JP2010500527A - Coal with improved combustion characteristics - Google Patents

Coal with improved combustion characteristics Download PDF

Info

Publication number
JP2010500527A
JP2010500527A JP2009523340A JP2009523340A JP2010500527A JP 2010500527 A JP2010500527 A JP 2010500527A JP 2009523340 A JP2009523340 A JP 2009523340A JP 2009523340 A JP2009523340 A JP 2009523340A JP 2010500527 A JP2010500527 A JP 2010500527A
Authority
JP
Japan
Prior art keywords
coal
metalloporphyrin
combustion
metal
lignite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009523340A
Other languages
Japanese (ja)
Inventor
デイ ポール
シロブスキ フェリックス
ダウト セルゲイ
Original Assignee
アクアフュエル リサーチ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクアフュエル リサーチ リミテッド filed Critical アクアフュエル リサーチ リミテッド
Publication of JP2010500527A publication Critical patent/JP2010500527A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

A method for improving the combustion properties of a coalcomprises treating said coal with a metal porphyrin. The invention also provides a coal having a metal porphyrin deposited thereon, and a method of producing heat, comprising combusting the coal.

Description

本発明は、石炭の燃焼特性を改善する方法、改善した燃焼特性を有する石炭、及び排出物を低減しながら石炭を燃焼する処理方法に関する。   The present invention relates to a method for improving the combustion characteristics of coal, a coal having improved combustion characteristics, and a treatment method for burning coal while reducing emissions.

石炭燃焼炉内において燃焼が不完全である場合には、炭素が灰中に残留してしまい、石炭火力発電所の効率性を制限することになる。灰中の炭素は、灰の全体排出量に関与し、灰を除去するための電気集塵装置の能率を下げ、灰を例えばセメントの構成成分として使用した場合にその廃棄を困難なものとする。   If combustion is incomplete in the coal combustion furnace, carbon remains in the ash, limiting the efficiency of the coal-fired power plant. Carbon in ash contributes to overall ash emissions, lowers the efficiency of electrostatic precipitators to remove ash, and makes it difficult to dispose of ash when used, for example, as a constituent of cement .

ロシア及び中国の発電所を含む多数の石炭火力発電所が、低反応性の低級石炭を使用している。これら低級石炭を燃焼する際に直面する主な課題は、:
・フライアッシュ中の炭素含有量が多いこと(15〜20%まで達する)と、
・NOxの放出量が多いこと
である。
Many coal-fired power plants, including Russian and Chinese power plants, use low-reactivity low-grade coal. The main challenges faced when burning these low-grade coals are:
-High carbon content in the fly ash (up to 15-20%),
-The amount of NOx released is large.

フライアッシュ中の未燃炭素量が多いと、熱損失を著しく増大させることになる:この熱損失は、石炭灰量に応じて、5%又は5%以上に達する。   Large amounts of unburned carbon in fly ash will significantly increase heat loss: this heat loss can reach 5% or more, depending on the amount of coal ash.

排ガス内のNOx濃度は、空気過剰率(α)が1.4である場合には、ボイラー能力に依存して700−900mg/m(NOへと再計算されたもの)である。 The NOx concentration in the exhaust gas is 700-900 mg / m 3 (recalculated to NO 2 ) depending on the boiler capacity when the excess air ratio (α) is 1.4.

欧州公報第1498470号European Publication No. 1498470

特許文献1は、石炭の燃焼によって生じる灰中の炭素を低減する幾つかの方法、例えば燃料に送入する空気の過剰分を増大させる方法、又はカルシウム及びマグネシウム等の金属を添加する方法を記載している。これらの方法では、空気量を増加させるとNOxの排出が多くなり、また、カルシウム及びマグネシウム等の金属を使用すると多量の金属を必要とするため、系内のファウリング(汚染)が生じてしまうという望ましくない影響が生じる。特許文献1は、マンガン化合物、好ましくはマンガントリカルボニル化合物を2〜500ppm添加することを提示する。   Patent Document 1 describes several methods for reducing carbon in ash produced by coal combustion, for example, a method for increasing excess air supplied to fuel, or a method for adding metals such as calcium and magnesium. is doing. In these methods, if the amount of air is increased, NOx emissions increase, and if a metal such as calcium and magnesium is used, a large amount of metal is required, so that fouling (contamination) occurs in the system. This produces an undesirable effect. Patent Document 1 proposes adding 2 to 500 ppm of a manganese compound, preferably a manganese tricarbonyl compound.

