JP2010505335A - 低電力センサシステム用の容量性インタフェース回路 - Google Patents

低電力センサシステム用の容量性インタフェース回路 Download PDF

Info

Publication number
JP2010505335A
JP2010505335A JP2009530331A JP2009530331A JP2010505335A JP 2010505335 A JP2010505335 A JP 2010505335A JP 2009530331 A JP2009530331 A JP 2009530331A JP 2009530331 A JP2009530331 A JP 2009530331A JP 2010505335 A JP2010505335 A JP 2010505335A
Authority
JP
Japan
Prior art keywords
output
circuit
clock phase
input
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009530331A
Other languages
English (en)
Other versions
JP5048070B2 (ja
Inventor
デニソン,ティモシー・ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of JP2010505335A publication Critical patent/JP2010505335A/ja
Application granted granted Critical
Publication of JP5048070B2 publication Critical patent/JP5048070B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本開示は、低電力システム用の容量性インタフェース回路を記載する。容量性インタフェース回路は、高分解能及び低電力で、微小電子機械システム(MEMS)ベースセンサのような静電容量ベース変換器のノイズが非常に低い検知を達成するように構成される。容量性インタフェース回路は、差動増幅器と、相関トリプルサンプリング(CTS)とを使用して、kT/Cノイズ、並びに増幅器オフセット及びフリッカ(1/f)ノイズを増幅器の出力から実質的に消去又は少なくとも低減する。容量性インタフェース回路は、増幅器出力における過渡現象を落ち着かせることを可能にすることによって出力信号におけるグリッチング、すなわち、クロック過渡現象を低減する出力段をさらに備えることができる。このように、低電力システムにおいて回路を使用して、安定した低ノイズ出力を生成することができる。
【選択図】図4

