JP2010509751A - 混合光を放射するための装置 - Google Patents

混合光を放射するための装置 Download PDF

Info

Publication number
JP2010509751A
JP2010509751A JP2009535166A JP2009535166A JP2010509751A JP 2010509751 A JP2010509751 A JP 2010509751A JP 2009535166 A JP2009535166 A JP 2009535166A JP 2009535166 A JP2009535166 A JP 2009535166A JP 2010509751 A JP2010509751 A JP 2010509751A
Authority
JP
Japan
Prior art keywords
light
radiation
primary
conversion element
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009535166A
Other languages
English (en)
Inventor
ハンスーヘルムート ベヒテル
ペーター ジェイ シュミット
マチアス ウェンツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2010509751A publication Critical patent/JP2010509751A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一次および二次放射光51、52、53を含む混合光5を平均放射方向5に放射するための装置であって、第1波長において最大強度を有する第1一次放射光51を放射するための第1電場発光光源21を少なくとも1つと、第1波長よりも大きな第2波長において最大強度を有する第2一次放射光52を放射するための第2電場発光光源22を少なくとも1つと、前記一次放射光51、52の少なくとも1つを吸収し、そして二次放射光53を再放射するための光変換素子3とを備え、この光変換素子3は、前記混合光における一次放射光51、52の全割合が、前記光変換素子3を通過するように配置され、そして前記光変換素子3は、セラミック光変換材料を備え、その微細構造は、一次および二次放射光を含む前記混合光5のカラーポイントが実質的に観察角Bに依存しないように選択される。

Description

本発明は、観察角に依存しないカラーポイントを有する光を効率的に放射するため、少なくとも2つの電場発光光源と、光変換素子とを備える装置に関する。
電場発光光源(LED)は、スペクトルの狭領域で光を放射する。燐光変換LED(pcLED)と呼ばれるものは、LEDによって放射される一次放射光の少なくとも一部を、二次放射光に変換する。このプロセスは、光変換と呼ばれ、そしてこの目的に使用される材料は、光変換材料と呼ばれる。したがって、pcLEDは、一次および二次放射光を混合する結果として、幅広いスペクトル領域をカバーする混合光を放射できる(広帯域放射)。この光変換のため、LEDは、例えば、有機基質に埋め込まれた粉末の光変換燐光材料からなる光変換層でコーティングされる。この装置は、広帯域光(一次および二次放射光を混合して生成される混合光)、特に白色光、を放射するための単純な光源を構成する。LEDの動作温度に起因して、光変換層の光学的性質は、動作時間が長くなるにつれて、特に有機基質が着色する結果として変化する、つまり、強度は、時間経過において不安定であり、そして混合光のカラーポイントはシフトする。
国際出願公開WO2006/072918 A1は、青色一次放射光および燐光変換二次放射光を混合して生成される白色光を放射するための、複数の同じく着色される青色LEDを有する燐光変換装置を説明する。二次放射光を生成するため、光学的性質、特にその透過率およびその変換容量が、LED動作中の温度の影響に敏感ではないセラミック光変換材料からなるものを使用した。LEDあたりの光収率が同一である条件において、装置の輝度は、2つのLEDを使用することによって増加された。黄色二次放射光を生成する第1光変換材料とともに、セラミック光変換層はまた、この場合、赤色二次放射光を生成するための材料をさらに備え、これによって、高い演色評価数を有する広帯域白色光が、放射される。しかし、この種類の装置の欠点には、観察角で変動する混合光のカラーポイント、青色一次放射光を赤色二次放射光に変換することで生じるエネルギー損失、そしてこのpcLED装置の結果的な低効率が挙げられる。
したがって、本発明の目的は、安定でかつ観察角に依存しないカラーポイントを有する混合光を効率的に放射するための装置を提供することである。
この目的は、一次および二次放射光からなる混合光を平均放射方向に放射するための装置によって達成され、この装置は、第1波長において最大強度を有する第1一次放射光を放射するための第1電場発光光源を少なくとも1つと、第1波長よりも大きな第2波長において最大強度を有する第2一次放射光を放射するための第2電場発光光源を少なくとも1つと、前記一次放射光の少なくとも1つを吸収し、そして二次放射光を再放射するための光変換素子とを備え、この光変換素子は、前記混合光における一次放射光の全割合が、前記光変換素子を通過するように配置され、そして前記光変換素子は、セラミック光変換材料を備え、その微細構造は、一次および二次放射光を含む前記混合光のカラーポイントが実質的に観察角に依存しないように選択される。この場合の一次放射光および二次放射光とは、所定波長において最大強度を有する所定波長範囲の放射光を意味し、その所定波長の位置が、放射される一次放射光および二次放射光の色を決定する。以下において、例えば、青色一次放射光について説明される場合、この一次放射光の最大強度は、スペクトルの青色領域にあり、そして二次放射光についても同じことが言える。
本発明による装置のカラーポイント(実質的に観察角に依存しない)は、光変換材料に対して適切な微細構造を用いる、例えば、適切な粒径および/または孔径を用いることにより、通過する光を散乱させ、そして混合光のカラーポイントが観察角に依存しなくなるように、一次および二次放射光を混合することにより、達成される。光変換素子の散乱効果が十分に大きい場合、混合光の全成分に対して、同一のランバート放射特性が得られる。生成される散乱効果が小さすぎる不適切な微細構造を有する光変換素子では、一次放射光の角度分布は、ぼかしおよび光学的効果のため、二次放射光の角度分布とは明らかに異なる。後者の場合、光変換材料内の等方放射のため、広いランバート放射特性を有するであろう。これらの成分からなる混合光は、観察角の関数として、そのカラーポイントにおいて著しい変動を示すであろう。セラミック材料が、光変換素子での一次および二次放射光に激しい散乱効果を及ぼすような不適切な微細構造を有する場合、混合光のカラーポイントは、観察角に依存しないままであるが、過度に激しい散乱があると一次放射光の後方散乱が生じ、これが吸収による高い光の損失をもたらし、その結果、大幅な装置効率の低減をもたらすであろう。一方、本発明による装置の光変換材料は、高効率を維持するのに適した微細構造を有すると同時に、カラーポイントが観察角に依存することを回避する。散乱の激しさは、装置効率における何らかの顕著な低減とともに、一次および二次放射光の効果的な混合が得られるように設定される。カラーポイントによって示される観察角の非依存性を評価できるようにするため、装置全体のスペクトル放射は、平均放射方向とのさまざまな角度において決定された。「実質的に観察角に依存しない」という表現は、観察角Δu'v'でのカラーポイントにおける変動が0.02未満、そして好ましくは0.01未満であることを意味する。この場合、Δu'v'とは、異なる放射角での2つのカラーポイント間の1976 CIE表色系におけるベクトル距離である。