本発明の第1態様は、石炭の燃焼特性を改善する方法を提供し、この方法は、石炭を金属ポルフィリンで処理する工程を備える。   A first aspect of the invention provides a method for improving the combustion characteristics of coal, the method comprising treating the coal with a metalloporphyrin.

本発明の第2態様は、金属ポルフィリンが蒸着した石炭を提供する。   The second aspect of the present invention provides coal deposited with metalloporphyrin.

私達は、本発明が、炭素の全焼を改善することにより、灰中の炭素含有量を低減させることを発見した。また、酸化に必要な活性化エネルギーも低減可能である。燃焼中のNOxの形成は、化学量論的必要量を超える過剰空気に関与する:より空気を過剰にするとNOxは多くなり、熱効率は下がる。改善した燃焼率/低い活性化エネルギーは、過剰空気の必要量を低減させ、NOx生成を下げる傾向にある。燃焼室の空気流は一般的には能動的に管理されており、この空気流を変動させることにより燃焼条件を最適化でき、灰中の炭素含有量を最小限化し、NOxを最小限化できる。   We have found that the present invention reduces the carbon content in ash by improving the total carbon burn. Moreover, the activation energy required for oxidation can also be reduced. The formation of NOx during combustion is responsible for excess air that exceeds the stoichiometric requirement: Excessive air results in more NOx and lowers thermal efficiency. Improved burn rate / low activation energy tends to reduce excess air requirements and reduce NOx production. Combustion chamber airflow is generally actively managed, and by varying this airflow, combustion conditions can be optimized, carbon content in ash can be minimized, and NOx can be minimized. .

本発明は特に、褐炭又は瀝青炭等の低級石炭に適用可能である。   The present invention is particularly applicable to lower coals such as lignite or bituminous coal.

本発明に係る金属ポルフィリンは、好ましくは、2以上の利用可能な酸化状態を有する金属を含む。例としては、鉄、コバルト又はマンガン等の遷移金属が挙げられる。   The metalloporphyrin according to the present invention preferably comprises a metal having two or more available oxidation states. Examples include transition metals such as iron, cobalt or manganese.

金属ポルフィリン添加物は、水溶液中に入れてもよく、従来公知の方法(例えば、固体燃料へのスプレー)を用いて固体燃料に塗布してもよい。金属ポルフィリンは昇華と蒸着により塗布される。   The metalloporphyrin additive may be placed in an aqueous solution, or may be applied to the solid fuel using a conventionally known method (for example, spraying to the solid fuel). Metal porphyrin is applied by sublimation and vapor deposition.

ポルフィリンは、自然界に広く存在し、様々な生体内作用において非常に重要な役割を果たしている。フタロシアニン等の合成ポルフィリンは、産業利用性が高く、例えば、銅フタロシアニンはシアン色素として広く使用されている。ポルフィリンは、全体的に芳香族系からなり、多種多様の金属原子を受け入れ可能であり、高い熱安定性を有する。ポルフィリンは、例えばスルホン化によって構造変化が可能であり、これにより様々な媒体における溶解性が変動することになる。   Porphyrin exists widely in nature and plays a very important role in various in vivo actions. Synthetic porphyrins such as phthalocyanine have high industrial applicability. For example, copper phthalocyanine is widely used as a cyan dye. Porphyrins are entirely aromatic, can accept a wide variety of metal atoms, and have high thermal stability. Porphyrin can undergo structural changes, for example, by sulfonation, which results in varying solubility in various media.