Description

本発明は、センサインタフェース回路に関し、より詳細には、低電力センサシステム用の容量性インタフェース回路部に関する。
微小電子機械システム(MEMS)センサのようなマイクロマシン加工されたシステムでは、可変キャパシタは、センサ、たとえば、加速度計、ジャイロスコープ、圧力センサ、湿度センサ、又は他のタイプのマイクロマシン加工されたセンサと、測定回路部との間のインタフェースとしての役割を果たす。このようなセンサは、産業用モニタリング、環境モニタリング、及び/又は生理学的モニタリングを含む多種多様な用途を有する。生理学的モニタリングは、姿勢、行動、歩行、静脈圧、頭蓋内圧、心臓音等のモニタリングを含む様々な生物医学用途を有する。
加速度計では、たとえば、プルーフマスに結合されているビーム上のフィンガ及び慣性フレームに結合されている固定フィンガによって容量性プレートを形成することができる。フィンガのセットは、互いにかみ合わせられ、電気的に接続されて可変差動キャパシタを形成するキャパシタプレートとして動作する。プルーフマスは、ばねによって基板の上に吊り下げられる。プルーフマスが特定の方向に偏向されると、プルーフマスに取り付けられているビームフィンガと、慣性フレームに結合されている対応する固定フィンガのうちの1つとの間で測定される静電容量が変化し、特定の方向における加速を示す。
軸に沿った加速に起因する静電容量の変化は容量性インタフェース回路によって出力電圧に変換され、この容量性インタフェース回路は検知回路部として機能する。加速度計の場合、容量性インタフェース回路は、可変キャパシタからの信号を処理して、動きの測定値を表すセンサ信号を生成する。加速度計は、1つの軸、2つの軸、又は3つの軸に沿った動きを検知することができる。
センサ内の可変差動キャパシタは概して、プレートの重なり合うエリア又はプレート間の間隔がビームフィンガの変位の関数である平行プレートキャパシタに近似させることができる。典型的なスイッチドキャパシタ静電容量検知回路の出力電圧は以下の式を使用して計算することができる:
=(ΔC/C)V
ここで、vは静電容量検知回路の出力電圧であり、Cは、検知回路に関連付けられるフィードバック静電容量であり、ΔCは、可変キャパシタの静電容量の変化であり、Vは供給電圧である。
マイクロマシン加工されたシステムにおける検知素子のサイズ制約に起因して、可変キャパシタの静電容量及び静電容量の変化は非常に小さく、たとえば、概ね数百フェムトファラドから1〜100アトファラドである。フィードバック静電容量が検知静電容量と概ね同じ量である場合、出力電圧範囲は概ね10μV〜1mVであり、サンプリングノイズ(kT/Cノイズ)を含む。概して、kT/Cノイズは、フィルタリングキャパシタの存在下における熱ノイズを指す。kT/Cノイズは、スイッチドキャパシタ回路のリセットスイッチによってもたらされ、回路の検知ノード上へサンプリングされる。したがって、増幅器の出力におけるセンサ信号は、センサの精度及び性能を徐々に低下させる増幅器オフセット、フリッカノイズ(1/f)ノイズ、及びkT/Cノイズを含むおそれがある。
本開示は、低電力システム用の容量性インタフェース回路を記載する。容量性インタフェース回路は、高分解能及び低電力消費で、微小電子機械システム(MEMS)ベースセンサのような静電容量ベース変換器の、ノイズが非常に低い検知を達成するように構成される。容量性インタフェース回路は、差動増幅器と、相関トリプルサンプリング(CTS)とを使用して、kT/Cノイズ及びフリッカ(1/f)ノイズを実質的に低減し、増幅器オフセット及びドリフトを抑制する。kT/Cノイズの排除は、より遅いインタフェースクロックを可能にし、結果的に電力を低減することができる。容量性インタフェース回路は、増幅器出力における過渡現象を落ち着かせることを可能にすることによって出力信号におけるグリッチングを低減する出力段をさらに含むことができる。
一実施の形態では、本発明は、差動センサ信号を増幅することであって、出力信号を生成する、増幅すること、サンプリングキャパシタ上に出力信号を記憶すること、及び相関トリプルサンプリング処理を適用することであって、出力信号内の1つ又は複数のノイズ成分を低減する、適用することを含む、方法を提供する。
別の実施の形態では、本発明は、センサと、センサから受け取られるセンサ信号を増幅して出力信号を生成する差動増幅器と、出力信号を記憶するサンプリングキャパシタと、出力信号内の1つ又は複数のノイズ成分を低減する相関トリプルサンプリング回路とを備えるセンサデバイスを提供する。
さらなる一実施の形態では、本発明は、センサ信号を増幅して出力信号を生成する差動増幅器と、出力信号を記憶するサンプリングキャパシタと、出力信号内の1つ又は複数のノイズ成分を低減する相関トリプルサンプリング回路とを備える容量性インタフェース回路を提供する。
センサデバイスを示すブロック図である。 図1のセンサデバイス内で使用するためのインタフェース回路を示すブロック図である。 図1のセンサデバイス内のセンサの一例のモデルを示す回路図である。 図1のセンサデバイス内で使用するためのインタフェース回路の一例を示す回路図である。 図1のセンサデバイス内で使用するためのインタフェース回路の別の例を示す回路図である。 図1のセンサデバイス内で使用するためのインタフェース回路のさらに別の例を示す回路図である。 図4〜図6のうちの任意の図のインタフェース回路のうちの任意のインタフェース回路と共に使用するためのピンポン復調器を示す回路図である。 図4〜図6のうちの任意の図のインタフェース回路のタイミング波形を示す図である。 図4〜図6のうちの任意の図のインタフェース回路内で使用するための計装用増幅器の回路部を示す回路図である。
本開示は、低電力センサシステム用の容量性インタフェース回路を記載する。容量性インタフェース回路は、高分解能及び低電力で、微小電子機械システム(MEMS)ベースセンサのような静電容量ベースセンサを介する、ノイズが非常に低い検知を達成するように構成される。容量性インタフェース回路は、差動増幅器と、相関トリプルサンプリング(CTS)とを使用して、kT/Cノイズ及びフリッカ(1/f)ノイズを低減し、増幅器オフセット及びドリフトを抑制する。容量性インタフェース回路は、増幅器出力における過渡現象を落ち着かせることを可能にすることによって出力信号におけるグリッチングを低減する出力段をさらに含むことができる。このように、回路を低電力システムにおいて使用して、安定した低ノイズ出力を生成することができる。
容量性インタフェース回路は、加速度計、ジャイロスコープ、圧力センサ、湿度センサ等のようなMEMSベースセンサ内の検知素子からの信号を処理するように構成することができる。本開示による容量性インタフェース回路を使用することができる例示的用途は、姿勢、行動、歩行、静脈圧、頭蓋内圧、心臓音、湿度、液面等のモニタリングのような生理学的モニタリング用途を含む。本明細書に記載する容量性インタフェース回路は、特に非常に低い電力消費が望ましい場合に、産業用モニタリング用途又は環境モニタリング用途においても有用であり得る。
概して、本開示に記載する容量性インタフェース回路は、非常に電力が低い用途のために構成することができる。このような低電力用途は、様々な医療測定用途及び非医療測定用途を含む。埋め込み可能医療デバイス(IMD)は、たとえば、数ヶ月又は数年にわたって持続することが要求される有限の電源によって特徴付けられ得る。幾つかの場合では、IMDは、心臓ペーシング又はディフィブリレーションのような生命維持治療をセンサ入力に基づいて提供することができる。代替的に、IMDは、たとえば、脊髄刺激、骨盤底刺激、深部脳刺激、胃刺激、又は末梢神経刺激のための、神経刺激のような様々な他の有益な治療を提供することができる。センサは、IMDハウジング、リード線、又はカテーテル内に含めることができる。IMDに関連付けられるセンサは、非常に低い電力を使用しながらも、依然として精密且つ正確な測定を提供するように要求される場合がある。したがって、IMDに関連付けられる検知及び治療回路が非常に小さいレベルの電力を消費してデバイスの寿命を長くすることが望ましい。一例として、本開示に記載する、容量性インタフェース回路を組み込んでいるセンサの動作は、連続した又は定期的な検知中、概ね100ナノアンペア〜概ね2.0マイクロアンペア、より好ましくは概ね500ナノアンペア〜概ね1.0マイクロアンペアの範囲内の供給電流を必要とすることができる。これらの範囲内で動作するセンサは一般的に、微小電力センサと呼ばれることがある。
本開示の様々な実施形態によれば、容量性インタフェース回路は、差動増幅器と、差動増幅器の出力に結合されるサンプリングキャパシタとを備えることができる。容量性インタフェース回路は動作し、相関トリプルサンプリング(CTS)信号処理技法を使用して、出力からkT/Cノイズ、増幅器オフセット、及び1/f(フリッカ)ノイズを実質的に消去する。CTSは、その名前が示唆しているように、3ステップ処理である。最初の2つのステップは第1のクロック位相中に生じ、第3のステップは後続の第2のクロック位相中に生じる。概して、CTS処理は、第1のクロック位相と後続の第2のクロック位相との間で変化しない信号成分を増幅器の出力から実質的に除去又は消去する。kT/Cノイズ、増幅器オフセット、及びフリッカ(1/f)ノイズは、第1のクロック位相と第2のクロック位相との間で変化しない。したがって、これらのノイズ成分は、増幅器の出力からCTX処理によって実質的に消去される。
第1のステップは、サンプリングキャパシタがシステム接地に接続されている間にセンサノードをリセットするリセットステップと呼ばれる。サンプリングステップと呼ばれる第2のステップ中、可変検知キャパシタからのkT/Cノイズが、差動増幅器を通じてサンプリングキャパシタ上にサンプリングされる。オフセット及びフリッカノイズが、差動増幅器によってkT/Cノイズに加えられ、サンプリングキャパシタ上にまとめて記憶される。
第3のステップは検知ステップと呼ばれ、センサ信号を差動増幅器に印加することを含む。差動増幅器はセンサ信号を増幅して、センサ信号及びノイズ成分の増幅表現を含む出力信号を生成する。センサ信号は、サンプリングステップ中、kT/Cノイズと同じ信号経路を進み、第3のステップにおける差動出力のノイズ成分はkT/Cノイズ、増幅器オフセット、及びフリッカノイズを含む。したがって、サンプリングキャパシタ上に記憶されるノイズは、検知(第3の)ステップ中、差動増幅器によって生成される出力信号のノイズ成分を実質的に消去する。
容量性インタフェース回路は、2つのインターリーブサンプルホールド(S/H)段を含む出力段も備えることができる。この出力段はピンポン復調器(ping-pong demodulator)と呼ぶことができる。動作時に、第1のクロックサイクル中、ピンポン復調器の1つの段(ピン段)が差動増幅器の出力をサンプリングし、一方、他方の段(ポン段)は同時に信号を出力する。ポン段による信号出力は、前のクロックサイクル中の差動増幅器の出力に基づく。第1のサイクルに続く第2のクロックサイクル中、ピン段は、第1のクロックサイクル中にサンプリングされた信号に基づく信号を出力し、ポン段は、差動増幅器の現在の出力をサンプリングする。このように、ピンポン復調器の2つの段は、交互に差動増幅器の出力をサンプリングし、それを1つのクロックサイクルにわたってホールドし、その後信号を出力する。信号をホールドすることによって、信号における過渡現象が落ち着くことができ、それによって、ピンポン復調器による信号出力がグリッチングを低減し、より安定化する。
加えて、容量性インタフェース回路は、負のフィードバックを提供して、信号を制限する対向電荷を印加することができる。負のフィードバックは、出力段(ピンポン復調器)への入力において印加されるか、又は差動増幅器への入力に対する全体的なフィードバックとして印加され、それによって信号を小さく保つ。フィードバックは、差動増幅器の両方の入力に印加され、差動からシングルエンドへの変換を提供することができる。さらに、容量性インタフェース回路は、アナログ/デジタル変換器(ADC)のような追加の信号処理回路部を備えることができる。このような実施形態では、負のフィードバックは離散した全体的なフィードバックとして印加することができる。
容量性インタフェース回路は、本開示の様々な実施形態によれば、非常に低い電力で動作しながら、安定した低ノイズ信号を生成することができる。回路は、速い回路ダイナミクス、すなわち、より多くの電力を使用する速いクロックレートにおける動作を必要とすることなく、ノイズ、より具体的にはkT/Cノイズを出力から実質的に消去することによって低電力を達成する。実際に、回路は、500Hz、より好ましくは、概ね200Hz〜概ね300Hz未満の又はこれらに概ね等しいクロックレートで動作することができる。
様々な、例としての実施形態を提示する。センサインタフェースノードが離隔される場合に有用である幾つかの実施形態によれば、インタフェース回路は、共通プレートが駆動されることができ且つ差動インタフェースが検知キャパシタの静電容量の差に比例する信号電圧を抽出するように構成される。この実施形態は、マイクロマシン加工された加速度計に使用されるセンサアーキテクチャに有用である。
上記の、例としての実施形態の変更を表す他の実施形態によれば、インタフェース回路は、検知キャパシタの差動プレートの片側が共通電位、たとえばシステム接地に保たれることを必要とするセンサを収容するように構成される。この後者の、例としての実施形態は、圧力センサアーキテクチャに有用である可能性があり、湿度センサ及び液面検出のような多くの容量性センサ用途に拡張することができる。
既に述べたように、容量性インタフェース回路は、IMDに関連付けられる生理学的センサと併せて有用であり得る。これらの場合、センサが低ノイズ性能を提供し、その結果、ノイズが結果的に感度を低減しないか又は不正確な若しくは誤解を招くような診断情報を生成しないことが重要である。特に、センサが低電力で動作し、それによって、限られた電池資源を節約し、それによって動作寿命を長くすることも重要である。微小電力センサは、本開示において説明する場合、MEMSベースセンサのようなセンサと、低電力で安定した精密測定を達成するように構成される容量性インタフェース回路とを含む。容量性インタフェース回路部及び関連付けられるセンサ回路部は多種多様な用途において有用であり得る。しかしながら説明の目的のために、このような回路部の使用は概して、本開示では医療用途の文脈で説明する。
図1は、高分解能及び低電力で静電容量変動の測定を可能にする微小電子機械システム(MEMS)センサ2を示すブロック図である。図1に示されているように、MEMSセンサ2は、キャパシタベースセンサ4と、このセンサとインタフェースするセンサインタフェース6とを備える。MEMSセンサ2は、kT/Cサンプリングノイズと、増幅器オフセットと、フリッカ(1/f)ノイズとを実質的に低減又は消去すること、及び信号における過渡現象を低減することによって、正確且つ安定した測定を達成することができる。さらに、幾つかの実施形態では、MEMSセンサ2は、たとえば、概ね500Hz、概ね200Hz〜300Hz、より好ましくは概ね250Hz未満か又はこれらに等しい低クロックレートで動作しながらこの性能を達成するように構成される。結果として、幾つかの実施形態では、MEMSセンサ2は微小電力システムの制約下で動作することができ、たとえば、概ね100ナノアンペア〜概ね2.0マイクロアンペア、より好ましくは概ね500ナノアンペア〜概ね1.0マイクロアンペアの電流を電源から使用することができる。
説明の目的のために、限定ではなく、MEMSセンサ2を概して、本開示において、長期間埋め込みな可能デバイス、すなわち埋め込み可能医療デバイス(IMD)における生理学的慣性検知を可能にする加速度計として説明する。生理学的慣性検知は、患者の病状又は治療処置は行動及び姿勢によって表すか又は示すことができるため、重要である。たとえば、幾つかの治療の提供は、患者の行動、行動レベル、若しくは姿勢に従って、又は運動障害若しくは癲癇の場合における震え若しくは発作のような病状の検出に関して制御することができる。したがって、慣性検知によって提供される情報は、診断目的及び治療提供のための制御ループの実施に有用である。たとえば、長期的に使用される1軸MEMSセンサは、患者の行動レベルに基づいて心臓ペーシングレートを調整するために使用することができる。別の例として、多軸MEMS加速度計は、患者の姿勢、すなわち、座っている、立っている、横たわっている等に基づいて、神経刺激治療のような治療を調整するために使用することができる。しかしながら、患者内に埋め込まれる場合、MEMSセンサ2は、微小電力システムとして動作して、限られた電池資源を節約し、それによってIMDの動作寿命を長くすべきである。MEMSセンサ2はまた、許容可能なノイズフロア、すなわち低ノイズ性能を維持すべきであり、それによって、ノイズは、感度の低減、又は信号が不正確な若しくは誤解を招くような診断情報を示すように見える事態をもたらさなくなる。
微小電力システムの電力制限内で動作するために、MEMSセンサ2を、概ね500Hz以下でクロック制御するべきである。しかしながら、MEMSセンサの検知素子のサイズ制約に起因して、可変キャパシタの静電容量の変化は小さく、たとえば、概ね数百fF〜100aF以下である。したがって、微小電力MEMSセンサの出力電圧範囲は、センサ回路に関連付けられるフィードバック静電容量が検知静電容量と概ね同じ量である場合、概ね10μV〜概ね1mVである可能性がある。この小さな出力電圧範囲において、MEMSセンサの出力における信号は、増幅器からのkT/Cノイズ、並びに増幅器オフセット及びフリッカ(1/f)ノイズを含む。kT/Cノイズは、サンプリング処理中にセンサノードをリセットすることによってもたらされる。これらのノイズ成分は、信号電圧の大部分を占めている可能性があり、それによってMEMSセンサの精度及び性能を徐々に低下させる。
MEMSセンサ2は、相関トリプルサンプリング(CTS)処理を利用して、センサ信号からkT/Cノイズ、増幅器オフセット、及びフリッカ(1/f)ノイズを実質的に消去する。CTS処理は、クロックレートの上昇を必要とせず、したがって、MEMSセンサ2が微小電力システムの電力制約下で動作することを可能にする。MEMSセンサ2はまた、信号チェーンにおける過渡現象を低減して安定した出力信号を生成するための出力段を備える。CTS処理及び出力段は以下においてより詳細に説明する。
図1の例において、MEMSセンサ2は、基板8上に実装されるセンサ4及びセンサインタフェース6を備える。センサ4はMEMS技術を使用して製造することができ、MEMS技術は、マイクロマシン加工処理を使用して、選択的にシリコン基板の部分をエッチング除去するか又は新しい構造層を追加して、機械式デバイス及び電気機械式デバイスを形成する。MEMS技術は、機械要素、センサ、アクチュエータ、及び電子装置を共通のシリコン基板上に一体化する。センサインタフェース6は、集積回路処理を使用して製造することができ、業界標準ワイヤーボンドを介してセンサ4に結合することができる。
センサ4及びセンサインタフェース6は、基板8上の分離した別個の構成要素とすることができる。センサ4は、たとえば、マイクロマシン加工された1軸加速度計又は多軸加速度計のような市販のMEMSセンサとすることができる。このように、MEMSセンサ2のアーキテクチャを分割して、既存のセンサ技術を再使用し、市販用の製品量を増大し(leverage commercial volumes)、ひいては高信頼性及び低コストを保証することができる。信頼性は、MEMSセンサ2がIMDと共に、患者の姿勢及び行動のような生理学的信号のモニタリングに使用される場合、センサ4に関しては特に重要である。
センサインタフェース6は、低電力における信頼可能な精密検知のための自立型インタフェースを提供する、特別に設計される構成要素とすることができる。図1に示されている実施形態では、センサインタフェース6は、低電力でセンサ4からの小さな容量偏差を安定した精密アナログ出力信号に変換するように設計される。センサインタフェース6はセンサ4とは別個に製造されるが、センサ4と共に較正及び動作検査されることができる。センサインタフェース4を製造業者から受け取ると、センサ4を、基板8上にセンサインタフェース6と共に実装することができる。
例示的な一実施形態では、センサ4及びセンサインタフェース6は、基板8上のランドグリッドアレイ(LGA)パッケージに成型することができる。一例として、LGAパッケージは、幅が概ね3ミリメートル(mm)、長さが概ね3mm、厚さが概ね1mmの寸法を有することができる。LGAパッケージは、MEMSセンサ2の損傷を受けやすい高インピーダンスノードを、静電放電(ESD)のような、攻撃を与える環境上のものから保護する。MEMSセンサ2は、10kGを超える衝撃に対する耐性を有するように設計することもできる。結果として、MEMSセンサ2は、MEMSセンサ2を外科的移植処置中に落とすことのような、乱用による落下に耐えることができる。
LGAパッケージは、ウェハ間接合ステップにおいて密封することができる。「キャップ」を基板8の上方に形成して、センサ4及びセンサインタフェース6を湿気、プラスチック、及びパッケージ製造における他の汚染物質から保護することができる。キャップは、幾つかの実施形態において、小さいフォームファクタの場合、センサインタフェース6を積み重ねるダイのための基板としての役割を果たすこともできる。一例の実施形態では、センサ4は、共振において有限のセンサ品質係数Qを維持することを促すと共に、衝撃の存在下における非線形スクイーズ膜減衰を提供するガス混合物内に保持することができる。センサのQは約8であり得る。