より長い波長の第2一次放射光を放射する第2LEDを使用することにより、二次放射光と同じ放射光が光変換によって第1一次放射光から生成された場合に生じるであろう種類のエネルギー損失が防止される。一実施例では、このため、第1波長は、スペクトルの青色または紫外領域であり、そして第2波長は、スペクトルの赤色領域である。特に、赤色の第2一次放射光を使用すると、青色または紫外の一次放射光が赤色二次放射光に変換される場合に生じるであろう種類の光変換における大きなエネルギー損失が防止される。例えば、第1一次放射光の一部が、緑色二次放射光に変換される場合、白色光は、この場合に光変換素子によって変換されない赤色の第2一次放射光を、青色の第1一次放射光および緑色二次放射光と混合することによって生成できる。このようにして、白色光は、技術的に説明すると、任意の望ましい相関色温度(CCT)のものが生成でき、そして照明目的で必要とされる種類の良好な演色性質を有する。すなわち、このようにして、6000>CCT>2000Kとし、そして演色評価数Raが80を超えるように、光源を設計することが可能である。この場合、赤色の第2一次放射光には、平均放射波長が600〜640nmのものを使用する必要がある。用語「CCT」は、この場合、相関色温度を意味し、これは、可能な限り一致した色の黒体放射体の温度である。
一実施例では、セラミック光変換材料は、平均直径Dが50nm〜5000nm、そして好ましくは100nm〜3000nm、そして特に好ましくは200nm〜1000nmである複数の酸化物粒子を備える。好ましい一実施例では、前記セラミック光変換材料の屈折率と前記酸化物粒子の屈折率との間の差異は、0.2を超える。さらなる一実施例では、セラミック光変換材料は、酸化物粒子に加えて、平均直径が250nm〜2000nm、そして好ましくは500nm〜1500nm、そして特に好ましくは700nm〜1200nmである複数の細孔を備える。
粒子および細孔のそれぞれに対するこれらのサイズにおいて、多結晶材による有利な散乱挙動が、良好な機械的強度および光学的安定性と同時に、得られる。散乱粒子または細孔の濃度は、この場合、多結晶材の5体積パーセント未満である。光収率(この材料に入る光子数と、そこから発生する光子数との比)は、例えば、この種類の孔径を有する多結晶セラミック材料の場合、80%を超える。ここでの用語「孔径」および「粒径」は、該当する細孔および粒子のそれぞれと同じ体積の球体の直径である。多結晶材における粒子および細孔は、必ずしも球形である必要はない。いずれの場合も、散乱効果は、屈折率の急激な変化によって達成される。空気充填された細孔の場合、これは、多結晶材と空気との間の屈折率における差異である。酸化物粒子の場合、例えば、Al2O3の粒子は、屈折率1.76を有し、通常1.8〜2.5の可能性がある周囲の材料の屈折率よりも小さい。屈折率の差異が大きいほど、細孔または粒子の散乱効果が大きくなる。
別の実施例では、光変換材料には、光学的異方性が存在する、すなわち、結晶構造の屈折率が、結晶の異なる軸に沿って異なる。この場合、屈折率の差異は、概ね0.01より大きくて0.2より小さく、そして光の散乱が、もっぱら多結晶材の粒界における散乱の結果として、都合よく得られる。結晶サイズ、つまり等体積な球の直径は、1μm〜30μmである。さらなる実施例では、多結晶材の結晶領域は、非結晶領域、いわゆるガラス相、によって接続される。この場合も、結晶領域と非結晶領域との間の屈折率における差異を利用して、望ましい散乱特性を設定できる。
好ましい一実施例では、前記セラミック光変換材料の密度は、該当する結晶材料の理論的最大密度の97%を超える。この高密度のため、散乱挙動が望ましい場合に、良好な機械的強度および光学的安定性が得られ、光収率についても、大きな効率性が得られる。
さらなる実施例では、前記光変換素子は、前記第1および第2電場発光光源に光学的に結合され、好ましくは、前記光変換素子と前記光源との間のシリコーン層によって結合される。これは、光変換素子への光の良好な結合を保証するものであり、装置の効率に有益な効果をもたらす。
さらなる実施例では、前記光変換素子は、前記混合光の平均放射方向に実質的に垂直な表面法線を有する側面上に、反射層を備える。光変換素子の光散乱効果のため、混合光の一部は、これらの側面に突き当たり、そしてもし、光変換素子から横方向に出現するのであれば、放射方向への放射に損失が生じるか、または可能性として、多くの実施例において、カラーポイントが、角度に依存するようになってしまうであろう。こういった状況では、側面を反射することにより、カラーポイントの高安定性を保証することができる。
さらなる実施例では、第1および第2の一次放射光の強度は、互いに独立して、操作ユニットを用いて可変に設定できる。このようにして、混合光のカラーポイントは、本発明による装置の動作中に変動できる。互いに独立して設定できる強度は、第1および第2LEDを互いに独立して駆動できるようにすることで、得られる。これは、例えば、2つの独立した動作電圧を(電気的に互いに分離される)第1および第2LEDに印加する2つの電子駆動回路を備える操作ユニットを使用することによって、なされる。第1一次放射光のすべてまたは一部を、1つまたは複数の異なる二次放射光に変換し、そしてスイッチをオンにできる可変強度の第2一次放射光を変換することにより、第1電場発光光源(1つまたは複数)を独立駆動(第2電場発光光源に対する動作電圧を独立に選択)できる結果として、カラーポイント設定を高い可変性で構成できる。
カラーポイントに生じ得る変動は、この場合、LEDからの一次放射光、ならびに光変換素子の組成およびサイズ決め、すなわち、吸収度に依存する。一次および二次放射光がそれらの最大強度となるような波長を選択することにより、当業者は、本発明による装置によって放射される混合光のカラーポイント、およびCIE色度図内の色空間を決定できる。ここで、第1および第2一次放射光の強度が、独立して設定できる場合、このカラーポイントは、本発明による装置が意図する使用の特徴に合わせて調節できる。
本発明による装置の他の実施例では、第1および第2電場発光光源に加えて、例えば、第3および第4またはそれ以上の電場発光光源を使用してもよい。上記の利点および特性は、この場合にも等しく適用される。こうした追加の電場発光光源を、これらによって放射される光の強度を独立して設定できるように、互いに独立して操作する場合には、この操作ユニットは、適切な動作電圧を印加できるようにする第3またはそれ以上の駆動回路を備えることになる。
本発明は、平均放射方向に一次および二次放射光から生成される混合光を放射するため、ならびに前記一次放射光の少なくとも1つを吸収し、そして前記二次放射光を再放射するための、光変換素子であって、セラミック材料を備え、その微細構造は、一次および二次放射光から生成される前記混合光の前記カラーポイントが、実質的に前記観察角に依存しないように選択される、光変換素子、に関する。
本発明のこれらの観点およびその他の観点は、以下に説明される実施例を参照することにより、明白かつ明解となる。
本発明による燐光変換装置の一実施例の側面図である。 本発明による燐光変換装置のさらなる実施例の側面図である。 本発明による燐光変換装置のさらなる実施例の平面図である。 本発明による燐光変換装置の駆動方法を示す図である。 変換層へ垂直に入射する波長660nmの光に対する透過角Θの関数としての透過率Tを、変換層の多結晶材の孔径を決定するための計算から確認される配光と比較して示す図である。 光変換素子が存在する場合(実線)および光変換素子が存在しない場合(波線)での、波長λの関数としての赤色および青色LEDの放射スペクトル(強度I)を示す図である。 本発明による装置(■)および従来技術の装置(o)に対する、観察角Bの関数としてのカラーポイントの変化Δu'v'を示す図である。 LEDおよび変換素子の色座標の例を示す図である。