本発明の一態様に係る石炭と比較試料のTG結果を示すグラフである。It is a graph which shows the TG result of the coal which concerns on 1 aspect of this invention, and a comparison sample. 本発明の一態様に係る石炭と比較試料のDTG結果を示すグラフである。It is a graph which shows the DTG result of the coal which concerns on 1 aspect of this invention, and a comparative sample. 本発明の一態様に係る石炭と比較試料のDTA結果を示すグラフである。It is a graph which shows the DTA result of coal which concerns on 1 aspect of this invention, and a comparison sample. 未処理褐炭の線形化DTGデータを示すグラフである。It is a graph which shows the linearization DTG data of an untreated lignite. SO処理した褐炭の線形化DTGデータを示すグラフである。It is a graph showing the linearized DTG data H 2 SO 4 treated brown coal. Fe添加物処理した褐炭の線形化DTGデータを示すグラフである。It is a graph which shows the linearization DTG data of the brown coal which processed the Fe additive. 未処理褐炭と、本発明に係る鉄ベースの添加物を用いた褐炭のDTA結果を示すグラフである。It is a graph which shows the DTA result of untreated lignite and lignite using the iron-based additive which concerns on this invention. 未処理褐炭と、本発明に係るコバルトベースの添加物を用いた褐炭のDTA結果を示すグラフである。It is a graph which shows the DTA result of untreated lignite and lignite using the cobalt-based additive which concerns on this invention. 未処理褐炭と、本発明に係るFe及びCo添加物で処理した褐炭のTG結果を示すグラフである。It is a graph which shows the TG result of the untreated lignite and the lignite treated with the Fe and Co additives according to the present invention. 未処理褐炭と、本発明に係るFe及びCo添加物で処理した褐炭の試料重量損失%の結果を示すグラフである。It is a graph which shows the result of the sample weight loss% of the untreated lignite and the lignite treated with the Fe and Co additive according to the present invention. 未処理褐炭と、本発明に係るFe及びCo添加物で処理した褐炭のDTG結果を示すグラフである。It is a graph which shows the DTG result of the untreated lignite and the lignite treated with the Fe and Co additives according to the present invention.

以下、一例として、図面を参照しながら本発明を更に説明する。
熱重量分析法(TG)、示差熱分析法(DTA)、及び示差走査熱量測定法(DSC)等の熱分析法は、石炭利用に関する調査において、広範囲に使用されている。
Hereinafter, the present invention will be further described by way of example with reference to the drawings.
Thermal analysis methods such as thermogravimetric analysis (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) are widely used in investigations on coal utilization.

熱重量分析法(TG)は、石炭/炭化物(チャー)の反応性を調査するために広く用いられている。この反応性が石炭のランク、マセラル組成及び/又は炭化温度に依存することは、十分に立証されている。石炭の燃焼反応度は、TGによって測定され、一般的に(i)一定温度で等温、及び(ii)一定加熱率で非等温という2つの条件下で測定される。非等温条件下における微分熱重量測定(DTG)(即ち、燃焼統計データ)を使用することにより、例えば、最高温度(ピーク)、燃焼率(PT)、全焼時の温度(BT:burnt out temperature)、及び活性化エネルギー等の反応性パラメータが得られる。   Thermogravimetric analysis (TG) is widely used to investigate coal / carbide (char) reactivity. It is well documented that this reactivity depends on coal rank, maceral composition and / or carbonization temperature. The combustion reactivity of coal is measured by TG and is generally measured under two conditions: (i) isothermal at a constant temperature and (ii) non-isothermal at a constant heating rate. By using differential thermogravimetry (DTG) (ie combustion statistics data) under non-isothermal conditions, for example, maximum temperature (peak), combustion rate (PT), temperature at the time of total burning (BT: burnt out temperature) And reactivity parameters such as activation energy.

熱分析方法(TGDTA)は、石炭燃焼の速度パラメータに対する燃焼改善剤の効果を研究するために使用される。   Thermal analysis methods (TGDTA) are used to study the effect of combustion improvers on the rate parameters of coal combustion.

(石炭試料の明細事項)
本研究では、石炭はNovomosvsk coal basinによる褐炭を使用した。
(Details of coal sample)
In this study, brown coal from Novomosvsk coal basin was used.

(実施例1)
鉄(II)フタロシアニン(0.1−0.2g)を濃硫酸(50−60ml)に溶解させた。この溶液に、褐炭(〜2g)(2−3mm粒度)の試料を入れ、室温で2時間攪拌し、1晩浸漬させた。攪拌後、フタロシアニンが蒸着した石炭を濾過した。鉄(II)フタロシアニンの残留濃度を、UV/可視分光光度分析法を用いて測定した。蒸着した鉄ベースの添加物の量は、開始溶液と残留溶液との濃度差によって決定した。濾過した石炭を水で洗浄して中性pHとし、72−144時間かけて空気乾燥して一定重量とした。計算値によると、0.2%の鉄(II)フタロシアニンが石炭上に蒸着したことが示され、これは約200ppmの鉄に相当する。乾燥後、DTA/DTG分析に使用するために、石炭の試料を粉砕機で粉末状にした。
Example 1
Iron (II) phthalocyanine (0.1-0.2 g) was dissolved in concentrated sulfuric acid (50-60 ml). A sample of lignite (˜2 g) (2-3 mm particle size) was added to this solution, stirred for 2 hours at room temperature, and immersed overnight. After stirring, the coal on which phthalocyanine was deposited was filtered. The residual concentration of iron (II) phthalocyanine was measured using UV / visible spectrophotometry. The amount of iron-based additive deposited was determined by the concentration difference between the starting solution and the residual solution. The filtered coal was washed with water to neutral pH and air dried over 72-144 hours to a constant weight. Calculated values show that 0.2% iron (II) phthalocyanine was deposited on the coal, which corresponds to about 200 ppm iron. After drying, the coal sample was pulverized with a grinder for use in DTA / DTG analysis.