図1において説明するように、MEMSセンサ2は概して、IMDの一部として実施される。一例では、MEMSセンサ2を、「カン(can)」と呼ばれることもあるIMDハウジング内に含むか、又はデバイスハウジング上に配置することができる。別の例では、MEMSセンサ2は、IMDから延在するリード線又はカテーテル内で、たとえば、遠位先端において、又はこのようなリード線若しくはカテーテルの長さに沿った或る点において配置することができる。この場合、MEMSセンサ2は、MEMSセンサ2とデバイスのカンとの間で延在する、リード線内の導電体を介してIMDに電気的に結合される。この例としての実施形態は、MEMSセンサ2が心臓音をモニタリングするのに使用される圧力センサである場合に有用であり得る。リード線は、電気的刺激の提供及び/又は検知のための導体及び電極を備えることができる。カテーテルは、流体を送出するか又は体内の領域から流体を引き込むために内腔を含むことができ、センサ2に結合される1つ又は複数の導体を備えることができる。代替的に、センサ2は、センサ信号の無線テレメトリのために備え付けることができる。
概して、センサ4は機械エネルギーをアナログ出力電圧に変換し、このアナログ出力電圧はセンサインタフェース6によって処理されて出力信号を生成する。たとえば、センサ4は、加速の3つの軸を3つの独立したアナログチャネルに変換することによって、面積、パワーペナルティ、及び配線の問題を最小にして慣性測定を可能にする、マイクロマシン加工された3軸加速度計として実施することができる。したがって、センサインタフェース6は、複数のインタフェース回路を備えることができ、これらの回路のそれぞれを3つの軸のうちの1つのために専用することができる。加速の3つの軸は、パッケージ寸法に位置調整することができる、すなわち、x方向、y方向、及びz方向(長さ、幅、及び高さ)において位置調整することができる。センサ4の製造のための適切な例示的処理は、ST Microelectronicsによって開発されたTHELMA(マイクロアクチュエータ及び加速度計のための厚いエピポリ層(Thick Epi-Poly Layer for Microactuators and Accelerometers))処理であるが、他のMEMS処理を使用してもよい。
加速度計のためのアーキテクチャは、幾つかの実施形態では、x加速度及びy加速度の測定のための単一の横方向加速度計を備えることができ、一方、z軸に沿った加速度の測定値は、差動シーソー配置を使用して測定することができる。センサ4のための他の構成が可能である。したがって、本開示において記載される特定のアーキテクチャは、多くの可能な構成のうちの1つとしての例示的なものであり、決して限定するものとしてみなされるべきではない。しかしながら、本開示において記載される例としての構成に関して、加速度計の各軸は、かみ合わせられているビームフィンガによって形成される差動キャパシタを使用して、加速度をアナログ出力電圧に変換することができる。かみ合わせられているフィンガは、電気的に接続されて可変差動キャパシタを形成するキャパシタプレートとして動作する。プルーフマスが、ビームフィンガと呼ばれる、かみ合わせられているフィンガの1つのセットに結合され、ばねによって基板の上に吊り下げられる。プルーフマスが特定の方向に偏向されると、プルーフマスに取り付けられているビームフィンガと、対応する固定フィンガのうちの1つとの間の静電容量が変化する。静電容量の変化は特定の方向における加速を示す。したがって、センサ4は、プレートの重なり合うエリア又はプレート間の間隔が検知素子の変位の関数であるキャパシタの等価なセットによってモデル化することができる。
センサインタフェース6は、センサ4に結合され、静電容量の変化を電圧に変換し、この電圧は処理されて、動きの測定値を表すセンサ信号を生成する。既に述べたように、可変キャパシタの静電容量は典型的には概ね数百fFの範囲内にあり、概ね1aF〜100aF程度の変動を示す。結果として、センサインタフェース6によって検知される電圧は、概ね10μV〜1mVの範囲内にあり得る。MEMSセンサ2が微小電力システムとして動作する、すなわち、概ね500Hz以下のクロックレートで動作し、且つ概ね2.0マイクロアンペア未満の電流を電源から使用する場合、kT/Cノイズ、並びに増幅器オフセット及びフリッカ(1/f)ノイズのような他のエラーは、信号電圧の大部分を占める可能性あがる。センサインタフェース6は、しかしながら、相関トリプルサンプリング(CTS)を採用して、欠陥、すなわちkT/Cノイズ、増幅器オフセット、及びフリッカノイズを信号から実質的に消去又は除去する。
既に述べたように、CTSは、クロックサイクルの2つのクロック位相間で変化しない信号成分を消去するサンプリング処理である。特に、CTSは、ノイズ信号を第1のクロック位相中にサンプリングすること、及びセンサ信号を第2のクロック位相中にサンプリングすることを含む。センサ信号はノイズ信号と同じ信号経路を進むため、ノイズ成分、たとえば、kT/Cノイズ、増幅器オフセット、及びフリッカノイズは両方の信号に共通している。したがって、kT/Cノイズ、並びに増幅器オフセット及びフリッカノイズは、相殺によってセンサ信号から除去することができる。このように、センサインタフェース6は低ノイズセンサ出力信号を生成する。
センサインタフェース6は、CTS処理のためのインタフェースを提供する。インタフェースは、差動増幅器と、サンプリングキャパシタと、複数のスイッチとを備える。概して、差動増幅器の入力は、一対のスイッチを通じてセンサ4に結合される。差動増幅器の出力は、サンプリングキャパシタの一方の端部に結合される。サンプリングキャパシタの他方の端部はスイッチに結合される。このように、スイッチは信号経路内の様々なノードに配置され、CTS処理のステップのシーケンスを制御するためにそれぞれのクロック信号によって駆動することができる。
ここでも同様に、CTS処理は3ステップ処理である。最初の2つのステップは、ノイズ信号をサンプリングし、クロックサイクルの第1の位相中に生じる。第3のステップはセンサ信号をサンプリングし、クロックサイクルの第2の位相中に生じる。リセットステップとも呼ばれる第1のステップは、クロック信号の第1のクロック位相の第1の部分中、センサノードをリセットする。サンプリングキャパシタはまた、第1のステップ中、接地に接続される。換言すると、センサインタフェース6内の差動増幅器は、第1のステップ中、センサ4から切り離されて、可変検知キャパシタ上でkT/Cノイズを構築する。
第1のクロック位相の第2の部分中に生じる第2のステップ中、差動増幅器は可変検知キャパシタに接続され、kT/Cノイズが差動増幅器を通じてサンプリングキャパシタ上にサンプリングされる。増幅器はまた、オフセット及びフリッカノイズを信号内に導入し、これらのオフセット及びフリッカノイズはkT/Cノイズと共に、サンプリングキャパシタ上にまとめて記憶される。
第3のステップは、クロックサイクルの第2の位相によって開始され、検知ステップと呼ばれる。このステップの名前が示唆しているように、センサ信号が可変キャパシタをわたって差動増幅器に印加される。差動増幅器が電圧信号の振幅を増幅し、増幅信号を生成する。増幅信号は、センサ信号及びノイズ成分の増幅表現を含む。
センサ信号は、サンプリングステップ中、kT/Cノイズと同じ信号経路を進むため、kT/Cノイズ、増幅器オフセット、及びフリッカノイズは2つのクロック位相間で共通である。すなわち、増幅信号のノイズ成分は、サンプリングステップ中にサンプリングキャパシタ上に記憶される信号と実質的に同じである。したがって、サンプリング(第2の)ステップ中にサンプリングキャパシタ上に記憶されるノイズ信号は、検知(第3の)ステップ中に差動増幅器によって生成される増幅信号のノイズ成分を実質的に消去する。
結果的に得られる信号は、しかしながら依然として、信号チェーンにおける速いダイナミクスによってもたらされる過渡現象、すなわちグリッチを含む可能性がある。したがって、センサインタフェース6は、クロック過渡現象を抑制するサンプリングキャパシタに結合される出力段を備えることができる。出力段は、2つのインターリーブサンプルホールド(S/H)段を備え、ピンポン復調器と呼ぶことができる。ピンポン復調器の一方の段(ピン段)は第1のクロックサイクル中、より具体的には、第1のクロックサイクル中のCTS処理の第3のステップ中に差動増幅器の出力をサンプリングし、一方、他方の段(ポン段)は同時に信号を出力する。ポン段による信号出力は、前のクロックサイクルからのCTS処理の第3のステップ中に差動増幅器からサンプリングされる信号に基づく。
第1のクロックサイクルに続く第2のクロックサイクル中、ピン段は、第1のクロックサイクル中にサンプリングされる信号に基づく信号を出力し、一方、ポン段は同時に、差動増幅器の出力をサンプリングする。このように、ピンポン復調器は交互に差動増幅器の出力をサンプリングし、それを1つのクロックサイクルにわたってホールドし、その後、次のクロックサイクルにおいて信号を出力する。信号を1つのクロックサイクルにわたってホールドすることによって、信号における過渡現象(グリッチ)が落ち着くことができる。結果として、MEMSセンサ2内のセンサインタフェース6の出力は安定した低ノイズ信号である。
出力段は、信号変化を小さく保つ負のフィードバックを提供するように構成することもできる。フィードバックは、出力段の入力に印加することができるか、又は、代替的に、差動増幅器の入力に全体的に印加することができる。フィードバックが全体的なフィードバックとして印加される場合、フィードバックは差動増幅器の入力に差動的に印加され、差動からシングルエンドへの変換を提供する。全体的なフィードバックは、アナログフィードバック又は離散フィードバックとして印加することができる。離散フィードバックの場合、センサインタフェース6はアナログ/デジタル変換器(ADC)を備えることができる。
CTS処理のための回路部及び出力段に加えて、センサインタフェース6は、サポート回路部を備えることができる。たとえば、センサインタフェース6はクロック状態マシンと、基準電圧及びバイアス電圧発生器と、オフセット及び感度を調整する(trimming)ためのオンチップ調整メモリとを備えることができる。オンチップメモリは、製造全体を通じてデータを追跡する必要性を除去するために、生産中に不揮発性メモリに書き込まれる調整コードを記憶することができる。特に、調整コードは、センサインタフェース6によって使用されて、センサ4から得られる測定値を較正することができる。さらに、インタフェース回路は、MEMSセンサ2の使用可能性を判断するのに使用される静電自己試験を提供することができる。自己試験コマンドは、製造処理において、供給業者に出荷する前にMEMSセンサ2が使用可能であるか否かを判断するのに有用であり得る。自己試験コマンドはまた、MEMSセンサ2が患者内に埋め込まれ且つ生理学的信号をモニタリングするのに使用されるときのMEMSセンサの動作を確認するのに有用であり得る。
センサインタフェース6の出力は、チップから離れている、すなわちLGAパッケージの外側の追加の処理回路部に送ることができる。追加の回路部は、たとえば、IMD内のプロセッサ、又はMEMSセンサ2の出力を処理することができる他のデバイスとすることができる。たとえば、IMD内のプロセッサは、センサ出力信号を処理して、診断目的のために又は治療提供のための制御ループを実施するために使用することができる、信号における特性を特定することができる。
MEMSセンサ2を、生理学的に基づく動きの検知を提供するものとして本開示において説明するが、MEMSセンサ2はこのようには限定されない。むしろ、MEMSセンサ2、及びより詳細にはセンサインタフェース6は、様々な医療用途及び非医療用途に適合することができることを理解されたい。たとえば、センサ4は、センサインタフェース6と共に使用される場合に有用なセンサデータを提供することができる任意の容量ベースセンサとすることができる。したがって、センサ4は、ジャイロスコープ、圧力センサ、マイクロアクチュエータ、又は、MEMS技術を使用して製造される他のタイプの慣性センサ、化学センサ、若しくは磁気センサとすることができ、このようなセンサの組み合わせを含む。MEMSセンサ2は、圧力センサを用いるカテーテルモニタリング用途、圧力センサを用いる心臓音のモニタリング、並びに、加速度、圧力、湿度、及び液面のような精密測定のために微小電力システムを必要とする他の生理学的モニタリング用途において使用することもできる。
図2は、図1のセンサインタフェース6の様々な構成要素をより詳細に示すブロック図である。図2に示されているように、センサインタフェース6は、インタフェース回路12X、12Y、12Zと、調整メモリレジスタ及び回路10と、クロック分配ネットワーク18と、基準及びバイアス発生器19とを備える。図2の例では、インタフェース回路12X〜12Z(まとめて「インタフェース回路12」)は、加速の3つの軸(X、Y、及びZ)を3つの独立したアナログ出力チャネル(XOUT、YOUT、及びZOUT)に変換する。したがって、インタフェース回路12のそれぞれは、X検知軸、Y検知軸、及びZ検知軸のうちの1つに対応する。インタフェース回路12のそれぞれは、対応する相関トリプルサンプラ14X〜14Z(まとめて「相関トリプルサンプラ14」)と、対応するピンポン復調器16X〜16Z(まとめて「ピンポン復調器16」)とをそれぞれ備えることができる。
相関トリプルサンプラ14のそれぞれは、その出力において低ノイズ信号を生成し、差動増幅器と、差動増幅器の出力に結合されるサンプリングキャパシタとを備える。差動増幅器は、センサ4とインタフェースして、コモンモード信号及び漏れ電流を排除する完全差動アーキテクチャを有する計装用増幅器とすることができる。計装用増幅器は、安定した利得特性と、良好な線形性と、広いコモンモード範囲とを有する低電力計装用増幅器を含むことができる。例示的な計装用増幅器を図9に示す。例示的な相関トリプルサンプラの回路図を図4、図5、及び図6に示す。
ピンポン復調器16のそれぞれは、相関トリプルサンプラ14のうちの対応する1つによって生成される低ノイズ信号を入力として受信し、対応する安定した低ノイズ信号を出力する。ピンポン復調器16は、第1の出力段54A及び第2の出力段54Bにおいて交互にサンプリングキャパシタ34の出力をサンプルホールドする。ピンポン復調器16の入力において、低ノイズ信号は、信号経路においてダイナミクスを速く切り替えることによってもたらされる過渡現象を含む場合がある。ピンポン復調器16はそれぞれ、交互に、或るクロックサイクル中に、相関トリプルサンプラ14のうちの対応する1つのサンプラの出力をサンプリングし、次のクロックサイクル中に信号を出力する一対のインターリーブ出力段を備える。このように、ピンポン復調器16によって、たとえば1つのクロックサイクルにわたって信号における過渡現象が落ち着くことができ、その後、結果的に得られる安定した低ノイズ信号が追加の処理回路部に印加される。既に述べたように、追加の処理回路部は、センサインタフェース6上に配置されるADC(図示せず)、又は、診断目的のために若しくは治療提供のための制御ループを実施するために使用することができる、信号における特性を特定する、IMDに関連付けられる回路部のような、センサインタフェース6から離れて配置される回路部を含むことができる。一例のピンポン復調器の回路図を図7において提供する。
調整メモリレジスタ及び回路10は、電気的消去可能プログラム可能読み取り専用メモリ(EEPROM)セル、又は、調整較正コードを含む不揮発性メモリの他のセルを含むことができる。EEPROMセルのようなパッケージ内メモリによって、センサデバイス2を、大量生産ライン上で較正し、その後、治療を患者に提供すると共に、治療提供アルゴリズムにおいて、診断目的のために、又はその両方においてセンサデバイス2によって生成される出力を使用するIMDの一部として組み立てるために転送することが可能になる。
幾つかの実施形態では、調整メモリレジスタ及び回路10は、電荷をセンサノード上に注入することによってクロックと増幅器との間のより大きな受動結合静電容量をエミュレートするキャパシタデジタル/アナログ変換器(DAC)を備えるオフセット調整ブロックを備えることができる。この静電容量は加速力から独立している。
例示的なオフセット調整ブロックは、センサクロックのリセット位相中にセンサノードをゼロにするのに必要なリセットスイッチを備えることができる。注入される電荷の絶対的大きさは、センサクロックによって駆動される集積ポリ−ポリキャパシタ(poly-poly caps)によって求めることができる。2進重み付けキャパシタDACコードは、注入される電荷の相対的大きさ、及びどのプレートに電荷が送られるかを確定する。DACコードは調整メモリレジスタ10から得ることができる。
クロック分配ネットワーク18は、チップ上で、単一のマスタ外部クロックから、信号チェーン及びセンサクロッキングを生成する。マスタ外部クロックは、センサインタフェース6から離れて配置することができ、センサインタフェース6の出力を使用するIMDのための処理回路部に関連付けることができる。クロック分配ネットワーク18は、たとえば、相関トリプルサンプラ14及びピンポン復調器16を制御するために1つ又は複数のクロック信号を生成することができる。すなわち、クロック分配ネットワーク18は、CTS処理のステップのシーケンスを制御するために、信号チェーン内で、様々なノードにおいて位置決めされるスイッチを駆動するクロック信号を生成することができる。
たとえば、信号チェーンの公称クロック周波数は概ね1kHzとすることができ、これは、クロック分配ネットワーク18によって、相関トリプルサンプラ14及びピンポン復調器16を駆動するのに必要な位相に分割される。既存のセンサ4のためのクロックドライバは、センサ4を、センサリセットクロックにおいて−AVDDに合わせて(to)、また読み出し部分において+AVDDに合わせてクロック制御する負の電荷ポンプを含むことができる。センサ4上での著しい容量性負荷は、センサパッケージ内に収めることができるオンチップキャパシタを使用する場合に負のクロックをAVDDの概ね80%に制限することができる。この駆動量は、ノイズ要件を満たすのに十分である。
基準及びバイアス発生器19は、基準電圧及びバイアス電圧をMEMSセンサ2に提供する。たとえば、発生器19は、相関トリプルサンプラ14内のサンプリングキャパシタに基準電圧を供給し、相関トリプルサンプラ14内の差動増幅器及びピンポン復調器16内のS/H回路内の増幅器のような、インタフェース回路12内の能動回路素子にバイアス電圧を供給することができる。
以下の説明は、例示的なMEMSセンサの大まかな部品仕様を提供する。たとえば、センサインタフェース6を形成するASICのおおよその最大サイズは、概ね2100μm、概ね1300μmとすることができる(ハム及びスクライブ(hams and scribes)を含まない)。センサダイは、概ね2100μm、概ね1900μmとすることができる。センサ4、保護キャップ、及びASICベースセンサインタフェース6は、業界標準ランドグリッドアレイ(LGA)において積み重ねられると共に配置されるダイとすることができる。1つの例示的な実施形態では、LGAパッケージの寸法は、長さが概ね3mm、幅が概ね3mm、高さが概ね1mmとすることができる。
基準及びバイアス発生器19には、センサインタフェース6の公称供給電圧及び調整メモリレジスタ10をプログラムするための最大供給電圧を供給することができる。公称供給電圧及び最大供給電圧はそれぞれ、たとえば1.9V(+/−5%)及び14Vである。最小供給電圧は、感度及びオフセットに関する仕様の幾らかの電位低下を伴って、1.7Vの機能(functionality)に拡張することができる。MEMSセンサ2の公称供給電流は、加速の3つの軸の連続した測定の場合、最大概ね1μAとすることができる。MEMSセンサ2はまた、電流を概ね500nAに低下させる低電力モードでも動作することができる。これらの値は例示に過ぎず、決して制限するものとみなされるべきではない。
さらに、通常モード、又は低電力モードとは異なる電流量を使用する、z軸に沿った心臓のソノグラムを測定する「ソノグラムモード」も存在し得る。ソノグラムモードに必要な駆動するもの(requirement driver)は、最小50Hz帯域幅の5mg二乗平均平方根(rms)ノイズである。信号チェーンの公称クロック周波数は概ね1kHzであり、これは、小さな状態マシンによって、センサ及びピンポン復調増幅器を駆動するのに必要な位相に分割される。センサを励起するためのクロックドライバは負の電荷ポンプを含み、それによって、センサは、センサリセットクロックにおいて−AVDDに合わせて、そして読み出し部分において+AVDDに合わせてクロック制御される。実際には、センサ上の著しい容量性負荷(たとえば、概ね6pF)が、センサパッケージ内に収めることができるオンチップキャパシタを使用する場合に負のクロックをAVDDの概ね80%に制限する。この駆動量は、ノイズ要件を満たすのに十分である。