図1は、混合光5を放射するための本発明による装置の一実施例の線図的な側面図であり、これは、基板1を有し、この基板1には、第1一次放射光51(第1電場発光光源21)および第2一次放射光52(第2電場発光光源22)を放射するため、2つの電場発光光源21および22が適用され、そして第1および第2電場発光光源21および22上には光変換素子3が配置されて、少なくとも第1一次放射光51の少なくとも一部を吸収し、そして二次放射光53を放射し、配光(この場合には光の散乱)によって一次および二次放射光を混合する。電場発光光源は、この場合、例えば、無機LED、有機LED(OLED)、またはレーザーダイオードを備えてもよい。光変換および配光の機能を実行するため、光変換素子は、第1電場発光光源21および第2電場発光光源22のビーム経路に配置されなければならない。別の実施例では、光変換素子3は、必ずしも電場発光光源21および22に固定させる必要はない。第1一次放射光51および第2一次放射光52に選択される第1および第2波長、ならびに選択される光変換素子に応じて、別の実施例では、第2一次放射光52の少なくとも一部も、光変換素子3によって吸収させ、そして第2二次放射光に変換することができる。白色光を生成するには、好ましい実施例の場合、青色LEDを、赤色LEDとともに動作させ、光変換材料を用いて、青色一次放射光51の一部を緑色および/または黄色の二次放射光に変換し、こうして、赤色の第2一次放射光52と正しい比率で混合する場合、高い演色評価数を有する白色光5をもたらす。この場合、赤色光は、適切な光変換材料を用いた光変換によって生成させるのではなく、赤色LEDによって直接供給されるので、変換損失(例えば、青色→赤色)が防止され、そしてすなわち、装置の効率が高まる。
図1に示す実施例では、光変換素子3は、例えば、第1電場発光光源21および第2電場発光光源22に光学的に結合される。8での光結合は、例えば、屈折率1.5を有するシリコーン層によって実行してもよい。別の実施例では、例えば、グラスファイバーといった、導光素子を光結合に使用してもよい。
電場発光光源21および22から、一次放射光51および52が光変換素子3に入るポイントまでに光が辿る経路に沿う、8での光結合により、光が低屈折率を有する媒体を横断することが防止される。この種類の横断は、電場発光光源21および22を離れる場合に、全反射効果の結果として後方反射される一次放射光51および52の割合を高めることになり、さらなる光損失をもたらすであろう。これに加えて、光変換素子3を電場発光光源21および22と近接させる場合、装置がコンパクトになって有利である。
図1に示す実施例では、光変換ユニット3は、例えば、多結晶セラミック材料からなる光変換材料を備える。光変換材料の光散乱効果は、光変換材料に配置されるサイズ50nm〜5000nmの酸化物粒子によって生成される。Al2O3の粒子は、例えば、屈折率1.76を有し、ドープYAGセラミックにおける散乱中心として機能できる。この種類の材料は、通常、1.8〜2.5程度の屈折率を有する。個々の結晶間のこれらの材料に存在する細孔は、通常の場合、空気で充填され、そしてこのため、屈折率1を有する。細孔と光変換材料との間の屈折率の差異が、その粒界において、さらなる光の散乱を生成し、さらに幾分、光変換素子3に配光する。これらの細孔が、例えば、250nm〜2900nmといった適切なサイズである場合、そして細孔の濃度が1.5体積パーセントである場合に、光変換素子の厚みが100μmであれば、最適な配光特性が、光変換素子3の部分で得られるように、光を散乱させることができる。両方の部分(細孔および酸化物粒子)は、共に1つの材料で作ってもよい。散乱能に依存する厚みに応じて、異なる電場発光光源21および22によって放射される一次放射光51および52は、均質に混合され、光変換素子3によって放射される二次放射光53とともに、均質な知覚色をもたらす。二次放射光53の放射は、光変換素子3において等方的に生じ、一次放射光51および52との良好な混合を促進する。
光変換素子3からの一次および二次放射光の出現では、燐光変換装置は、平均放射方向5に混合光を放射する。混合光5は、第2一次放射光52、二次放射光53、および可能性として第1一次放射光51(その吸収特性のため、光変換素子3が、少なくとも部分的に第1一次放射光51を透過させる場合)から構成される。光変換素子3の散乱効果が十分に大きい場合、混合光5の全成分に対して、同一のランバート放射特性が得られ、この混合光5のカラーポイントが、もはや観察角Bに依存しないことを意味する。生成される散乱効果が小さすぎる不適切な微細構造を有する光変換素子3では、一次放射光51、52の角度分布は、一次輻射源の光学的諸特性および装置で起こり得る何らかのぼかしによって決定されるので、平均放射方向5に実質的に平行となるであろうが、二次放射光53は、その光変換材料内の等方放射のため、広いランバート放射特性を有するであろう。これらの成分からなる混合光は、観察角の関数として、このカラーポイントにおいて広い変動を示すであろう。セラミック材料が、不適切な微細構造を有し、光変換素子3での一次放射光51、52および二次放射光53に大きな散乱効果を及ぼす場合、混合光のカラーポイントは、観察角に依存しないままであるが、光変換素子3では過度な散乱によって一次放射光51、52および二次放射光53の反射が生じる、つまり、吸収率が高すぎるので、失われる無放射光の割合が高くなることが関与して、装置の効率を大きく低減させるであろう。一方で、本発明による装置の光変換材料は、高効率を維持するのに適した微細構造を有すると同時に、カラーポイントが観察角に依存することを回避する。
混合光5のカラーポイントを可変に設定できるようにするには、別の実施例において、第1電場発光光源21および第2電場発光光源22は、例えば、異なる電子駆動回路によって、互いに独立して駆動される。例えば、第1電場発光光源21が、固定動作電圧において動作する場合、第2電場発光光源22の動作電圧を増加させると、混合光5のカラーポイントを、第2一次放射光52の色に向かってシフトできる。電圧を下げる場合、このカラーポイントは、第1一次放射光51によって、そして第1一次放射光51の少なくとも一部の変換によって生成される二次放射光53によって与えられるカラーポイントに向かってシフトする。光変換素子3で選択される光変換材料に応じて、二次放射光53は、異なる光変換材料を混ぜて使用することで、スペクトルの複数の異なる領域(複数の二次副放射光)から構成してもよい。他の実施例では、第1一次放射光51のすべてが、二次放射光53に変換されてもよく、そして例えば、紫外の第1一次放射光51は、適切な変換材料によって、例えば、青色、黄色、または緑色の二次放射光といった異なる二次放射光53に変換して、白色またはその他の色の混合光5を生成することもできる。しかしながら、青色の第1一次放射光51、またはその他の色の第1一次放射光51の、すべてまたは一部を、さらに長い波長の放射光に変換することも可能である。例えば、赤色の第2二次放射光52を加えることによって、カラーポイントが可変であり、加えて、高い演色評価数を有する広帯域放射によって区別される白色光が、得られる。
好ましい一実施例では、第1一次放射光51の最大強度は、200nm〜490nmの第1波長にあり、そして第2一次放射光52の最大強度は、500nm〜800nmの第2波長にある。この光変換材料は、この場合、第2一次放射光52を吸収または変換しないことで、識別される。これにより、混合光5には赤色の割合が高いことを保証し、適切な燐光変換材料により、本発明による装置のこの部分で、色温度4000K未満を有する白色光および高効率をもたらす。
さらなる実施例では、混合光5の平均放射方向に実質的に垂直な光変換素子3のそれら側面を、反射層7を用いて反射させる。この反射層7は、例えば、厚みが30nmを超えるアルミニウムを備える。つまり、光51、52、53は、光変換素子3による本発明の配光効果のため、平均放射方向5と高角度で光変換素子3を伝搬し、横方向に光変換素子3を離れることができず、そしてすなわち、本発明による装置は、その平均放射方向5への輝度が大きくなる。
