JP2010503764A - Method for producing W-Mo composite powder and composite powder - Google Patents

Method for producing W-Mo composite powder and composite powder Download PDF

Info

Publication number
JP2010503764A
JP2010503764A JP2009527644A JP2009527644A JP2010503764A JP 2010503764 A JP2010503764 A JP 2010503764A JP 2009527644 A JP2009527644 A JP 2009527644A JP 2009527644 A JP2009527644 A JP 2009527644A JP 2010503764 A JP2010503764 A JP 2010503764A
Authority
JP
Japan
Prior art keywords
composite powder
starting material
metal
particles
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009527644A
Other languages
Japanese (ja)
Other versions
JP2010503764A5 (en
Inventor
ボック アンドレアス
ビヒェル アネグレット
シェーン アンドレアス
ツァイラー ブルクハルト
シューベルト ヴォルフ−ディーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfram Bergbau und Huetten Nfg Kg GmbH
Original Assignee
Wolfram Bergbau und Huetten Nfg Kg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfram Bergbau und Huetten Nfg Kg GmbH filed Critical Wolfram Bergbau und Huetten Nfg Kg GmbH
Publication of JP2010503764A publication Critical patent/JP2010503764A/en
Publication of JP2010503764A5 publication Critical patent/JP2010503764A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Abstract

本発明は、Mo及びWを含有する複合体粉末の製造方法に関し、その際にMo又はW金属粉末を含む粉末状の出発物質Aを:出発物質AとしてMo又はMo−W合金が存在する場合に、Wの酸化物化合物を含む粉末状の出発物質Bと;又は出発物質AとしてWが存在する場合に、Moの酸化物化合物を含む粉末状の出発物質Bと、混合し、前記混合物中でMo対Wの質量比(V)を1:99〜99:1の大きさに調節し、かつ粉末混合物を、少なくとも一段階の還元過程にかけ、その過程で、出発物質A中に含まれる金属又は金属合金の粒子は少なくとも部分的に、好ましくは完全に、使用される出発物質Bの金属の層と共に重複成長される。  The present invention relates to a method for producing a composite powder containing Mo and W. In this case, the powdery starting material A containing Mo or W metal powder is used: When Mo or Mo-W alloy is present as the starting material A In the mixture, a powdery starting material B containing an oxide compound of W is mixed with powdery starting material B containing an oxide compound of Mo when W is present as starting material A And adjusting the mass ratio (V) of Mo to W to 1:99 to 99: 1 and subjecting the powder mixture to at least one stage of reduction process, in which the metal contained in the starting material A Alternatively, the particles of the metal alloy are at least partially, preferably completely grown, with the metal layer of the starting material B used.

Description

本発明は、特許請求項1の上位概念に記載の方法並びにこの方法を用いて製造され、特許請求項11の上位概念に記載の複合体粉末に関する。   The present invention relates to a method described in the superordinate concept of claim 1 and a composite powder produced using this method and described in the superordinate concept of claim 11.

さらに、本発明は、特許請求項18の上位概念に記載の方法並びにこの方法を用いて製造され、請求項24の上位概念に記載の複合体粉末に関する。   Furthermore, the present invention relates to a method according to the superordinate concept of claim 18 and a composite powder produced using this method and according to the superordinate concept of claim 24.

本発明の本質的な目的は、複合体粉末を単純かつ迅速な方法で、できるだけ大きい複合体粉末の収率で、製造することである。本発明による方法を用いて得られる複合体粉末は、さらなる使用目的のために好適であるべきである;特に、それを用いて、例えば半製品、金型及び類似の対象物を焼結するための焼結法が、経済的にかつ原料パラメーターから見て、良好な結果を伴って実施可能であるべきである。さらに、この種の粉末は、超硬合金粉末の製造のため、特に窒化もしくは浸炭された硬質材料の焼結のために、良好に使用可能であるべきである。   The essential object of the present invention is to produce the composite powder in a simple and fast way, with as high a yield of the composite powder as possible. The composite powder obtained using the method according to the invention should be suitable for further use purposes; in particular for using it to sinter semi-finished products, molds and similar objects, for example. This sintering method should be feasible economically and with good results in terms of raw material parameters. Furthermore, this kind of powder should be well usable for the production of cemented carbide powders, in particular for the sintering of nitrided or carburized hard materials.

これらの目的は、請求項1の特徴部に挙げられた特徴を有する冒頭に挙げた種類の方法の場合に、達成される。   These objects are achieved in the case of a method of the type mentioned at the outset having the features listed in the features of claim 1.

本方法の有利な実施態様は、請求項2〜10に挙げられている。   Advantageous embodiments of the method are listed in claims 2-10.

本発明によるこれらの方法の工程を用いて製造される複合体粉末は、とりわけ、請求項11の特徴により特徴付けられている。これらの粉末が、良好に焼結可能であるか、もしくは良好に硬質物質へ変換されることができることが明らかになる。複合体粉末は、金属コアもしくはコア粒子を含み、これらは例外なく、しかし少なくとも、少なくとも50%がタングステン又はモリブデンからなる被覆層と共に重複成長されている。   The composite powder produced using these process steps according to the invention is characterized, inter alia, by the features of claim 11. It becomes clear that these powders can be sintered satisfactorily or can be converted well into hard materials. The composite powder includes metal cores or core particles, which are without exception, but are overgrown with a coating layer comprising at least 50% tungsten or molybdenum.

この種の複合体粉末のさらなる有利な特徴は、請求項12〜17から得ることができる。   Further advantageous features of this type of composite powder can be taken from claims 12-17.

特許請求項18の上位概念に記載の方法は、本発明によれば、請求項18の特徴部に挙げられた特徴により特徴付けられている。この方法を実施するために使用される複合体粉末は、特に良好に、迅速にかつ均質に窒化及び/又は浸炭されることができ、かつ際立って良好な材料パラメーターを示す。   According to the invention, the method according to the superordinate concept of claim 18 is characterized by the features listed in the features of claim 18. The composite powder used to carry out this method can be nitrided and / or carburized particularly well, rapidly and homogeneously and exhibits outstanding material parameters.

相応する元素である炭素及び/又は窒素との前記反応は有利には、請求項19〜22に示された特徴に相応して行われ、これらは目的へ導く手順を保証する。   Said reaction with the corresponding elements carbon and / or nitrogen is advantageously carried out in accordance with the features indicated in claims 19-22, which ensure a procedure leading to the object.