以下は、センサインタフェース6上のボンディングパッド(図示せず)において利用可能な信号のそれぞれの性質及び機能を簡潔に説明する。センサインタフェース6は、6つの差動検知パッドX+、X−、Y+、Y−、Z+、Z−と、共通「ロータ」ドライブCOMと、全てのセンサに配線される2つの接地パッドGNDとを備えることができる。電極は、センサインタフェース6の上部に沿って配置することができる。電極の順序はGND:Z+:Y+:X+:COM:X−:Y−:Z−:GNDとすることができる。パッドピッチは概ね110μmである。COMパッドセンタラインは、各端から概ね1050μm離れてセンサインタフェース6のセンタラインに一致し得る。
入力静電容量を低減するために、幾つかの実施形態では、静電放電(ESD)セルがこれらのパッド上に存在しないことが可能である。センサパッド上のESD保護は、2kV HBM(人体モデル)に関してサイズ設定された直列500kW抵抗器によって提供することができる。コア上のスイッチ拡散(switch diffusion)がICゲートを保護する。ボンドパッドをセンサインタフェース6のソースによってブートして、センサの容量性負荷を低下させることができる。
VSS及びVrefパッドはそれぞれ、接地基準及び基準電圧を提供する。センサインタフェース6は、アナログ出力のためのパッド、たとえばXOUT、YOUT、及びZOUTも備えることができる。アナログ出力XOUT、YOUT、ZOUTは、3つの異なる軸(X、Y、及びZ)に沿った加速度計信号の3つの異なるチャネルを提供する。信号電圧は、Vref/2を中心とすることができ、感度はVrefにレシオメトリックとすることができる。これは、ロバストな検知のためのレシオメトリックADCの使用を可能にする。Vrefは、レシオメトリック動作のためにAVDDに、又は絶対基準のためにバンドギャップに接続することができる。センサインタフェース6の出力は、概ね50ナノアンペアの最小値を供給することが可能であり得る。
センサインタフェース6は、それぞれ、調整メモリレジスタ及び回路10のEEPROMセルをプログラムしてデータを提供するために、且つ調整コードが揮発性レジスタから来るのか又は調整メモリ10内のEEPROMから来るのかを選択するために、直列I2Cポートを通じる追加の4つのピンを備えることができる。オフセットの6ビットをオフセットに関する各軸に割り当てることができ、オンチップデジタル/アナログ変換器(DAC)(図示せず)はオフセット電荷をセンサインタフェースノードに送出することができる。軸ごとのオフセットは、0.25G内に調整することができる。IMDの埋め込み後、センサ4の地面に対する最終の向きに基づいて最終較正を実行することができる。感度調整は、ピンポン復調器16内の出力キャパシタ及びホールドキャパシタにおけるスケーリングを調節することができ、50mV/G/Vdd+/−5%の正味の許容誤差を設定することができる。ここで、Vddは供給電圧である。
センサチャネルの目標ノイズは、概ね2.4Vのセンサ励起電圧(2×バンドギャップ)の場合、X及びYにおいて概ね500μg/rtHz、Zにおいて750μg/rtHzとすることができる。これは、姿勢検出の場合(10Hz帯域幅、1次ローパス)に、X及びYにおいて概ね2mg rms、Zにおいて3mg rmsの公称ノイズフロアを提供する。幾つかの実施形態では、所望の推定ノイズフロア要件は、10Hz帯域幅において10mg rmsであり得る。目標とされるより低いノイズフロアは、電力仕様を損なうことなく、MEMS処理の極値のプロセスコーナを捉えることができる。MEMSセンサ2は、MEMS処理安定性が設計マージンを必要としないことが分かった場合、ゼロ入力電流を低減するための調整を含むことができる。
MEMSセンサ2が心臓音を測定するために圧力センサを備える実施形態では、Z軸は、ノイズフロアを低減するブーストモードも有することができる。より速いクロックと組み合わせて、ブーストモードは、100Hzの実効ノイズ帯域幅で概ね5mg rmsノイズフロアを提供することができる。このモードは、IMD用途において心臓のソノグラムをモニタリングするために使用することができる。
X加速度計チャネル及びY加速度計のチャネル公称帯域幅要件は概ね20Hzとすることができる(−3dB点)。Z加速度計チャネルの最小帯域幅は、心臓音の測定を可能にするために、概ね50Hzとすることができる(−3dB点)。さらに、ローパス特性は、1次とすることができ、インタフェース回路12の出力段におけるキャパシタ比及びシステムクロックによって求めることができる。
X軸、Y軸、及びZ軸間の、センサ4に使用される加速度計の交差軸感度は概ね5%未満とすることができる。交差軸感度における主要なエラーはパッケージ配列である。MEMSベースセンサデバイス2の非線形性は、+/−6Gの指定の範囲に関して、概ね5%未満とすることができる。センサ4の絶対的オフセットは+/−0.5G/sに調整することができる。患者の姿勢を検出するために患者内で加速度計として実施される場合、センサ4の向きは、患者内で姿勢に関して較正すべきである。したがって、ダイナミックレンジが許容可能である限り、絶対的オフセットは重要ではない。しかしながら、加速度計のオフセットは好ましくは、概ね37℃+/−5℃の温度範囲にわたって且つセンサの寿命にわたって、+/−100mGを超えて変動すべきでない。
図3は、説明の目的のためにキャパシタの等価なセットとしてモデル化されている、図1のセンサ4を示す回路図である。図3のモデルは、多軸MEMS加速度計の単一の軸を表す。図3では、センサ4は、検知キャパシタ20A及び20B(まとめて「検知キャパシタ20」と呼ばれる)と、寄生キャパシタ21A及び21B(まとめて「寄生キャパシタ21」と呼ばれると)と、自己試験キャパシタ22A及び22B(まとめて「自己試験キャパシタ22」と呼ばれる)と、駆動キャパシタ24とを備える。検知キャパシタ20は加速度計の可変静電容量を表し、この可変静電容量は、キャパシタプレートとして動作する、かみ合わせられているフィンガキャパシタによって形成することができる。
電圧が駆動ノード44を通じてセンサ4に印加され、この駆動ノードは3つのセンサ軸の間で共通である。駆動ノード44はセンサインタフェース4によって生成することができる。したがって、駆動キャパシタ24は、多軸MEMS加速度計のための3つのセンサ間で共有される駆動静電容量を表す。検知キャパシタ20のそれぞれは、一方の側において駆動ノード44に結合され、対応する寄生キャパシタ21を通じて他方の側で接地に分路される。検知キャパシタ20は、図2のインタフェース回路12のうちの1つのようなインタフェース回路によって差動的に読み取られる。一例として、検知静電容量は、概ね1fF/Gだけ概ね330fFの公称検知静電容量と異なり得る。寄生キャパシタ21の静電容量は概ね1.4pFであり得る。
概して、自己試験キャパシタ22は、一方の端部において駆動ノード44に結合され、センサ4の使用可能性を判断するために使用される。他方の端部において、自己試験キャパシタは、たとえばインタフェース回路上の特別なピンを介してインタフェース回路に結合することができる。電位が自己試験中に自己試験キャパシタ22に印加されるとき、自己試験キャパシタ22上の電圧が測定される。測定された電圧が所定の範囲内にある場合、センサ4の使用可能性が実証される。測定された電圧が所定の範囲内にない場合、センサ4は使用不可能であるとみなされる。自己試験は、センサが供給業者に出荷される前に使用可能であることを確認するために製造処理中に実行することができる。自己試験は、センサが患者内に埋め込まれるているときに実行することもできる。
様々なパラメータの典型的な値を以下の表1にまとめる。表1はまた、検知静電容量の主な変動又は拡散を提供する。これらの数字は、本開示において説明する例示的な容量性インタフェース回路の設計のための基礎として使用することができる。静電気引力が動いているセンサフィンガを折り畳んで固定フィンガにする場合のセンサ4の捕捉電圧は5Vを超えることに留意されたい。これは、センサ4にノイズ性能を向上させるために、供給電圧を安全に2倍にすることができることを意味する。表1では、Co(全軸)は、全キャパシタの総出力静電容量を示し、Csense(x,y)は、x軸及びy軸の検知キャパシタ20の値を示し、Csense(z)は、z軸の検知キャパシタ20の値を示し、Csense_par(x,y)は、x軸及びy軸の検知キャパシタ寄生静電容量21の値を示し、Csense_par(z)は、z軸の検知キャパシタ寄生静電容量21の値を示し、Cdrive_par(共有される全軸)は、全軸の結合駆動静電容量24を示す。Cdrive_parは共通ノードに関連付けられ、この共通ノードは、駆動されて、センサ上の共通ロータ(MEMSビーム)に送られ、それによってこのノード上の寄生静電容量が3つの軸に共通となる。
Figure 2010505335
図3では、センサインタフェース6への入力がSense+、Sense−、Self−Test+、及びSelf−Testのノードによって示されている。特に、このような入力は、それぞれがX検知軸、Y検知軸、及びZ検知軸に対応することができるインタフェース回路12のうちの1つに結合することができる。センサインタフェース6のインタフェース回路12内のCTS回路の一部を形成する差動増幅器は、検知キャパシタ20A、20Bの出力を、それぞれSense+ノード及びSense−ノードを介して受け取る。
図4は、図2のインタフェース回路12の一例の実施態様を表すインタフェース回路12Aを示す回路図である。1つ又は複数のインタフェース回路12Aをセンサインタフェース6内に設けることができる。3軸加速度測定法の場合、センサインタフェース6は3つの異なるインタフェース回路12Aを備えることができ、たとえばX軸、Y軸、及びZ軸ごとに1つである。インタフェース回路12Aは、低電力及び低クロックレートで動作しながら、センサ4内の差動キャパシタ20A及び20Bの両端間の小さな容量偏差を、安定した低ノイズアナログ出力信号に変換する。
図4の例では、インタフェース回路12Aは、相関トリプルサンプラ14と、ピンポン復調器16とを備える。相関トリプルサンプラ14及びピンポン復調器16。図4は、多軸加速度計の1つの軸に沿った容量偏差を、この軸に沿った加速の測定値を表すアナログ信号に変換するのに使用することができるインタフェース回路を示す。ピンポン復調器16はインターリーブ出力段54A及び54Bを備える。図4では、出力段54Aを詳細に示している一方、出力段54Bをブロックとして表している。出力段54Bの詳細は説明を簡単にするために省略するが、出力段54Aの詳細と同一である。両方の出力段を示す、ピンポン復調器のより詳細な回路図は図7において提供する。
図4では、センサ4を、検知キャパシタ20A及び20Bが代表している。検知キャパシタ20A及び20Bは、一方の端部においてスイッチ33に、他方の端部において相関トリプルサンプラ14に結合される。スイッチ33はタイミング信号Φ2によって制御される。概して、検知キャパシタ20A及び20Bは、加速度計、ジャイロスコープ、圧力センサ、湿度センサ等のような容量ベースセンサの静電容量の変化を表す。ここでまた、加速度計を一例として使用すると、検知キャパシタ20A及び20Bは、特定の方向に動いてフィンガの重なり合うエリア又はフィンガ間の間隔を変えることができる、加速度計のかみ合わせられているフィンガを表すことができる。
相関トリプルサンプラ14は、差動増幅器15と、抵抗器35と、サンプリングキャパシタ34と、スイッチ36A及び36Bとを備える。スイッチ36A及び36Bは、差動増幅器15の正の入力38A及び負の入力38Bにそれぞれに結合され、タイミング信号Φ1’によって制御される。スイッチ36A及び36Bは、まとめて「リセットスイッチ36」と呼ぶことができる。サンプリングキャパシタ34は、抵抗器35を通じて差動増幅器15の出力に結合される。反対の端部において、サンプリングキャパシタ34は、タイミング信号Φ1によって制御されるスイッチ42を通じて基準電位、すなわち、Vref/2に結合される。
既に述べたように、相関トリプルサンプラ14は、CTS処理を使用して、kT/Cノイズ、並びに増幅器オフセット及びフリッカノイズを信号から実質的に消去することによって、センサ4から受信されるセンサ信号を低ノイズ信号に変換する。CTS処理の3つのステップはタイミング信号Φ1’、Φ1、及びΦ2によって駆動され、これらのタイミング信号はクロック分配ネットワーク18によって提供される。クロック分配ネットワーク18は、単一のクロック信号からタイミング信号Φ1’、Φ1、及びΦ2を生成することができる。特に、タイミング信号は、Φ1’がクロック信号の第1の位相の第1の部分中高く、第1の位相の第2の部分中及びクロック信号の第2の位相中低く、Φ1が、クロック信号の第1の位相の全体中高く、クロック信号の第2の位相の全体中低く、且つΦ2がクロック信号の第2の位相中高く、第1の位相中低いように生成することができる。クロック信号の相対的タイミングの一例を図8に示す。
図4におけるスイッチ、すなわちスイッチ33、36A、36B、42、43、50A、及び50Bは対応するタイミング信号が高いときに閉じ、信号が低いときに開く。最初は、タイミング信号Φ1’及びΦ1は高く、Φ2は低い。これは、CTS処理の第1のステップ、すなわちリセットステップに対応する。リセットステップ中、スイッチ33は開いており、検知キャパシタ20A及び20Bは、リセットスイッチ36A及び36Bをそれぞれ通じてシステム接地に接続される。したがって、kT/Cノイズが検知キャパシタ20A及び20B上で構築される。同時に、サンプリングキャパシタ34は、スイッチ42を通じて基準電圧Vref/2に結合される。
CTS処理の第2のステップは、Φ1が高く且つΦ1’及びΦ2が低いときの間隔、すなわちΦ1’が低下し且つΦ1が高いままであるときに開始する間隔によって特徴付けられる。この状態は、クロック分配ネットワーク18に提供されるクロック信号の第1の位相の第2の部分に対応する。Φ1のみが高いとき、リセットスイッチ36A及び36Bは開き、検知キャパシタ20A及び20Bは、差動増幅器15の入力38A及び38Bにそれぞれ結合される。したがって、センサ4は検知キャパシタ20A及び20Bを介して増幅器15によって差動的に読み出され、電磁干渉及び漏れ電流がコモンモード現象として排除される。差動増幅器15によって生成される増幅信号は、直列抵抗器35を介してサンプリングキャパシタ34上に記憶される。増幅信号は、増幅器15に関連付けられるkT/Cノイズ並びにオフセット及びフリッカノイズを含むノイズ信号である。
第3のステップは、Φ1の低下及びΦ2の上昇によって特徴付けられる。第3のステップの間隔は、クロック分配ネットワーク18に供給されるクロック信号の第2の位相に対応する。スイッチ33及び43は、Φ2の上昇に応じて閉じる。結果として、検知キャパシタ20A及び20Bを結合する共通ノード44は基準電位Vrefにされ、一方サンプリングキャパシタ34はピンポン復調器16に結合される。検知キャパシタ20A及び20Bにおける任意の不均衡が差動増幅器15によって増幅され、電圧ステップが出力に転送される。基準電圧及びバイアス電圧発生器19は、基準電圧を共通ノード44に供給することができる。
このように、差動増幅器15によって生成される増幅信号は、センサ信号と、検知キャパシタ20A及び20Bに関連付けられるkT/Cノイズ並びに増幅器15に関連付けられる増幅器オフセット及びフリッカノイズを含むノイズ成分との増幅表現を含む。増幅器15のこの出力は、サンプリングキャパシタ34上でホールドされる信号によって減算され、それによってkT/Cノイズ、増幅器オフセット、及びフリッカノイズが実質的に消去される。
kT/Cノイズ並びにフリッカノイズ及びオフセットが実質的に除去されるが、ピンポン復調器16が追加の処理を提供して、クロック過渡現象によってもたらされるグリッチング及びエイリアス白色ノイズを低減する。ピンポン復調器16は、インターリーブ出力段54A及び54Bと選択器56とを備える。選択器56は、タイミング信号Φ3の制御下で相関トリプルサンプラ14の出力を出力段54Aと54Bとの間で切り替える。特に、選択器56は、Φ3が高いときに相関トリプルサンプラ14の出力を出力段54Aに印加し、Φ3が低いときに出力を出力段54Bに印加する。タイミング信号Φ3の極性は、信号Φ1、Φ1’、及びΦ2に結び付けられるマスタクロックのサイクルごとに交互に変わる。このように、相関トリプルサンプラ14の出力は、第1のクロックサイクル中に出力段54Aに印加される一方、出力段54Bは、同時に信号を追加の処理回路部に出力する。段54Bによる信号出力は、第1のクロックサイクルの前の第2のクロックサイクル中に段54Bに印加される信号に基づく。第1のクロックサイクルに続く第3のクロックサイクル中、相関トリプルサンプラ14の出力が出力段54Bに印加され、出力段54Aは、第1のクロックサイクル中にサンプリングされる信号に基づく信号を出力する。
以下は、図4に示される構成要素に関して、出力段54Aの動作を詳細に説明する。より具体的には、以下は、Φ3が高く且つ相関トリプルサンプラ14の出力が出力段54Aに印加されるときの動作を説明する。
出力段54Aは図4において、増幅器17と、ホールドキャパシタ48と、フィードバックキャパシタ46とを備える。増幅器17及びホールドキャパシタ48は積分器を形成する一方、フィードバックキャパシタ46は負のフィードバックを相関トリプルサンプラ14’の出力に提供する。フィードバックキャパシタ46上に記憶される電圧は、スイッチ50A及び50Bによって制御される。特に、図4において、Φ1が高く且つΦ2が低いとき、スイッチ50Aはフィードバックキャパシタ46をVref/2に結合する。したがって、サンプリングキャパシタ34は、Φ1が高いときVrefを保つ。しかしながら、Φ2が高く且つΦ1が低いとき、スイッチ50Bはフィードバックキャパシタ46を増幅器17の出力に結合する。
CTS処理の最初の2つのステップ中、すなわちΦ1が高いとき、ピンポン復調器16(選択器56)は相関トリプルサンプラ14の出力に接続されない。しかしながら、Φ2が高いとき、スイッチ43は閉じており、相関トリプルサンプラ14の出力はピンポン復調器16(選択器56)に接続される。この説明の文脈においてΦ3は高いため、選択器56は、相関トリプルサンプラ14の出力を増幅器17の非反転入力に印加する。同時に、スイッチ42は開いており、増幅器17の反転入力は基準電圧Vref/2に結合される。したがって、増幅器17及びホールドキャパシタ48は、積分器として動作を開始する。しかしながら、Φ2が高いとき、積分器によって生成される信号は、追加の回路部、たとえばセンサインタフェース6から離れて配置される回路部による処理のための出力(Vout)において与えられない。これは、Φ3’によって制御されるスイッチ52が、Φ3が高いときに低いためである。したがって、積分器は、次のクロックサイクル中にスイッチ52が閉じるまで、サンプリングされた信号をホールドする。次のクロックサイクルまで信号をホールドする目的は、信号経路における長い過渡現象によってもたらされる、出力に向かうクロック過渡現象を低減することである。特に、ピンポン復調器16は、出力ノードにおける信号が落ち着くための時間を有した後に、前にサンプリングされた状態を出力に与える。
スイッチ52はタイミング信号Φ3が低下したときに閉じ、これは次のクロックサイクル中に生じる。次のクロックサイクル中、相関トリプルサンプラ14は、前のクロックサイクル中と同じように動作する。すなわち、相関トリプルサンプラ14は、CTS処理に従って低ノイズ信号を生成する。選択器56は、しかしながら、低ノイズ信号を、第3のステップ(サンプリングステップ)中、出力段54Aの代わりに出力段54Bに印加する。このサンプリングステップ中、スイッチ52は閉じ、出力段54Aは、前のクロックサイクル中にホールドしていた信号を出力(Vout)に与える。同時に、出力段54Bは、出力段54A内の積分器に類似した積分器を使用して、相関トリプルサンプラ14の出力をサンプリングする。サンプリングされた信号は、処理が繰り返され、相関トリプルサンプラ14によって生成される低ノイズ信号が出力段54Aによってサンプリングされる次のクロックサイクルまでホールドされる。
軸ごとのインタフェース回路12Aを使用する、多軸加速度計の特定の実施態様の場合、オンチップボンドパッド及びインタフェース配線がブートされて寄生負荷が低減されると仮定すると、正味電荷再分配は、x軸チャネル及びy軸チャネルの両方において別個に概ね1.8mV/Gを、z軸チャネルにおいて1.2mV/Gをもたらし得る。コモンモードステップは概ね500mVである。差動増幅器15はセンサ4のコモンモードシフトを排除する一方、Aina=50(x−y)及び75(z)の利得によって小さな差動電圧を増幅する。電圧におけるこのシフトは、サンプリングキャパシタ34を通じて電荷を送り、この電荷は、フィードバックキャパシタ46からのフィードバック電荷によって打ち消される。スイッチ50A及び50BはΦ1及びΦ2にそれぞれ反応し、フィードバックキャパシタ46をVref/2及び増幅器17の出力にそれぞれ結合するため、増幅器15の入力と増幅器17の出力との間の総信号チェーン利得Aはしたがって以下の通りである:
A=2×Vref×[(dC/G)/(Ctot)]×Aina×Cs/Cfb