図1では、本発明による装置の一実施例はまた、電場発光光源21および22、ならびに光変換ユニット3を取り囲むレンズ6を備える。本発明による装置の放射特性は、レンズ6を用いて、混合光5を、例えば、合焦、脱焦、または迂回するように作用させることができる。例として図1に示す一実施例には、光変換素子3と電場発光光源21、22との間に、レンズ6によって満たされていない空間4の体積を有する球面レンズ6がある。しかしながら、空間4の体積は、例えば、シリコーンゴムで満たしてもよい。他の実施例では、このレンズは、レンズ6が変換素子3および電場発光光源21および22を直接取り囲み、空間4の体積を形成しない形態でもよい。他の実施例では、本発明による装置は、レンズ6なしで(すなわち、空間4の体積なしで)動作させてもよい。
図2は、本発明による装置のさらなる実施例を示し、図1に示す実施例とは対照的に、第2電場発光光源22は、光変換素子3と、平均放射方向5に対して横方向に結合される。この装置では、第2一次放射光52は、第1一次放射光51とは直角に光変換素子3と結合され、このため、燐光変換材料の光散乱効果がさほど大きくない場合でも、2つの一次放射光の良好な混合を生成する。他の実施例では、本発明による装置は、レンズ6なしで(すなわち、空間4の体積なしで)動作させてもよい。
図3は、本発明による装置のさらなる実施例の平面図である。この場合、8つの電場発光光源21が、辺長Aの領域において、3×3構成で配置されており、第2電場発光光源22が、この装置の中央にある。陰影領域は、光変換素子3を表し、放射方向を見て、光源の上に配置されており、そしてその側面は、反射層7を用いて反射するようになっている。2つの一次放射光51および52の完全な混合を保証するため、光変換素子3は、厚みDが、例えば、光の平均放射方向で辺長A以上でもよい。第2電場発光光源22が、中央に配置されることで、2つの一次放射光51および52の混合をさらに助長する。また、第2電場発光光源22は、光変換素子の配光特性が大きいか、あるいはその厚みDが大きい場合、この種類の装置の縁部に配置することも可能である。
さらなる実施例では、本発明による装置は、反射する光変換素子3を、電場発光光源21および22に隣接する側面に備えてもよく、これらの領域では、これにより、一次放射光51または52は、光変換素子3に一切結合されない。このため、逆反射または後方散乱の一次放射光51、52および/または二次放射光53は、本発明による装置を、平均放射方向5とは反対方向に離れることができず、平均放射方向5の方向への装置の輝度を増加させる。
本発明による装置によって放射される混合光5のカラーポイントを可変に設定できるようにするには、第2電場発光光源22は、第1電場発光光源21とは、独立して操作されなければならない。図4は、この目的での一実施例を示し、ここで、操作ユニット9は、電気的接続手段91を用いて第1光源21に第1動作電圧を印加し、そして第1手段とは独立して操作できる接続手段92を用いて第2光源22に第2動作電圧を印加する。第1および第2動作電圧は、適切な駆動回路を用いて、別々に、可変に、操作ユニット9によって設定できる。この種類の駆動回路は、当業者には公知である。放射される一次放射光51および52の輝度は、動作電圧に比例するため、任意の望ましい輝度の比率が、第1および第2一次放射光の間で設定でき、そしてこのため、一次および二次放射光からなる混合光のカラーポイントは、これに応じてシフトできる。さらなる実施例では、操作ユニット9は、メモリー領域を有する制御ユニット10を備え、このメモリー領域には、本発明による装置で設定できるカラーポイントが、個々の動作電圧の関数として記憶される。そして、制御ユニット10は、望ましい記憶値をとることによって、混合光5のカラーポイントを望みどおり設定できる。制御ユニット10はまた、経年の影響を補償するためのアルゴリズムを備えてもよく(例えば、初期動作時の元の電流レベルに関連する時間関数として電流を調節することによる)、このアルゴリズムは、カラーポイントのシフトを生じさせ、これによって、タイマーを用いて、動作寿命を通じて所定のカラーポイントに安定するように補正を行う。
光変換素子3に対して、本発明による配光効果を与えるため、変換層の燐光変換材料は、適切な光散乱効果を有する必要がある。この適切な光散乱効果は、この材料を、平均直径が250nm〜2900nmの複数の細孔、あるいは直径が50nm〜5000nmの複数の酸化物粒子を有する多結晶セラミック材料にするか、または該当する細孔および酸化物粒子の組み合わせにするかによって、達成される。この場合、細孔および酸化物粒子の屈折率は、燐光変換材料の屈折率とは明らかに異なる必要がある。屈折率間の差異が大きくなるほど、および/またはこの種類の散乱中心の数が大きいほど、光散乱効果が、一層大きくなる。典型的には空気が充填された細孔からなる細孔の屈折率(n=1)が、何らかの燐光変換材料のものとは明らかに異なる一方、酸化物粒子は、光変換材料のものよりも低い屈折率を有するべきであり、例えば、Al2O3の粒子であれば、屈折率1.76を有する。
本発明による光変換材料の一例は、セリウムドープYAGセラミックであり、以下のように生成される。
このセラミック材料は、Al2O3 100g(平均粒径0.35μm、純度99.99%)、Y2O3 120.984g(平均粒径0.70μm、純度>99.99%)、Gd2O3 21.835g(平均粒径0.40μm)、およびCeO2 1.0197g(平均粒径0.40μm、純度>99.0%)の混合物を、イソプロパノール850mlおよび酸化アルミニウムのミリングボール(直径2mm)5.0kgとともにとローラーミルにおいて1時間ミルにかけて生成される。ここで与えられる量は、白熱光で粉末から失われる水とCO2を許容するものであり、そしてこのため、後にセラミック材料に存在する量よりも多くなっている。白熱光による損失は、白熱光に空気中1200℃で重量が一定になるまで加熱することにより、決定される。次に、粉末状の乾燥混合物は、ポリビニル結合剤を用いて粒状材料に処理され、そして110℃で乾燥される。次に、この粒状材料を、一軸プレスにより圧粉体とし、そして圧力3.2kbarの冷間静水圧プレスで再圧縮する。空気中600℃での結合剤の焼きとばしを含むステップの後、この圧粉体は、CO気体中1750℃で2時間焼結される。この焼結の後、密度4.66g/cm3のセラミック材料31が得られ、相対密度は、98.73%に相当する。研削、研磨および切断によるセラミックの後処理の後、個々の変換器ウエハーは、空気中1350℃で4時間、再び後焼きなましされる。他の実施例では、セラミックGd-YAG:Ce材料の代替として、波長420nm〜480nmの一次放射光の少なくとも一部を、より長い波長の二次放射光に変換するため、適切な方法によって生成できるものには、以下の材料がある。
Lu3-x-yYxAl5O12:Cey(ただし、0≦x≦1、0.001≦y≦0.1、かつ二次放射光515〜540nm)、Y3-x-yTbxAl5O12:Cey(ただし、0≦x≦1、0.001≦y≦0.1、かつ二次放射光550〜590nm)、またはLu3-x-y-zYxAl5-aSiaO12-aNa:CeyPrz(ただし、0≦x≦1、0.001≦y≦0.1、0.0005≦z≦0.01, 0.01≦a≦0.8、かつ二次放射光540〜630nm)。
(Sr1-x-yCaxBay)2-zSiO4:Euz(ただし、0≦x≦0.4、0≦y≦0.8、0.001≦z≦0.01、かつ二次放射光520〜600nm)といった、その他の酸化物材料も、次の方法によって生成できる。
- 還元雰囲気中1100℃で、SrCO3、CaCo3およびオプションとしてBaCO3を、Eu2O3およびSiO2と混ぜ、そして焼成する。
- 原料の燐光粉末をミルにかける。
- 原料の燐光粉末を、真空または不活性雰囲気もしくは還元雰囲気において圧力20〜100Mpaの1300℃〜1400℃でホットプレスする。