この方法を用いて、請求項23の特徴部の特徴を用いて特徴付けられている複合体粉末が製造される。この粉末は、良好な焼結特性もしくは加工特性を有し、かつ多方面にわたり使用可能である。   This method is used to produce composite powders characterized using the features of claim 23. This powder has good sintering or processing properties and can be used in many ways.

この種の複合体粉末の有利な特徴は、請求項24〜30から得ることができる。   Advantageous features of this type of composite powder can be taken from claims 24-30.

タングステン−モリブデン原料の製造は、W及びMoの合金又は均質な金属粉末混合物の焼結により行われる。   The production of the tungsten-molybdenum raw material is performed by sintering an alloy of W and Mo or a homogeneous metal powder mixture.

本発明は、タングステンもしくはモリブデンの分散性、ひいては分布の均一性が、とりわけ先駆物質及び予備分布(Vorverteilung)並びに出発物質の量比により制御されることができることに主に裏付けられる。   The present invention is mainly supported by the fact that the dispersibility of tungsten or molybdenum and thus the uniformity of the distribution can be controlled, inter alia, by the precursor and Vorverteilung and the starting material quantity ratio.

本発明を用いて得られる複合体粉末は、それゆえ、W又はMo又はW−Mo合金からなるコアを含有し、このコアは少なくとも部分的に、Mo又はWからなる被覆層もしくはMo又はWを含有する炭化物及び/又は金属Mo及び/又はWの窒化物からなる被覆層で包囲されている。また前記コアは、浸炭及び/又は窒化されていてよい。   The composite powder obtained using the present invention therefore contains a core made of W or Mo or a W-Mo alloy, which core is at least partially composed of a coating layer made of Mo or W or Mo or W. It is surrounded by a coating layer comprising carbide and / or metal Mo and / or W nitride. The core may be carburized and / or nitrided.

中間生成物として得られる複合体粉末は、特定の使用目的のために、例えば焼結目的のためにも、独立して使用可能であって、この複合体粉末は、タングステン又はモリブデンからなる被覆層を有する粒子を含み、これらは、Mo又はW又はMo−W合金からなるコアを少なくとも部分的に、有利には完全に、包囲する。   The composite powder obtained as an intermediate product can be used independently for a specific purpose of use, for example for sintering purposes, wherein the composite powder comprises a coating layer made of tungsten or molybdenum. Which surround at least partly, preferably completely, a core made of Mo or W or a Mo-W alloy.

さらに、前記コア粒子及び被覆層の粒度が、量比、粒度並びに反応温度の変更により単純に制御されることができ、かつ特定範囲内で大きな精度で調節されることができる。   Furthermore, the particle size of the core particles and the coating layer can be simply controlled by changing the quantity ratio, particle size and reaction temperature, and can be adjusted with great accuracy within a specific range.

本発明によれば、それゆえ、W又はMoからなるか又はMo−W合金からなるコア粒子とW又はMoからなる被覆層とを含む複合体粉末が製造され、その際にさらなる実施において、被覆層及び場合によりまたそれぞれのコア粒子は、炭化物及び/又は窒化物の形で存在していてよく、もしくはこれらを含有していてよい。   According to the invention, therefore, a composite powder comprising core particles consisting of W or Mo or consisting of a Mo-W alloy and a coating layer consisting of W or Mo is produced, in which case in further implementation The layers and optionally also the respective core particles may be present in or in the form of carbides and / or nitrides.

所定の比の出発物質Aの金属粉末と出発物質Bとを、例えば、タンブルミキサー中での混合及び/又は例えばボールミル、アトライタ、遊星ボールミル及び/又は分散機中での湿式又は乾式の粉砕及び/又は噴霧により、混合した後に、場合により必要な乾燥後に、還元過程が行われる。   A predetermined ratio of starting material A metal powder and starting material B are mixed, for example, in a tumble mixer and / or wet or dry milling, for example in a ball mill, attritor, planetary ball mill and / or disperser and / or Alternatively, the reduction process takes place after mixing by spraying, optionally after necessary drying.

好都合には、出発物質A及びBが、1〜300h、好ましくは1〜50hの期間にわたって、特に均質に、乾式又は湿式で混合されることが考慮に入れられる。   Conveniently, it is taken into account that the starting materials A and B are mixed in a particularly homogeneous, dry or wet manner over a period of 1 to 300 h, preferably 1 to 50 h.

還元過程は水素雰囲気中で行われ、その際に有利には、還元過程の期間が10min〜100hに調節されることが考慮に入れられることができる。還元過程は、400〜1200℃の温度で行われる。   The reduction process is carried out in a hydrogen atmosphere, in which case it can advantageously be taken into account that the duration of the reduction process is adjusted to 10 min to 100 h. The reduction process is performed at a temperature of 400 to 1200 ° C.

出発物質A及びBの粒度が0.1μm〜50μmであることが考慮に入れられる。   It is taken into account that the particle size of the starting materials A and B is between 0.1 μm and 50 μm.

さらに、前記出発物質もしくは使用される化合物に金属をドープすることが可能である。出発物質AもしくはBの場合に存在している金属もしくは金属合金を、出発物質A中もしくは出発物質B中で用意される金属(類)の50ppm〜20質量%の範囲内のCr及び/又はV及び/又はMo及び/又はTa及び/又はNbでドープする場合が有利である。出発物質がMoを含有する場合には、Moでのドープを割愛することが理解される。   Furthermore, it is possible to dope the starting material or the compound used with a metal. The metal or metal alloy present in the case of starting material A or B is Cr and / or V in the range of 50 ppm to 20% by weight of the metal (s) prepared in starting material A or starting material B. And / or Mo and / or Ta and / or Nb. It is understood that when the starting material contains Mo, dope with Mo is omitted.

前記還元法は、多様な方法で行われることができる。有利には、一段階の還元過程又は二段階の還元過程が実施可能である。これに関して、特許請求項7及び8の特徴が有利である。   The reduction method can be performed in various ways. Advantageously, a one-stage reduction process or a two-stage reduction process can be carried out. In this regard, the features of claims 7 and 8 are advantageous.

加熱速度及び/又は冷却速度が1〜500K/minに調節されることが考慮に入れられる。混合され、粉末状で存在している出発物質のかさの高さ(Schuetthoehe)は、前記原料及びそれらのかさ特性(特にかさ密度、多孔度)に応じて選択される。   It is taken into account that the heating rate and / or the cooling rate is adjusted to 1 to 500 K / min. The bulk of the starting material mixed and present in powder form (Schuetthoehe) is selected according to the raw materials and their bulk properties (particularly bulk density, porosity).