ここでAは利得であり、Vrefは基準電圧であり、dC/Gは、加速度G当たりの静電容量の変化であり、Ctotはセンサの総静電容量であり、Ainaは差動増幅器15の利得であり、Csはサンプリングキャパシタ34の静電容量であり、Cfbはフィードバックキャパシタ44の静電容量である。検知キャパシタ34のフィードバックキャパシタ46に対する比率(Cs/Cfb)が1.1である場合、これは、信号チェーンの出力において概ね100mV/Gの正味の変換比をもたらすことができる。
図4の回路において、容量性インタフェース回路14は、差動増幅器15と、サンプリングキャパシタ34と、出力信号内の1つ又は複数のノイズ成分を低減する相関トリプルサンプリング回路とを備える。図4の例では、相関トリプルサンプリング回路は、スイッチ42、43、36A、36B、及び33によって形成され、これらのスイッチは、サンプリングキャパシタ34によって受信される信号に関して相関トリプルサンプリング処理を実施するために、異なるクロック位相に従って動作する。上述したように、相関トリプルサンプリング回路は、第1のクロック位相Φ1中、サンプリングキャパシタ34の出力を接地に結合し、第1のクロック位相の第1の(リセット)部分Φ1’中、差動増幅器15の第1の入力及び第2の入力を接地に結合し、第1のクロック位相Φ1の第2の部分中、差動増幅器15の第1の入力及び第2の入力を接地から分離し、第2のクロック位相Φ2中、サンプリングキャパシタ34の出力を接地から分離し、第2のクロック位相Φ2中、第1の容量性センサ素子20A及び第2の容量性センサ素子20Bを基準電圧に結合し、第1のクロック位相Φ1中、第1の容量性センサ素子20A及び第2の容量性センサ素子20Bを基準電圧から分離する。
このように、サンプリングキャパシタ34は、第1のクロック位相Φ1の第2の部分及び第2のクロック位相Φ2の両方の間、1つ又は複数のノイズ成分を受け取り、第2のクロック位相Φ2中、複数のノイズ成分のうちの1つの少なくとも一部をブロックして、出力信号内の1つ又は複数のノイズ成分を低減する。特に、ノイズ成分は第1のクロック位相と第2のクロック位相との間で変化しないため、キャパシタ34は、これらのノイズ成分をスイッチ43を介して選択器56に送らない。代わりに、変化しないノイズ成分は、相関トリプルサンプリング処理によって出力信号からフィルタリング除去される。このように、回路14は、ピンポン復調器16に印加される出力信号内のkT/Cノイズ、増幅器オフセット、及びフリッカノイズを低減することができる。相関トリプルサンプリング回路は、差動増幅器が第1のクロック位相Φ1の少なくとも一部において1つ又は複数のノイズ成分を増幅すると共に、第2のクロック位相Φ2中、1つ又は複数のノイズ成分を有するセンサ信号を増幅するように、差動増幅器15への入力を制御する。
図4の例では、相関トリプルサンプリング回路14は、第1のクロック位相Φ1中、サンプリングキャパシタ34の出力を接地に結合すると共に、第2のクロック位相Φ2中、サンプリングキャパシタの出力を接地から分離する第1のスイッチ42と、第1のクロック位相Φ1の第1の部分Φ1’中、増幅器15の第1の入力を接地に結合すると共に、第1のクロック位相Φ1の第2の部分中、増幅器15の第1の入力を接地から分離する第2のスイッチ36Aと、第1のクロック位相Φ1の第1の部分Φ1’中、増幅器15の第2の入力を接地に結合すると共に、第1のクロック位相Φ1の第2の部分中、増幅器の第2の入力を接地から分離する第3のスイッチ36Bと、第2のクロック位相Φ2中、基準電圧を第1の容量性センサ素子20A及び第2の容量性センサ素子20Bに結合すると共に、第1のクロック位相Φ1中、基準電圧を第1の容量性センサ素子及び第2の容量性センサ素子から分離する第4のスイッチ33とを備える。第5のスイッチ43は、キャパシタ34の出力を選択器56に結合する。
図5は、本開示においてインタフェース回路12Bと呼ばれる、インタフェース回路12のうちの1つの、別の例としての実施態様を示す回路図である。インタフェース回路12Aと同様に、図5のインタフェース回路12Bは、トリプル相関サンプラ14及びピンポン復調器16を備える。したがって、インタフェース回路12A及びインタフェース回路12Bは、相関トリプルサンプラ14及びピンポン復調器16に関しては同様に動作する。しかしながら、インタフェース回路12Aに関連付けられる相関トリプルサンプラ14の出力へのアナログフィードバックは、インタフェース回路12Bにおける全体的なアナログフィードバックに取って代わられる。
図5では、インタフェース回路12Bはセンサ4とインタフェースし、このセンサは、検知キャパシタ20A及び20Bと、励起キャパシタ64A及び64B(まとめて「励起キャパシタ64」と呼ばれる)とを備える。検知キャパシタ20のそれぞれは、自身の容量性プレートのうちの、システム接地に接続される一方の容量性プレートと、励起キャパシタ64のうちの対応する1つに結合される他方のプレートとを有する。検知キャパシタ20の容量性プレートのうちの一方を共通電位に保つことは、圧力センサの特性である。したがって、図5のインタフェース回路12Bは、圧力センサアーキテクチャを有するMEMSセンサに特に有用であり得る。
図5に示されている例では、全体的なフィードバックは、差動全体フィードバックをセンサ4内のそれぞれの信号経路に提供する2つのフィードバック経路を含む。図5に示されている上側フィードバック経路は、一方の端部において、励起キャパシタ64A及び検知キャパシタ20Aと共に共有されるノードに結合されるフィードバックキャパシタ60Aを含む。他方の端部において、フィードバックキャパシタ60Aは、スイッチ61Bを介して接地又は基準電位に、スイッチ61Aを介してピンポン復調器16’の出力に結合される。スイッチ61B及び61Aはそれぞれ、タイミング信号Φ2及びΦ1によって制御される。
同様に、図5の下側フィードバック経路はフィードバックキャパシタ60Bを含む。フィードバックキャパシタ60Bは、一方の端部において、励起キャパシタ64B及び検知キャパシタ20Bと共に共有されるノードに結合される。他方の端部において、フィードバックキャパシタ60Bは、スイッチ63Aを介して接地又は基準電位に、スイッチ63Bを介してピンポン復調器16の出力に結合される。スイッチ63A及び63Bはそれぞれ、タイミング信号Φ1及びΦ2によって制御される。スイッチ63A及び63Bの位相整合は、差動フィードバックをシングルエンド測定値から提供するように設定される。
概して、フィードバックキャパシタ60によって提供される全体フィードバックは、インタフェース回路12Bの出力(Vout)を線形化する。インタフェース回路12Bの正味の伝達関数を式1に提供する。ここで、Vdrはキャパシタ64を励起するΦ2の振幅であり、Ccmはキャパシタ64の静電容量であり、Cfbはフィードバックキャパシタ60の静電容量であり、Cs1は検知キャパシタ20Aのキャパシタであり、Cs2は
検知キャパシタ20Bの静電容量である。
Vout=Vdr(Ccm/Cfb)(Cs1−Cs2)[1+2((Ccm+Cfb)/(Cs1−Cs2))]
(1)
式1の[1+2((Ccm+Cfb)/(Cs1−Cs2))]成分は非線形である。非線形成分は、姿勢、運動、落下の検出のような用途では小さい場合がある。したがって、インタフェース回路12Bの帯域幅は、1次積分経路、すなわち、出力段54Aに関連付けられるホールドキャパシタ48及び出力段54Bに関連付けられる対応するホールドキャパシタの静電容量によって設定される。加えて、インタフェース回路12Bの精度は、励起キャパシタ64とフィードバックキャパシタ60との比、及びセンサ4の特性によって設定される。
図6は、本開示においてインタフェース回路12Cと呼ばれる、インタフェース回路12の、さらなる別の例としての実施態様を示す回路図である。インタフェース回路12Bと同様に、インタフェース回路12Cは、センサ4に結合され、トリプル相関サンプラ14を備える。しかしながら、インタフェース回路12Cは、ピンポン復調器16の代わりにピンポン復調器16Bを使用し、ピンポン復調器16Bは、センサ4に差動全体フィードバックとして印加される離散信号を出力する。
図6では、相関トリプルサンプラ14は、既に述べたように動作する。すなわち、相関トリプルサンプラ14は、センサ4’からサンプリングされる低ノイズ信号を出力する。ピンポン復調器16B、より詳細には、出力段54は、低ノイズ信号を既に述べたように処理して、安定した低ノイズ信号を生成し、この信号は量子化器56によって受信される。図6では、量子化器56は、タイミング信号Φ1によってクロック制御され、出力段54のアナログ出力を、振幅Vrefを有する離散パルスのデジタルビットストリームに変換する。量子化器56によって生成されるデジタルビットストリーム、すなわちVoutDiscは、平均して、出力段54によって生成されるアナログ信号を表す。このように、出力段54内の積分器及び量子化器56は、シグマデルタ変換器と同様に動作する。デジタル信号プロセッサ又は他の等価回路部量子化器56は、デジタルビットストリームを平均し、離散パルスの平均として出力信号VoutDiscを生成する。
離散出力VoutDiscは、フィードバックキャパシタ60を通じてセンサ4への全体フィードバックとして印加される。全体フィードバックは、図5のアナログ全体フィードバックと同様に提供される。したがって、正味の伝達関数が以下の式2において提供されるように、フィードバックキャパシタ60によって提供される全体フィードバックはセンサ4の出力を線形化する。ここで、VoutDiscは、キャパシタ64を励起する離散全体フィードバックの振幅であり、Ccmはキャパシタ64の静電容量であり、Cfbはフィードバックキャパシタ60の静電容量であり、Cs1は検知キャパシタ20Aのキャパシタであり、Cs2は検知キャパシタ20Bの静電容量である。
Vout=VoutDisc(Ccm/Cfb)(Cs1−Cs2)[1+2((Ccm+Cfb)/(Cs1−Cs2))]
(2)
図5のインタフェース12Bと同様に、積分器回路12Cの帯域幅は1次積分経路によって設定され、精度は、励起キャパシタ64とフィードバックキャパシタ60との比、及びセンサ4の特性によって設定される。
図7は、ピンポン復調器16の一例の回路図を示す。概して、ピンポン復調器16は、復調器及び出力サンプルホールドバッファの両方としての役割を果たす。既に述べたように、ピンポン復調器16は、2つのインターリーブ出力段、すなわち図4〜図6の出力段54A及び54Bを備える。これらの段のうちの一方(ピン段)は、相関トリプルサンプラ14からの出力をサンプリングし、次のクロックサイクルまでサンプリングされたデータをホールドし、他方の段(ポン段)は相関トリプルサンプラ14の既にサンプリングされた出力を出力に与える。ポン段は、信号が落ち着いた後、前のクロックサイクル中にサンプリングされた信号を出力に与える。このように、ピンポン復調器16は、出力におけるクロック過渡現象を実質的に低減する。
図7において、ピンポン復調器16をより詳細に示す。すなわち、出力段54A、54Bを実現するために使用することができる、例としての構成要素を示す。図7に関しては、相関トリプルサンプラ14からの出力は、サンプリングキャパシタ34の一方の側に印加され、一方、サンプリングキャパシタの他方の側は、基準電圧と選択器56の入力との間でそれぞれスイッチ42及び43によって切り替えられる。基準電圧は、既に述べたように、Vref/2に等価とすることができ、図7では電流源122及びトランジスタ120によって提供される。タイミング信号Φ1及びΦ2の位相整合は、Φ2中、サンプリングキャパシタ34上にサンプリングされる信号から、kT/Cノイズ、増幅器オフセット、及びフリッカノイズを除去する。
Φ2が高いとき、スイッチ43は閉じ、サンプリングキャパシタ34上でホールドされている低ノイズ信号を選択器56に印加する。図7に示されているように、選択器56は、タイミング信号Iの制御下で自身の入力における信号を出力ノード57のうちの一方に印加するマルチプレクサ110とすることができる。たとえば、Iが高いとき、マルチプレクサ110は、自身の入力における低ノイズ信号を、出力段54Aに結合される出力ノード57Aに印加することができる。しかしながら、Iが低いとき、マルチプレクサ110は、自身の出力における低ノイズ信号を、出力段54Bに結合される出力ノード57Bに印加する。タイミング信号Iの位相整合によって、マルチプレクサ110は、マスタクロック信号のクロックサイクルごとにサンプリングキャパシタ34上でホールドされている低ノイズ信号を出力段54A及び54Bに交互に印加するようになる。
出力段54のそれぞれはサンプルホールド(S/H)回路を備える。図7では、出力段54AのS/H回路は、トランジスタ117とホールドキャパシタ48とを備え、出力段54BのS/H回路は、トランジスタ119とホールドキャパシタ118とを備える。この構成によって、出力上のレールツーレールスイングが可能になる。トランジスタ117及び119並びにホールドキャパシタ48及び118は良好に整合されるべきである。トランジスタ117のゲート及びソースはそれぞれ、出力ノード57A及び電流源126に結合される。同様に、トランジスタ119のゲート及びソースは、出力ノード57B及び電流源128に結合される。トランジスタ117及び119のドレインは、出力キャパシタ124の一方の側に結合される。キャパシタ124の他方の側は、ピンポン復調器16’の出力に結合される。
出力段54A、54Bによって生成される信号はそれぞれ、マルチプレクサ112及び114に結合され、これらのマルチプレクサはそれぞれ、タイミング信号Φ3及びΦ3’によって制御される。マルチプレクサ112及び114は、自身の入力における信号のうちの1つを自身の出力に選択的に印加する。Φ3が高く且つΦ3’が低いとき、たとえば、マルチプレクサ110は、サンプリングキャパシタ34上の信号を出力段54Aに印加することができる。したがって、出力段54A内のトランジスタ117及びホールドキャパシタ48は、積分器として動作してこの信号をホールドする。同時に、マルチプレクサ112は、出力段54Bによって生成される信号をフィードバックとしてフィードバックキャパシタ46を通じて印加する。また、同時に、マルチプレクサ114は、出力段54Bによって生成される信号をピンポン復調器16の出力にVoutとして印加する。既に述べたように、出力段54Bによって生成される信号は、この時点では、前のクロックサイクル中にサンプリングキャパシタ34上にサンプリングされた信号に基づいている。信号が前のクロックサイクル中にサンプリングされたとき、信号は、信号経路における速いダイナミクスに起因する過渡現象(グリッチ)を含んでいた。この信号が、次のクロックサイクルにおいてマルチプレクサ114によってピンポン復調器16の出力に印加されるときには、過渡現象は落ち着いており、それによってピンポン復調器16の出力において安定した低ノイズ信号が生成される。Φ3が低く且つΦ3’が高いとき、出力段54Aはアクティブになる。特に、マルチプレクサ110は、キャパシタ34の出力を出力段54Bに印加し、マルチプレクサ112は、出力段54Aによって生成される信号をフィードバック信号として印加し、マルチプレクサ114は、出力段54Aによって生成される信号をピンポン復調器16の出力にVoutとして印加する。
図8は、インタフェース回路のタイミング信号又は波形を示す。タイミング波形Φ1 130、Φ1’ 132、Φ2 134は、信号チェーンからkT/Cノイズを除去するための3ステップCTS処理を駆動する。タイミング波形Φ3 136及びΦ3’ 138は、ピンポン復調器16の動作を制御する。タイミング波形Φ1 130、Φ1’ 132、並びにΦ2 134、Φ3 136、及びΦ3’ 138の位相整合は、本開示において記載されるインタフェース回路の適切な動作に重要である。しかしながら、図8に示されている正確なタイミングそのものは、説明の目的のために提示され、限定するものとしてみなされるべきではない。
図8は、タイミング波形Φ1’ 132及びタイミング波形130が同時に上昇するが、Φ1’ 132が高い時間間隔がΦ1 130が高い時間間隔より短いことを示している。加えて、図8は、タイミング波形Φ1 130が低下するのと同時にΦ2 134が上昇することを示している。
タイミング波形Φ3 136及びΦ3’ 138に関して、図8は、これらの波形のそれぞれが、長さがタイミング波形Φ2 134の期間の2倍である期間を有することを示している。特に、タイミング波形Φ3136及びΦ3’ 138が高い間隔は、タイミング波形Φ2が高い間隔と一致する。しかしながら、タイミング波形Φ3 136及びΦ3’ 138が高い間隔は、タイミング波形Φ2 134の1つおきの間隔に一致する。
図9は、相関トリプルサンプラ14内の差動増幅器15の一例の回路図を示す。概して、差動増幅器15は、安定した利得特性、良好な線形性、たとえば、2%未満の積分非線形性(INL)+/−20mV、及び広いコモンモード範囲を有する低電力計装用増幅器とすることができる。図9の例では、差動増幅器15は、電界効果トランジスタ(FET)140A、140B、142A、142B、160、161、162、163、164及び165と、定電流源152、154、156、及び158と、抵抗器144と、出力ノード146において結合される抵抗器150A及び150Bとを備える。FET140A、140Bのゲートは、バイアス電圧Vbを受け取る。電流源152、154はバイアス電流Ib1を生成し、電流源156、158はバイアス電流Iboを生成する。FET140A、140Bのゲートは、センサから、たとえば可変キャパシタ20A、20Bから差動入力信号を受け取る。抵抗器144はFET140A、140Bのソースにわたって且つFET160、161のドレインにわたって結合される。フロントエンドの電界効果トランジスタ(FET)142A及び142Bを通じる電流は、ミラーサーボループ(mirror servo loop)によって一定に保たれる。ミラーサーボループによって、入力FET140A及び140Bのゲートにおいて受け取られる差動電圧が、ソース抵抗器144の両端において低下する。上側電流、すなわち、電流源152及び154によって生成される電流は、FET162、163、164、165を介して出力抵抗器タップ146にミラーされる。特に、FET162のゲートは電流源154に結合され、FET163のゲートはFET160のゲートに結合される。差動増幅器15は抵抗器比Ro/Riによって設定される利得を有し、ここでRoは、抵抗器150A及び150Bのそれぞれの抵抗であり、Riは、ソース抵抗器144の抵抗である。この利得は、複数のプロセスコーナにわたって安定し得る。さらに、基準(Vref)を一連の抵抗器の最上の抵抗器、すなわち、抵抗器150Aに供給することによって、出力のための任意のバイアス点Vout_senseを設定することができる。たとえば、1.2Vの基準電圧は、0.6Vを中心としたセンサをもたらすことができる。差動増幅器15の他の特徴は、センサのダイナミックレンジ、たとえば、+/−20mVにわたる改善された線形性と、0V〜概ね1.2Vのような広いコモンモード範囲と、ゲート電圧をサーボ追跡する(servo track)低インピーダンスソースを通じるパッド及び他の重要な信号線をブートする固有の能力とを含むことができる。
本開示において記載するセンサデバイス、並びに関連付けられる回路部、デバイス、システム及び方法は様々な用途において有用であり得る、たとえば、本発明は、心不整脈、心細動、慢性疼痛、震え、パーキンソン病、癲癇、尿失禁若しくは便失禁、性機能障害、肥満、又は胃不全麻痺のような様々な症状又は疾患のための電気的刺激又は薬剤送達治療に関連する検知をサポートするために適用することができ、患者の心臓、脳、脊髄、骨盤神経、末梢神経、又は消化管のような様々な組織部位に対する電気的刺激又は薬剤送達に適用することができる。
センサデバイス2は、カーディオバータ/ディフィブリレータ、脊髄刺激器、骨盤神経刺激器、深部脳刺激器、胃腸刺激器、末梢神経刺激器、又は筋肉刺激器のような外部医療デバイス又は埋め込み可能医療デバイスに、一体化、格納、結合、又は他の様態で関連付けることができる。センサデバイス2はまた、埋め込み可能デバイス又は外部薬剤送達デバイスと共に使用することができる。たとえば、センサデバイス2は、埋め込み可能医療デバイスハウジング又はこのようなデバイスに結合されるリード線若しくはカテーテル内に存在することができる。センサデバイス2は、心刺激、深部脳刺激(DBS)、脊髄電気刺激(SCS)、骨盤痛、失禁、若しくは性機能障害のための骨盤刺激、胃不全麻痺、肥満若しくは他の病気のための胃刺激、又は疼痛管理のための末梢神経刺激のような異なる治療用途と共に使用することができる。刺激はまた、筋肉運動を促すか又は萎縮を防止するために、筋肉刺激、たとえば、機能的電気刺激(FES)にも使用することができる。
センサデバイス2及びセンサインタフェース6の図示されている構成要素は、相補型金属酸化膜半導体(CMOS)、バイポーラ接合トランジスタ(BJT)、バイポーラCMOS(BiCMOS)、シリコンゲルマニウム(SiGe)、ガリウムヒ素(GaAs)等のような様々なIC処理技術を含む、様々な異なる製造技法のうちの任意の製造技法によって実現することができる。加えて、センサデバイス2の動作は、1つ若しくは複数のDSP、マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、又は任意の他の等価な集積回路部若しくはディスクリート回路部、及びこれらの構成要素の組み合わせによって実現される追加の構成要素又は機能によって部分的に実施することができるか、又は支援することができる。

