JP2010514924A - Ferritic stainless steel with excellent corrosion resistance and discoloration resistance - Google Patents

Ferritic stainless steel with excellent corrosion resistance and discoloration resistance Download PDF

Info

Publication number
JP2010514924A
JP2010514924A JP2009543920A JP2009543920A JP2010514924A JP 2010514924 A JP2010514924 A JP 2010514924A JP 2009543920 A JP2009543920 A JP 2009543920A JP 2009543920 A JP2009543920 A JP 2009543920A JP 2010514924 A JP2010514924 A JP 2010514924A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
less
steel
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009543920A
Other languages
Japanese (ja)
Other versions
JP5372775B2 (en
Inventor
ヨン ドゥク リー、
ヨン ヒョン リー、
クウォン テ キム、
チョン ソ リー、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2010514924A publication Critical patent/JP2010514924A/en
Application granted granted Critical
Publication of JP5372775B2 publication Critical patent/JP5372775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、高価なNiを含有するオーステナイト系鋼を、Cr、Cu、Ti、Nbなどの元素にそれぞれ代替した高Crフェライト系ステンレス鋼であって、耐食性が304鋼に比べて同等水準以上の特性を有する高耐食フェライト系ステンレス鋼に関し、質量%で、C:0.01%以下、Si:0.2〜1.0%以下、Mn:0.3%以下、Cr:20〜23%、Ni:0.2〜0.4%、N:0.01%以下、Al:0.03〜0.10%、S:0.002%以下、Cu:0.3〜0.5%、Zr:0.02〜0.06%、Ti:0.2〜0.4%(Ti/(C+N)≧20)、Nb:0.06〜0.45%(Nb/(C+N)≧28)であり、残りの成分がFe及び不可避的不純物からなるフェライト系ステンレス鋼が提供される。また、このフェライト系ステンレス鋼に対する冷間圧延及び表面研磨に関する製造方法が提供される。  The present invention is a high Cr ferritic stainless steel obtained by substituting expensive Ni-containing austenitic steel with elements such as Cr, Cu, Ti, Nb, etc., and the corrosion resistance is equal to or higher than that of 304 steel. With respect to the highly corrosion resistant ferritic stainless steel having characteristics, in mass%, C: 0.01% or less, Si: 0.2 to 1.0% or less, Mn: 0.3% or less, Cr: 20 to 23%, Ni: 0.2-0.4%, N: 0.01% or less, Al: 0.03-0.10%, S: 0.002% or less, Cu: 0.3-0.5%, Zr : 0.02 to 0.06%, Ti: 0.2 to 0.4% (Ti / (C + N) ≧ 20), Nb: 0.06 to 0.45% (Nb / (C + N) ≧ 28) There is provided a ferritic stainless steel in which the remaining components are Fe and inevitable impurities. Moreover, the manufacturing method regarding the cold rolling and surface grinding | polishing with respect to this ferritic stainless steel is provided.

Description

本発明は、耐食性及び耐変色性に優れたフェライト系ステンレス鋼に関する。より詳細には、高価なNi元素を含有するオーステナイト系ステンレス鋼を代替するために、Niを代替可能な耐食性向上元素を含む高クロムフェライト系ステンレス鋼に関し、建築資材用材料などに使用される304素材と同等の耐食性を有するように、Ti、Nb、Cu、Ni、Si、Zr成分などを調整した高耐食及び耐変色性に優れたフェライト系ステンレス鋼に関する。   The present invention relates to a ferritic stainless steel having excellent corrosion resistance and discoloration resistance. More specifically, in order to replace an austenitic stainless steel containing expensive Ni element, it relates to a high chromium ferritic stainless steel containing a corrosion resistance improving element that can replace Ni. The present invention relates to a ferritic stainless steel excellent in high corrosion resistance and discoloration resistance in which Ti, Nb, Cu, Ni, Si, Zr components and the like are adjusted so as to have a corrosion resistance equivalent to that of a material.

従来の汎用オーステナイト系ステンレス鋼である304鋼は、合金の主成分が18%Cr−8%Niであり、高価なNi含有量が高く、価格競争力が低いという問題がある。   304 steel, which is a conventional general-purpose austenitic stainless steel, has a problem that the main component of the alloy is 18% Cr-8% Ni, the expensive Ni content is high, and the price competitiveness is low.

また、前記304鋼と同等の耐食性を有する従来の生産製品であるフェライト系436L鋼なども同じく、高価なMo元素を含有しているため、製造コストが高く、価格競争力が低いという問題がある。   Similarly, ferritic 436L steel, which is a conventional production product having corrosion resistance equivalent to that of the 304 steel, also contains expensive Mo elements, and thus has a problem of high manufacturing cost and low price competitiveness. .

このように、高価なNiまたはMo成分を多量に含有して生産コストの高い304鋼または436L鋼を代替するために、Niを低減したりMoを低減するための様々な提案が知られている。しかし、このような提案によれば、実質的にNiまたはMoの低減により生産コストは低減できるものの、需要者が求める耐食性を得ることは困難であるという問題がある。   As described above, various proposals for reducing Ni or reducing Mo are known in order to replace expensive 304 or 436L steel containing a large amount of expensive Ni or Mo components and high production costs. . However, according to such a proposal, although the production cost can be substantially reduced by reducing Ni or Mo, there is a problem that it is difficult to obtain the corrosion resistance required by the customer.

本発明は、上述した問題を改善するためのものであって、従来の304(18Cr−8Ni)鋼及び436L(18Cr−1.2Mo−0.2Ti)鋼において、高価なNiまたはMoを代替するために、Cr、Cu、Si、Ni、Zrなどの元素を添加し、C及びN成分を安定化させるために、TiとNb成分を複合添加して、Ti/(C+N)が20以上またはNb/(C+N)が28以上となるようにすることにより、耐食性及び耐変色性に優れた高クロムフェライト系ステンレス鋼を提供することを、その目的とする。   The present invention is intended to improve the above-described problems, and replaces expensive Ni or Mo in conventional 304 (18Cr-8Ni) steel and 436L (18Cr-1.2Mo-0.2Ti) steel. Therefore, elements such as Cr, Cu, Si, Ni and Zr are added, and in order to stabilize the C and N components, Ti and Nb components are added in combination, and Ti / (C + N) is 20 or more or Nb It is an object of the present invention to provide a high chromium ferritic stainless steel excellent in corrosion resistance and discoloration resistance by making / (C + N) 28 or more.

また、本発明によれば、代表的な合金成分系として、21%Cr−0.3%Ti−0.06%Nb−0.5%Si−0.4%Cu−0.3%Ni−0.02%Zr−0.007%C−0.008%Nの組成を有する鋼が提供され、この鋼の耐食性及び耐高温変色性を改善するための冷間圧延及び表面研磨方法を提供することを、その目的とする。   Further, according to the present invention, as a typical alloy component system, 21% Cr-0.3% Ti-0.06% Nb-0.5% Si-0.4% Cu-0.3% Ni- Provided is a steel having a composition of 0.02% Zr-0.007% C-0.008% N, and provides a cold rolling and surface polishing method for improving the corrosion resistance and high temperature discoloration resistance of the steel. That is the purpose.

本発明の目的は、以上に述べている目的に限らず、ここに述べていない別の目的も、以下の記載から当業者が明確に理解することができる。   The object of the present invention is not limited to the object described above, and other objects not described here can be clearly understood by those skilled in the art from the following description.

上記の目的を達成するための、本発明の一実施形態による耐食性及び耐変色性に優れたフェライト系ステンレス鋼は、質量%で、C:0.01%以下、N:0.01%以下、Ti:0.2〜0.4%、Nb:0.05〜0.45%、Si:0.2〜1.0%、Mn:0.3%以下、Cr:20〜23%、Ni:0.2〜0.4%、Cu:0.3〜0.5%、Al:0.03〜0.10%、S:0.002%以下、Zr:0.02〜0.06%であり、Ti/(C+N):20以上またはNb/(C+N):28以上であり、残りの成分がFe及び不可避的不純物からなる。   In order to achieve the above object, the ferritic stainless steel having excellent corrosion resistance and discoloration resistance according to an embodiment of the present invention is, in mass%, C: 0.01% or less, N: 0.01% or less, Ti: 0.2-0.4%, Nb: 0.05-0.45%, Si: 0.2-1.0%, Mn: 0.3% or less, Cr: 20-23%, Ni: 0.2 to 0.4%, Cu: 0.3 to 0.5%, Al: 0.03 to 0.10%, S: 0.002% or less, Zr: 0.02 to 0.06% Yes, Ti / (C + N): 20 or more or Nb / (C + N): 28 or more, and the remaining components are composed of Fe and inevitable impurities.

また、本発明によれば、ASTM D2244を満足する色差計を用いて色を測定した際、500℃で90分間加熱した後、a値が11より小さく、かつ、b値が11より大きい領域内に存在する耐食性及び耐変色性に優れたフェライト系ステンレス鋼が提供される。 In addition, according to the present invention, when the color is measured using a color difference meter that satisfies ASTM D2244, after heating at 500 ° C. for 90 minutes, the a * value is smaller than 11 and the b * value is larger than 11. Ferritic stainless steel having excellent corrosion resistance and discoloration resistance existing in the region is provided.

さらに、本発明によれば、前記Nbが0.1%以下であり、前記Siが0.45%〜0.5%であり、焼鈍結晶粒の粒度がASTM No.7.5以上である耐食性及び耐変色性に優れたフェライト系ステンレス鋼が提供される。   Further, according to the present invention, the Nb is 0.1% or less, the Si is 0.45% to 0.5%, and the grain size of the annealed crystal grains is ASTM No. A ferritic stainless steel having a corrosion resistance and discoloration resistance of 7.5 or more is provided.

さらに、本発明によれば、前記フェライト系ステンレス鋼に対して320メッシュ以上のブラシロールタイプでヘアーライン研磨を行うことにより、冷延表面粗度Ra及びRz値をそれぞれ0.25及び1.70に制限する、耐食性及び耐変色性に優れたフェライト系ステンレス鋼の製造方法が提供される。   Furthermore, according to the present invention, by performing hairline polishing with a brush roll type of 320 mesh or more on the ferritic stainless steel, the cold-rolled surface roughness Ra and Rz values are set to 0.25 and 1.70, respectively. A method for producing a ferritic stainless steel that is excellent in corrosion resistance and discoloration resistance is provided.

上述のように、本発明によれば、オーステナイト系鋼である304鋼を代替するために、高価なNiの代わりに、低価格のクロム(Cr)、銅(Cu)、シリコン(Si)、ジルコニウム(Zr)、チタン(Ti)またはニオブ(Nb)などを添加して、その耐食性を304鋼と同等の水準に向上させたフェライト系ステンレス鋼が提供される。また、優れた耐食性を有するように、この鋼に対して適切な冷間圧延及びロールタイプの表面研磨を行う製造方法が提供される。   As described above, according to the present invention, low cost chromium (Cr), copper (Cu), silicon (Si), zirconium is used instead of expensive Ni in order to replace 304 steel which is an austenitic steel. Ferritic stainless steel is provided in which (Zr), titanium (Ti), niobium (Nb), or the like is added to improve the corrosion resistance to a level equivalent to that of 304 steel. Moreover, the manufacturing method which performs appropriate cold rolling and roll type surface grinding | polishing with respect to this steel so that it may have the outstanding corrosion resistance is provided.

図1(a)、(b)は、本発明鋼の表面研磨条件に応じた光学顕微鏡写真図であって、図1(a)は、研磨ベルトの使用後における研磨不連続長さの増加を示す表面写真図であり、図1(b)は、ブラシロールの使用後における研磨不連続長さの減少を示す表面写真図である。1 (a) and 1 (b) are optical micrographs according to the surface polishing conditions of the steel of the present invention, and FIG. 1 (a) shows the increase in the polishing discontinuity length after use of the polishing belt. FIG. 1 (b) is a surface photograph showing a decrease in the polishing discontinuity length after use of the brush roll.

以下、本発明の特徴を作用と共に説明する。まず、本発明の組成範囲と限定理由を説明する。   The features of the present invention will be described below together with the operation. First, the composition range of the present invention and the reason for limitation will be described.

C:オーステナイト形成元素であって、添加時に高温強度を向上させるが、過剰添加すると、Crと反応してクロム炭化物を生成させて耐食性を低下させ、フェライト系鋼において延伸率と溶接性を低下させる。したがって、できるだけ低い含有量である0.01%以下が好ましい。   C: an austenite forming element that improves high-temperature strength when added, but when added excessively, it reacts with Cr to produce chromium carbide, thereby reducing corrosion resistance and reducing the draw ratio and weldability in ferritic steels. . Therefore, 0.01% or less which is the lowest possible content is preferable.

N:オーステナイト相を安定化させる元素であって、Ni元素を代替し、強度と耐孔食性を向上させるという利点があるが、延伸率と加工性が低下するという短所がある。したがって、本発明では0.01%以下に制限する。   N: An element that stabilizes the austenite phase and has the advantage of replacing Ni element and improving the strength and pitting corrosion resistance, but has the disadvantage of lowering the stretch ratio and workability. Therefore, in the present invention, it is limited to 0.01% or less.

Ti:C、N元素をTi(C、N)析出物で安定化させ、高温でのクロム炭化物の析出を抑制して耐食性を向上させ、焼鈍(annealing)熱処理時に再結晶集合組織を制御して加工性を向上させる。しかし、過剰添加すると、加工性の低下と表面欠陥が発生するという問題があるため、0.2%〜0.4%に制限し、特に、Ti/(C+N)は20以上とする。   Ti: C, N elements are stabilized with Ti (C, N) precipitates, the precipitation of chromium carbides at high temperatures is suppressed to improve corrosion resistance, and the recrystallization texture is controlled during annealing heat treatment. Improve processability. However, if added excessively, there is a problem that workability is lowered and surface defects occur, so the content is limited to 0.2% to 0.4%, and in particular, Ti / (C + N) is 20 or more.

Nb:C、N元素をNb(C、N)析出物で安定化させ、高温でのクロム炭化物の析出を抑制して耐食性を向上させ、焼鈍熱処理時に再結晶集合組織を制御して結晶粒を微細化し、エレベータ用素材としての加工時にオレンジピール(orange peel)の発生を防止する効果がある。しかし、過剰添加すると、加工性の低下とリッジング(ridging)のような表面欠陥が発生するという問題があるため、0.05%〜0.45%に調整し、特に、Nb/(C+N)は28以上とする。   Nb: C and N elements are stabilized with Nb (C, N) precipitates, and chromium carbides are prevented from precipitating at high temperatures to improve corrosion resistance, and the crystal grains are controlled by controlling the recrystallization texture during annealing heat treatment. It has the effect of miniaturizing and preventing the occurrence of orange peel during processing as an elevator material. However, if excessively added, there is a problem that workability is deteriorated and surface defects such as rigging are generated. Therefore, the content is adjusted to 0.05% to 0.45%, and in particular, Nb / (C + N) is 28 or more.

Mn:窒素と同様に、オーステナイト相の安定化元素であって、Niを代替する元素である。オーステナイト相を準安定化させ、フェライト鋼に添加する場合に強度は増加するが、加工性が低下するため、0.3%以下に制限する。   Mn: Similar to nitrogen, it is an austenite phase stabilizing element and an element that substitutes for Ni. When the austenite phase is metastable and added to ferritic steel, the strength increases, but the workability decreases, so it is limited to 0.3% or less.

Cr:ステンレス鋼の酸化皮膜の形成を促進する元素であって、耐食性を304鋼と同等の水準に増加させる。436L鋼のMo元素を代替するために、21%以上のCrの添加が必要になる。しかし、過剰添加すると、熱間圧延時に緻密な酸化スケールの生成に伴う付着(sticking)欠陥が増加するという問題があるため、23%を上限とする。   Cr: An element that promotes the formation of an oxide film of stainless steel, and increases the corrosion resistance to the same level as 304 steel. In order to replace the Mo element of 436L steel, 21% or more of Cr needs to be added. However, if excessively added, there is a problem that sticking defects associated with the formation of a dense oxide scale during hot rolling increase, so the upper limit is 23%.

Ni:C、Nと同様に、オーステナイト相を安定化させる元素であって、腐食速度を遅らせることで耐食性を向上させる元素であるが、高価なため、経済性を考慮して0.2%〜0.4%の範囲に調整する。   Ni: Similar to C and N, it is an element that stabilizes the austenite phase and is an element that improves the corrosion resistance by slowing the corrosion rate. However, since it is expensive, 0.2% to Adjust to the range of 0.4%.

Si:耐高温酸化性を向上させ、ステンレス鋼において不動態皮膜を強化して耐食性を向上させるため、0.2%以上とする。しかし、過剰添加すると、延伸率を低下させるため、1.0%以下に制限する。   Si: In order to improve high-temperature oxidation resistance and strengthen the passive film in stainless steel to improve corrosion resistance, the content is made 0.2% or more. However, when excessively added, the stretching ratio is lowered, so the content is limited to 1.0% or less.

S:微量の不純物元素であって、結晶粒界に偏析し、熱間圧延時に加工クラックを生じさせる主元素であるため、できるだけ低い含有量である0.002%以下に制限する。   S: A very small amount of an impurity element, which segregates at the grain boundary and causes a work crack at the time of hot rolling. Therefore, the content is limited to the lowest possible content of 0.002% or less.

Cu:腐食伝播速度を低下させて耐食性を向上させる元素であるが、多量添加すると、耐高温酸化性と熱間加工性を低下させる元素であるため、0.3%〜0.5%に制限する。   Cu: An element that lowers the corrosion propagation rate and improves corrosion resistance. However, when added in a large amount, it is an element that lowers high-temperature oxidation resistance and hot workability, so it is limited to 0.3% to 0.5%. To do.

Al:結晶粒度の制御及び脱酸剤元素であって、過剰添加すると、連続鋳造工程において介在物によるノズル詰まりが発生する可能性があるため、0.10%以下に制限する。   Al: Control of crystal grain size and deoxidizer element. If added excessively, nozzle clogging due to inclusions may occur in the continuous casting process, so it is limited to 0.10% or less.

Zr:溶接部の衝撃靭性を向上させる元素であって、過剰添加すると、連続鋳造工程において介在物によるノズル詰まりが発生する可能性があるため、0.06%以下に制限する。   Zr: An element that improves the impact toughness of the welded portion. If excessively added, nozzle clogging may occur due to inclusions in the continuous casting process, so the content is limited to 0.06% or less.

下記表1では、21%Cr−0.3%Ti−0.006%C−0.006%N−0.3%Ni−0.5%Si−0.4%Cuの基本成分系においてTi/(C+N)分率を変化させ、304鋼、436L鋼水準の耐食性を得るために、Ni、Moを、Cr、Cu元素などに代替した高クロムフェライト系ステンレス鋼が、304鋼および比較鋼と対比して示されている。   In Table 1 below, in the basic component system of 21% Cr-0.3% Ti-0.006% C-0.006% N-0.3% Ni-0.5% Si-0.4% Cu, Ti / (C + N) The high chromium ferritic stainless steel in which Ni and Mo are replaced with Cr and Cu elements in order to change the (C + N) fraction and obtain the corrosion resistance of 304 steel and 436L steel is compared with 304 steel and comparative steel. It is shown in contrast.

本発明の一実施形態による鋼及び比較鋼をそれぞれ溶解して、インゴット(Ingot)に鋳造した後、熱間及び冷間圧延、焼鈍、酸洗いを行うことにより、1.0mm厚の冷延板を作製した。表1には、この冷延板に対して行った耐食性試験の結果が示されている。   A steel sheet according to an embodiment of the present invention and a comparative steel are melted and cast into an ingot, followed by hot and cold rolling, annealing, and pickling, whereby a cold rolled sheet having a thickness of 1.0 mm. Was made. Table 1 shows the results of a corrosion resistance test performed on the cold-rolled sheet.

* CPT: 臨界孔食温度(Critical Pitting Temperature)   * CPT: Critical Pitting Temperature

臨界孔食温度(Critical Pitting Temperature、CPT)は、1M(モル)NaCl溶液に試験片を入れて、カロメル電極(calomel electrode)対比+300mVを試験片に印加して、試験片の電流密度が100μA/cmに達する温度を意味する。表1の結果をみると、ニッケルが8%添加されて価格が非常に高いオーステナイト系304鋼のCPTは29.4℃であることが分かる。このようなオーステナイト系304鋼は、一般的な建築用内外装材として使用される。 The critical pit temperature (Critical Pitting Temperature, CPT) is obtained by placing a test piece in a 1 M (Mole) NaCl solution, applying a +300 mV contrast with a calomel electrode to the test piece, and having a current density of 100 μA / It means the temperature reaching cm 2 . From the results shown in Table 1, it can be seen that the CPT of austenitic 304 steel with 8% nickel added and very high is 29.4 ° C. Such austenitic 304 steel is used as a general architectural interior / exterior material.

通常、オーステナイト系304鋼が建築用内外装材として使用される場合は、外部の腐食環境によって表面に異物が付着し腐食が誘発され得る。したがって、鋼を定期的に洗浄することが必要である。このような洗浄剤に対して十分な抵抗性を有するためには、ISO 14993に基づく反復塩水噴霧試験で錆が発生してはならない。この基準に適合させるためには、CPTが32℃を超えなければならない。   In general, when austenitic 304 steel is used as a building interior / exterior material, foreign matter may adhere to the surface due to an external corrosive environment, and corrosion may be induced. It is therefore necessary to clean the steel regularly. In order to have sufficient resistance to such cleaning agents, rust must not occur in repeated salt spray tests based on ISO 14993. In order to meet this standard, the CPT must exceed 32 ° C.

本発明においては、高価なニッケルを添加するのではなく、クロムを21%以上添加しながら微量元素を調整することにより、通常の304鋼が用いられる環境に使用可能な耐食性に優れたフェライト系ステンレス鋼が提供される。   In the present invention, ferritic stainless steel excellent in corrosion resistance that can be used in an environment where ordinary 304 steel is used by adjusting trace elements while adding 21% or more of chromium instead of adding expensive nickel. Steel is provided.

表1から明らかなように、クロム含有量が19%以下である比較鋼1の場合、CPTは20.1℃であり、304鋼と対比して非常に低いことが分かる。比較鋼2、3のように、Cr含有量を21%に高めた場合は、CPTが25℃と有意に高くなった。   As can be seen from Table 1, in the case of the comparative steel 1 having a chromium content of 19% or less, the CPT is 20.1 ° C., which is very low as compared with 304 steel. As in Comparative Steels 2 and 3, when the Cr content was increased to 21%, the CPT was significantly increased to 25 ° C.

比較鋼4及び比較鋼5は、安定化元素としてTi及びNbをそれぞれ添加した鋼であり、比較鋼2と対比してCu及びNiが微量添加され、CPTが28.1℃及び29.8℃に上昇した。しかし、Si含有量が0.1%レベルと低く、304鋼以上の耐食性の確保には不十分である。したがって、Cu及びNiの微量添加と同時に、Si含有量を増加させることで耐食性を向上させる必要があることが分かる。   Comparative steel 4 and comparative steel 5 are steels to which Ti and Nb are added as stabilizing elements, respectively. Compared with comparative steel 2, a small amount of Cu and Ni are added, and CPT is 28.1 ° C. and 29.8 ° C. Rose to. However, the Si content is as low as 0.1%, which is insufficient to ensure the corrosion resistance of 304 steel or higher. Therefore, it can be seen that it is necessary to improve the corrosion resistance by increasing the Si content simultaneously with the addition of a small amount of Cu and Ni.

Si含有量が0.45%である比較鋼6は、比較鋼3と対比してNiを少量添加することでCPTを30.2℃に上昇させることができるが、耐食性は、304鋼に比べて、依然として不十分である。   In Comparative Steel 6 having a Si content of 0.45%, CPT can be raised to 30.2 ° C. by adding a small amount of Ni as compared with Comparative Steel 3, but the corrosion resistance is higher than that of 304 Steel. Is still inadequate.

反面、本発明の一実施例による鋼は、安定化元素としてTiとNbを複合添加した鋼であり、0.3%Tiと0.06%Nbが含有されており、Si含有量が0.45%に増大している。このような本発明の一実施例による鋼の場合、臨界孔食温度(CPT)は約34〜35℃であり、304鋼よりも非常に高い耐食性が確保されていることが分かる。これは、21%Cr鋼においてSi含有量を0.45%に高め、CuとNiを添加する場合、耐食性が顕著に向上することを意味する。   On the other hand, the steel according to one embodiment of the present invention is a steel in which Ti and Nb are added in combination as stabilizing elements, 0.3% Ti and 0.06% Nb are contained, and the Si content is 0.00. Increased to 45%. In the case of the steel according to the embodiment of the present invention, the critical pitting temperature (CPT) is about 34 to 35 ° C., and it can be seen that the corrosion resistance is much higher than that of 304 steel. This means that in 21% Cr steel, when the Si content is increased to 0.45% and Cu and Ni are added, the corrosion resistance is remarkably improved.

建築用内外装材の場合、一般的に曲げ(bending)作業を実施する。このとき、結晶粒が大きい場合、オレンジピール現象が発生し、表面に形成されたデザインなどの損傷をもたらす。本発明では、結晶粒の大きさが異なる鋼を曲げた後の表面を調べてオレンジピール現象の発生の有無を調べ、その結果を表2に示した。   In the case of architectural interior and exterior materials, a bending operation is generally performed. At this time, when the crystal grains are large, an orange peel phenomenon occurs, resulting in damage to the design formed on the surface. In the present invention, the surface after bending steel with different crystal grain sizes was examined to determine whether or not the orange peel phenomenon occurred, and the results are shown in Table 2.

○:オレンジピールが発生せず、△:オレンジピールが不明、×:オレンジピールが発生   ○: No orange peel occurred, △: Orange peel unknown, ×: Orange peel occurred

表2の結果をみると、結晶粒の大きさに応じてオレンジピールの発生に差があることが分かる。結晶粒の大きさがASTM(American Society of Testing Materials)No.を基準として7.5以上のときにはオレンジピールが発生しないことが分かる。したがって、Nbを0.06%以上添加すると、高温においてNbC析出物がTiCよりも安定化して結晶粒の成長を抑制する効果が大きいことから、焼鈍時に微細な結晶粒が得られる効果がある。また、本発明の一実施形態による鋼は、Si含有量が0.45%で従来鋼(比較鋼4:0.10%Si)より高く、連続鋳造時にスラブの等軸粒率が約40%になるため、曲げ加工などの加工性が大きく向上する。   From the results shown in Table 2, it can be seen that there is a difference in the occurrence of orange peel depending on the size of the crystal grains. The crystal grain size is ASTM (American Society of Testing Materials) No. It can be seen that orange peel does not occur when the ratio is 7.5 or more. Therefore, when Nb is added in an amount of 0.06% or more, the NbC precipitate is more stable than TiC at a high temperature and has a great effect of suppressing the growth of crystal grains, so that there is an effect that fine crystal grains can be obtained during annealing. In addition, the steel according to an embodiment of the present invention has a Si content of 0.45%, which is higher than that of the conventional steel (Comparative Steel 4: 0.10% Si), and the equiaxed grain ratio of the slab during continuous casting is about 40%. Therefore, workability such as bending is greatly improved.

鋼を建築資材用に使用する場合、表面のヘアーライン(hair line)研磨は必ず含まれる工程である。下記表3では、本発明の一実施形態による鋼の、表面研磨方法によって異なる耐食性を比較評価した。   When steel is used for building materials, surface hairline polishing is a process that is necessarily included. In Table 3 below, the corrosion resistance of the steel according to one embodiment of the present invention, which differs depending on the surface polishing method, was comparatively evaluated.

表3によると、表面研磨を、ブラシロールを用いて、表面粗度Ra値が0.25以下となるように行なうと、優れた耐食性を確保することができる。ここで測定した表面欠陥の長さは、1000倍の光学顕微鏡下で3箇所を無作為に撮影した後、各々の研磨面に存在する表面欠陥の長さを合計した値である。   According to Table 3, when surface polishing is performed using a brush roll so that the surface roughness Ra value is 0.25 or less, excellent corrosion resistance can be ensured. The length of the surface defects measured here is a total value of the lengths of the surface defects present on each polished surface after three locations were randomly photographed under a 1000 × optical microscope.

研磨ベルトを用いた場合、表面粗度が粗くなり、欠陥の長さが増加する理由は、研磨ベルトの使用に際し、研磨加工中に腐食を誘発し得る表面欠陥が多く発生するからである。このような理由により、フェライト系鋼の表面研磨は、ブラシロールを用いて穏やかに行わなければならない。   When the polishing belt is used, the surface roughness becomes rough and the length of the defect increases because the use of the polishing belt causes many surface defects that can induce corrosion during the polishing process. For these reasons, surface polishing of ferritic steel must be performed gently using a brush roll.

図1は、研磨ベルトを用いて表面を研磨した後、および、ブラシロールを用いて表面を研磨した後の表面写真を示す。図1(a)、(b)は、本発明鋼の表面研磨条件に応じた光学顕微鏡写真図である。ここで、図1(a)によると、研磨ベルトの使用後に研磨不連続長さが増加していることが分かり、図1(b)によると、ブラシロールの使用後に研磨不連続長さが減少していることが分かる。   FIG. 1 shows a photograph of the surface after polishing the surface using a polishing belt and after polishing the surface using a brush roll. FIGS. 1A and 1B are optical micrographs according to the surface polishing conditions of the steel of the present invention. Here, according to FIG. 1 (a), it can be seen that the polishing discontinuity length increases after the use of the polishing belt, and according to FIG. 1 (b), the polishing discontinuity length decreases after the use of the brush roll. You can see that

研磨ベルトを用いた場合、表面に多くの裂け現象が発生する。換言すると、研磨ベルトを用いて表面を研磨した場合、欠陥の長さが2.58mmを超える。しかし、ブラシロールを用いた場合、欠陥の長さが0.67mmと顕著に減少し、メッシュ(1インチあたりの篩の目数)を320とした場合、耐食性が非常に向上することが分かる。   When an abrasive belt is used, many tears occur on the surface. In other words, when the surface is polished using a polishing belt, the length of the defect exceeds 2.58 mm. However, when the brush roll is used, the defect length is remarkably reduced to 0.67 mm, and when the mesh (number of sieve meshes per inch) is set to 320, the corrosion resistance is greatly improved.

また、発明者らは、複数回の実験を行った結果、冷間圧延時の冷延圧下率を70%以下とした場合、図1(b)のように傷が残存することを見出した。このような傷が鋼に残存すると、耐食性が低下するため、耐食性を向上させるためには、初期の熱間圧延板の厚さを厚くし、圧下率を70%以上に適用する必要があることが分かった。   In addition, as a result of conducting experiments a plurality of times, the inventors have found that scratches remain as shown in FIG. 1B when the cold rolling reduction during cold rolling is set to 70% or less. If such scratches remain in the steel, the corrosion resistance will decrease, so in order to improve the corrosion resistance, it is necessary to increase the thickness of the initial hot-rolled sheet and to apply a reduction ratio of 70% or more. I understood.

ここで、エリクセン値(Erichsen value)は、各々の鋼に対してエリクセン実験を行うことで得られる値を意味する。エリクセン実験は、実験対象鋼を薄い薄板に形成した後、この薄板に荷重を加えて鋼の変形値を測定する実験をいう。   Here, the Erichsen value (Erichsen value) means a value obtained by conducting an Erichsen experiment on each steel. The Eriksen experiment is an experiment in which the steel to be tested is formed into a thin thin plate, and then a load is applied to the thin plate to measure the deformation value of the steel.

Zr添加鋼である本発明の一実施形態による鋼を用い、寒い地方でパイプを製作し使用する場合は、溶接を実施しなければならないため、溶接時に、低温での溶接部の衝撃靭性が優れていなければならない。   When using a steel according to an embodiment of the present invention, which is a Zr-added steel, and producing and using a pipe in a cold region, welding must be carried out, so the impact toughness of the welded portion at low temperature is excellent during welding. Must be.

本発明の一実施形態による鋼は、Zr元素を0.02%含有しているため、表4に示す結果のように、Zr未添加鋼に比べて優れた衝撃靭性エネルギー値を示す。溶接時、凝固組織に対してZr析出物により等軸晶核生成が増加するため、その結果、結晶粒が微細化して衝撃靭性に優れたものになる。   Since the steel according to one embodiment of the present invention contains 0.02% of Zr element, as shown in the results shown in Table 4, the steel has an impact toughness energy value that is superior to that of non-Zr-added steel. During welding, equiaxed nucleation increases due to Zr precipitates in the solidified structure. As a result, the crystal grains become finer and the impact toughness becomes excellent.

○:変色が発生せず、×:変色が発生   ○: No discoloration occurred, ×: Discoloration occurred

ガスグリル用途に使用される場合、高温加熱時、フェライト系439鋼などは、304鋼より表面変色が早いという問題があった。しかし、本発明の一実施形態による鋼の場合、表5のようにCrとSiを高めることにより、優れた耐変色性を有することが分かる。したがって、加工を過度に要求しないガスグリル用途に本発明の一実施形態による鋼(21Cr−Ti、Nb−0.45Si)を使用する場合、304鋼と同等水準の耐変色性を確保することができる。   When used in a gas grill, there is a problem that the surface of the ferritic 439 steel has a faster color change than 304 steel when heated at a high temperature. However, in the case of steel according to an embodiment of the present invention, it can be seen that by increasing Cr and Si as shown in Table 5, it has excellent discoloration resistance. Therefore, when using steel (21Cr-Ti, Nb-0.45Si) according to an embodiment of the present invention for gas grill applications that do not require excessive processing, discoloration resistance equivalent to that of 304 steel can be secured. .

本発明の一実施形態による鋼によれば、表面仕上の形態にかかわらず、ASTM D2244を満足する色差計を用いて色を測定する場合、500℃で90分間加熱した後、a値が11より小さく、かつ、b値が11より大きい領域内に存在する耐変色性に優れたフェライト系ステンレス鋼を得ることができる。 According to the steel according to one embodiment of the present invention, when the color is measured using a color difference meter satisfying ASTM D2244 regardless of the surface finish, the a * value is 11 after heating at 500 ° C. for 90 minutes. It is possible to obtain a ferritic stainless steel which is smaller and has excellent discoloration resistance existing in a region where the b * value is larger than 11.

以上、本発明の典型的な実施形態が示され説明されたが、、本発明の技術分野における当業者は、本発明の技術的思想の範囲内を外れることなくこれらの実施形態に対し変更を加えることができ、また本発明の技術的思想はクレームに示され、その均等物にも及ぶことを理解することができる。   While typical embodiments of the present invention have been shown and described above, those skilled in the art of the present invention can make changes to these embodiments without departing from the scope of the technical idea of the present invention. It can be understood that the technical idea of the present invention is shown in the claims and extends to equivalents thereof.

Claims (8)

質量%で、C:0.01%以下、N:0.01%以下、Ti:0.2〜0.4%、Nb:0.05〜0.45%、Si:0.2〜1.0%、Mn:0.3%以下、Cr:21〜23%、Ni:0.2〜0.4%、Cu:0.3〜0.5%、Al:0.03〜0.10%、S:0.002%以下、Zr:0.02〜0.06%であり、Ti/(C+N):20以上またはNb/(C+N):28以上であり、残りの成分がFe及び不可避的不純物からなることを特徴とする、耐食性及び耐変色性に優れたフェライト系ステンレス鋼。   In mass%, C: 0.01% or less, N: 0.01% or less, Ti: 0.2 to 0.4%, Nb: 0.05 to 0.45%, Si: 0.2 to 1. 0%, Mn: 0.3% or less, Cr: 21-23%, Ni: 0.2-0.4%, Cu: 0.3-0.5%, Al: 0.03-0.10% , S: 0.002% or less, Zr: 0.02 to 0.06%, Ti / (C + N): 20 or more, or Nb / (C + N): 28 or more, and the remaining components are Fe and inevitable Ferritic stainless steel excellent in corrosion resistance and discoloration resistance, characterized by comprising impurities. 前記Siが0.45〜0.5%である、請求項1に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to claim 1, wherein the Si is 0.45 to 0.5%. 前記Crが21%、前記Siが0.45%〜0.5%であり、ASTM D2244を満足する色差計を用いて色を測定した際、500℃で90分間加熱した後、a値が11より小さく、かつ、b値が11より大きい領域内に存在する、請求項1に記載のフェライト系ステンレス鋼。 When the color was measured using a color difference meter satisfying ASTM D2244 with Cr of 21% and Si of 0.45% to 0.5%, after heating at 500 ° C. for 90 minutes, the a * value was The ferritic stainless steel according to claim 1, wherein the ferritic stainless steel is present in a region smaller than 11 and a b * value larger than 11. 前記Nbが0.1%以下であり、前記Siが0.45%〜0.5%であり、焼鈍結晶粒の粒度がASTM No.7.5以上である、請求項1に記載のフェライト系ステンレス鋼。   The Nb is 0.1% or less, the Si is 0.45% to 0.5%, and the grain size of the annealed crystal grains is ASTM No. The ferritic stainless steel according to claim 1, which is 7.5 or more. 質量%で、C:0.01%以下、N:0.01%以下、Ti:0.2〜0.4%、Nb:0.05〜0.45%、Si:0.2〜1.0%、Mn:0.3%以下、Cr:21〜23%、Ni:0.2〜0.4%、Cu:0.3〜0.5%、Al:0.03〜0.10%、S:0.002%以下、Zr:0.02〜0.06%であり、Ti/(C+N):20以上またはNb/(C+N):28以上であり、残りの成分がFe及び不可避的不純物からなるフェライト系ステンレス鋼に冷間圧延工程と表面研磨工程を行うフェライト系ステンレス鋼の製造方法であって、
前記冷間圧延工程を冷延圧下率70%以上として行い、
前記表面研磨工程を320メッシュ以上のブラシロールタイプのヘアーライン表面研磨によって行うことにより、冷延表面粗度Ra及びRz値をそれぞれ0.25及び1.70に制限することを特徴とする、耐食性及び耐変色性に優れたフェライト系ステンレス鋼の製造方法。
In mass%, C: 0.01% or less, N: 0.01% or less, Ti: 0.2 to 0.4%, Nb: 0.05 to 0.45%, Si: 0.2 to 1. 0%, Mn: 0.3% or less, Cr: 21-23%, Ni: 0.2-0.4%, Cu: 0.3-0.5%, Al: 0.03-0.10% , S: 0.002% or less, Zr: 0.02 to 0.06%, Ti / (C + N): 20 or more, or Nb / (C + N): 28 or more, and the remaining components are Fe and inevitable A ferritic stainless steel manufacturing method for performing a cold rolling process and a surface polishing process on ferritic stainless steel made of impurities,
Performing the cold rolling step with a cold rolling reduction of 70% or more,
The surface polishing step is performed by brush roll type hairline surface polishing of 320 mesh or more to limit the cold-rolled surface roughness Ra and Rz values to 0.25 and 1.70, respectively, corrosion resistance and A method for producing ferritic stainless steel with excellent discoloration resistance.
前記Siが0.45〜0.5%である、請求項5に記載のフェライト系ステンレス鋼の製造方法。   The manufacturing method of the ferritic stainless steel of Claim 5 whose said Si is 0.45-0.5%. 前記Crが21%、前記Siが0.45%〜0.5%であり、ASTM D2244を満足する色差計を用いて色を測定した際、500℃で90分間加熱した後、a値が11より小さく、かつ、b値が11より大きい領域内に存在する、請求項5に記載のフェライト系ステンレス鋼の製造方法。 When the color was measured using a color difference meter satisfying ASTM D2244 with Cr of 21% and Si of 0.45% to 0.5%, after heating at 500 ° C. for 90 minutes, the a * value was The method for producing a ferritic stainless steel according to claim 5, wherein the ferritic stainless steel is smaller than 11 and has a b * value larger than 11. 前記Nbが0.1%以下であり、前記Siが0.45%〜0.5%であり、焼鈍結晶粒の粒度がASTM No.7.5以上である、請求項5に記載のフェライト系ステンレス鋼の製造方法。   The Nb is 0.1% or less, the Si is 0.45% to 0.5%, and the grain size of the annealed crystal grains is ASTM No. The manufacturing method of the ferritic stainless steel of Claim 5 which is 7.5 or more.
JP2009543920A 2006-12-28 2007-12-12 Ferritic stainless steel with excellent corrosion resistance and discoloration resistance Active JP5372775B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0137088 2006-12-28
KR1020060137088A KR100821060B1 (en) 2006-12-28 2006-12-28 Ferritic stainless steel with excellent corrosion resistance properties and excellent discoloration resistance properties
PCT/KR2007/006456 WO2008082096A1 (en) 2006-12-28 2007-12-12 Ferritic stainless steel with execellent corrosion resistnace and excellent discoloration resistance

Publications (2)

Publication Number Publication Date
JP2010514924A true JP2010514924A (en) 2010-05-06
JP5372775B2 JP5372775B2 (en) 2013-12-18

Family

ID=39534418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009543920A Active JP5372775B2 (en) 2006-12-28 2007-12-12 Ferritic stainless steel with excellent corrosion resistance and discoloration resistance

Country Status (4)

Country Link
JP (1) JP5372775B2 (en)
KR (1) KR100821060B1 (en)
CN (1) CN101573466B (en)
WO (1) WO2008082096A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056471A1 (en) * 2015-09-30 2017-04-06 Jfeスチール株式会社 Ferrite stainless steel sheet
JP2020164955A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet for coating and painted steel sheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214063A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Ferritic stainless steel sheet and method for manufacturing the same
JP2011214060A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Ferritic stainless steel sheet and method for manufacturing the same
WO2012172808A1 (en) * 2011-06-15 2012-12-20 Jfeスチール株式会社 Ferritic stainless steel
EP3476961B1 (en) * 2016-06-27 2020-11-11 JFE Steel Corporation Ferritic stainless steel sheet
CN106435103A (en) * 2016-10-13 2017-02-22 江苏金坛绿能新能源科技有限公司 Technological method for improving corrosion resistance of ferritic stainless steel
JP6307188B1 (en) * 2017-02-23 2018-04-04 日新製鋼株式会社 Black ferritic stainless steel sheet
KR102120695B1 (en) * 2018-08-28 2020-06-09 주식회사 포스코 Ferritic stainless steel excellent in pickling property
KR20230094072A (en) 2021-12-20 2023-06-27 주식회사 포스코 Ferritic stainless steel with improved resistance to oxidation and discoloration
CN115927950B (en) * 2022-07-29 2024-01-09 江西宝顺昌特种合金制造有限公司 Carbon-nitrogen-containing high-chromium ferrite stainless steel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285300A (en) * 2001-01-18 2002-10-03 Kawasaki Steel Corp Ferritic stainless steel sheet and production method therefor
JP2003138347A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Ferritic stainless steel sheet, and production method therefor
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302214A (en) * 1990-03-24 1994-04-12 Nisshin Steel Co., Ltd. Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
JP2739531B2 (en) * 1991-09-17 1998-04-15 日新製鋼株式会社 Ferritic stainless steel with excellent weld corrosion resistance
JPH06279951A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Ferritic stainless steel for water heater
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
EP1225242B1 (en) 2001-01-18 2004-04-07 JFE Steel Corporation Ferritic stainless steel sheet with excellent workability and method for making the same
KR100762151B1 (en) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet having excellent deep-drawability and brittle resistance to secondary processing and method for making the same
KR20060075690A (en) * 2004-12-29 2006-07-04 주식회사 포스코 Method for manufacturing cold-rolled ferritic stainless steel having excellent surface brilliant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285300A (en) * 2001-01-18 2002-10-03 Kawasaki Steel Corp Ferritic stainless steel sheet and production method therefor
JP2003138347A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Ferritic stainless steel sheet, and production method therefor
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056471A1 (en) * 2015-09-30 2017-04-06 Jfeスチール株式会社 Ferrite stainless steel sheet
JP6142971B1 (en) * 2015-09-30 2017-06-07 Jfeスチール株式会社 Ferritic stainless steel sheet
JP2020164955A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet for coating and painted steel sheet

Also Published As

Publication number Publication date
WO2008082096A1 (en) 2008-07-10
KR100821060B1 (en) 2008-04-08
CN101573466A (en) 2009-11-04
JP5372775B2 (en) 2013-12-18
CN101573466B (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5372775B2 (en) Ferritic stainless steel with excellent corrosion resistance and discoloration resistance
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP5664826B2 (en) Ferritic stainless steel sheet
KR101941065B1 (en) Cold-rolled ferritic stainless steel sheet
JP5924459B1 (en) Stainless steel for cold rolled steel
JP5843019B2 (en) Stainless steel sheet and its manufacturing method
US20190078178A1 (en) Nickel-based alloy
KR101949629B1 (en) Stainless steel and production method therefor
JP6432701B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
WO2018198834A1 (en) Ferritic stainless steel sheet, and production method therefor
JP6489254B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
EP2309013A1 (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JP3241114B2 (en) Method for producing ferritic stainless steel sheet excellent in ridging property and workability
JP4721761B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and ridging resistance and method for producing the same
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
WO2018198835A1 (en) Material for cold-rolled stainless steel sheet, and production method therefor
KR101940427B1 (en) Ferritic stainless steel sheet
JP6758179B2 (en) Ferrite-austenitic two-phase stainless steel sheet with excellent polishability and its manufacturing method
JP2005139533A (en) Method for forming ferritic stainless steel sheet having little surface roughness
JP3270137B2 (en) Method for producing ferritic stainless steel sheet excellent in surface properties, ridging property and workability
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250