Moの重複成長のプロセスは、例えばWO2(OH)2もしくはWO3(g)の、気相輸送を介して機能する。その際にMoはタングステンのための成核助剤として作用し、かつ極めて均一な複合体粉末をもたらす。前記W−Mo複合体粉末の巨視的なモルホロジーは、使用されるコア成分の粉末の巨視的なモルホロジーに相当する。 The process of Mo overgrowth functions via vapor transport, for example WO 2 (OH) 2 or WO 3 (g). Mo then acts as a nucleation aid for tungsten and leads to a very uniform composite powder. The macroscopic morphology of the W-Mo composite powder corresponds to the macroscopic morphology of the core component powder used.

図1には、コア粒子上への被覆層としての出発物質Bの堆積が示されている。相応する堆積により、図1では右側に示されている複合体粉末の粒子が得られる。WO2(もしくはMoO2)は1で、W(もしくはMo)は2で、WO2(OH)2(もしくは揮発性Mo化合物)は3でW(もしくはMo)は4で示されている。 FIG. 1 shows the deposition of starting material B as a coating layer on the core particles. Corresponding deposition results in the composite powder particles shown on the right in FIG. WO 2 (or MoO 2 ) is 1, W (or Mo) is 2, WO 2 (OH) 2 (or volatile Mo compound) is 3 and W (or Mo) is 4.

図2では、複合体粉末の形成に関係する数理モデルが示される。   In FIG. 2, a mathematical model related to the formation of the composite powder is shown.

前記数理モデルは、球形の粉末粒子が存在し、かつ理想的に均一にかつ完全にコア−被覆構造として生じると想定する。同じように、前記計算はMo金属に基づいている。   The mathematical model assumes that spherical powder particles are present and ideally occur uniformly and completely as a core-coated structure. Similarly, the calculation is based on Mo metal.

Figure 2010503764
Figure 2010503764

使用される物質W及びMoの体積が目下比例している場合には、論理的な半径関係性が得られ、これを用いて、コア成分もしくはコア粒子の半径及びW:MoもしくはWC:Mo量比の知識に基づいて、被覆の層厚並びに複合体粉末粒子の粒度は算定されることができる:

Figure 2010503764
If the volume of the materials W and Mo used is currently proportional, a logical radial relationship is obtained, which can be used to determine the core component or core particle radius and the W: Mo or WC: Mo amount. Based on the knowledge of the ratio, the coating layer thickness as well as the size of the composite powder particles can be calculated:
Figure 2010503764

それゆえ、複合体粉末の粒子の平均半径については0.6・X < R1 < 1.2Xが当てはまる場合に有利であり、ここで、

Figure 2010503764
ここで
1 …… 複合体粉末の粒子の平均半径
A …… 出発物質A(コア)の金属の体積
B …… 出発物質B(被覆)の金属の体積
2 …… 出発物質Aの粒子もしくはコア粒子の平均半径である。 Therefore, it is advantageous when the average radius of the particles of the composite powder is 0.6 · X <R 1 <1.2X, where
Figure 2010503764
Where R 1 …… average radius V A of composite powder particles V B metal volume of starting material A (core) V B metal volume of starting material B (coating) R 2 ...... of starting material A The average radius of the particles or core particles.

本発明による手順の場合に、出発物質A(=コア成分)の粒度の選択により、生じる複合体粉末の粒度は制御されることができる、それというのも、生じる複合体粉末の被覆層の厚さは、半径R1−R2の差に相当するからである。 In the case of the procedure according to the invention, the particle size of the resulting composite powder can be controlled by the choice of the particle size of the starting material A (= core component), since the thickness of the coating layer of the resulting composite powder This is because it corresponds to the difference between the radii R 1 -R 2 .

図3は、金属複合体粉末の略示図を示し、ここで、WもしくはMoは1で、MoもしくはWは2で示されている。生じるMo−WもしくはW−Mo複合体粉末粒子は略示的に示されている。W:Moの使用される質量比及びW及びMo相の分布に応じて、全体的に(a)並びに部分的に(b)重複成長される構造が可能である。(c)及び(d)には、非球状粒子並びにアグロメレートの考えられる重複成長が説明されている。   FIG. 3 shows a schematic representation of the metal composite powder, where W or Mo is 1 and Mo or W is 2. The resulting Mo-W or W-Mo composite powder particles are shown schematically. Depending on the mass ratio of W: Mo and the distribution of W and Mo phases, a structure that is entirely (a) and partially (b) overlap grown is possible. (C) and (d) illustrate possible overlapping growth of non-spherical particles and agglomerates.

図4及び5は、相W(bcc)及びMo(bcc)を有するW−Mo(図4)もしくはMo−W(図5)のX線回折図形を示す。   4 and 5 show the X-ray diffraction patterns of W-Mo (FIG. 4) or Mo-W (FIG. 5) with phases W (bcc) and Mo (bcc).

図6は、Mo−W粉末のSEM写真を示す;右側に、複合体粉末のEDSスペクトルが示されており、左側に、完全に重複成長されていないモリブデンコアを有するタングステン結晶を見ることができる。右側に、EDS分析の相応するスペクトルを示す。このSEM写真に基づいて、タングステンが、エピタキシャルにモリブデン上に成長することが識別され、このことは、極めて類似した格子パラメーター(双方とも体心立方)により可能である。   FIG. 6 shows an SEM photograph of Mo—W powder; on the right side, the EDS spectrum of the composite powder is shown, and on the left side, a tungsten crystal with a molybdenum core that is not completely overgrown can be seen. . On the right, the corresponding spectrum of the EDS analysis is shown. Based on this SEM picture, it was identified that tungsten grows epitaxially on molybdenum, which is possible with very similar lattice parameters (both body centered cubic).

図7は、前記Mo−Wの電子顕微鏡写真を示す;左側:Mo−W(エッチングされていない);右側:Mo−W(エッチングされた)。   FIG. 7 shows an electron micrograph of the Mo—W; left side: Mo—W (not etched); right side: Mo—W (etched).

