出することを特徴とする請求項29に記載の移動局。
  31. 前記プロセッサは、さらに、
    前記専用パイロットに基づいて精密周波数オフセットを算出することを特徴とする請求項29に記載の移動局。
  32. 前記プロセッサは、
    前記専用パイロットに基づいて部分的な周波数オフセットを算出し、
    前記部分的な周波数オフセットに基づいて前記精密周波数オフセットを決定することによって、
    前記精密周波数オフセットを算出することを特徴とする請求項31に記載の移動局。
  33. 前記プロセッサは、
    前記専用パイロットにおける同一のキャリヤ周波数を有する複数のパイロット・トーン間の位相差を決定し、
    決定された前記位相差に基づいて前記部分的な周波数オフセットを算出することによって、
    前記部分的な周波数オフセットを算出することを特徴とする請求項32に記載の移動局。
  34. 前記プロセッサは、前記部分的な周波数オフセットを使用して前記粗周波数オフセットを調整することによって、前記精密周波数オフセットを決定することを特徴とする請求項32に記載の移動局。
  35. 前記プロセッサは、さらに、
    待ち受けセルに関連する前記粗周波数オフセット及び前記精密周波数オフセットのうちの1つに基づいて、前記移動局の周波数を調整することを特徴とする請求項34に記載の移動局。
  36. 前記プロセッサは、さらに、
    1つ以上の隣接する基地局に関する前記粗周波数オフセット及び前記精密周波数オフセットのうちの1つを、待ち受けセルに報告することを特徴とする請求項32に記載の移動局。
  37. 前記プロセッサは、さらに、
    1つ以上の隣接する基地局に関する前記粗タイミングの推定値及び前記精密タイミングの推定値のうちの1つを、待ち受けセルに報告することを特徴とする請求項22に記載の移動局。
  38. 前記プロセッサは、さらに、
    前記専用パイロットのパイロット・トーンに基づいて基地局を識別することを特徴とする請求項22に記載の方法。
  39. 前記プロセッサは、
    各基地局から受信される前記信号の前記専用パイロットに基づいて、1つ以上の基地局の各々について検出メトリックを決定し、
    最大の検出メトリックを有する前記基地局を、前記移動局に関する待ち受け基地局として選択することによって、
    前記専用パイロットのパイロット・トーンに基づいて前記基地局を識別することを特徴とする請求項38に記載の移動局。
  40. 前記プロセッサは、さらに、
    1つ以上の基地局の各々について前記検出メトリックを平滑化し、
    平滑化された前記検出メトリックに基づいて前記待ち受けセルを選択することを特徴とする請求項39に記載の移動局。
  41. 前記プロセッサは、さらに、
    前記専用パイロットに基づいて精密周波数オフセットを決定し、
    前記精密周波数オフセットを平滑化し、
    平滑化された前記精密周波数オフセットに基づいて、前記移動局の周波数を調整することを特徴とする請求項40に記載の移動局。
  42. 前記プロセッサは、さらに、
    前記検出メトリックに基づいて1つ以上の隣接する基地局を識別することを特徴とする請求項39に記載の移動局。
  43. 基地局から伝送される、プリアンブルを有する信号であって、
    無線ネットワークにおける複数の基地局で共通の共通パイロットと、
    前記信号を送信する基地局に固有の専用パイロットと
    を含むことを特徴とする信号。
  44. 前記共通パイロットは、バーカー符号化され、繰り返されたトレーニング系列を含むことを特徴とする請求項43に記載の信号。
  45. バーカー符号化され、繰り返された前記トレーニング系列は、等間隔の複数のパイロット・トーンを含むことを特徴とする請求項44に記載の信号。
  46. 前記複数のパイロット・トーンは、ランダムに位相変調されることを特徴とする請求項45に記載の信号。
  47. 前記専用パイロットは、前記信号を送信する前記基地局に固有の、一組のパイロット・トーンを含むことを特徴とする請求項43に記載の信号。
  48. 前記専用パイロットは、2つのシンボルを含み、
    前記一組のパイロット・トーンは、交互に配置されるパターンに従って前記2つのシンボルにわたって分散配置されることを特徴とする請求項47に記載の信号。
  49. 前記一組のパイロット・トーンは、隣接するパイロット・トーンから成る複数の組と、各シンボル内で交互に間隔があいた複数の単一のパイロット・トーンとを含むことを特徴とする請求項48に記載の信号。