セラミック材料には、例えば、YAGといった、立方材料、または例えば、(Sr1-x-yCaxBay)2-zSiO4:Euzといった、オルトケイ酸塩のような非立方材料を使用してもよい。非立方材料は、結晶構造が向きによって異なるため、空間の異なる方向に異なる屈折率を有する。これを、異なる結晶軸がある、という。したがって、多結晶セラミックス材料における異なる領域の空間(結晶または粒子)での向きに起因して、その成分が同じであっても、光の経路に沿って、屈折率が、変化する可能性がある。非立方材料における異なる結晶軸に沿った屈折率の異なりの関数として、この種類の材料に要求される散乱能は、追加の散乱中心(粒子または細孔)を用いて設定される。
多結晶セラミック材料における酸化物粒子のサイズは、製造条件によっても設定できる。Al2O3酸化物粒子(二次相)を有するYAG:Ce(一次相)の例をとると、この散乱は、細孔とは独立して、使用されるAl2O3出発粉末の濃度および粒径によって、設定できる。過度のAlを含むYAGセラミックは、使用されるAl2O3粉末の粒径のおおよそ2〜10倍の粒径があるAl2O3二次相を形成する。こうして、平均粒径400nmを有するAl2O3粉末が使用されるAlを5%過剰に含むYAG:Ceセラミックには、粒径1〜4μmを有するAl2O3二次相(わずかに過剰なAlは、アンチサイト欠陥のため、YAG格子において許容できる)の重量で、おおよそ4%の割合が得られる。例えば、平均粒径1μmを有するAl2O3粉末を使用すると、この場合も、二次相の粒径は、少なくとも、使用される粉末のものと同じ大きさになるであろうが、明らかに大きくなる可能性もある。二次相が同じ濃度の場合、使用されて二次相を形成する酸化物前駆体の構成物質(出発材料)の平均直径が小さいほど、この粒子の平均直径は、一層小さくなる(散乱が大きくなる)。適切な方法で異なるセラミック材料であれば、その他の適切に生成される二次相粒子を使用して、Al2O3の代わりに光を散乱してもよい。
多結晶セラミック材料に含まれる細孔のサイズは、図5の例によって示されるように、光の散乱を測定することによって決定してもよい。この場合、厚み150μmのセラミック光変換材料のウエハーは、波長660nmを有するレーザーによって切断面に垂直に照射され、そして多結晶セラミック材料(透過率T)を通過した後の配光が、ウエハーの法線との角度Θの範囲−80°〜80°について決定された。測定結果は、屈折率n=1(空気充填の細孔)を有する粒子において、3つの異なる孔径について計算されて(実曲線A*, B, C)、使用される多結晶セラミック材料で生じるミー散乱について計算された配光と併せて、図6のドット曲線として示される。ミー散乱とは、球体における電磁波の散乱を意味する。図において、曲線Aは、孔径700nmでの配光であり、曲線Bは、孔径900nmでの配光であり、そして曲線31は、孔径800nmでの配光である。曲線Cは、測定された配光と見事に合致し、この多結晶セラミック材料に対して、平均孔径800nmが求められる。
図6は、混合光を放射するための、本発明による装置の放射スペクトルを示す。図では、(任意のユニットにおいて)放射される一次および二次放射光の強度が、波長λ(ナノメートル)の関数としてプロットされる。この実曲線は、光変換素子3を通過する前の、第1電場発光光源21および第2電場発光光源22によって放射される一次放射光の放射スペクトルを表す。破線は、一次放射光が光変換素子(この例では、密度が該当する結晶材料の理論的最大密度の99%であり、そして平均放射方向への方向の厚みが150μmであるY2.64Gd0.3Ce0.06Al5O12を成分とする光変換材料を含む)を通過した後の、混合光の結果的な放射スペクトルを表す。この例では、本発明による装置からの混合光5は、ルーメン相当367lm/Wに対して相関色温度3622K、演色評価数Ra = 84、色座標x = 0.4074およびy = 0.4124、ならびに観察角におけるカラーポイントの最大変動Δu'v' = 0.008を有する。この種類の小さな色変動は、観察者には知覚不可能であり、そしてすなわち、カラーポイントは、観察者の観察角には依存しなくなる。
図7は、青色の第1電場発光光源および赤色の第2電場発光光源を有する図6に関する本発明による装置(■)に対する、観察角Bの関数としてのカラーポイントの変化Δu'v'を、単に青色の電場発光光源を有する従来技術の燐光変換装置(o)と比較して、示す。密度が該当する結晶材料の理論的最大密度の99%であり、そして平均放射方向への方向の厚みが150μmである同じ光変換材料Y2.64Gd0.3Ce0.06Al5O12が、両方の装置に使用された。青色の電場発光光源は、CIE 1931色度図においてx = 0.1495およびy = 0.0309のカラーポイントを有し、そして赤色の電場発光光源は、CIE 1931色度図においてx = 0.6760およびy = 0.3238のカラーポイントを有する。従来技術の装置は、観察角Δu'v'において最大0.055のカラーポイント変動を示す一方、この変動は、本発明による装置の場合、この1/6未満である。変動Δu'v' = 0.055は、観察者には簡単に知覚できる。したがって、本発明による装置とは対照的に、従来技術の装置では、カラーポイントは、観察角にとても依存する。
図8は、第1および第2光源によって放射される光の強度が、互いに独立して設定できる場合の、図6および図7に関する本発明による装置を用いて設定できるCIE 1931色度図におけるカラーポイントを線図的な形式で示す。この場合、(a)は、青色の第1電場発光光源のカラーポイントであり、(c)は、赤色の第2電場発光光源のカラーポイントであり、そして(b)は、選択される光変換材料によって決定される光変換素子のカラーポイントである。カラーポイント(d)は、カラーポイント(a)を有する第1一次放射光に対する光変換素子の厚みおよび吸収度を選択することで設定される。操作ユニットを用いて第1および第2電場発光光源の動作条件を変えることによって、そして第1および第2一次放射光の強度の結果的な変動を用いて、混合光5のカラーポイントは、(d)と(c)との間の直線に沿って、必要に応じて設定できる。Wとマークされた領域は、SAE白色領域であり、そしてWKとマークされた曲線は、白色光のCIE定義曲線である。
図および説明を参照して明らかとなる実施例は、混合光を放射するための本発明による装置、および光変換素子の、単なる例であり、そして請求項をこれらの例に限定するものとは、解釈されない。当業者には、別の実施例も考えられ、そしてそれらも、請求の範囲に含まれる。従属請求項の番号は、請求項のその他の組み合わせが、本発明の実施例を有利に構成できないことを暗示するものではない。

Claims (10)

  1. 一次放射光および二次放射光を備える混合光を平均放射方向に放射するための装置であって、
    第1波長において最大強度を有する第1一次放射光を放射するための少なくとも1つの第1電場発光光源と、
    第1波長よりも大きな第2波長において最大強度を有する第2一次放射光を放射するための少なくとも1つの第2電場発光光源と、
    前記一次放射光の少なくとも1つを吸収しかつ二次放射光を再放射するための光変換素子であって、前記混合光における一次放射光の全割合が、前記光変換素子を通過するように構成されていて、かつ一次および二次放射光を含む前記混合光のカラーポイントが実質的に観察角に依存しないように、その微細構造が選択されるセラミック光変換材料を、備える、光変換素子とを、
    備える、混合光を放射するための装置。
  2. 前記第1波長が、スペクトルの青色または紫外領域にあり、そして前記第2波長が、前記スペクトルの赤色領域にある、請求項1に記載の混合光を放射するための装置。
  3. 前記セラミック光変換材料が、平均直径50nm〜5000nmの複数の酸化物粒子を備える、請求項1または請求項2に記載の混合光を放射するための装置。
  4. 前記セラミック光変換材料の屈折率と前記酸化物粒子の屈折率との間の差異が、0.2を超える、請求項3に記載の混合光を放射するための装置。
  5. 前記セラミック光変換材料が、平均直径250nm〜2900nmの複数の細孔を備える、請求項3または請求項4に記載の混合光を放射するための装置。