図8は、Mo−W複合体粉末のSEM写真を示す(エッチングされた)。図7及び8のMoW粉末の銅カット面(Kopferschliffen)中で、明らかにコア−被覆構造が識別されることができる。モリブデンの周りのタングステンの層厚は、大体において均一に見える。モリブデンと共にタングステンの逆の重複成長は、匹敵しうる結果(図9)を示し、その際に明らかなコア−被覆構造を有する。図9は、前記W−Mo複合体粉末の写真を示す、しかも上部:SEM及び下部:光学顕微鏡。   FIG. 8 shows a SEM photograph (etched) of the Mo—W composite powder. In the MoW powder copper cut surface (Kopferschliffen) of FIGS. 7 and 8, the core-coating structure can clearly be distinguished. The layer thickness of tungsten around molybdenum appears roughly uniform. The reverse overgrowth of tungsten with molybdenum shows comparable results (FIG. 9), with a clear core-coating structure. FIG. 9 shows a photograph of the W-Mo composite powder, and upper part: SEM and lower part: optical microscope.

得られた複合体粉末は、通例、12nm〜15μmの被覆層の厚さを示し、これは出発物質と出発粒子の大きさとの比に依存する。   The resulting composite powder typically exhibits a coating layer thickness of 12 nm to 15 μm, depending on the ratio of starting material to starting particle size.

X線回折法の結果は、bcc形のタングステン及びMoを示す。前記複合体粉末の酸素含量は、5000ppm未満(<5000ppm)である。前記複合体粉末の粒度は、走査電子顕微鏡を用いて測定される、約50nm〜50μmである。   X-ray diffraction results show bcc-type tungsten and Mo. The oxygen content of the composite powder is less than 5000 ppm (<5000 ppm). The particle size of the composite powder is about 50 nm to 50 μm as measured using a scanning electron microscope.

さらに、使用される出発物質もしくは化合物が、高純度を有するべきであるか、もしくは不純物が焼結技術において常用の範囲内で単に存在すべきであることに注目すべきである。   Furthermore, it should be noted that the starting materials or compounds used should have a high purity or that impurities should simply be present within the usual ranges in the sintering technology.

被覆層中に炭化物及び/又は窒化物が存在する複合体粉末を製造するために、これまで記載された方法は、得られたもしくは既に記載された複合体粉末が、反応にかけられて、その際に得られた複合体粉末の粒子の被覆層中へ及び場合によりコア粒子中へも炭素及び/又は窒素が挿入される(eingelagert)ようにして、さらに行われる。そのためには、得られた複合体粉末が、炭素と、好ましくはカーボンブラック及び/又はグラファイトの形で、混合される及び/又はH2及びN2及び/又はH2/CH4及び/又はCO及び/又はCO2からなる雰囲気中で、しかも800〜2200℃の温度に加熱され、その結果、被覆層中及び場合によりまたコア粒子中の金属が、炭素及び/又は窒素との相応する化合物、特に窒化物及び/又は炭化物へ、好ましくは一炭化タングステン及び/又は二炭化モリブデンへ変換される及び/又は相応する挿入反応が進行することが考慮に入れられることができる。 In order to produce a composite powder in which carbides and / or nitrides are present in the coating layer, the process described so far is carried out in which the obtained or already described composite powder is subjected to a reaction. Further, it is carried out in such a way that carbon and / or nitrogen is inserted into the coating layer of the particles of the composite powder obtained and optionally into the core particles. For this purpose, the resulting composite powder is mixed with carbon, preferably in the form of carbon black and / or graphite, and / or H 2 and N 2 and / or H 2 / CH 4 and / or CO. And / or in an atmosphere consisting of CO 2 and heated to a temperature of 800-2200 ° C., so that the metal in the coating layer and optionally also in the core particles is a corresponding compound with carbon and / or nitrogen, It can in particular be taken into account that the conversion to nitrides and / or carbides, preferably to tungsten monocarbide and / or molybdenum dicarbide and / or the corresponding insertion reaction proceeds.

既に存在している複合体粉末と、カーボンブラックもしくはグラファイトとの混合は、例えばタンブルミキサー、ボールミル、遊星ボールミル、アトライタもしくは分散機のような、常用の混合装置もしくは粉砕装置中で行われることができる。   The mixing of the already existing composite powder with carbon black or graphite can be carried out in a conventional mixing or grinding device, such as a tumble mixer, ball mill, planetary ball mill, attritor or disperser. .

使用される複合体粉末の相応する混合及び特に均質化の後に、浸炭及び/又は窒化が、特に一定の、温度で10min〜50hにわたって行われ、その際に場合により加熱速度及び/又は冷却速度は2〜500K/minに調節されることが考慮に入れられる。前記反応のための雰囲気は、所望の化合物に相応して選択され;相応して温度も調節される。   After corresponding mixing and in particular homogenization of the composite powder used, carburizing and / or nitriding takes place over a period of 10 min to 50 h, in particular at a constant temperature, in which case the heating rate and / or the cooling rate are optionally It is taken into account that it is adjusted to 2 to 500 K / min. The atmosphere for the reaction is selected according to the desired compound; the temperature is adjusted accordingly.

前記反応の過程で得られる複合体粉末は、W又はMoもしくはMo−W合金からなるコアもしくはコア粒子を含み、これらはMo又はWからなる被覆層と共に重複成長されており、その際にコア層及び場合により被覆層は浸炭及び/又は窒化されて存在する。相応する方法実施の場合に、それゆえ、コア粒子はまた、C−挿入物及び/又はN−挿入物もしくは炭化物及び/又は窒化物を含有していてよい。   The composite powder obtained in the course of the reaction includes cores or core particles made of W, Mo, or Mo—W alloy, and these are overlap-grown with a coating layer made of Mo or W. In this case, the core layer And optionally the coating layer is carburized and / or nitrided. In the case of a corresponding process implementation, the core particles can therefore also contain C-inserts and / or N-inserts or carbides and / or nitrides.

図10は、Mo2CもしくはWCコア及びWCもしくはMo2C被覆からなるMo2C−WC/WC−Mo2C複合体粉末を略示的に説明し、ここで、Mo2CもしくはWCは3で及びWCもしくはMo2Cは4で示されている。 FIG. 10 schematically illustrates a Mo 2 C-WC / WC-Mo 2 C composite powder consisting of a Mo 2 C or WC core and a WC or Mo 2 C coating, where Mo 2 C or WC is 3 and WC or Mo 2 C are indicated by 4.

図11は、生じた相WC及びMo2Cを有するMo2−WC複合体粉末のX線回折図形を示す。 FIG. 11 shows the X-ray diffraction pattern of the resulting Mo 2 -WC composite powder with phase WC and Mo 2 C.