  50. 前記信号は、OFDM信号から成ることを特徴とする請求項43に記載の信号。
  51. 無線ネットワークにおける基地局からプリアンブルを有する信号を送信する方法であって、
    無線ネットワークにおける複数の基地局で共通の共通パイロットを、前記プリアンブルの第1の部分として送信するステップと、
    専用パイロットを、前記プリアンブルの第2の部分として送信基地局に送信するステップと
    を含むことを特徴とする方法。
  52. 前記共通パイロットは、バーカー符号化され、繰り返されたトレーニング系列を含むことを特徴とする請求項51に記載の方法。
  53. バーカー符号化され、繰り返された前記トレーニング系列は、等間隔の複数のパイロット・トーンを含むことを特徴とする請求項52に記載の方法。
  54. 前記共通パイロットの前記複数のパイロット・トーンをランダムに位相変調するステップをさらに含むことを特徴とする請求項53に記載の方法。
  55. 前記専用パイロットは、前記信号を送信する前記基地局に固有の、一組のパイロット・トーンを含むことを特徴とする請求項51に記載の方法。
  56. 前記専用パイロットは、2つのシンボルを含み、
    前記一組のパイロット・トーンは、交互に配置されるパターンに従って前記2つのシンボルにわたって分散配置されることを特徴とする請求項55に記載の方法。
  57. 前記一組のパイロット・トーンは、隣接するパイロット・トーンから成る複数の組と、各シンボル内で交互に間隔があいた複数の単一のパイロット・トーンとを含むことを特徴とする請求項56に記載の方法。
  58. 前記信号は、OFDM信号から成ることを特徴とする請求項51に記載の方法。
  59. 無線ネットワークにおける、信号を移動局へ送信する基地局であって、
    前記無線ネットワークにおける複数の基地局で共通のシンボルを含む共通パイロットと、前記信号を送信する前記基地局に固有の専用パイロットとを含む、前記信号用のプリアンブルを生成するプロセッサと、
    前記信号とともに前記プリアンブルを前記移動局へ送信するための送受信機と
    を備えることを特徴とすることを特徴とする基地局。
  60. 前記共通パイロットは、バーカー符号化され、繰り返されたトレーニング系列を含むことを特徴とする請求項59に記載の基地局。
  61. バーカー符号化され、繰り返された前記トレーニング系列は、等間隔の複数のパイロット・トーンを含むことを特徴とする請求項60に記載の基地局。
  62. 前記複数のパイロット・トーンは、ランダムに位相変調されることを特徴とする請求項61に記載の基地局。
  63. 前記専用パイロットは、前記信号を送信する前記基地局に固有の、一組のパイロット・トーンを含むことを特徴とする請求項59に記載の基地局。
  64. 前記専用パイロットは、2つのシンボルを含み、
    前記一組のパイロット・トーンは、交互に配置されるパターンに従って前記2つのシンボルにわたって分散配置されることを特徴とする請求項63に記載の基地局。
  65. 前記一組のパイロット・トーンは、隣接するパイロット・トーンから成る複数の組と、各シンボル内で交互に間隔があいた複数の単一のパイロット・トーンとを含むことを特徴とする請求項64に記載の基地局。
  66. 前記信号は、OFDM信号から成ることを特徴とする請求項59に記載の基地局。
  67. 前記送受信機は、前記移動局から同期情報を受信し、
    前記同期情報は、送信された前記プリアンブルに基づいて前記移動局によって導出され、
    前記プロセッサは、さらに、受信した前記同期情報に基づいて1つ以上の近隣の基地局のタイミングに対して、前記基地局のタイミングを同期させることを特徴とする請求項59に記載の基地局。
JP2009549033A 2007-02-07 2007-02-20 同期処理及びセルサーチのためのプリアンブル設計 Pending JP2010518741A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/672,084 US8027329B2 (en) 2007-02-07 2007-02-07 Preamble design for synchronization and cell search
US11/672,084 2007-02-07
PCT/SE2007/050099 WO2008097150A1 (en) 2007-02-07 2007-02-20 Preamble design for synchronization and cell search