  6. 前記セラミック光変換材料の密度が、該当する結晶材料の理論的最大密度の97%を超える、請求項1から請求項5の何れか一項に記載の混合光を放射するための装置。
  7. 前記光変換素子が、前記第1および第2電場発光光源に光学的に結合され、好ましくは、前記光変換素子と前記光源との間のシリコーン層によって結合される、請求項1から請求項6の何れか一項に記載の混合光を放射するための装置。
  8. 前記光変換素子が、前記混合光の平均放射方向に実質的に垂直な表面法線を有する側面上に、反射層を備える、請求項1から請求項7の何れか一項に記載の混合光を放射するための装置。
  9. 前記第1および第2の一次放射光の強度が、互いに独立して、操作ユニットを用いて可変に設定できる、請求項1から請求項8の何れか一項に記載の混合光を放射するための装置。
  10. 一次および二次放射光から生成される混合光を平均放射方向に放射し、かつ前記一次放射光の少なくとも1つを吸収しかつ前記二次放射光を再放射するための光変換素子であって、一次および二次放射光から生成される前記混合光の前記カラーポイントが、実質的に前記観察角に依存しないように、その微細構造が選択されるセラミック材料を備える、光変換素子。
JP2009535166A 2006-11-07 2007-10-29 混合光を放射するための装置 Pending JP2010509751A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06123572 2006-11-07
PCT/IB2007/054376 WO2008056292A1 (en) 2006-11-07 2007-10-29 Arrangement for emitting mixed light

Publications (1)

Publication Number Publication Date
JP2010509751A true JP2010509751A (ja) 2010-03-25

Family

ID=39133829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009535166A Pending JP2010509751A (ja) 2006-11-07 2007-10-29 混合光を放射するための装置

Country Status (5)

Country Link
US (2) US8113675B2 (ja)
EP (1) EP2089916A1 (ja)
JP (1) JP2010509751A (ja)
CN (1) CN101542754B (ja)
WO (1) WO2008056292A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514368A (ja) * 2011-02-24 2014-06-19 日東電工株式会社 蛍光体成分を有する発光複合材
WO2014171170A1 (ja) * 2013-04-16 2014-10-23 電気化学工業株式会社 蛍光体、発光装置及び照明装置
KR20150113132A (ko) * 2013-01-28 2015-10-07 쇼오트 아게 강산란 세라믹 컨버터 및 이의 제조 방법
JP2016524316A (ja) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. 単結晶蛍光体を有する白色発光ダイオードとその製造方法
JP2018512617A (ja) * 2015-04-07 2018-05-17 マテリオン コーポレイション 光学的に向上された固体状態の光変換器
WO2020080056A1 (ja) * 2018-10-15 2020-04-23 ソニー株式会社 発光デバイスおよび画像表示装置
JP2021057385A (ja) * 2019-09-27 2021-04-08 日亜化学工業株式会社 発光装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529791B2 (en) 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
EP2216834B1 (en) 2007-11-29 2017-03-15 Nichia Corporation Light-emitting apparatus
CN102113119A (zh) * 2008-05-29 2011-06-29 克利公司 具有近场混合的光源
WO2010010484A1 (en) * 2008-07-22 2010-01-28 Koninklijke Philips Electronics N.V. An optical element for a light emitting device and a method of manufacturing thereof
DE102008046523B4 (de) * 2008-09-10 2020-10-29 Osram Gmbh Leuchtmittel
DE102008047579B4 (de) * 2008-09-17 2020-02-06 Osram Opto Semiconductors Gmbh Leuchtmittel
US8129735B2 (en) * 2008-09-24 2012-03-06 Koninklijke Philips Electronics N.V. LED with controlled angular non-uniformity
DE102008050643B4 (de) * 2008-10-07 2022-11-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Leuchtmittel
US20120098460A1 (en) * 2009-07-07 2012-04-26 Shin Miyasaka Light emitting device
US8883055B2 (en) * 2010-01-28 2014-11-11 Osram Sylvania Inc Luminescent ceramic converter and method of making same
JP5749327B2 (ja) 2010-03-19 2015-07-15 日東電工株式会社 発光装置用ガーネット系蛍光体セラミックシート
JP6087809B2 (ja) * 2010-04-16 2017-03-01 フィリップス ライティング ホールディング ビー ヴィ 照明デバイス
TWI601280B (zh) * 2010-07-19 2017-10-01 晶元光電股份有限公司 發光裝置
DE102010038396B4 (de) * 2010-07-26 2021-08-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Leuchtvorrichung damit
DE102010048162A1 (de) * 2010-10-11 2012-04-12 Osram Opto Semiconductors Gmbh Konversionsbauteil
CN103347982B (zh) 2010-12-01 2016-05-25 日东电工株式会社 具有掺杂浓度梯度的发射性陶瓷材料及其制造方法和使用方法
DE102012005654B4 (de) 2011-10-25 2021-03-04 Schott Ag Optischer Konverter für hohe Leuchtdichten
WO2013074158A1 (en) * 2011-11-16 2013-05-23 Intematix Corporation Green and yellow aluminate phosphors
DE102011087614A1 (de) * 2011-12-02 2013-06-06 Osram Opto Semiconductors Gmbh Optoelektronische Anordnung
DE102012102421A1 (de) * 2012-03-21 2013-09-26 Osram Opto Semiconductors Gmbh Deckplatte, optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
DE102012005660A1 (de) * 2012-03-22 2013-09-26 Schott Ag Beleuchtungseinrichtung zur Erzeugung von Licht mit hoher Leuchtdichte
US8931922B2 (en) * 2012-03-22 2015-01-13 Osram Sylvania Inc. Ceramic wavelength-conversion plates and light sources including the same
WO2013139675A1 (de) 2012-03-22 2013-09-26 Schott Ag Beleuchtungseinrichtung zur erzeugung von licht mit hoher leuchtdichte
US8933478B2 (en) 2013-02-19 2015-01-13 Cooledge Lighting Inc. Engineered-phosphor LED packages and related methods
US8754435B1 (en) * 2013-02-19 2014-06-17 Cooledge Lighting Inc. Engineered-phosphor LED package and related methods
KR102142718B1 (ko) * 2014-03-20 2020-08-07 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 장치
KR102449778B1 (ko) * 2015-12-22 2022-10-04 엘지이노텍 주식회사 형광체 플레이트 및 이의 제조방법
DE112017002922B4 (de) * 2016-06-30 2022-10-13 Grirem Advanced Materials Co., Ltd. Fluoreszierendes pulver, herstellungsverfahren dafür und leuchtende vorrichtung mit diesem fluoreszierenden pulver
CN108300473A (zh) * 2016-08-10 2018-07-20 深圳市光峰光电技术有限公司 一种波长转换装置及其制备方法、发光装置和投影装置
JP7154228B2 (ja) * 2017-04-21 2022-10-17 ルミレッズ ホールディング ベーフェー レーザベース光源用の信頼性の高い光変換デバイス
KR102412985B1 (ko) * 2017-10-10 2022-06-24 루미레즈 엘엘씨 변환기 제한을 포함하는 led 패키지
KR20190085479A (ko) * 2018-01-10 2019-07-18 서울반도체 주식회사 발광 장치
US10886260B2 (en) * 2018-09-07 2021-01-05 Innolux Corporation Display device
WO2020120247A1 (en) * 2018-12-13 2020-06-18 Lumileds Holding B.V. Dual cct automotive headlight
JP7148797B2 (ja) * 2018-12-20 2022-10-06 日亜化学工業株式会社 希土類アルミン酸塩蛍光体の製造方法、希土類アルミン酸塩蛍光体及び発光装置
DE102019121518A1 (de) * 2019-08-09 2021-02-11 Schott Ag Lichtkonversions- und Beleuchtungseinrichtung
DE102019121515A1 (de) * 2019-08-09 2021-02-11 Schott Ag Lichtkonversionseinrichtung und Verfahren zur Herstellung einer Lichtkonversionseinrichtung
CN111116207A (zh) * 2019-12-19 2020-05-08 徐州凹凸光电科技有限公司 一种具有长波段发射、高显指的氧氮化物荧光陶瓷材料及其制备方法
US20240145652A1 (en) * 2022-10-31 2024-05-02 Creeled, Inc. Light-emitting diode devices with support structures including patterned light-altering layers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080046A (ja) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Ledランプおよびランプユニット
JP2005216892A (ja) * 2004-01-27 2005-08-11 Asahi Matsushita Electric Works Ltd 発光ダイオード
WO2006048064A1 (de) * 2004-11-03 2006-05-11 Tridonic Optoelectronics Gmbh Leuchtdioden-anordnung mit farbkonversions-material
WO2006097876A1 (en) * 2005-03-14 2006-09-21 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048304A1 (en) * 1996-12-05 2002-04-25 Barnes William Leslie Radiation emitting devices
US6462669B1 (en) * 1999-04-06 2002-10-08 E. P . Survivors Llc Replaceable LED modules
DE19936868A1 (de) * 1999-08-05 2001-02-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren und Vorrichtung zur Herstellung von oxidischen Nanokristallen
US6373118B1 (en) * 1999-08-11 2002-04-16 Lewyn Consulting, Inc. High-value integrated circuit resistor
US6577073B2 (en) * 2000-05-31 2003-06-10 Matsushita Electric Industrial Co., Ltd. Led lamp
US7554258B2 (en) * 2002-10-22 2009-06-30 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
JP4182783B2 (ja) * 2003-03-14 2008-11-19 豊田合成株式会社 Ledパッケージ
DE20308495U1 (de) * 2003-05-28 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Konversions-LED
US6876008B2 (en) * 2003-07-31 2005-04-05 Lumileds Lighting U.S., Llc Mount for semiconductor light emitting device