図12は、90WC/10Mo2Cを有する複合体粉末のSEM写真を示す(Cuカット面下、エッチングされた)。 FIG. 12 shows an SEM photograph of the composite powder with 90WC / 10Mo 2 C (etched under the Cu cut surface).

前記反応により得られた本発明による複合体粉末は、前記粒子の少なくとも50%が完全に、炭化物及び/又は窒化物を含有している被覆層と共に重複成長されていることを示す。前記複合体粉末は、50nm〜15μmの粒度を有し、その際に被覆層の厚さは8nm〜50μmである。   The composite powder according to the invention obtained by the reaction shows that at least 50% of the particles are completely overgrown with a coating layer containing carbides and / or nitrides. The composite powder has a particle size of 50 nm to 15 μm, and the thickness of the coating layer is 8 nm to 50 μm.

これらの粉末の場合にも、使用される出発複合体粉末に基づいて、使用される金属の少なくとも1つが、それぞれドープされる金属の50ppm〜2質量%の範囲内のCr及び/又はV及び/又はMo及び/又はTa及び/又はMo及び/又はNbでドープされていることが考慮に入れられることができる。   Also in the case of these powders, based on the starting composite powder used, at least one of the metals used is Cr and / or V and / or in the range of 50 ppm to 2% by weight of the doped metal, respectively. Or it can be taken into account that it is doped with Mo and / or Ta and / or Mo and / or Nb.

例1:
WO2(0.5〜2μm)を、Mo金属粉末(3〜4μm)と、90:10(質量%)のW:Moの比でタンブルミキサーを用いて40〜60min、均質に混合する。この混合物を、引き続き、水素を用いて800〜950℃の温度で還元する。明らかなコア−被覆構造を有するMo−W複合体粉末が生じ、前記粉末中でモリブデン粒子は>90%がタングステンにより重複成長される。粒度は5〜7μmの範囲内であり、その際に1〜2μmのW層厚を有する。
Example 1:
WO 2 (0.5 to 2 μm) is homogeneously mixed with Mo metal powder (3 to 4 μm) at a W: Mo ratio of 90:10 (mass%) for 40 to 60 min using a tumble mixer. The mixture is subsequently reduced with hydrogen at a temperature of 800-950 ° C. A Mo-W composite powder with a clear core-coating structure results, in which> 90% of the molybdenum particles are overgrown with tungsten. The particle size is in the range of 5-7 μm, with a W layer thickness of 1-2 μm.

炭素(カーボンブラック)でのこの複合体粉末の浸炭により、Mo2C−WC複合体粉末が生じ、その際に二炭化モリブデンは>90%が一炭化タングステンにより包囲されており、かつ明らかなコア−被覆構造を有する。 Carburization of this composite powder with carbon (carbon black) yields a Mo 2 C-WC composite powder, in which molybdenum dicarbide is surrounded by> 90% tungsten monocarbide and an obvious core -It has a coating structure.

例2:
MoO2(0.5〜2μm)を、W金属粉末(2〜4μm)と、1:1(質量%)のMo:Wの比でタンブルミキサーを用いて40〜60min、均質に混合する。この混合物を、引き続き、水素を用いて900〜1000℃の温度で還元する。明らかなコア−被覆構造を有するW−Mo複合体粉末が生じ、前記粉末中でタングステン粒子は>90%がモリブデンにより重複成長されている。粒度は3〜5μmの範囲内であり、その際に約0.5μmのMo層厚を有する。
Example 2:
MoO 2 (0.5-2 μm) is homogeneously mixed with W metal powder (2-4 μm) at a ratio of 1: 1 (mass%) Mo: W using a tumble mixer for 40-60 min. This mixture is subsequently reduced at a temperature of 900 to 1000 ° C. with hydrogen. A W-Mo composite powder with a clear core-coating structure results, in which> 90% of the tungsten particles are overgrown with molybdenum. The particle size is in the range of 3-5 μm, with a Mo layer thickness of about 0.5 μm.

当該実施から、Mo及びWは互いに等価にもしくは大体において交換可能であることが明らかになる、それというのも反応速度論は匹敵しうるからである。   From this implementation, it becomes clear that Mo and W are interchangeable with each other or roughly because the kinetics can be comparable.

単に、酸化W及び酸化Moの使用される構造が相違するに過ぎない。   The only difference is the structure used for oxidized W and oxidized Mo.

Claims (30)