Claims (38)

  1. 回路であって、
    差動センサ信号を増幅する手段であって、出力信号を生成する、増幅する手段と、
    前記出力信号を記憶するサンプリングキャパシタと、
    相関トリプルサンプリング処理を適用する手段であって、前記出力信号内の1つ又は複数のノイズ成分を低減する、適用する手段と、
    を備える、回路。
  2. 前記増幅する手段は、前記差動センサ信号を増幅して前記出力信号を生成する差動増幅器を含み、前記相関トリプルサンプリング処理を適用する手段は、前記出力信号内の前記1つ又は複数のノイズ成分を低減する相関トリプルサンプリング回路を含む、請求項1に記載の回路。
  3. 前記差動増幅器は、第1の容量性センサ素子に結合される第1の入力と、第2の容量性センサ素子に結合される第2の入力と、前記サンプリングキャパシタの入力に結合される出力とを備える、請求項2に記載の回路。
  4. 前記相関トリプルサンプリング回路は、第1のクロック位相中、前記サンプリングキャパシタの出力を接地に結合し、前記第1のクロック位相の第1の部分中、前記第1の入力及び前記第2の入力を接地に結合し、前記第1のクロック位相の第2の部分中、前記第1の入力及び前記第2の入力を接地から分離し、第2のクロック位相中、前記サンプリングキャパシタの前記出力を接地から分離し、前記第2のクロック位相中、前記第1の容量性センサ素子及び前記第2の容量性センサ素子を基準電圧に結合し、前記第1のクロック位相中、前記第1の容量性センサ素子及び前記第2の容量性センサ素子を前記基準電圧から分離する、請求項3に記載の回路。
  5. 前記サンプリングキャパシタは、前記第1のクロック位相の前記第2の部分及び前記第2のクロック位相の両方の間、前記1つ又は複数のノイズ成分を受け取り、前記第2のクロック位相中、複数のノイズ成分のうちの前記1つの少なくとも一部をブロックして、前記出力信号内の前記1つ又は複数のノイズ成分を低減する、請求項4に記載の回路。
  6. 前記1つ又は複数のノイズ成分はkT/Cノイズを含む、請求項5に記載の回路。
  7. 前記1つ又は複数のノイズ成分は、kT/Cノイズ、増幅器オフセット、及びフリッカノイズのうちの少なくとも1つを含む、請求項5に記載の回路。
  8. 前記差動増幅器は、第1の容量性センサ素子に結合される第1の入力と、第2の容量性センサ素子に結合される第2の入力と、出力とを備え、
    前記サンプリングキャパシタは、前記差動増幅器の前記出力に結合される入力を有し、前記出力信号を受け取り、
    前記相関トリプルサンプリング回路は、
    前記第1のクロック位相中、前記サンプリングキャパシタの出力を接地に結合すると共に、前記第2のクロック位相中、前記サンプリングキャパシタの前記出力を接地から分離する第1のスイッチと、
    前記第1のクロック位相の前記第1の部分中、前記増幅器の前記第1の入力を接地に結合すると共に、前記第1のクロック位相の第2の部分中、前記増幅器の前記第1の入力を接地から分離する第2のスイッチと、
    前記第1のクロック位相の前記第1の部分中、前記増幅器の前記第2の入力を接地に結合すると共に、前記第1のクロック位相の前記第2の部分中、前記増幅器の前記第2の入力を接地から分離する第3のスイッチと、
    前記第2のクロック位相中、基準電圧を前記第1の容量性センサ素子及び前記第2の容量性センサ素子に結合すると共に、前記第1のクロック位相中、前記基準電圧を前記第1の容量性センサ素子及び前記第2の容量性センサ素子から分離する第4のスイッチと、
    を備える、請求項2に記載の回路。
  9. 前記相関トリプルサンプリング回路は、前記差動増幅器への入力を制御し、それによって、前記差動増幅器は第1のクロック位相の少なくとも一部において前記1つ又は複数のノイズ成分を増幅し、第2のクロック位相中、前記1つ又は複数のノイズ成分を有する前記センサ信号を増幅する、請求項2に記載の回路。
  10. 前記サンプリングキャパシタは、前記第1のクロック位相の少なくとも一部において前記差動増幅器からの前記1つ又は複数の増幅ノイズ成分を記憶し、前記第2のクロック位相中、前記差動増幅器から、前記1つ又は複数の増幅ノイズ成分を有する前記増幅センサ信号を受け取り、該1つ又は複数の増幅ノイズ信号をブロックして、前記出力信号内の前記1つ又は複数のノイズ成分を低減する、請求項9に記載の回路。
  11. 前記差動増幅器は、1対の容量性センサ素子から前記センサ信号を受け取り、前記センサ素子のそれぞれは、前記増幅器の入力に結合される第1のキャパシタプレートと、基準電圧に結合される第2のキャパシタプレートとを有する、請求項2に記載の回路。
  12. 前記差動増幅器は、1対の容量性センサ素子から前記センサ信号を受け取り、前記センサ素子のそれぞれは、前記増幅器の入力に結合される第1のキャパシタプレートと、接地に結合される第2のキャパシタプレートとを有する、請求項2に記載の回路。
  13. 第1の出力段及び第2の出力段において交互に前記サンプリングキャパシタの出力をサンプルホールドするピンポン復調器をさらに備える、請求項1に記載の回路。
  14. 前記出力段のそれぞれは、少なくとも幾つかの望ましくない過渡現象が落ち着くのを可能にするのに十分な時間にわたって前記サンプリングキャパシタの前記出力をホールドする、請求項13に記載の回路。
  15. 前記ピンポン復調器の出力と該ピンポン復調器への入力との間のフィードバック経路をさらに備える、請求項13に記載の回路。
  16. 前記回路は、第1の差動フィードバック経路及び第2の差動フィードバック経路をさらに備え、該第1の差動フィードバック経路は、前記ピンポン復調器の出力と前記差動増幅器の第1の入力との間に結合され、該第2の差動フィードバック経路は、前記ピンポン復調器の出力と前記差動増幅器の第2の入力との間に結合される、請求項13に記載の回路。
  17. 前記相関トリプルサンプリング回路は、実質的に500Hz未満のクロックレートにおいて動作する、請求項2に記載の回路。
  18. 前記相関トリプルサンプリング回路は、実質的に300Hz未満のクロックレートにおいて動作する、請求項2に記載の回路。
  19. 前記回路は実質的に2マイクロアンペア未満の電流を消費する、請求項2に記載の回路。
  20. 前記回路は実質的に1マイクロアンペア未満の電流を消費する、請求項2に記載の回路。
  21. 前記回路は埋め込み可能医療デバイス内に格納される、請求項2に記載の回路。
  22. センサデバイスであって、センサと、請求項1〜21のいずれか一項に記載の回路とを備え、前記センサは前記センサ信号を生成する、センサデバイス。
  23. 差動センサ信号を増幅することであって、出力信号を生成する、増幅すること、
    サンプリングキャパシタ上に前記出力信号を記憶すること、及び
    相関トリプルサンプリング処理を適用することであって、前記出力信号内の1つ又は複数のノイズ成分を低減する、適用すること、
    を含む、方法。
  24. 前記差動増幅器は、第1の容量性センサ素子に結合される第1の入力と、第2の容量性センサ素子に結合される第2の入力と、前記サンプリングキャパシタの入力に結合される出力とを備える、請求項23に記載の方法。
  25. 前記相関トリプルサンプリング回路は、第1のクロック位相中、前記サンプリングキャパシタの出力を結合し、前記第1のクロック位相の第1の部分中、前記第1の入力及び前記第2の入力を接地に結合し、前記第1のクロック位相の第2の部分中、前記第1の入力及び前記第2の入力を接地から分離し、第2のクロック位相中、前記サンプリングキャパシタの前記出力を接地から分離し、前記第2のクロック位相中、前記第1の容量性センサ素子及び前記第2の容量性センサ素子を基準電圧に結合し、前記第1のクロック位相中、前記第1の容量性センサ素子及び前記第2の容量性センサ素子を前記基準電圧から分離する、請求項24に記載の方法。
  26. 前記第1のクロック位相の前記第2の部分及び前記第2のクロック位相の両方の間、前記サンプリングキャパシタにおいて前記1つ又は複数のノイズ成分を受け取ること、並びに前記第2のクロック位相中、前記サンプリングキャパシタを介して複数のノイズ成分のうちの1つの少なくとも一部をブロックすることであって、前記出力信号内の前記1つ又は複数のノイズ成分を低減する、ブロックすることをさらに含む、請求項25に記載の方法。
  27. 前記1つ又は複数のノイズ成分は、kT/Cノイズ、増幅器オフセット、及びフリッカノイズのうちの少なくとも1つを含む、請求項26に記載の方法。
  28. 前記差動増幅器は、第1の容量性センサ素子に結合される第1の入力と、第2の容量性センサ素子に結合される第2の入力と、出力とを備え、
    前記サンプリングキャパシタは、前記差動増幅器の前記出力に結合される入力を有し、前記出力信号を受け取り、
    前記相関トリプルサンプリング処理は、
    前記第1のクロック位相中、前記サンプリングキャパシタの出力を接地に結合すると共に、前記第2のクロック位相中、前記サンプリングキャパシタの前記出力を接地から分離すること、
    前記第1のクロック位相の前記第1の部分中、前記増幅器の前記第1の入力を接地に結合すると共に、前記第1のクロック位相の第2の部分中、前記増幅器の前記第1の入力を接地から分離すること、
    前記第1のクロック位相の前記第1の部分中、前記増幅器の前記第2の入力を接地に結合すると共に、前記第1のクロック位相の前記第2の部分中、前記増幅器の前記第2の入力を接地から分離すること、及び
    前記第2のクロック位相中、基準電圧を前記第1の容量性センサ素子及び前記第2の容量性センサ素子に結合すると共に、前記第1のクロック位相中、前記基準電圧を前記第1の容量性センサ素子及び前記第2の容量性センサ素子から分離すること、
    を含む、請求項23に記載の方法。
  29. 前記相関トリプルサンプリング処理は、前記差動増幅器への入力を制御することであって、それによって、前記差動増幅器が第1のクロック位相の少なくとも一部において前記1つ又は複数のノイズ成分を増幅し、第2のクロック位相中、前記1つ又は複数のノイズ成分を有する前記センサ信号を増幅する、制御することを含む、請求項23に記載の方法。
  30. 前記第1のクロック位相の少なくとも一部において、前記サンプリングキャパシタ内に前記差動増幅器からの前記1つ又は複数の増幅ノイズ成分を記憶すること、前記第2のクロック位相中、前記サンプリングキャパシタにおいて、前記差動増幅器から、前記1つ又は複数の増幅ノイズ成分を有する前記増幅センサ信号を受け取ること、及び前記サンプリングキャパシタを介して前記1つ又は複数の増幅ノイズ信号をブロックすることであって、前記出力信号内の前記1つ又は複数のノイズ成分を低減する、ブロックすることをさらに含む、請求項29に記載の方法。
  31. 1対の容量性センサ素子から前記センサ信号を受け取ることをさらに含み、該容量性センサ素子のそれぞれは、前記増幅器の入力に結合される第1のキャパシタプレートと、基準電圧に結合される第2のキャパシタプレートとを有する、請求項23に記載の方法。
  32. 1対の容量性センサ素子から前記センサ信号を受け取ることをさらに含み、該容量性センサ素子のそれぞれは、前記増幅器の入力に結合される第1のキャパシタプレートと、接地に結合される第2のキャパシタプレートとを有する、請求項23に記載の方法。
  33. ピンポン復調器の第1の出力段及び第2の出力段において交互に前記サンプリングキャパシタの出力をサンプルホールドすることをさらに含み、前記出力段のそれぞれは、少なくとも幾つかの望ましくない過渡現象が落ち着くのを可能にするのに十分な時間にわたって前記サンプリングキャパシタの前記出力をホールドする、請求項23に記載の方法。
  34. 前記ピンポン復調器の出力から該ピンポン復調器への入力にフィードバック信号を印加することをさらに含む、請求項33に記載の方法。
  35. 前記ピンポン復調器の出力と前記差動増幅器の第1の入力との間に結合される第1の差動フィードバック経路、及び前記ピンポン復調器の出力と前記差動増幅器の第2の入力との間に結合される第2の差動フィードバック経路を介してフィードバック信号を印加することをさらに含む、請求項33に記載の方法。
  36. 前記相関トリプルサンプリング処理を、実質的に500Hz未満のクロックレートにおいて動作させることをさらに含む、請求項37に記載の方法。
  37. 前記相関トリプルサンプリング処理を、実質的に500Hz未満のクロックレートにおいて動作させることをさらに含む、請求項37に記載の方法。
  38. 前記差動増幅器及び前記サンプリングキャパシタは、埋め込み可能医療デバイス内に格納される、請求項37に記載の方法。
JP2009530331A 2006-09-28 2007-04-24 低電力センサシステム用の容量性インタフェース回路 Expired - Fee Related JP5048070B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US84774806P 2006-09-28 2006-09-28
US60/847,748 2006-09-28
PCT/US2007/009851 WO2008042015A2 (en) 2006-09-28 2007-04-24 Capacitive interface circuit for low power sensor system