TWI228841B (en) * 2004-04-29 2005-03-01 Lite On Technology Corp Luminescence method and apparatus for color temperature adjustable white light
US20080165523A1 (en) 2005-01-10 2008-07-10 Koninklijke Philips Electronics N.V. Illumination System Comprising Ceramic Luminescence Converter
EP1875781B1 (en) 2005-04-20 2008-10-08 Philips Intellectual Property & Standards GmbH Illumination system comprising a ceramic luminescence converter
JP5145534B2 (ja) * 2005-07-01 2013-02-20 独立行政法人物質・材料研究機構 蛍光体とその製造方法および照明器具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080046A (ja) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Ledランプおよびランプユニット
JP2005216892A (ja) * 2004-01-27 2005-08-11 Asahi Matsushita Electric Works Ltd 発光ダイオード
WO2006048064A1 (de) * 2004-11-03 2006-05-11 Tridonic Optoelectronics Gmbh Leuchtdioden-anordnung mit farbkonversions-material
WO2006097876A1 (en) * 2005-03-14 2006-09-21 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514368A (ja) * 2011-02-24 2014-06-19 日東電工株式会社 蛍光体成分を有する発光複合材
US11427511B2 (en) 2013-01-28 2022-08-30 Schott Ag Strongly scattering ceramic converter and method for producing same
JP2019218560A (ja) * 2013-01-28 2019-12-26 ショット アクチエンゲゼルシャフトSchott AG 強散乱性のセラミック変換部材並びにその製造法
KR20150113132A (ko) * 2013-01-28 2015-10-07 쇼오트 아게 강산란 세라믹 컨버터 및 이의 제조 방법
KR101942618B1 (ko) * 2013-01-28 2019-01-25 쇼오트 아게 강산란 세라믹 컨버터 및 이의 제조 방법
JP2017197774A (ja) * 2013-01-28 2017-11-02 ショット アクチエンゲゼルシャフトSchott AG 強散乱性のセラミック変換部材並びにその製造法
US11623892B2 (en) 2013-01-28 2023-04-11 Schott Ag Strongly scattering ceramic converter and method for producing same
WO2014171170A1 (ja) * 2013-04-16 2014-10-23 電気化学工業株式会社 蛍光体、発光装置及び照明装置
JPWO2014171170A1 (ja) * 2013-04-16 2017-02-16 デンカ株式会社 蛍光体、発光装置及び照明装置
JP2016524316A (ja) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. 単結晶蛍光体を有する白色発光ダイオードとその製造方法
JP2018512617A (ja) * 2015-04-07 2018-05-17 マテリオン コーポレイション 光学的に向上された固体状態の光変換器
WO2020080056A1 (ja) * 2018-10-15 2020-04-23 ソニー株式会社 発光デバイスおよび画像表示装置
JPWO2020080056A1 (ja) * 2018-10-15 2021-09-30 ソニーグループ株式会社 発光デバイスおよび画像表示装置
JP7392653B2 (ja) 2018-10-15 2023-12-06 ソニーグループ株式会社 発光デバイスおよび画像表示装置
US12040435B2 (en) 2018-10-15 2024-07-16 Sony Corporation Light-emitting device and image display apparatus with reflection film on side surface and layers having different refractive indices
JP2021057385A (ja) * 2019-09-27 2021-04-08 日亜化学工業株式会社 発光装置
JP7361257B2 (ja) 2019-09-27 2023-10-16 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
US20120134134A1 (en) 2012-05-31
US8113675B2 (en) 2012-02-14
CN101542754B (zh) 2012-04-18
WO2008056292A1 (en) 2008-05-15
US8256914B2 (en) 2012-09-04
US20100067233A1 (en) 2010-03-18
CN101542754A (zh) 2009-09-23
EP2089916A1 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP2010509751A (ja) 混合光を放射するための装置
JP5049336B2 (ja) エレクトロルミネセントデバイス
RU2451366C2 (ru) Осветительное устройство, в частности, с люминесцентной керамикой
US20080093979A1 (en) Illumination System Comprising a Radiation Source and a Luminescent Material
US20060181192A1 (en) White LEDs with tailorable color temperature
US20090026913A1 (en) Dynamic color or white light phosphor converted LED illumination system
US7952270B2 (en) Electroluminescent device
TWI784171B (zh) 用於具有優越色彩控制之高發光效能照明之發光二極體及磷光體組合物
US8299487B2 (en) White light emitting device and vehicle lamp using the same
CN105793391B (zh) 发光材料混合物、具有发光材料混合物的发光半导体器件和具有发光材料混合物的路灯
EP2323184A1 (en) LED assembly
WO2018150630A1 (ja) 発光装置
WO2014010211A1 (ja) 発光モジュール
JP2005330389A (ja) 白色光発光装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204