Mo及びWを含有している複合体粉末を製造するにあたり、
Mo又はW金属粉末又はこれら双方の金属の合金粉末を含む粉末状の出発物質Aを、
・出発物質AとしてMo又はMo−W合金が存在する場合に、次の物質の少なくとも1つ:
Wの酸化物化合物、特にWO3、WO2.9、W2050、WO2.72、W1847又は他の酸化W、H2WO4
パラタングステン酸アンモニウム(APW)、メタタングステン酸アンモニウム(AMW)、WO2
を含む粉末状の出発物質Bと、
・又は出発物質AとしてW又はW−Mo合金が存在する場合に、次の物質の少なくとも1つ:
Moの酸化物化合物、特に、MoO3、MoO2.92、Mo1338、Mo411又は他の酸化Mo、
2MoO4(MoO32O)、
(NH42MoO4、二モリブデン酸アンモニウムADM((NH42・2MoO3)、(NH42O・6MoO3
MoO2
を含む粉末状の出発物質Bと、
特に均質に、混合することによる複合体粉末の製造方法であって、
前記混合物中で、Mo対Wの質量比(V)を1:99〜99:1、好ましくは1:20〜20:1の大きさに調節し、かつ
前記粉末混合物を少なくとも一段階の還元過程にかけ、その過程で出発物質A中に含まれている金属又は金属合金の粒子が少なくとも部分的に、好ましくは完全に、使用される出発物質Bの金属の層と共に重複成長されることを特徴とする、Mo及びWを含有している複合体粉末を製造する方法。
In producing a composite powder containing Mo and W,
A powdery starting material A containing Mo or W metal powder or an alloy powder of both metals,
-When Mo or Mo-W alloy is present as starting material A, at least one of the following materials:
Oxide compounds of W, in particular WO 3 , WO 2.9 , W 20 O 50 , WO 2.72 , W 18 C 47 or other oxidized W, H 2 WO 4 ,
Ammonium paratungstate (APW), ammonium metatungstate (AMW), WO 2 ,
A powdery starting material B comprising
Or at least one of the following substances when W or W-Mo alloy is present as starting material A:
Mo oxide compounds, in particular MoO 3 , MoO 2.92 , Mo 13 O 38 , Mo 4 O 11 or other oxidized Mo,
H 2 MoO 4 (MoO 3 H 2 O),
(NH 4 ) 2 MoO 4 , ammonium dimolybdate ADM ((NH 4 ) 2 · 2MoO 3 ), (NH 4 ) 2 O · 6MoO 3 ,
MoO 2 ,
A powdery starting material B comprising
In particular, a method for producing a composite powder by mixing homogeneously,
In the mixture, the mass ratio (V) of Mo to W is adjusted to a size of 1:99 to 99: 1, preferably 1:20 to 20: 1, and the powder mixture is reduced in at least one stage. Characterized in that the particles of the metal or metal alloy contained in the starting material A in the process are at least partially, preferably completely, grown together with the metal layer of the starting material B used. A method for producing a composite powder containing Mo and W.
還元過程が、水素雰囲気中で又は還元ガス(水素、一酸化炭素、メタン)と少なくとも1つの不活性ガスとの混合物からなる雰囲気中で行われる、請求項1記載の方法。   The process according to claim 1, wherein the reduction process is carried out in a hydrogen atmosphere or in an atmosphere consisting of a mixture of a reducing gas (hydrogen, carbon monoxide, methane) and at least one inert gas. 還元過程の期間を10min〜100hに調節する、及び/又は
還元過程を400〜1200℃の温度で行う、請求項1又は2記載の方法。
The process according to claim 1 or 2, wherein the duration of the reduction process is adjusted to 10 min to 100 h and / or the reduction process is carried out at a temperature of 400 to 1200 ° C.
出発物質Aの粒度が0.1〜500μmであり、かつ出発物質Bの粒度が0.1〜50μmである、請求項1から4までのいずれか1項記載の方法。   The process according to any one of claims 1 to 4, wherein the starting material A has a particle size of 0.1 to 500 µm and the starting material B has a particle size of 0.1 to 50 µm. 出発物質A及び/又は出発物質Bが、出発物質AもしくはB中で使用される金属(類)の50ppm〜20質量%の範囲内のCr及び/又はV及び/又はMo及び/又はTa及び/又はNbでドープされている、請求項1から4までのいずれか1項記載の方法。   Starting material A and / or starting material B is Cr and / or V and / or Mo and / or Ta and / or in the range of 50 ppm to 20% by weight of the metal (s) used in starting material A or B. The method according to claim 1, wherein the method is doped with Nb. 出発物質A及びBを、1〜300h、好ましくは1〜50hの期間にわたって、特に均質に、乾式又は湿式で混合する、請求項1から5までのいずれか1項記載の方法。   6. The process as claimed in claim 1, wherein the starting materials A and B are mixed in a dry or wet manner, in particular homogeneously, over a period of 1 to 300 h, preferably 1 to 50 h. 一段階の還元過程の場合に、10min〜100hの滞留時間で、500〜1200℃、好ましくは700〜1200℃の、特に一定の、温度に調節する、請求項1から6までのいずれか1項記載の方法。   7. In the case of a one-stage reduction process, the temperature is adjusted to a particularly constant temperature of 500 to 1200 [deg.] C., preferably 700 to 1200 [deg.] C., with a residence time of 10 min to 100 h. The method described. 二段階の還元過程の場合に、第一の還元段階については10min〜100hの滞留時間にわたり400〜700℃の、特に一定の、温度に調節し、かつ
第二の還元段階において、10min〜100hの滞留時間にわたり650〜1200℃の、特に一定の、温度に調節する、請求項1から7までのいずれか1項記載の方法。
In the case of a two-stage reduction process, the first reduction stage is adjusted to a particularly constant temperature of 400 to 700 ° C. over a residence time of 10 min to 100 h and in the second reduction stage 10 min to 100 h. 8. A process as claimed in claim 1, wherein the temperature is adjusted to a particularly constant temperature of 650 to 1200 [deg.] C. over the residence time.
加熱速度及び/又は冷却速度を1〜500K/minに調節する、請求項1から8までのいずれか1項記載の方法。   The method according to any one of claims 1 to 8, wherein the heating rate and / or the cooling rate is adjusted to 1 to 500 K / min. 還元過程の間に、混合され、粉末状で存在している出発物質のかさの高さが最大100mmを超えない、請求項1から9までのいずれか1項記載の方法。   10. The process as claimed in claim 1, wherein the bulk of the starting material mixed and present in powder form during the reduction process does not exceed a maximum of 100 mm. 請求項1から9までのいずれか1項記載の方法により製造された、複合体粉末。   A composite powder produced by the method according to claim 1. 請求項1から10までのいずれか1項記載の方法により特に製造された、Mo又はW又はMo−W合金からなるコア粒子を含む複合体粉末であって、コア粒子が少なくとも部分的に、その都度他の金属、すなわちW又はMoからなる被覆層と共に、もしくはMo−W合金からなるコア粒子の場合にMo又はWと共に少なくとも部分的に、有利には完全に、重複成長されていることを特徴とする、複合体粉末。   11. A composite powder comprising core particles made of Mo or W or a Mo-W alloy, specially produced by the method according to any one of claims 1 to 10, wherein the core particles are at least partially In each case with a coating layer made of another metal, ie W or Mo, or in the case of core particles made of a Mo-W alloy, at least partly, preferably completely, overlaid with Mo or W And composite powder. 複合体粉末の粒子の少なくとも50%が被覆層と共に重複成長されている、請求項11又は12記載の複合体粉末。   13. A composite powder according to claim 11 or 12, wherein at least 50% of the particles of the composite powder are overgrown with the coating layer. 複合体粉末の粒子が50nm〜50μmの大きさを有する、請求項11から13までのいずれか1項記載の複合体粉末。   The composite powder according to claim 11, wherein the particles of the composite powder have a size of 50 nm to 50 μm. 複合体粉末の粒子の平均半径R1について、
0.6X < R1 < 1.2X
が当てはまり、
ここで
Figure 2010503764
ここで、VAは、出発物質Aの金属又は金属合金の体積に、
Bは、出発物質Bの金属の体積に、及び
2は、出発物質Aの粒子もしくはコア粒子の平均半径に
相当する、請求項11から14までのいずれか1項記載の複合体粉末。
Regarding the average radius R 1 of the particles of the composite powder,
0.6X <R 1 <1.2X
Is true,
here
Figure 2010503764
Where V A is the volume of the metal or metal alloy of starting material A,