Publications (1)

Publication Number Publication Date
JP2010518741A true JP2010518741A (ja) 2010-05-27

Family

ID=39676090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009549033A Pending JP2010518741A (ja) 2007-02-07 2007-02-20 同期処理及びセルサーチのためのプリアンブル設計

Country Status (6)

Country Link
US (1) US8027329B2 (ja)
EP (1) EP2115904B1 (ja)
JP (1) JP2010518741A (ja)
AR (1) AR065256A1 (ja)
MX (1) MX2009007314A (ja)
WO (1) WO2008097150A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514712A (ja) * 2009-12-18 2013-04-25 サムスン エレクトロニクス カンパニー リミテッド 広帯域無線通信システムにおけるプリアンブルを転送するための装置及びその方法
JP2013538492A (ja) * 2010-09-26 2013-10-10 エヌイーシー(チャイナ)カンパニー, リミテッド 無線通信システムおよび無線通信システムのためのビーム形成トレーニング方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537681B1 (en) * 2004-06-24 2020-10-07 Apple Inc. Preambles in ofdma system
KR101350441B1 (ko) * 2007-09-27 2014-01-23 삼성전자주식회사 무선 통신 시스템에서 상향링크 송신 타이밍 추정 방법 및장치
KR101366534B1 (ko) * 2007-11-06 2014-02-25 삼성전자주식회사 파일럿 신호를 이용한 주파수 스펙트럼 센싱 방법 및 상기방법을 채용하는 인지 무선 시스템
KR101434585B1 (ko) * 2008-01-03 2014-08-27 삼성전자주식회사 협력 통신 릴레이를 이용하여 데이터를 전송하는 통신시스템
JP4811478B2 (ja) * 2008-11-12 2011-11-09 住友電気工業株式会社 基地局装置
JP5233454B2 (ja) * 2008-07-08 2013-07-10 富士通株式会社 移動端末局および受信品質測定方法
US20100111229A1 (en) * 2008-08-08 2010-05-06 Assaf Kasher Method and apparatus of generating packet preamble
US8774084B2 (en) * 2008-08-22 2014-07-08 Qualcomm Incorporated Base station synchronization
KR100967657B1 (ko) 2008-09-19 2010-07-07 연세대학교 산학협력단 펨토셀 기지국의 동기화 방법 및 이를 이용한 펨토셀 기지국
US8483731B2 (en) * 2009-02-24 2013-07-09 Eden Rock Communications, Llc Systems and methods for base station reference frequency correction and timing correction using transceiver feedback
WO2010099049A2 (en) 2009-02-24 2010-09-02 Eamonn Gormley Base station reference frequency and timing correction
US20110158164A1 (en) * 2009-05-22 2011-06-30 Qualcomm Incorporated Systems and methods for joint processing in a wireless communication
US8619673B2 (en) * 2009-07-08 2013-12-31 Mediatek Inc. Preamble partition and cell identification procedure in wireless communication systems
US9401784B2 (en) * 2009-10-21 2016-07-26 Qualcomm Incorporated Time and frequency acquisition and tracking for OFDMA wireless systems
KR20130090772A (ko) 2010-06-09 2013-08-14 엔트로픽 커뮤니케이션즈, 인크. 프리앰블 감소를 위한 방법 및 장치
KR102021590B1 (ko) 2012-06-04 2019-09-18 삼성전자주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
CN102984112B (zh) * 2012-11-30 2015-04-15 南通大学 高速移动ofdm***的同步方法
DE102013015167B4 (de) 2013-09-11 2017-04-27 Intel IP Corporation Verfahren zum Filtern von Kandidatenzellen
US9615369B2 (en) 2014-05-14 2017-04-04 Qualcomm Incorporated Avoiding spurious responses with reconfigurable LO dividers
WO2016089056A1 (ko) * 2014-12-02 2016-06-09 엘지전자 주식회사 무선 랜 시스템에서 프리엠블 시퀀스의 생성 방법
EP3073782B1 (en) * 2015-03-26 2019-08-14 Nokia Solutions and Networks Oy Controlling transmissions
US10616845B2 (en) * 2016-10-13 2020-04-07 Qualcomm Incorporated Coordinated resource discovery
US20230021454A1 (en) * 2021-07-15 2023-01-26 Meta Platforms Technologies, Llc Systems and methods of preambles for uwb transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246998A1 (en) * 2003-01-21 2004-12-09 Ar Card Physical layer structures and initial access schemes in a unsynchronized communication network
JP2005065299A (ja) * 2003-08-14 2005-03-10 Sony Internatl Europ Gmbh 直交周波数分割多重信号の処理方法
JP2006522553A (ja) * 2003-03-31 2006-09-28 松下電器産業株式会社 周波数同期装置、及び周波数同期方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482699A3 (en) 1998-06-08 2005-02-09 Telefonaktiebolaget LM Ericsson (publ) Burst structure for multicarrier transmission, and synchronisation of bursts, symbols and frequency
US6717930B1 (en) * 2000-05-22 2004-04-06 Interdigital Technology Corporation Cell search procedure for time division duplex communication systems using code division multiple access
US6940933B1 (en) * 1999-06-23 2005-09-06 Cingular Wireless Ii, Llc Apparatus and method for synchronization in a multiple-carrier communications system by observing a phase-frequency relationship of a plurality of pilot signals
US6449246B1 (en) * 1999-09-15 2002-09-10 Telcordia Technologies, Inc. Multicarrier personal access communication system
US7548506B2 (en) * 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7133479B2 (en) * 2003-04-15 2006-11-07 Silicon Integrated Systems Corp. Frequency synchronization apparatus and method for OFDM systems
KR20050015913A (ko) * 2003-08-14 2005-02-21 삼성전자주식회사 직교 주파수 분할 다중 방식 통신 시스템에서 파일럿송수신 장치 및 방법
EP3537681B1 (en) * 2004-06-24 2020-10-07 Apple Inc. Preambles in ofdma system
US7746963B2 (en) * 2006-01-06 2010-06-29 Qualcomm Incorporated Methods and apparatus for frequency tracking of a received signal
US7933315B2 (en) * 2006-08-15 2011-04-26 Analog Devices, Inc. Spread spectrum communication and synchronization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246998A1 (en) * 2003-01-21 2004-12-09 Ar Card Physical layer structures and initial access schemes in a unsynchronized communication network
JP2006522553A (ja) * 2003-03-31 2006-09-28 松下電器産業株式会社 周波数同期装置、及び周波数同期方法
JP2005065299A (ja) * 2003-08-14 2005-03-10 Sony Internatl Europ Gmbh 直交周波数分割多重信号の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012008684; Nortel: 'Proposal for initial access channel for E-UTRA (SCH and BCH)' TSG RAN WG1 LTE ad hoc R1-060150, 20060123, 3GPP *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514712A (ja) * 2009-12-18 2013-04-25 サムスン エレクトロニクス カンパニー リミテッド 広帯域無線通信システムにおけるプリアンブルを転送するための装置及びその方法
JP2013538492A (ja) * 2010-09-26 2013-10-10 エヌイーシー(チャイナ)カンパニー, リミテッド 無線通信システムおよび無線通信システムのためのビーム形成トレーニング方法
US9191079B2 (en) 2010-09-26 2015-11-17 Nec (China) Co., Ltd. Wireless communication system and beamforming training method for wireless communication system