比較測定を、未処理(純の)褐炭の上と、鉄フタロシアニン(Fe添加物)が溶解していない濃硫酸を使用する以外は実施例1と同様の条件下で処理した褐炭の上で行った。結果及び計算値を図1乃至6のグラフに示し、以下検討する。   Comparative measurements are performed on untreated (pure) lignite and on lignite treated under the same conditions as in Example 1 except that concentrated sulfuric acid in which iron phthalocyanine (Fe additive) is not dissolved is used. It was. The results and calculated values are shown in the graphs of FIGS. 1 to 6 and discussed below.

DTA結果によると、Fe処理した試料は、未処理の褐炭と比較してかなり高い発熱作用を示した。この効果は、特に100℃付近、350から450℃の間、600から800℃の間にみられた。熱重量測定を、一定の重量となるまで(処理試料は開始重量の91.2%を損失するまで、これに対し、未処理石炭は開始重量の86.6%を損失するまで)続けた。さらに、処理石炭は800℃付近で一定重量に達したのに対し、未処理石炭は850℃付近で一定重量に達した。これらの結果は、本発明の添加物が固体燃料の燃焼改善において驚くほど有効であることを示している。   According to the DTA results, the Fe-treated sample showed a considerably higher exothermic effect compared to the untreated lignite. This effect was particularly seen near 100 ° C., between 350 and 450 ° C., and between 600 and 800 ° C. Thermogravimetry was continued until a constant weight was achieved (until the treated sample lost 91.2% of the starting weight, whereas the untreated coal lost 86.6% of the starting weight). Furthermore, the treated coal reached a constant weight near 800 ° C., whereas the untreated coal reached a constant weight near 850 ° C. These results show that the additive of the present invention is surprisingly effective in improving solid fuel combustion.

(反応モデル)
得られたDTGデータを処理するにあたり、私達は、既存文献と同様に、石炭の酸化速度は速度指数0.5<n<1を有する一次化学反応によって制御され、拡散による影響は使用した実験条件下では無視できると仮定した。
dα/dτ=k(1−α)
式中、αは変換率、τは時間、kは温度依存性アレニウス速度定数k=Aexp(−出ΔE/RT)である。Rは気体定数であり、モデルパラメータA及びΔEは、頻度因子及び活性化エネルギーである。変換率αは、式α=(m−mτ)/(m−m)で与えられる。式中、m及びmは開始時及び終了時の重量パーセントであり、mτは、τ時点の重量パーセントであり、TG実験中に記録されるものである。実時間及び温度は、単に低速加熱率T=T+βτに関連する。n=1の直線は、1/Tに対するln[−ln(1−α)T]をプロットすることにより得られると仮定している。活性化エネルギーの値は、得られた直線の傾斜から演繹可能である。
(Reaction model)
In processing the obtained DTG data, we found that, as in the existing literature, the oxidation rate of coal was controlled by a primary chemical reaction with a rate index of 0.5 <n <1, and the effect of diffusion was the experiment used. It was assumed that it could be ignored under the conditions.
dα / dτ = k (1-α) n
Where α is the conversion rate, τ is the time, k is the temperature dependent Arrhenius rate constant k = Aexp (−out ΔE / RT). R is a gas constant, and model parameters A and ΔE are frequency factors and activation energies. The conversion rate α is given by the equation α = (m i −m τ ) / (m i −m f ). Where m i and m f are weight percentages at the beginning and end, and m τ is the weight percentage at the time τ and is recorded during the TG experiment. Real time and temperature are simply related to the slow heating rate T = T 0 + βτ . It is assumed that a straight line with n = 1 is obtained by plotting ln [-ln (1-α) T 2 ] against 1 / T. The value of the activation energy can be deduced from the obtained slope of the straight line.