V B is the volume of the metal of the starting material B, and R 2 corresponds to the mean radius of the particles or the core particles of the starting material A, the composite powder according to any one of claims 11 to 14.
被覆層の厚さが8nm〜15μmである、請求項11から15までのいずれか1項記載の複合体粉末。   The composite powder according to any one of claims 11 to 15, wherein the coating layer has a thickness of 8 nm to 15 µm. 複合体粉末中でW及びMoが体心立方晶形で存在する、請求項11から16までのいずれか1項記載の複合体粉末。   The composite powder according to any one of claims 11 to 16, wherein W and Mo are present in a body-centered cubic form in the composite powder. 炭化物及び/又は窒化物が少なくとも、コア粒子を少なくとも部分的に包囲する被覆層中に含まれていることによって、C及び/又はNでドープされるもしくはこれらの元素を含有している複合体粉末を製造する方法であって、
請求項1から10までのいずれか1項記載の方法の工程に引き続き、このようにして得られた複合体粉末を挿入反応、特に浸炭及び/又は窒化にかけて、その際、得られた複合体粉末の粒子の被覆層中及び場合によりまたコア粒子中へC及び/又はNを挿入することを特徴とする、複合体粉末の製造方法。
Composite powders doped with C and / or N or containing these elements by containing carbide and / or nitride at least partially in the coating layer surrounding at least the core particles A method of manufacturing
Subsequent to the process steps according to any one of claims 1 to 10, the composite powder thus obtained is subjected to an insertion reaction, in particular carburizing and / or nitriding, with the composite powder thus obtained. A method for producing a composite powder, characterized in that C and / or N is inserted into the coating layer of the particles of the above and optionally also into the core particles.
得られた複合体粉末を、炭素、特にカーボンブラック及び/又はグラファイトと混合し、及び/又は得られた複合体粉末を、H2及び/及びN2及び/又はH2/CH4及び/又はCO及び/又はCO2及び/又はN2からなる雰囲気に暴露し、かつ800〜2200℃の温度で被覆層中の金属及び場合によりまたコア粒子の金属又は金属合金を、炭素及び/又は窒素との相応する化合物へ、特に炭化物及び/又は窒化物へ変換し、及び/又は挿入反応にかける、請求項18記載の方法。 The composite powder obtained, carbon, in particular mixed with carbon black and / or graphite, and / or a composite powder obtained, H 2 and / or N 2 and / or H 2 / CH 4 and / or Exposure to an atmosphere consisting of CO and / or CO 2 and / or N 2 and the metal in the coating layer and optionally also the metal or metal alloy of the core particles at a temperature of 800 to 2200 ° C. with carbon and / or nitrogen 19. The process according to claim 18, wherein said compound is converted to a corresponding compound, in particular to carbides and / or nitrides, and / or subjected to an insertion reaction. 浸炭及び/又は窒化を、800〜2200℃の、特に一定の、温度で10min〜50hにわたって行う、請求項18又は19のいずれか1項記載の方法。   20. A method according to any one of claims 18 or 19, wherein the carburizing and / or nitriding is carried out at a temperature of 800-2200 [deg.] C, in particular at a temperature, for 10 min to 50 h. 加熱速度及び場合により冷却速度を2〜500K/minに調節する、請求項18から20までのいずれか1項記載の方法。   21. A method according to any one of claims 18 to 20, wherein the heating rate and optionally the cooling rate is adjusted to 2 to 500 K / min. 浸炭及び/又は窒化の際に、200mmの粉末のかさの高さを超えない、請求項18から21までのいずれか1項記載の方法。   22. A method according to any one of claims 18 to 21, wherein during carburizing and / or nitriding, the bulk height of the 200 mm powder is not exceeded. 請求項11から17までのいずれか1項記載の出発複合体粉末を特に使用して、請求項18から22までのいずれか1項記載の方法により特に製造された、複合体粉末。   A composite powder produced especially by the process of any one of claims 18 to 22, in particular using the starting composite powder according to any one of claims 11 to 17. 請求項18から22までのいずれか1項記載の方法により特に製造された、Mo又はW又はMo−W合金からなるコア粒子を含む複合体粉末であって、コア粒子が少なくとも部分的に、その都度他の金属、すなわちW又はMoからなる被覆層と共に、もしくはMo−W合金からなるコア粒子の場合にMo又はWと共に少なくとも部分的に重複成長されており、これらの被覆層中でC及び/又はNが挿入される及び/又は特に炭化物、窒化物の形で含まれており、その際に場合によりコア粒子中にもC及び/又はNが挿入される又は特に炭化物及び/又は窒化物の形で含まれていることを特徴とする、複合体粉末。   23. A composite powder comprising core particles made of Mo or W or a Mo-W alloy, specially produced by the method of any one of claims 18 to 22, wherein the core particles are at least partially In each case, it is at least partly overgrown with other metals, i.e., W or Mo, or in the case of core particles made of Mo-W alloys, with Mo or W, in which C and / or C Or N is inserted and / or especially in the form of carbides and nitrides, in which case C and / or N are also inserted in the core particles or in particular of carbides and / or nitrides A composite powder characterized in that it is contained in the form. 粒子の少なくとも50%が、炭化物及び/又は窒化物を含有している被覆層と共に重複成長されている、請求項23又は24記載の複合体粉末。   25. Composite powder according to claim 23 or 24, wherein at least 50% of the particles are overgrown with a coating layer containing carbides and / or nitrides. 被覆層中に含まれているWCが六方晶形で又は被覆層中に含まれているMo2Cが六方晶形で存在する、請求項23から25までのいずれか1項記載の複合体粉末。 The composite powder according to any one of claims 23 to 25, wherein WC contained in the coating layer is present in a hexagonal form or Mo 2 C contained in the coating layer is present in a hexagonal form. 複合体粉末の粒子の平均半径R1について、
0.6X < R1 < 1.2X
が当てはまり、
ここで
Figure 2010503764
ここで、VAは、出発物質Aの金属又は金属合金の体積に、
Bは、出発物質Bの金属の体積に、及び
2は、出発物質Bの粒子もしくはコア粒子の平均半径に
相当する、請求項23から26までのいずれか1項記載の複合体粉末。
Regarding the average radius R 1 of the particles of the composite powder,
0.6X <R 1 <1.2X
Is true,
here
Figure 2010503764
Where V A is the volume of the metal or metal alloy of starting material A,
V B is the volume of the metal of the starting material B, and R 2 corresponds to the mean radius of the particles or the core particles of the starting material B, the composite powder according to any one of claims 23 to 26.
複合体粉末が50nm〜50μmの粒度を有する、請求項23から27までのいずれか1項記載の複合体粉末。   28. A composite powder according to any one of claims 23 to 27, wherein the composite powder has a particle size of 50 nm to 50 [mu] m. 被覆層の厚さが8nm〜50μmである、請求項23から28までのいずれか1項記載の複合体粉末。   The composite powder according to any one of claims 23 to 28, wherein the coating layer has a thickness of 8 nm to 50 µm. 複合体粉末中に含まれているMo及び/又はWの炭化物の少なくとも1つが、それぞれの金属の50ppm〜20質量%の範囲内のCr及び/又はV及び/又はMo及び/又はTa及び/又はNbでドープされている、請求項23から29までのいずれか1項記載の複合体粉末。   At least one of the Mo and / or W carbides contained in the composite powder is Cr and / or V and / or Mo and / or Ta and / or in the range of 50 ppm to 20% by weight of the respective metal. 30. A composite powder according to any one of claims 23 to 29, doped with Nb.
JP2009527644A 2006-09-15 2007-08-24 Method for producing W-Mo composite powder and composite powder Withdrawn JP2010503764A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0155006A AT504302B8 (en) 2006-09-15 2006-09-15 PROCESS FOR PRODUCING W-MO COMPOSITE POWDER AND COMPOSITE POWDER
PCT/AT2007/000407 WO2008031121A1 (en) 2006-09-15 2007-08-24 Method for production of w/mo composite powders and composite powder

Publications (2)

Publication Number Publication Date
JP2010503764A true JP2010503764A (en) 2010-02-04
JP2010503764A5 JP2010503764A5 (en) 2010-09-30

Family

ID=38704767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009527644A Withdrawn JP2010503764A (en) 2006-09-15 2007-08-24 Method for producing W-Mo composite powder and composite powder

Country Status (4)

Country Link
EP (1) EP2061614A1 (en)
JP (1) JP2010503764A (en)
AT (1) AT504302B8 (en)
WO (1) WO2008031121A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944629A (en) * 2016-10-06 2017-07-14 江西理工大学 A kind of preparation method of monodisperse superfine/nano-tungsten powder
WO2019107816A1 (en) * 2017-11-29 2019-06-06 엔에이티엠 주식회사 Method for manufacturing tungsten-molybdenum alloy
WO2020057373A1 (en) * 2018-09-21 2020-03-26 河南科技大学 Preparation method of tungsten alloy precursor composite powder, ceramic aluminum oxide enhanced tungsten alloy and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014267A1 (en) 2010-04-08 2011-10-13 H.C. Starck Gmbh Dispersions, as well as processes for their preparation and their use
CN102284704B (en) * 2011-07-30 2013-08-21 金堆城钼业股份有限公司 Preparation method of small-granularity potassium-doped molybdenum alloy powder
CN108907218B (en) * 2018-07-26 2021-11-19 江西理工大学 CO-CO2Method for preparing superfine tungsten powder by reducing tungsten oxide in mixed atmosphere
CN110983090B (en) * 2019-12-31 2021-07-13 金堆城钼业股份有限公司 Sintering method of carbon-containing molybdenum alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103392A (en) * 1994-12-22 2000-08-15 Osram Sylvania Inc. Tungsten-copper composite powder
SE9500473D0 (en) * 1995-02-09 1995-02-09 Sandvik Ab Method of making metal composite materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944629A (en) * 2016-10-06 2017-07-14 江西理工大学 A kind of preparation method of monodisperse superfine/nano-tungsten powder
CN106944629B (en) * 2016-10-06 2019-04-05 江西理工大学 A kind of preparation method of monodisperse superfine/nano-tungsten powder
WO2019107816A1 (en) * 2017-11-29 2019-06-06 엔에이티엠 주식회사 Method for manufacturing tungsten-molybdenum alloy
KR20190063400A (en) * 2017-11-29 2019-06-07 엔에이티엠 주식회사 Method for preparing tungsten-molybdenum alloy
KR101995377B1 (en) 2017-11-29 2019-07-02 엔에이티엠 주식회사 Method for preparing tungsten-molybdenum alloy
WO2020057373A1 (en) * 2018-09-21 2020-03-26 河南科技大学 Preparation method of tungsten alloy precursor composite powder, ceramic aluminum oxide enhanced tungsten alloy and preparation method thereof

Also Published As

Publication number Publication date
WO2008031121A1 (en) 2008-03-20
AT504302B1 (en) 2009-07-15
EP2061614A1 (en) 2009-05-27
AT504302A1 (en) 2008-04-15
AT504302B8 (en) 2009-08-15

Similar Documents

Publication Publication Date Title
JP2010503764A (en) Method for producing W-Mo composite powder and composite powder
Xu et al. Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient
US7915187B2 (en) Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof
KR100528046B1 (en) Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure
KR100762664B1 (en) Mo-cu composite powder
JP2008512341A (en) Metal carbide and manufacturing method thereof
US5928976A (en) Composite carbide powder used for cemented carbide and method of producing the same
JP2010503765A (en) Method for producing composite powder and composite powder
JP2010503764A5 (en)
KR20230104343A (en) Method for manufacturing tungsten carbide particles and tungsten carbide particles prepared therefrom
JP7216656B2 (en) Powder containing tungsten carbide
EP3730231B1 (en) Powder material, use of powder material for additive manufacturing, and method for producing powder material
JP5618364B2 (en) Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder
US9238854B2 (en) Method of producing carbide and carbon nitride powders containing binder, and cermet obtained from the same
WO2020230542A1 (en) Tungsten carbide powder
JP2006045668A (en) Whisker-coating material and producing method therefor
JP2007045670A (en) Manufacturing method of metal carbide
KR20220038899A (en) Alloy powder and method of fabrication the same
JP2007126329A (en) Diamond sintered body and its production method
KR101186495B1 (en) A method for manufacturing metal carbide for direct carburising process
JPS58213618A (en) Production of powder of composite carbonitride solid solution
WO2022210134A1 (en) Powder material for layer-by-layer shaping and method for manufacturing shaped product using powder material
US11858045B2 (en) Fe-based sintered body, Fe-based sintered body production method, and hot-pressing die
EP4095270A1 (en) Alloy and molded body
JPH1121119A (en) Production of compound carbide and cemented carbide using the same

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120222