Also Published As

Publication number Publication date
WO2008097150A9 (en) 2009-04-30
EP2115904B1 (en) 2018-12-19
EP2115904A4 (en) 2016-05-18
US8027329B2 (en) 2011-09-27
AR065256A1 (es) 2009-05-27
WO2008097150A1 (en) 2008-08-14
EP2115904A1 (en) 2009-11-11
MX2009007314A (es) 2009-07-15
US20080186949A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP2010518741A (ja) 同期処理及びセルサーチのためのプリアンブル設計
KR100659937B1 (ko) 무선통신시스템에서 셀 인식 및 하향링크 동기를 획득하기위한 장치 및 방법
US8320360B2 (en) Method and apparatus for fast cell search
US8254344B2 (en) Reference sequence construction for fast cell search
US7672221B2 (en) Radio receiver and radio signal receiving method
US8045636B1 (en) Maximum-likelihood frame synchronization algorithms for OFDM systems
US7426175B2 (en) Method and apparatus for pilot signal transmission
US9584245B2 (en) Non-coherent neighbor cell searching method
WO2006023423A2 (en) Method and apparatus for fast cell search
JP2011151852A (ja) 無線通信装置
US8374452B2 (en) Method and apparatus for fast cell search
KR20070090520A (ko) 이동통신 시스템에서 프리앰블을 이용한 수신 신호 대 잡음및 간섭 비 측정 장치 및 방법
CN102868660B (zh) 一种基于宽带无线通信***的下行传输同步方法
Zhang et al. Random access preamble design for large frequency shift in satellite communication
KR101266720B1 (ko) 순환 지연 다이버시티 기법이 적용된 uwb-ofdm 시스템에서의 주파수 오차 추정 방법 및 장치
KR101712427B1 (ko) 애드혹 인지 무선 네트워크에서 클러스터 그룹의 헤드 노드와 멤버 노드 간의 공통 채널 설정 방법 및 이를 위한 시스템
JP4850735B2 (ja) 無線通信端末及びフレーム同期方法
US9467320B2 (en) Method and system for performing initial ranging in cognitive radio network
KR101265619B1 (ko) 복합 동기 채널 구조, 이를 이용한 신호 전송, 시퀀스적용, 시퀀스 분석 방법 및 장치
Bhargava et al. Efficient synchronization and frequency tracking for cellular reuse-I OFDMA systems
Bhargava et al. Efficient frequency offset estimation and tracking for reuse-1 ofdma systems
KR20130137488A (ko) 분산 네트워크에서 그룹간 동기화 방법
JP2010226696A (ja) 通信装置および受信電力測定方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121112