Publications (2)

Publication Number Publication Date
JP2010505335A true JP2010505335A (ja) 2010-02-18
JP5048070B2 JP5048070B2 (ja) 2012-10-17

Family

ID=39268931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009530331A Expired - Fee Related JP5048070B2 (ja) 2006-09-28 2007-04-24 低電力センサシステム用の容量性インタフェース回路

Country Status (9)

Country Link
US (2) US8000789B2 (ja)
EP (2) EP2074381B1 (ja)
JP (1) JP5048070B2 (ja)
CN (1) CN101568805B (ja)
AT (1) ATE467821T1 (ja)
AU (1) AU2007302788B2 (ja)
CA (1) CA2664862C (ja)
DE (1) DE602007006528D1 (ja)
WO (1) WO2008042015A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112792A (ko) * 2012-04-04 2013-10-14 페어차일드 세미컨덕터 코포레이션 병합된 미세 전자기계 가속도계 센서에 대한 초핑을 이용하는 노이즈 감소 방법
KR101839660B1 (ko) 2013-03-15 2018-03-16 셈테크 코포레이션 반도체 소자 및 시그마-델타 루프 mems 획득
US10116275B2 (en) 2016-07-15 2018-10-30 Seiko Epson Corporation Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and vehicle

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396565B2 (en) 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
US8253425B2 (en) * 2007-05-08 2012-08-28 Synaptics Incorporated Production testing of a capacitive touch sensing device
GB0709893D0 (en) * 2007-05-23 2007-07-04 Onzo Ltd Apparatus for monitoring rescue consumption
US7786738B2 (en) * 2007-09-19 2010-08-31 Robert Bosch Gmbh Cancelling low frequency errors in MEMS systems
EP2214555B1 (en) * 2007-11-28 2020-01-15 The Regents of The University of California Non-contact biopotential sensing method
GB0724339D0 (en) * 2007-12-14 2008-01-23 Rolls Royce Plc A sensor arrangement
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8688225B2 (en) 2008-07-11 2014-04-01 Medtronic, Inc. Posture state detection using selectable system control parameters
US8504150B2 (en) 2008-07-11 2013-08-06 Medtronic, Inc. Associating therapy adjustments with posture states using a stability timer
US8583252B2 (en) * 2008-07-11 2013-11-12 Medtronic, Inc. Patient interaction with posture-responsive therapy
US9440084B2 (en) 2008-07-11 2016-09-13 Medtronic, Inc. Programming posture responsive therapy
US8231556B2 (en) 2008-07-11 2012-07-31 Medtronic, Inc. Obtaining baseline patient information
US8515549B2 (en) 2008-07-11 2013-08-20 Medtronic, Inc. Associating therapy adjustments with intended patient posture states
US8708934B2 (en) 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US8751011B2 (en) 2008-07-11 2014-06-10 Medtronic, Inc. Defining therapy parameter values for posture states
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US20100019780A1 (en) * 2008-07-24 2010-01-28 Mihai Bulea Multi-axis capacitive sensor
US8280517B2 (en) 2008-09-19 2012-10-02 Medtronic, Inc. Automatic validation techniques for validating operation of medical devices
WO2010047621A2 (en) 2008-10-22 2010-04-29 Rosemount Inc. Sensor/transmitter plug-and-play for process instrumentation
GB2466776A (en) * 2008-12-30 2010-07-07 Wolfson Microelectronics Plc Bootstrapping to reduce the effect of bond pad parasitic capacitance in a MEMS microphone circuit
US8125231B2 (en) * 2009-01-28 2012-02-28 Freescale Semiconductor, Inc. Capacitance-to-voltage interface circuit, and related operating methods
JP5441027B2 (ja) * 2009-02-10 2014-03-12 旭化成エレクトロニクス株式会社 静電容量型加速度センサの検査方法及びその検査装置
US8179121B2 (en) * 2009-03-30 2012-05-15 Pcb Piezotronics, Inc. Bridge sensor with collocated electronics and two-wire interface
WO2010123907A1 (en) * 2009-04-24 2010-10-28 Medtronic, Inc. Bladder sensing using impedance and posture
US9327070B2 (en) 2009-04-30 2016-05-03 Medtronic, Inc. Medical device therapy based on posture and timing
US8231555B2 (en) 2009-04-30 2012-07-31 Medtronic, Inc. Therapy system including multiple posture sensors
US8175720B2 (en) 2009-04-30 2012-05-08 Medtronic, Inc. Posture-responsive therapy control based on patient input
DE102009036003A1 (de) * 2009-07-30 2011-02-03 Siemens Aktiengesellschaft Integrator und Leistungsschalter mit Integrator
ITTO20090616A1 (it) * 2009-08-05 2011-02-06 St Microelectronics Srl Procedimento di fabbricazione di dispositivi mems dotati di cavita' sepolte e dispositivo mems cosi' ottenuto
US8629795B2 (en) * 2009-09-09 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Micro-electro-mechanical systems (MEMS), systems, and operating methods thereof
US8610474B2 (en) * 2009-10-15 2013-12-17 Rambus Inc. Signal distribution networks and related methods
US8330502B2 (en) * 2009-11-25 2012-12-11 Freescale Semiconductor, Inc. Systems and methods for detecting interference in an integrated circuit
US9149210B2 (en) 2010-01-08 2015-10-06 Medtronic, Inc. Automated calibration of posture state classification for a medical device
US8579834B2 (en) 2010-01-08 2013-11-12 Medtronic, Inc. Display of detected patient posture state
US9956418B2 (en) 2010-01-08 2018-05-01 Medtronic, Inc. Graphical manipulation of posture zones for posture-responsive therapy
US9357949B2 (en) 2010-01-08 2016-06-07 Medtronic, Inc. User interface that displays medical therapy and posture data
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
US9360501B2 (en) * 2010-06-01 2016-06-07 The Regents Of The University Of California Integrated electric field sensor
US9089267B2 (en) 2010-06-18 2015-07-28 Cardiac Pacemakers, Inc. Methods and apparatus for adjusting neurostimulation intensity using evoked responses
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
DE102010035276B4 (de) * 2010-08-24 2012-08-02 Austriamicrosystems Ag Verfahren zur Offsetkompensation eines Switched Capacitor-Verstärkers und Switched Capacitor-Verstärkeranordnung
CN103221331B (zh) 2010-09-18 2016-02-03 快捷半导体公司 用于微机电***的密封封装
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
KR101443730B1 (ko) 2010-09-18 2014-09-23 페어차일드 세미컨덕터 코포레이션 미세기계화 다이, 및 직교 오차가 작은 서스펜션을 제조하는 방법
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
US9455354B2 (en) 2010-09-18 2016-09-27 Fairchild Semiconductor Corporation Micromachined 3-axis accelerometer with a single proof-mass
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
TWI457000B (zh) * 2010-10-05 2014-10-11 Aten Int Co Ltd 訊號延伸器系統及其訊號延伸器以及其傳送與接收模組
US8947081B2 (en) 2011-01-11 2015-02-03 Invensense, Inc. Micromachined resonant magnetic field sensors
US8860409B2 (en) * 2011-01-11 2014-10-14 Invensense, Inc. Micromachined resonant magnetic field sensors
CN106249954A (zh) 2011-02-25 2016-12-21 高通股份有限公司 电容式触摸感测构架
US9086439B2 (en) 2011-02-25 2015-07-21 Maxim Integrated Products, Inc. Circuits, devices and methods having pipelined capacitance sensing
US8860432B2 (en) 2011-02-25 2014-10-14 Maxim Integrated Products, Inc. Background noise measurement and frequency selection in touch panel sensor systems
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
US8725239B2 (en) 2011-04-25 2014-05-13 Cyberonics, Inc. Identifying seizures using heart rate decrease
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
FR2977319B1 (fr) * 2011-07-01 2014-03-14 Commissariat Energie Atomique Dispositif de mesure de pression a sensiblite optimisee
US9635460B2 (en) * 2011-08-18 2017-04-25 Knowles Electronics, Llc Sensitivity adjustment apparatus and method for MEMS devices
US8854062B2 (en) * 2011-08-29 2014-10-07 Robert Bosch Gmbh Readout circuit for self-balancing capacitor bridge
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
EP2591720B1 (en) 2011-11-08 2016-04-06 Imec Biomedical acquisition system with motion artifact reduction
BR112014015644A8 (pt) * 2011-12-21 2017-07-04 Intel Corp circuito silenciador de baixa potência
US9791494B2 (en) * 2012-01-20 2017-10-17 Lear Corporation Apparatus and method for diagnostics of a capacitive sensor
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9488693B2 (en) * 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
KR102034604B1 (ko) * 2012-04-04 2019-10-21 페어차일드 세미컨덕터 코포레이션 Asic 집적 캐패시터를 구비한 미소 기전 시스템 가속도계의 자가 테스트
EP2648334B1 (en) 2012-04-05 2020-06-10 Fairchild Semiconductor Corporation Mems device front-end charge amplifier
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
US9907959B2 (en) 2012-04-12 2018-03-06 Medtronic, Inc. Velocity detection for posture-responsive therapy
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9681836B2 (en) 2012-04-23 2017-06-20 Cyberonics, Inc. Methods, systems and apparatuses for detecting seizure and non-seizure states
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
US9737719B2 (en) 2012-04-26 2017-08-22 Medtronic, Inc. Adjustment of therapy based on acceleration
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
RU2523122C1 (ru) * 2012-12-07 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Быстродействующий датчик физических величин с потенциальным выходом
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
US9798390B2 (en) * 2013-07-19 2017-10-24 Cm Hk Limited Electronic device and method of motion processing
US9697831B2 (en) * 2013-06-26 2017-07-04 Cirrus Logic, Inc. Speech recognition
DE102013212588B4 (de) * 2013-06-28 2023-10-12 Robert Bosch Gmbh Verfahren zur Fremdobjekterkennung bei einer Induktionsladevorrichtung
CN103308721B (zh) * 2013-07-04 2015-01-21 中国科学院地质与地球物理研究所 一种惯性检测元件的电容读出电路
CN104698871B (zh) * 2013-12-04 2017-12-19 无锡华润上华科技有限公司 一种传感器控制电路和电子装置
JP6411795B2 (ja) * 2014-02-13 2018-10-24 ソニーセミコンダクタソリューションズ株式会社 信号処理装置および方法、撮像素子、並びに、撮像装置
DE112015000345T5 (de) * 2014-03-14 2016-09-22 Robert Bosch Gmbh Integrierter Selbsttest für elektromechanische kapazitive Sensoren
US9645029B2 (en) * 2014-04-07 2017-05-09 Infineon Technology Ag Force feedback loop for pressure sensors
US9921249B2 (en) * 2014-04-30 2018-03-20 Infineon Technologies Ag Systems and methods for high voltage bridge bias generation and low voltage readout circuitry
EP2975501B1 (en) * 2014-07-18 2023-08-02 Semtech Corporation A measuring circuit and measuring method for a capacitive touch-sensitive panel
FI127101B (en) * 2014-10-13 2017-11-15 Murata Manufacturing Co Capacitive microelectromechanical sensor with self-test capability
DE102014224222A1 (de) * 2014-11-27 2016-01-07 Carl Zeiss Smt Gmbh Kapazitiver Messsensor und Positions-Messeinrichtung zur Ermittlung einer Position eines Messobjekts sowie Positioniervorrichtung mit einem derartigen Messsensor
US10317250B2 (en) * 2015-01-16 2019-06-11 Ion Geophysical Corporation Direct coupling of a capacitive sensor to a delta-sigma converter
US9522276B2 (en) 2015-01-22 2016-12-20 Medtronic, Inc. Accelerometer integrity alert
US9750943B2 (en) 2015-02-26 2017-09-05 Medtronic, Inc. Monitoring of pacing capture using acceleration
US9645633B2 (en) 2015-03-31 2017-05-09 Synaptics Incorporated Single receiver superdoze mode
CN107667275B (zh) * 2015-05-29 2020-04-14 德纳汽车***集团有限责任公司 用于感测锁定齿轮组的致动器组件位置的设备
CN106249970B (zh) * 2015-06-05 2020-11-27 恩智浦美国有限公司 具有噪声抑制的电容传感器
US10060172B2 (en) * 2015-08-21 2018-08-28 Magna Closures Inc. Variable resistance conductive rubber sensor and method of detecting an object/human touch therewith
US9639226B2 (en) * 2015-08-31 2017-05-02 Cypress Semiconductor Corporation Differential sigma-delta capacitance sensing devices and methods
CN105119601B (zh) * 2015-09-02 2018-08-03 北京兆易创新科技股份有限公司 一种适合于高速高精度模数转换器的多通道选择电路
US10197526B2 (en) * 2015-09-03 2019-02-05 Honeywell International Inc. FET and fiber based sensor
EP3141911B1 (en) * 2015-09-08 2021-03-24 Hioki Denki Kabushiki Kaisha Voltage detecting probe and measuring device
CN106558507B (zh) * 2015-09-23 2019-04-26 中芯国际集成电路制造(北京)有限公司 测试结构及其形成方法、测试方法
JP6503275B2 (ja) 2015-10-09 2019-04-17 株式会社ジャパンディスプレイ センサ及びセンサ付き表示装置
AU2016374372B2 (en) * 2015-12-18 2019-12-19 Omicron Electronics Gmbh Mobile transformer test device and method for testing a power transformer
US10168194B2 (en) * 2015-12-24 2019-01-01 Analog Devices, Inc. Method and apparatus for driving a multi-oscillator system
US10578461B2 (en) * 2016-01-06 2020-03-03 Disuptive Technologies Research AS Capacitive sensor readout circuit
TWI557529B (zh) * 2016-01-12 2016-11-11 新唐科技股份有限公司 參考電壓電路
FR3050037B1 (fr) * 2016-04-12 2018-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme et procede de test d'un circuit integre
US10406368B2 (en) 2016-04-19 2019-09-10 Boston Scientific Neuromodulation Corporation Pulse generator system for promoting desynchronized firing of recruited neural populations
US10153740B2 (en) * 2016-07-11 2018-12-11 Knowles Electronics, Llc Split signal differential MEMS microphone
DE102017001849A1 (de) * 2017-02-25 2018-08-30 Man Truck & Bus Ag Technik zur Isolationsüberwachung in Fahrzeugen
US10162467B2 (en) 2017-03-08 2018-12-25 Cypress Semiconductor Corporation Ratiometric mutual-capacitance-to-code converter
CN107271723B (zh) * 2017-05-16 2020-01-03 温胜洁 一种用于运动检测的三轴加速度数据的柔性滤波方法
US11612751B2 (en) 2017-08-11 2023-03-28 Boston Scientific Neuromodulation Corporation Stimulation configuration variation to control evoked temporal patterns
EP3691744B1 (en) 2017-10-04 2021-07-28 Boston Scientific Neuromodulation Corporation Adjustment of stimulation in a stimulator using detected evoked compound action potentials
AU2019205211B2 (en) 2018-01-08 2021-08-05 Boston Scientific Neuromodulation Corporation Automatic adjustment of sub-perception therapy in an implantable stimulator using detected compound action potentials
EP3765145B1 (en) 2018-03-12 2024-04-24 Boston Scientific Neuromodulation Corporation Neural stimulation with decomposition of evoked compound action potentials
US10974042B2 (en) 2018-03-26 2021-04-13 Boston Scientific Neuromodulation Corporation System and methods for heart rate and electrocardiogram extraction from a spinal cord stimulation system
US11040202B2 (en) 2018-03-30 2021-06-22 Boston Scientific Neuromodulation Corporation Circuitry to assist with neural sensing in an implantable stimulator device
US10651864B2 (en) * 2018-04-25 2020-05-12 Qualcomm Incorporated Time-interleaved charge sampler receiver
EP3799576B1 (en) * 2018-06-01 2024-04-10 Boston Scientific Neuromodulation Corporation Artifact reduction in a sensed neural response
CL2018001900A1 (es) * 2018-07-12 2018-10-05 Biomedical Devices Spa Sistema y método de electro estimulación funcional que permite entregar movimientos coordinados y naturales para personas o animales con daño en el sistema motor
CN108803682B (zh) * 2018-08-01 2022-04-12 歌尔光学科技有限公司 信号处理组件及***
US10291226B1 (en) 2018-09-27 2019-05-14 IQ-Analog Corporation Sample-and-hold circuit with enhanced noise limit
US11693020B2 (en) * 2018-11-06 2023-07-04 Rohm Co., Ltd. Accelerometer having a root-mean-square (RMS) output
US11287443B2 (en) * 2019-02-20 2022-03-29 Invensense, Inc. High performance accelerometer
CA3128134A1 (en) 2019-03-29 2020-10-08 Boston Scientific Neuromodulation Corporation Neural sensing in an implantable stimulator device during the provision of active stimulation
CN113613709A (zh) 2019-03-29 2021-11-05 波士顿科学神经调制公司 用于在存在刺激伪影情况下辅助可植入刺激器设备中的神经感测的电路
WO2020243096A1 (en) 2019-05-30 2020-12-03 Boston Scientific Neuromodulation Corporation Methods and systems for discrete measurement of electrical characteristics
US11623095B2 (en) 2019-06-20 2023-04-11 Boston Scientific Neuromodulation Corporation Methods and systems for interleaving waveforms for electrical stimulation and measurement
US11108404B1 (en) 2020-07-22 2021-08-31 Analog Devices, Inc. Low noise integrated circuit techniques
US11442578B2 (en) * 2020-08-31 2022-09-13 Cypress Semiconductor Corporation Ratio-metric multi-sensing convertor
US11515884B2 (en) 2021-04-14 2022-11-29 Analog Devices, Inc. Noise reducing capacitance driver
US11913988B2 (en) 2021-05-10 2024-02-27 Qualcomm Technologies, Inc. Transducer built-in self-test
US11889252B2 (en) * 2021-05-11 2024-01-30 Knowles Electronics, Llc Method and apparatus for balancing detection sensitivity in producing a differential signal
US11467693B1 (en) * 2021-08-06 2022-10-11 Cypress Semiconductor Corporation Impedance sensing methods
CN114018298B (zh) * 2021-10-22 2022-07-22 西安电子科技大学 一种用于mems电容型传感器的电容-电压变换电路