100℃付近の第1のピークは残留水の損失に相当し、300から400℃間の第2のピークは揮発性物質の放出に相当する。第3段階の鋭いピークは、炭化物(チャー)の燃焼によって観察されるものである。   The first peak near 100 ° C. corresponds to the loss of residual water, and the second peak between 300 and 400 ° C. corresponds to the release of volatile substances. A sharp peak in the third stage is observed by the combustion of char.

得られた活性化エネルギー値は以下の通りである。
添加物無しでHSO処理していない褐炭。ΔE=16.8kJ/mol
添加物無しでHSO処理した褐炭。ΔE=16.7kJ/mol
Fe添加物を含む褐炭。ΔE=11.3kJ/mol
The obtained activation energy values are as follows.
Lignite not H 2 SO 4 treated without additives. ΔE = 16.8 kJ / mol
Brown coal treated with H 2 SO 4 without additives. ΔE = 16.7 kJ / mol
Brown coal containing Fe additives. ΔE = 11.3 kJ / mol

Fe添加物を使用すると、5.5kJ/mol分の活性化エネルギーが減少し、これは開始値である16.8kJ/molの33%に相当する。褐炭上における添加物の検査は、炭素の全焼が改善されたことを示し、その結果、総重量損失がさらに大きいものとなった。   Using the Fe additive reduces the activation energy by 5.5 kJ / mol, which corresponds to 33% of the starting value of 16.8 kJ / mol. Inspection of the additive on the lignite showed that the total carbon burn was improved, resulting in even greater total weight loss.

Figure 2010500527
Figure 2010500527

重量損失は、添加物が触媒作用を示す低温度で達成された。   Weight loss was achieved at low temperatures where the additive was catalytic.

Figure 2010500527
Figure 2010500527

図4乃至6の線形回帰データを、下記表1乃至3に示す。   The linear regression data of FIGS. 4 to 6 are shown in Tables 1 to 3 below.

Figure 2010500527
Figure 2010500527

Figure 2010500527
Figure 2010500527

Figure 2010500527
Figure 2010500527

(実施例2)
金属ポルフィリンとしてコバルトフタロシアニンを使用し、硫酸の代わりに蒸留水を液体担体として使用し、その他は実施例1と同様に行った。
結果を図7乃至11に示す。
(Example 2)
Cobalt phthalocyanine was used as the metal porphyrin, distilled water was used as the liquid carrier instead of sulfuric acid, and the others were performed in the same manner as in Example 1.
The results are shown in FIGS.

本発明は特定の実施例を参照して説明したが、本発明で定義される請求の範囲から逸脱することなく、本発明の改良物及び変更物が構築される可能性があることは理解されるべきである。   Although the invention has been described with reference to specific embodiments, it will be understood that modifications and variations of the invention may be made without departing from the scope of the claims as defined by the invention. Should be.

Claims (24)

石炭の燃焼特性を改善する方法であって、
前記石炭を金属ポルフィリンで処理する工程を備えることを特徴とする方法。
A method for improving the combustion characteristics of coal,
A method comprising the step of treating the coal with a metalloporphyrin.
前記ポルフィリンがフタロシアニンであることを特徴とする請求項1記載の方法。   The method of claim 1, wherein the porphyrin is phthalocyanine. 前記金属が、1つ以上の酸化状態を有することが可能な遷移金属であることを特徴とする請求項1又は2記載の方法。   The method according to claim 1, wherein the metal is a transition metal capable of having one or more oxidation states. 前記金属が、鉄、コバルト、マンガン、又はこれら全ての混合物、又はこれらの任意の2種類の混合物を含む群から選択されることを特徴とする請求項1乃至3いずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the metal is selected from the group comprising iron, cobalt, manganese, or a mixture of all of these, or any two of these mixtures. . 前記金属ポルフィリンが鉄フタロシアニンであることを特徴とする請求項1乃至4いずれか1項に記載の方法。   The method according to claim 1, wherein the metalloporphyrin is iron phthalocyanine. 前記石炭が褐炭であることを特徴とする請求項1乃至5いずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the coal is lignite. 前記石炭を処理する工程が、
前記石炭に、前記金属ポルフィリンが液体担体に溶解した溶液を塗布する工程と、
続いて、固体物を濾過する工程と、
前記固体物を乾燥する又は乾燥させる工程とを備えることを特徴とする請求項1乃至6いずれか1項に記載の方法。
The step of treating the coal comprises:
Applying a solution of the metal porphyrin dissolved in a liquid carrier to the coal;
Subsequently, a step of filtering the solid material,
The method according to claim 1, further comprising a step of drying or drying the solid material.
前記液体担体が濃硫酸を含むことを特徴とする請求項7記載の方法。   The method of claim 7 wherein the liquid carrier comprises concentrated sulfuric acid. 前記液体担体が水性液体であることを特徴とする請求項7記載の方法。   The method of claim 7, wherein the liquid carrier is an aqueous liquid. 前記溶液を除去した後、前記石炭を水で洗浄する工程をさらに備えることを特徴とする請求項7乃至9いずれか1項に記載の方法。   The method according to claim 7, further comprising a step of washing the coal with water after removing the solution. 前記石炭を処理する工程が、前記金属ポルフィリンを蒸着する工程を備えることを特徴とする請求項1乃至6いずれか1項に記載の方法。   The method according to claim 1, wherein the step of treating the coal includes the step of depositing the metalloporphyrin. 金属ポルフィリンが蒸着した石炭。   Coal deposited with metal porphyrin. 前記金属ポルフィリンがフタロシアニンであることを特徴とする請求項12に記載の石炭。   The coal according to claim 12, wherein the metalloporphyrin is phthalocyanine. 前記金属が、1つ以上の酸化状態を有することが可能な遷移金属であることを特徴とする請求項12又は13に記載の石炭。   The coal according to claim 12 or 13, wherein the metal is a transition metal capable of having one or more oxidation states. 前記金属が、鉄、コバルト、マンガン、又はこれら全ての混合物、又はこれらの任意の2種類の混合物を含む群から選択されることを特徴とする請求項12乃至14いずれか1項に記載の石炭。   15. Coal according to any one of claims 12 to 14, wherein the metal is selected from the group comprising iron, cobalt, manganese, or a mixture of all of these, or any two of these mixtures. . 前記金属ポルフィリンが鉄フタロシアニンであることを特徴とする請求項12乃至15いずれか1項に記載の石炭。   The coal according to any one of claims 12 to 15, wherein the metalloporphyrin is iron phthalocyanine. 前記石炭が褐炭であることを特徴とする請求項12乃至16いずれか1項に記載の石炭。   The coal according to any one of claims 12 to 16, wherein the coal is lignite. 前記金属ポルフィリンが、0.05−0.5重量%の濃度範囲で存在することを特徴とする請求項12乃至17いずれか1項に記載の石炭。   The coal according to any one of claims 12 to 17, wherein the metalloporphyrin is present in a concentration range of 0.05 to 0.5% by weight. 前記金属ポルフィリンが、0.1−0.3重量%の濃度範囲で存在することを特徴とする請求項12乃至17いずれか1項に記載の石炭。   The coal according to any one of claims 12 to 17, wherein the metalloporphyrin is present in a concentration range of 0.1-0.3 wt%. 前記金属ポルフィリンが、約0.2重量%の濃度で存在することを特徴とする請求項12乃至17いずれか1項に記載の石炭。   18. Coal according to any one of claims 12 to 17, wherein the metalloporphyrin is present at a concentration of about 0.2% by weight. 熱を産生する方法であって、
請求項12乃至20いずれか1項に記載された石炭を燃焼する工程を備えることを特徴とする方法。
A method of producing heat,
21. A method comprising the step of burning coal according to any one of claims 12-20.
燃焼排出物を低減する方法であって、
金属ポルフィリンを石炭に添加することにより処理石炭を形成する工程と、
燃焼室内の過剰空気を低減しながら、前記処理石炭を該燃焼室内で燃焼する工程を備えることを特徴とする方法。
A method for reducing combustion emissions,
Forming a treated coal by adding metalloporphyrin to the coal;
A method comprising burning the treated coal in the combustion chamber while reducing excess air in the combustion chamber.
石炭への燃焼改善添加物として使用することを特徴とする金属ポルフィリンの使用方法。   A method for using a metalloporphyrin, characterized by being used as a combustion improving additive to coal. 褐炭への燃焼改善添加物として使用することを特徴とする鉄フタロシアニンの使用方法。   Use of iron phthalocyanine, characterized by being used as a combustion improving additive to lignite.
JP2009523340A 2006-08-12 2007-08-06 Coal with improved combustion characteristics Pending JP2010500527A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0616094.9A GB0616094D0 (en) 2006-08-12 2006-08-12 Coal combustion improvement additives
GB0616094.9 2006-08-12
PCT/GB2007/002991 WO2008020169A2 (en) 2006-08-12 2007-08-06 Coal with improved combustion properties

Publications (1)

Publication Number Publication Date
JP2010500527A true JP2010500527A (en) 2010-01-07

Family

ID=37056294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009523340A Pending JP2010500527A (en) 2006-08-12 2007-08-06 Coal with improved combustion characteristics

Country Status (13)

Country Link
US (1) US20090277080A1 (en)
EP (1) EP2057254B1 (en)
JP (1) JP2010500527A (en)
KR (1) KR20090045325A (en)
CN (1) CN101501168A (en)
AT (1) ATE495232T1 (en)
AU (1) AU2007285609B2 (en)
BR (1) BRPI0715918A2 (en)
DE (1) DE602007011944D1 (en)
EA (1) EA013898B1 (en)
GB (1) GB0616094D0 (en)
WO (1) WO2008020169A2 (en)
ZA (1) ZA200901924B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114645A1 (en) * 2011-02-25 2012-08-30 三菱マテリアル株式会社 Method for controlling nox concentration of discharge gas in combustion equipment using dust coal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0902517D0 (en) 2009-02-16 2009-04-01 Innospec Ltd Improvements in or relating to the combustion of coal
US20110131874A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Method for improving the efficiency of heat transfer in a coal fired furnace
CN102539376B (en) * 2012-01-13 2013-07-03 中国矿业大学 Method for determining physical oxygen sorption amount of functional groups on coal surface
CN110146545A (en) * 2019-06-28 2019-08-20 陕西煤业化工新型能源有限公司神木分公司 A method of boiler combustion performance is improved using coal quality burning discriminant index
CN110420638A (en) * 2019-08-22 2019-11-08 安徽工业大学 A kind of catalyst and its application method of the denitration in situ simultaneously of catalysis burning coal tar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868874A (en) * 1981-10-19 1983-04-23 Toshiba Battery Co Ltd Air cell
JPS5875775A (en) * 1981-10-30 1983-05-07 Pentel Kk Air electrode
JPS62190288A (en) * 1986-02-18 1987-08-20 Mitsubishi Heavy Ind Ltd Method for burning solid fuel
JPS6483265A (en) * 1987-09-24 1989-03-29 Dainippon Ink & Chemicals Deodorant
JPH05105889A (en) * 1991-10-15 1993-04-27 Matsushita Electric Ind Co Ltd Solid fuel
JPH0718279A (en) * 1993-06-30 1995-01-20 Mitsui Eng & Shipbuild Co Ltd Coal cleaning method
JPH10226883A (en) * 1997-02-18 1998-08-25 Ricoh Co Ltd Manufacture of phthalocyanine crystalline thin film
JP2003519613A (en) * 1999-11-05 2003-06-24 アトランティック リサーチ コーポレーション Gas generating composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB518958A (en) * 1938-09-02 1940-03-12 David Baird Macdonald Improvements in or relating to fuels for internal combustion engines
US2460284A (en) * 1944-08-01 1949-02-01 Nat Agrol Company Inc Tobacco composition and method of making it
US2460285A (en) * 1944-08-01 1949-02-01 Nat Agrol Company Inc Tobacco products and method of making them
US4009120A (en) * 1975-08-18 1977-02-22 Uop Inc. Process for the regeneration of a solid bed metal phthalocyanine catalyst system
DE2715285C2 (en) * 1977-04-05 1983-08-25 Vja&ccaron;eslav Michajlovi&ccaron; Pu&scaron;kino Moskovskaja oblast' Krylov Electrochemical cell for determining hydrogen and hydrogen-containing reducing agents
FR2601263B1 (en) * 1986-07-11 1988-11-25 Total France NEW CATALYTIC COMPOSITE PRODUCT FOR THE OXIDATION OF MERCAPTANS AND ITS USE FOR THE SOFTENING OF OIL CUTTINGS.
ZA894283B (en) * 1988-06-08 1990-09-26 Velino Ventures Inc Combustion of carbon containing meterials in a furnace
US5783065A (en) * 1992-09-03 1998-07-21 University Of Utah Research Foundation Method for coal liquefaction
US20050257724A1 (en) * 2004-05-24 2005-11-24 Guinther Gregory H Additive-induced control of NOx emissions in a coal burning utility furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868874A (en) * 1981-10-19 1983-04-23 Toshiba Battery Co Ltd Air cell
JPS5875775A (en) * 1981-10-30 1983-05-07 Pentel Kk Air electrode
JPS62190288A (en) * 1986-02-18 1987-08-20 Mitsubishi Heavy Ind Ltd Method for burning solid fuel
JPS6483265A (en) * 1987-09-24 1989-03-29 Dainippon Ink & Chemicals Deodorant
JPH05105889A (en) * 1991-10-15 1993-04-27 Matsushita Electric Ind Co Ltd Solid fuel
JPH0718279A (en) * 1993-06-30 1995-01-20 Mitsui Eng & Shipbuild Co Ltd Coal cleaning method
JPH10226883A (en) * 1997-02-18 1998-08-25 Ricoh Co Ltd Manufacture of phthalocyanine crystalline thin film
JP2003519613A (en) * 1999-11-05 2003-06-24 アトランティック リサーチ コーポレーション Gas generating composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114645A1 (en) * 2011-02-25 2012-08-30 三菱マテリアル株式会社 Method for controlling nox concentration of discharge gas in combustion equipment using dust coal
US9551485B2 (en) 2011-02-25 2017-01-24 Mitsubishi Materials Corporation Method for controlling NOx concentration in exhaust gas in combustion facility using pulverized coal
US9714196B2 (en) 2011-02-25 2017-07-25 Mitsubishi Materials Corporation Method for controlling NOx concentration in exhaust gas in combustion facility using pulverized coal

Also Published As

Publication number Publication date
DE602007011944D1 (en) 2011-02-24
EP2057254A2 (en) 2009-05-13
EA013898B1 (en) 2010-08-30
WO2008020169A2 (en) 2008-02-21
US20090277080A1 (en) 2009-11-12
ZA200901924B (en) 2010-01-27
AU2007285609B2 (en) 2011-03-31
KR20090045325A (en) 2009-05-07
EP2057254B1 (en) 2011-01-12
ATE495232T1 (en) 2011-01-15
EA200900301A1 (en) 2009-08-28
BRPI0715918A2 (en) 2013-07-30
AU2007285609A1 (en) 2008-02-21
GB0616094D0 (en) 2006-09-20
CN101501168A (en) 2009-08-05
WO2008020169A3 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5119382B2 (en) Cerium oxide nanoparticles
US7862628B2 (en) Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
JP2010500527A (en) Coal with improved combustion characteristics
Han et al. The study of sulphur retention characteristics of biomass briquettes during combustion
KR100642146B1 (en) Fuel additives composition having good freezing resistance property for preventing slagging and the effective removal of clinker
JP6906544B2 (en) Vanadium corrosion inhibitors in gas turbine applications
JP7280718B2 (en) Gasification method of carbonaceous material
CN111171890A (en) Energy-saving coal combustion improver
KR20070082069A (en) High concentration nanoparticle size magnesium fuel additive for fossil fuel burning apparatus
WO2010084318A2 (en) Solid fuel combustion process
RU2674011C1 (en) Modifier for burning fuel
PL232620B1 (en) Improving agent for biogenic solid fuels, improving their performance properties
JP2008514766A (en) Direct combustion type burner, additive for liquid or liquefied hydrocarbon fueled to open flame, and method for producing the same
RU2787879C1 (en) Coal burning modifier
RU2705209C1 (en) Fuel combustion modifier
PL238203B1 (en) Combustion modifier for light fuel oils, stabilized by dispersing agent
JP2008520765A (en) Solid hydrocarbon fuel supply direct flame burner, furnace, open flame additive and related method
PL229044B1 (en) Set of multi-functional additives to solid fuels containing biogenic components
PL237450B1 (en) Composition of stabilized combustion modifier and co-modifier of high working efficiency for light fuel oils
JPH08259972A (en) Fuel additive and fuel
PL237255B1 (en) Universal pack of additives to light heating oils
PL229292B1 (en) Biogenic solid fuel, upgraded by additives improving its performance properties
JPS58198615A (en) Residue of oil distilled at reduced pressure
JPH02142894A (en) Fuel oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121029