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631424A (en) * 1969-07-22 1971-12-28 Honeywell Inc Binary data detecting apparatus responsive to the change in sign of the slope of a waveform
US4385321A (en) * 1980-11-14 1983-05-24 Northrop Corporation Correlated triple sampling circuit
US5253510A (en) * 1989-06-22 1993-10-19 I C Sensors Self-testable micro-accelerometer
JPH04126477A (ja) 1990-09-17 1992-04-27 Sanyo Electric Co Ltd デジタルccdカメラ
US5587518A (en) * 1994-12-23 1996-12-24 Ford Motor Company Accelerometer with a combined self-test and ground electrode
US5748004A (en) * 1996-03-15 1998-05-05 Analog Devices, Inc. Reset switch for a micromachined device
US5838176A (en) * 1996-07-11 1998-11-17 Foveonics, Inc. Correlated double sampling circuit
US5939633A (en) * 1997-06-18 1999-08-17 Analog Devices, Inc. Apparatus and method for multi-axis capacitive sensing
US6088608A (en) * 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
JP4015242B2 (ja) 1997-10-30 2007-11-28 浜松ホトニクス株式会社 Ccdカメラ
US6117643A (en) * 1997-11-25 2000-09-12 Ut Battelle, Llc Bioluminescent bioreporter integrated circuit
US6629448B1 (en) * 2000-02-25 2003-10-07 Seagate Technology Llc In-situ testing of a MEMS accelerometer in a disc storage system
US6448599B1 (en) * 2000-11-29 2002-09-10 United Microelectronics Corp. Semiconductor device for preventing process-induced charging damages
US6658292B2 (en) * 2001-08-24 2003-12-02 Pacesetter, Inc. Detection of patient's position and activity status using 3D accelerometer-based position sensor
US6662047B2 (en) * 2001-09-05 2003-12-09 Pacesetter, Inc. Pacing mode to reduce effects of orthostatic hypotension and syncope
US6734659B1 (en) * 2002-06-13 2004-05-11 Mykrolis Corporation Electronic interface for use with dual electrode capacitance diaphragm gauges
US7117036B2 (en) * 2002-06-27 2006-10-03 Pacesetter, Inc. Using activity-based rest disturbance as a metric of sleep apnea
US9149322B2 (en) * 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
JP4521562B2 (ja) * 2003-04-02 2010-08-11 ニューロストリーム テクノロジーズ ジェネラル パートナーシップ 下垂足および他の神経学的機能障害を治療するための埋め込み可能な神経信号感知および刺激デバイス
EP1548409A1 (en) * 2003-12-23 2005-06-29 Dialog Semiconductor GmbH Differential capacitance measurement
JP4691883B2 (ja) 2004-01-30 2011-06-01 富士ゼロックス株式会社 表示デバイス用粒子の製造方法
FR2869418B1 (fr) * 2004-04-27 2006-06-16 Atmel Grenoble Soc Par Actions Procede et dispositif de mesure avec detection synchrone et echantillonnage correle
ITTO20040436A1 (it) * 2004-06-28 2004-09-28 St Microelectronics Srl Dispositivo di rilevamento di caduta libera per la protezione di apparecchi portatili.
US7437644B2 (en) * 2004-10-29 2008-10-14 Codman Neuro Sciences Sárl Automatic self-testing of an internal device in a closed system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112792A (ko) * 2012-04-04 2013-10-14 페어차일드 세미컨덕터 코포레이션 병합된 미세 전자기계 가속도계 센서에 대한 초핑을 이용하는 노이즈 감소 방법
KR102045784B1 (ko) * 2012-04-04 2019-11-18 페어차일드 세미컨덕터 코포레이션 병합된 미세 전자기계 가속도계 센서에 대한 초핑을 이용하는 노이즈 감소 방법
KR101839660B1 (ko) 2013-03-15 2018-03-16 셈테크 코포레이션 반도체 소자 및 시그마-델타 루프 mems 획득
US10116275B2 (en) 2016-07-15 2018-10-30 Seiko Epson Corporation Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and vehicle

Also Published As

Publication number Publication date
US8352030B2 (en) 2013-01-08
JP5048070B2 (ja) 2012-10-17
CN101568805B (zh) 2011-05-04
EP2192387A2 (en) 2010-06-02
AU2007302788B2 (en) 2010-12-16
EP2192387B1 (en) 2018-01-10
US20080079444A1 (en) 2008-04-03
ATE467821T1 (de) 2010-05-15
CN101568805A (zh) 2009-10-28
WO2008042015A3 (en) 2008-11-27
US8000789B2 (en) 2011-08-16
EP2074381B1 (en) 2010-05-12
AU2007302788A1 (en) 2008-04-10
DE602007006528D1 (de) 2010-06-24
WO2008042015A2 (en) 2008-04-10
US20110267212A1 (en) 2011-11-03
CA2664862A1 (en) 2008-04-10
EP2192387A3 (en) 2013-07-31
EP2074381A2 (en) 2009-07-01
CA2664862C (en) 2012-10-23

Similar Documents

Publication Publication Date Title
JP5048070B2 (ja) 低電力センサシステム用の容量性インタフェース回路
De Dorigo et al. Fully immersible subcortical neural probes with modular architecture and a delta-sigma ADC integrated under each electrode for parallel readout of 144 recording sites
US6171252B1 (en) Pressure sensor with increased sensitivity for use with an implantable medical device
Wang et al. A low-power highly sensitive capacitive accelerometer IC using auto-zero time-multiplexed differential technique
Baschirotto et al. A±1-g dual-axis linear accelerometer in a standard 0.5-μm CMOS technology for high-sensitivity applications
US11406830B2 (en) Hall sensor circuit for magnetic field detection in implantable medical device
Shiah et al. A low-noise parasitic-insensitive switched-capacitor CMOS interface circuit for MEMS capacitive sensors
Guo et al. Characterization of electrical interferences for ground reaction sensor cluster
Kassanos et al. Ultra-low power application-specific integrated circuits for sensing
Constandinou et al. A micropower front-end interface for differential-capacitive sensor systems
JP3426107B2 (ja) 容量型センサのインターフェース回路
Guo et al. High-Performance Interface Electronic System for a 13$\,\times\, $13 Flexible Biomechanical Ground Reaction Sensor Array Achieving a Gait Ground Velocity Resolution of 100$\mu {\rm m/sec} $
Dellea et al. A comprehensive study of NEMS-based piezoresistive gyroscopes for vestibular implant systems
Laotaveerungrueng A High-Voltage, High-Current Multi-Channel Arbitrary Waveform Generator ASIC for Neural Interface and MEMS Applications
Denison et al. A 2μW three-axis MEMS-based accelerometer
Bernal et al. A low-power high-performance accelerometer ASIC for high-end medical motion sensing
Ouh et al. Sub-fF trimmable readout circuit for tri-axes capacitive microaccelerometers
Wen et al. A Capacitance-to-Digits Readout Circuit for Integrated Humidity Sensors for Monitoring the In-Package Humidity of Ultra-Small Medical Implants
Guo et al. Electrical interference suppression technique for 26× 26 high-density ground reaction sensor array
Choi et al. A readout circuit with novel zero-g offset calibration for tri-axes capacitive MEMS accelerometer
Gola et al. A 80dB-SNR±1g fully-integrated biaxial linear accelerometer in a standard 0.5 µm CMOS technology for high-sensitivity applications
Jin et al. An ASIC for Gripper Finger Haptic Force Feedback in Minimally Invasive Surgery
Arnaud et al. A fully integrated physical activity sensing circuit for implantable pacemakers
Shull et al. Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface
Shiah Design techniques for low-power low-noise CMOS capacitive-sensor readout circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees