JP2010281902A - 定在波検出装置およびその制御方法 - Google Patents

定在波検出装置およびその制御方法 Download PDF

Info

Publication number
JP2010281902A
JP2010281902A JP2009133452A JP2009133452A JP2010281902A JP 2010281902 A JP2010281902 A JP 2010281902A JP 2009133452 A JP2009133452 A JP 2009133452A JP 2009133452 A JP2009133452 A JP 2009133452A JP 2010281902 A JP2010281902 A JP 2010281902A
Authority
JP
Japan
Prior art keywords
standing wave
pressure level
sound pressure
predetermined space
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009133452A
Other languages
English (en)
Other versions
JP5451188B2 (ja
Inventor
Noriaki Tawada
典朗 多和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009133452A priority Critical patent/JP5451188B2/ja
Priority to US12/783,023 priority patent/US8532308B2/en
Priority to EP10164363A priority patent/EP2261616B1/en
Priority to CN2010101909282A priority patent/CN101907699B/zh
Publication of JP2010281902A publication Critical patent/JP2010281902A/ja
Application granted granted Critical
Publication of JP5451188B2 publication Critical patent/JP5451188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H7/00Measuring reverberation time ; room acoustic measurements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】室内において生じている定在波を効率的に検出する。
【解決手段】所定空間における定在波を検出する定在波検出装置において、音源から発せられる音声を入力する音声入力手段と、所定空間内の所定の経路に沿った移動の間、音声入力手段により取得された音圧レベル時系列データを記憶する記憶手段と、記憶された音圧レベル時系列データの下側包絡線を用いて決定される補正曲線に基づいて、音圧レベル時系列データを補正する補正手段と、補正された音圧レベル時系列データに基づいて、所定空間における定在波の存在位置を検出する検出手段と、を備える。
【選択図】図1

Description

本発明は、室内において定在波を検出する技術に関するものである。
家庭内などの室内においてスピーカ等の発音源から音を発した場合、室内の各点に最短距離で到達する直接音に加え、部屋の壁や天井、床といった各面からの反射音が存在するため、これらの音波が互いに重なり合う。重なったことにより生じる合成波が進行も後退もせず、合成波の各点の最大振幅が時間によらず空間内の位置のみによって決まるとき、この合成波は定在波と呼ばれる。
定在波は特に平行に向かい合った面の間で、面間距離が音波の半波長の整数倍となるような周波数で生じやすく、このとき壁の位置は合成波の腹となる。また、一般に音波は低域の方が減衰しにくいため、低域において定在波が生じやすくなる。
定在波が生じている周波数の音は、ピーク(腹)の位置で膨らみ過ぎてブーミングを起こしたり、逆にディップ(節)の位置で聞こえにくくなったりするなど、人の聴感上大きな問題となる。よって、室内でユーザがスピーカから流れる音楽を楽しむといった場合に、リスニングエリアで生じている定在波の状態、特に各周波数成分のピークやディップといった極値点を把握することは重要である。定在波の極値点を高精度に把握することで、その情報を有効に用いた対処、例えば定在波を抑制するための音場補正処理や推奨リスニングポイントの教示などが可能となる。
従来、リスニングエリアにおける定在波の状態を知る方法としては、リスニングエリア内の一点でありユーザが最も重視するリスニングポイントを含め、リスニングエリア内の離散的な数点で定点測定を行うのが一般的であった。具体的には、各測定点上で三脚などによりマイクを設置し、測定した音圧の振幅周波数特性(以下”f特性”と呼ぶ)のディップ周波数(またはピーク周波数)を定在波が生じている周波数としていた。しかし、最大振幅が空間内の位置によって決まる定在波には必然的に位置依存性があるため、離散的な数点の定点測定結果からリスニングエリアで生じている定在波の周波数を漏れなく検出することは極めて困難である。図19は、実際の室内で、リスニングエリアと想定したエリア内の2mの直線経路において、10cm間隔で21点の定点測定を行った結果の一例を示す図である。図内の各線はひとつひとつの測定点の結果に対応し、例えば矢印で示した周波数成分は測定点によって音圧レベルが大きく変わるため、位置依存性が高く強い定在波であると考えられる。離散的な定点測定の場合、選んだ測定点に対応する測定結果(グラフの線)が、定在波の生じている周波数において一番下の線となればディップ周波数(若しくは一番上の線となればピーク周波数)として検出される。しかし、図19において矢印の中央辺りの線となる場合には定在波として認識されない。
そのため、位置依存性の高い定在波の状態を正確に捉えるためには、細かい測定点間隔で定点測定を繰り返し行う必要がある。ただし、細かい測定点間隔での定点測定はユーザにとって大変な負荷であり多くの時間を要する。そこで、特許文献1では、自動で測定を行うためにトラバース装置を用いてマイク位置を制御する機構を導入する手法が提案されている。
一方、測定によってではなく理論式やシミュレーションによって定在波の周波数を計算する方法がある。剛な直方体の部屋の、基準振動モード周波数の理論式は次式で表される。
f=c/2・√{(x/L)+(y/W)+(z/H)} (1)
ここでfは基準振動モード周波数、cは音速、L、W、Hはそれぞれ部屋の長さ、幅、高さを表し、x、y、zはモードを指定する0以上の整数である。ただし、数式(1)は周波数を計算する式であるため、各周波数成分のピーク値とディップ値の差といった定在波の強さはわからない。また、数式(1)は、剛な直方体という理想的な部屋を仮定しているため、現実の部屋の構造や壁の吸音特性、物の配置によって理論式からのずれが発生する。これらの条件を盛り込んで、幾何音響や波動音響などの音場シミュレーション手法を適用することもできるが、モデリングに要する労力の割に現実の測定値との整合性は不十分である。そのため、特許文献2には、定点測定と基準振動モード周波数の理論式を組み合わせ、1点で測定したf特性のディップ周波数を理論式と照合してから定在波の周波数を決定する方法が開示されている。
特開平4−93727号公報 特開2007−158589号公報
しかしながら、定在波を検出する従来の方法には以下に示すような問題があった。図10は実際の室内での測定結果を例示的に示す他の例を示している。図10に示されるように、同じ室内でも測定点によってf特性が大きく異なり、ディップ周波数がばらついている。これは、ある1点における測定結果からでは、室内全体で実際に生じている定在波の周波数を漏れなく検出することが極めて難しいことを示している。すなわち、測定したf特性のディップから定在波の周波数を判断する方法においては、測定点において節となるような周波数の定在波しか検出できないという問題がある。また、そもそもf特性におけるディップが必ずしも定在波によってのみ生じているとは言えず、判定ミスの可能性も含んでいる。一方、部屋の基準振動モード周波数の理論式から計算する方法については、剛な直方体という理想的な部屋を仮定している。そのため、現実の部屋の構造や壁の吸音特性、物の配置に依存する理論式からのずれの発生が避けられない。
本発明は係る問題点に鑑みなされたものであり、室内において生じている定在波を効率的に検出する技術に関するものである。
上述の問題点を解決するため、本発明の定在波検出装置は以下の構成を備える。すなわち、所定空間における定在波を検出する定在波検出装置において、前記所定空間内に配置された音源から発せられる音声を入力する音声入力手段と、前記所定空間内の所定の経路に沿った移動の間、前記音声入力手段により取得された音圧レベル時系列データを記憶する記憶手段と、前記記憶手段に記憶された前記音圧レベル時系列データの下側包絡線を用いて決定される補正曲線に基づいて、前記記憶手段に記憶された前記音圧レベル時系列データを補正する補正手段と、前記補正された音圧レベル時系列データに基づいて、前記所定空間における定在波の存在位置を検出する検出手段と、を備える。
本発明によれば、室内において生じている定在波を効率的に検出する技術を提供することができる。
第1実施形態における定在波検出装置のブロック図である。 移動測定における音圧レベルの変動を例示的に示す図である。 第1実施形態におけるレベル補正部のブロック図である。 第1実施形態における定在波検出部のブロック図である。 検出した定在波を表示するための定在波マップの一例を示す図である。 第2実施形態におけるレベル補正部のブロック図である。 第2実施形態におけるガイダンスのGUI表示を例示的に示す図である。 第3実施形態における定在波検出部のブロック図である。 定在波の極値間隔について説明するための図である。 実際の室内での測定結果を例示的に示す図である。 第4実施形態における定在波検出装置のブロック図である。 第4実施形態におけるデータ解析部のフローチャートである。 傾き指標の考え方を説明するための図である。 定在波の極値点の予測について説明するための図である。 許容速度のテーブルの一例を示す図である。 第5実施形態における定在波検出装置のブロック図である。 第5実施形態におけるデータ解析部のフローチャートである。 第5実施形態におけるマイク座標の算出原理を説明するための図である。 定点測定を行った結果の一例を示す図である。 定在波の定点測定と移動測定の結果を説明するための図である。
以下に、図面を参照して、この発明の好適な実施の形態を詳しく説明する。なお、以下の実施の形態はあくまで例示であり、本発明の範囲を限定する趣旨のものではない。
(第1実施形態)
本発明に係る定在波検出装置の第1実施形態として、所定の空間内を移動しながら測定を行う定在波検出装置を例に挙げて以下に説明する。
部屋などの所定空間内を移動しながらの測定(以下、”移動測定”と呼ぶ)は、各測定点で静止することなくマイクを移動しながら位置連続的に測定を行う方法である。図20は、定点測定および移動測定における音圧レベル(200Hz成分)の測定結果を例示的に示す図である。図20(a)は定点測定の結果、図20(b)および図20(c)は移動測定の結果を示している。なお、図20(b)および図20(c)は移動しながらの測定であるため、図の横軸は位置であると共に測定時刻でもある。図20(a)と図20(b)を比較すると、移動測定はグラフの中央辺りのディップについてより明瞭に検出していることが分かる。このように極値点を逃さず捉えることで、各周波数成分の定在波の強さをより正確に把握することができる。
また、定点測定ではマイクをセッティングして測定開始のトリガを掛けて測定する、ということを測定点の数だけ繰り返さなければならず、図20(a)のグラフ分のデータを得るのに約10分の時間を要した。これに対し移動測定の場合、測定開始のトリガを掛けた後は定点測定と同じ経路に沿って移動するだけでよい。そのため、図20(b)のグラフ分のデータを得るのに要した時間はわずか約8秒である。
<装置構成>
図1は、第1実施形態に係る定在波検出装置の機能構成を示すブロック図である。定在波検出装置は、全体を制御するコントローラ100、ユーザに情報を提示する表示装置131、部屋などの所定空間内に配置される音源となるスピーカ132を備えている。また、コントローラ100は、制御を行うシステム制御器101、測定データを記憶する記憶部102、測定データを解析するデータ解析部120を備えている。そして、ユーザが操作を行うためのリモコン103からの信号を受信する受信部104、測定データを収集するマイク105(音声入力手段;音声入力部)からの音声信号を入力するAD変換器106を備えている。また、コントローラ100は、ユーザへの指示内容を生成するガイダンス生成部107、測定用の信号を生成する信号発生器108、音源となるスピーカ132に音声信号を出力するためのDA変換器109および増幅部110を備えている。さらに、データ解析部120は、複数の帯域通過フィルタ121、波形整形器122、レベル補正部123、定在波検出部124を備える。なお、図1ではリモコン103とマイク105を個別に移動可能なものとして示しているが、ひとつの入力装置として一体化されていてもよい。
<装置の動作>
以下、定在波検出までの一連の流れの例を詳細に説明する。まず、ユーザは定在波の検出を始めるにあたって、リモコン103によりコントローラ100へグラフィカルユーザインタフェース(GUI)表示を要求するコマンドを送信する。当該コマンドは受信部104で受信され、コントローラ100を統括制御するシステム制御器101に入力される。システム制御器101は、コマンドを受けて、ガイダンス生成部107によりGUIを生成し、生成されたGUIを表示装置131により表示する。
ユーザは、表示装置131に表示されたGUI見ながらリモコン103を操作し、定在波検出のためのルートメニューを表示する。なお、以下の説明ではガイダンス生成部107が生成するガイダンスは表示装置131に表示することでユーザに通知するものとして説明している。しかし、表示装置131はコントローラ100に表示パネル等の形で内蔵されていてもよい。また、ガイダンスは必ずしもGUIとして表示する必要はなく、同様のガイダンスの音声版をガイダンス生成部107で生成してもよい。その場合生成した音声ガイダンスを、信号発生器108、DA変換器109、増幅部110を通してスピーカ132から音声ガイドとしてユーザに通知してもよい(図1の点線矢印)。
リモコン103の操作により定在波検出のルートメニューから検出開始のメニューを選択すると、例えば部屋の長手方向の定在波測定を促すガイダンスが表示される。ガイダンスに基づいて、ユーザはマイク105を持って測定開始位置(長手方向で向かい合う2つの壁の片側)に移動しスタンバイする。
準備が整ったらユーザはリモコン103を操作し、測定開始を知らせるコマンドをコントローラ100に送る。これをトリガとして信号発生器108は測定用の信号を発生し、DA変換器109、増幅部110を通してスピーカ132から発音する。なお、スピーカ132が増幅部内蔵型のアクティブスピーカである場合には、コントローラ100内の増幅部110で増幅を行う必要はない。なお、測定用の信号としては、例えば、スピーカ132の使用周波数帯域の範囲内で、かつ定在波を検出したい周波数帯域をカバーした音、例えばホワイトノイズ等の信号が用いられる。なお、上述した音声ガイド(音声指示)をこのような測定用信号とは異なる周波数帯域(帯域外)の音で構成すれば、ユーザが音声ガイドを聞きながら同時に測定用信号により測定を行うことができる。
測定用信号の発生と同時に、マイク105からAD変換器106およびシステム制御器101を通して取得している音響データ(以下の説明では一般的な音圧レベルとする)の記憶部102への記録(記憶制御)が開始される。そこで、ユーザは測定開始位置から向かい合う壁までゆっくり歩きながら、マイク105で音圧レベルを位置に関して連続的に測定していく。
このときユーザがマイク105を持つ高さは、ユーザが室内において音楽を聴くときの耳の高さが望ましい。また、例で示している部屋の長手方向の測定で検出しようとしているのは、平行に向かい合う2つの壁の間で生じる1次元モードの定在波(数式(1)においてy=z=0)である。そのため、ユーザは必ずしも部屋の中心線上を歩く必要はなく、中心線と平行であれば室内の家具などを避ける目的で別の経路を選択してもよい。
上述の手順により、室内の1点のみの測定ではなく位置に関して連続的な測定を行うことで、少なくとも部屋の一方向(例えば長手方向)に関しては、室内で実際に生じている定在波を検出するための音圧レベルデータを集めることができる。
<データ解析>
上述の手順によりひとつの経路の測定が終わると、記憶部102に格納された連続的な音圧レベルデータ(音圧レベル時系列データ)の解析がデータ解析部120によって開始される。以下では、記憶部102に格納されたこれらのデータをデータ解析部120で解析し、定在波を検出する流れについてさらに詳細に説明する。
はじめに、音圧レベルデータはデータ解析部120の帯域通過フィルタ121に送られる。帯域通過フィルタ121は、定在波の検出を行う周波数帯域および所望の周波数分解能に応じて、それぞれ通過帯域の異なるものが複数(2以上)用意される。なお、帯域通過フィルタはよく知られた一般的な処理であるため、ここでは詳細な説明は行わない。各帯域通過フィルタで取り出された各帯域の音圧レベルデータに対し、以下で説明するデータ解析部120の残りの処理ブロックによる一連の処理を行い、定在波が検出されればそのとき解析している周波数帯域の定在波が生じていることになる。なお、各帯域の音圧レベルデータは、帯域通過フィルタを用いずに、元の音圧レベルデータのフーリエ変換によって一度に取得してもよい。
次に、帯域通過フィルタ121を通過したあるひとつの帯域の音圧レベルデータは、波形整形器122に送られる。波形整形器122は、連続データに対しノイズ除去や平滑化を行うものであり、データ解析部120内の次の処理ブロックであるレベル補正部123のための前処理である。データのノイズ除去や平滑化は(重み付き)移動平均など汎用な処理で実現できるため、ここでは説明を省略する。
次に、波形整形器122でノイズ除去や平滑化が行われた音圧レベルデータは、レベル補正部123に送られる。レベル補正部123では、測定用信号を発するスピーカ132と移動するマイク105との相対的な位置関係の変化(距離変化)に起因する音圧レベルの変動を除去する。
図2は、移動測定における音圧レベルの変動を例示的に示す図である。例えば測定経路がスピーカ132に近づいていく方向であった場合を考える。その場合、波形整形器122を経てレベル補正部123に送られてくる音圧レベルデータは、図2においてレベル補正前と書かれた右上がりの波形のようになる。ここで、グラフの横軸は音圧レベルデータの蓄積開始からの経過時間であり、ユーザが移動しながら測定するため測定経路上の位置に対応する。ただし、通常ユーザが歩くスピードにはムラがあるため、時間と位置の関係は必ずしもリニアではない。
レベル補正部123の次の処理ブロックである定在波検出部124では、音圧レベルデータの変動幅および極値を検出することで定在波を検出する。このため、レベル補正部123では定在波検出部124の前処理として、例えば図2における補正前の右上がりの波形を、同図のレベル補正後の波形に補正するような処理が求められる。
以下、レベル補正部123の詳細について説明する。図3は、レベル補正部の内部構成を示すブロック図である。
レベル補正部123は、波形整形器122を経て送られてきた音圧レベルデータに対し、補正曲線算出器301によってスピーカ132とマイク105の距離に起因するレベル変動分を表す補正曲線を求める。具体的には、図2に示すように補正前のデータの下側包絡線を求めることで補正曲線を導出する。ここで、レベル補正部123の前の処理ブロックである波形整形器122においてノイズ除去や平滑化といった波形の整形が行われているため、滑らかな包絡線を得ることができる。包絡線の算出は一般的な処理であり、ここでは詳細な説明は行わない。次に、補正曲線減算器302が、補正前の音圧レベル値から補正曲線算出器301で得られた補正曲線上の対応する時点の値を減算することで、補正後の音圧レベルデータを得る。以上のレベル補正部123の働きにより、スピーカ132とマイク105の距離に起因するレベル変動分が取り除かれる。さらに、レベル補正部123によって補正された音圧レベルデータは、次の定在波検出部124に送られる。なお、上述の説明では、補正前データの下側包絡線から補正曲線を算出したが、下側包絡線に限らず、補正前データの大域的な形状を表す曲線であればよい。このため、平均する範囲を広く取った補正前データの(重み付き)移動平均線や、補正前データの上側包絡線などを補正曲線として用いてもよい。下側包絡線以外のこれらの補正曲線も、下側包絡線を上下に平行移動させたような形状となるため、補正曲線減算器302などにおける以降の処理は、補正曲線が下側包絡線である場合と同様でよい。
以下、定在波検出部124の詳細について説明する。図4は、定在波検出部の内部構成を示すブロック図である。
定在波検出部124は、レベル補正部123を経て送られてきた音圧レベルデータに対し、定在波レベル算出器401によって音圧レベルの変動幅を求める。ここで音圧レベルの変動幅とは、図2におけるレベル補正後の波形の最大値と最小値の差とし、以下ではこれを定在波レベルと呼ぶ。定在波検出部124の前の処理ブロックであるレベル補正部123によって、スピーカ132とマイク105の距離に起因するレベル変動分は取り除かれている。そのため、定在波レベルは純粋に定在波の性質のみによる影響を表していると考えられる。
次の定在波レベル判定器402では、定在波レベル算出器401によって得られた定在波レベルの大きさが、検出に問題発生し得るレベルなのかを判定する。具体的には、所与の閾値と比較し、定在波レベルが閾値を超えていれば、次の処理ブロックである極値検出器403に進む。逆に定在波レベルが閾値以下であれば、その周波数の音については問題がないとして、極値検出器403を通らずに定在波検出部124の処理を終える(図4の点線矢印)。
極値検出器403では、現在解析している周波数帯域の定在波レベルが定在波レベル判定器402における閾値を超える場合に、音圧レベルデータから極値を検出する。音圧レベルは、大気圧を基準として疎密を表す正負の音圧について、その(実効値/人の最小可聴音圧)の二乗値をデシベル表示したものである。このため極値である極大値と極小値では、傾きの変化から考えて定在波の節である極小値の方が検出しやすい。図2でもレベル補正後の波形から極小値を検出しており、以下でも極値を極小値とした場合を説明するが、無論、極値を極大値としても定在波は検出可能である。
極値の検出は、連続データの隣り合うデータ間の差分値をモニタリングして検出する方法が一般的である。ここで、図2に示すようにレベル補正部123において検出対象となるデータが補正されているため、補正後のデータは補正前のデータに比べて極値が検出しやすい。すなわち、レベル補正部123の処理によって極値検出の精度が向上したといえる。ただし、検出対象データの変動幅が小さいと正確な検出は難しく、定在波レベルが閾値以下の場合に極値検出を行わないのはこのためでもある。
定在波であれば最低ひとつの極小値(節)を持つはずであり、それは定在波の半波長ごとに現れる。よって、部屋の端から端まで測定した場合、周波数帯域の中心周波数における(音の半波長)×(極小値の数)により、おおよその部屋の長さを計算することができる。
上述の手順により、ある周波数帯域の音圧レベルデータに対するデータ解析部120の処理は終了する。そして、処理の過程で得られた定在波レベル、極小値の数といった情報は、測定経路と周波数帯域で引ける形で記憶部102に記録される。さらに、帯域通過フィルタ121の数だけデータ解析部120の処理を繰り返すことにより、例として示した部屋の長手方向に生じやすい定在波の検出を完了する。これを次は部屋の短手方向の経路、その次は床上対角線の経路(2次元モードの定在波の検出)といった具合に行っていくことで、室内で実際に生じている定在波の情報が次々と蓄積されていくことになる。
定在波の存在位置の検出が完了すると、ユーザは定在波検出のためのルートメニューから検出結果の確認を選択し映像出力することができる。図5は、検出した定在波の存在位置を表示するための定在波マップの一例を示す図である。ここで、定在波マップとは、各測定経路・周波数帯域の音圧レベルデータのうち、極小値の数が1以上で定在波レベルの大きいデータから使用して、部屋の中心を基準に描画したマップである。図5では、定在波の周波数と極小値の数から部屋のおおよその寸法を計算して描画しており、また定在波レベルに応じて定在波の色を強調している。
以上説明したように第1実施形態にかかる定在波検出装置によれば、室内において生じている定在波を効率的に検出することが可能となる。ユーザは、定在波検出装置により測定された定在波に基づいて描画された定在波マップを参照することにより、最適なリスニングポイントを選択することが可能となる。また、ユーザの位置に応じて定在波をターゲットとした自動音場補正を行うのにも役立つ。
なお上述の説明では、ユーザがコントローラ100からの指示に従い1次元モードの定在波から検出する例を示したが、測定したい定在波のモードに応じてユーザがマニュアルで測定経路を指定してもよい。また、ルートメニューから部屋の形状・寸法の入力を測定前に受け付けるよう構成してもよい。さらに帯域通過フィルタの通過域の幅を、所望の周波数分解能に応じてユーザ指定可能としてもよい。
(第2実施形態)
第2実施形態では、第1実施形態とは異なるレベル補正部を有する定在波検出装置について説明する。なお、その他の構成および動作については第1実施形態と同様であるため説明は省略する。
<装置構成>
図6は、第2実施形態におけるレベル補正部600を示すブロック図である。処理ブロックとして最大補正量判定器601を有する点が第1実施形態と異なる。
第1実施形態で説明したように、レベル補正部123は、音圧レベルデータからスピーカ132とマイク105の距離に起因するレベル変動分を取り除く。ところで、その際の補正量があまりにも大きい場合は、マイク105による測定位置がスピーカ132に近すぎることを意味する。このとき、壁からの反射音に比べてスピーカ132からの直接音が卓越しているため定在波の山谷が見えにくくなり、レベル補正部123で補正処理をしても次の定在波検出部124で定在波を検出することが困難になる。
そこで、第2実施形態のレベル補正部600における最大補正量判定器601では、補正曲線算出器301で得た補正曲線による最大補正量(図2の例では補正曲線の右端の値)が所定の閾値を超えるか否かを判定する。そして、最大補正量が閾値を越える場合には、その旨を示すフラグを記憶部102に格納する。
具体的には、ある経路の測定データに対するデータ解析が終了すると、次の経路の測定に入る前に上記フラグの内容に応じてガイダンス生成部107がガイダンスを生成し、表示装置131を通してユーザに通知する。すなわち、スピーカ132から離れて再測定を行うことを促すガイダンスを行なう。例えば、測定経路が部屋の長手方向であった場合には、図7に示すようなGUI表示とともにスピーカ132から離れる方向に平行移動した経路での再測定を促す。
上述のように定在波検出装置を構成することにより、定在波をより高精度に検出することが可能となる。
(第3実施形態)
第3実施形態では、第1実施形態とは異なる定在波検出部を有する定在波検出装置について説明する。なお、その他の構成および動作については第1実施形態と同様であるため説明は省略する。
<装置構成>
図8は、第3実施形態における定在波検出部800を示すブロック図である。処理ブロックとして極値間隔判定器801を有する点が第1実施形態と異なる。
第1実施形態で説明したように、定在波検出部124ではレベル補正部123で補正された音圧レベルデータの変動幅(定在波レベル)および極値を検出することで定在波を検出する。ここで、極値とは極小値または極大値のことであり、定在波の周波数で決まる波長の半波長ごとに出現する、すなわち各極値の間隔が一定であることが望まれる。
しかしながら、現実にはユーザが歩くスピードにムラがあるため、各極値の間隔は必ずしも一定ではなく、ある程度はバラつく。そして、極値間隔のバラつきがあまりにも大きかったり、または極値間隔が狭すぎたり広すぎたりする場合には、適切な極値検出、すなわち適切な定在波検出ができていない可能性がある。
そこで、第3実施形態における定在波検出部800において、極値検出器403の後に設けられた極値間隔判定器801では、極値検出器403で検出した各極値の間隔が所定の条件を満たすか否かを判定する。そして、検出した各極値の間隔が所定の条件を満たす場合には、その旨を示すフラグを記憶部102に格納する。
具体的には、ある経路の測定データに対するデータ解析が終了すると、次の経路の測定に入る前に上述のフラグの内容に応じてガイダンス生成部107がガイダンスを生成し、表示装置131を通してユーザに通知する。
図9に示すように極値として極小値を考え、最大の極値間隔をΔmax、最小の極値間隔をΔminとすると、極値間隔を判定する条件およびそれに対応するガイダンスは以下のようなものが考えられる。
Δmax−Δmin>aを満たす場合:極値間隔がバラついているとして一定速度で歩いて再測定を行うことを促すガイダンス。
Δmin<bを満たす場合:極値間隔が狭すぎるとしてもっとゆっくり歩いて再測定を行うことを促すガイダンス。
Δmax>cを満たす場合:極値間隔が広すぎるとしてもっと速く歩いて再測定を行うことを促すガイダンス。
ここで、a、b、cは各判定条件における閾値であり、解析している周波数に応じて変化させてもよい。
なお、ガイダンスを受けてユーザが再測定を行なう場合に、上述したフラグの内容に応じて望ましいユーザの歩調を指示する信号をガイダンス生成部107で生成するとよい。その場合、ユーザは、ガイダンスに含まれる歩調を指示する信号に歩調を合わせて再測定を行うことが出来る。歩調を指示する信号の例としては、表示装置131を用いるのであれば歩調に合わせた点滅信号、信号発生器108およびスピーカ132を用いるのであれば歩調に合わせた断続音などが挙げられる。
上述のように定在波検出装置を構成することにより、定在波をより高精度に検出することが可能となる。
(第4実施形態)
第4実施形態では、移動測定において定在波の極値点の位置を予測し、測定動作にフィードバックする構成について説明する。
図20(c)は、図20(b)と同じように図19の測定を行った経路で移動測定を行った測定結果を示す図である。ただし、図20(b)の移動測定における移動速度が約0.25m/sであるのに対し、図20(c)の場合の移動速度は約0.5m/sである。その結果、図20(c)のグラフは図20(b)のグラフに移動平均を掛けたようになっており、音圧レベルの範囲が圧縮されディップもわかりにくい状態となっている。そこで、第4実施形態では、移動測定において定在波の極値点の位置を予測し、予測された地点付近における移動速度を制御することにより定在波を高精度に測定する。
<装置構成>
図11は、第4実施形態に係る定在波検出装置の機能構成を示すブロック図である。主な構成は第1実施形態と同様であるが、マイクの3次元位置や速度を制御するトラバース装置140(駆動手段)を備え、トラバース装置140はシステム制御器101(遠隔制御手段)からの制御を受け付けるよう構成されている。なお、システム制御器101(位置検出手段)はトラバース装置140の位置を検出可能なよう構成されている。
なお、測定に先立ち、ユーザは定在波を検出したいエリア(一般にリスニングエリア)をトラバース装置140の可動部142がカバーできるようにトラバース装置140をセッティングする。そして、マイク105をトラバース装置140の可動部142に固定しておく。
<装置の動作>
以下、定在波検出までの一連の流れの例を詳細に説明する。まず、ユーザは定在波の検出を始めるにあたって、リモコン103によりコントローラ100へGUI表示を要求するコマンドを送信する。受信部104で受信され、コントローラ100を統括制御するシステム制御器101を通った前記コマンドを受けて、ガイダンス生成部107はGUIを生成し、前記GUIは表示装置131に表示される。
ユーザは前記GUI見ながらリモコン103を操作し、定在波検出のためのルートメニューを表示する。なお、以下の説明ではガイダンス生成部107が生成するガイダンスは表示装置131に表示することでユーザに通知するが、表示装置131はコントローラ100に表示パネル等の形で内蔵されていてもよい。また、ガイダンスは必ずしもグラフィックとして表示する必要はなく、同様の内容の音声版をガイダンス生成部107で生成し、信号発生器108、DA変換器109、増幅部110を通してスピーカ132から音声ガイドとしてユーザに通知してもよい。
ユーザは、定在波検出のためのルートメニューから、各種データの入力としてトラバース装置140やコントローラ100内のデータ解析部120に関する設定値をリモコン103から入力することができる。トラバース装置140に関する設定としては、例えばマイク長さを考えた上で可動部142の高さ方向の座標を指定しておけば、移動測定において高さを一定に保ったまま測定対象エリアをサーチすることができる。
一般に測定を行うマイクの高さは、ユーザが室内において座って音楽を聴くときの耳の高さ(約1m)が望ましい。また可動部142の可動範囲に関して、四隅のうち少なくとも2点の座標値について測定を行う部屋の座標系で入力しておくとよい。そのようにすることにより、トラバース装置140の座標系と部屋の座標系が対応付けられ、トラバース装置140を用いた測定に関する情報が部屋の座標系で記述可能となる。データ解析部120に関する設定としては、検出対象とする定在波の周波数の下限f1および上限f2、また所望の周波数分解能fdが挙げられる。ユーザがこれらの設定値の入力を行わなかった場合には、例えば対象周波数範囲ならf1=20Hz、f2=200Hzといったデフォルト値が用いられる。
リモコン103の操作により定在波検出のルートメニューから検出開始のメニューを選択すると、トラバース装置140の可動部142に固定されたマイク105が測定開始点、例えば可動範囲の四隅のいずれかに移動する。次に信号発生器108は測定用の信号を生成し、原信号としてそのまま記憶部102に記録する一方、DA変換器109、増幅部110を通してスピーカ132から発音する。なお、スピーカ132が増幅部内蔵型のアクティブスピーカである場合には、コントローラ100内の増幅部110で増幅を行う必要はない。測定用信号としては例えばMLS(Maximum Length Sequence)を用い、その周期は後述のデータ解析部120における時間窓の長さと合わせるものとする。他にもホワイトノイズ等のノイズや、対象周波数範囲であるf1からf2をカバーするバンドノイズを用いてもよい。
測定用信号の発生と同時に、マイク105からAD変換器106およびシステム制御器101を通して、マイク収音信号の時系列データ(以下の説明では一般的な音圧レベルとする)の記憶部102への記録が開始される。
マイク収音信号の記憶部102への記録が開始されると、トラバース装置140の可動部142に固定されたマイク105は、例えば測定対象エリアの長手方向に初期速度v0(決定方法は後述)で移動測定を開始する。ここで、先に述べたように検出対象である定在波の極値点の検出精度は、マイク105の移動速度に影響される。このため、記憶部102に記録されたマイク収音信号はデータ解析部120で逐次解析され、周波数ごとに定在波の極値点の位置が予測される。そして、この予測結果と現在の移動速度に基づいて望ましい指示速度が決定され、データ解析部120からシステム制御器101を通してトラバース制御器141に送られる。
トラバース制御器141では、システム制御器101から送られてきた指示速度に可動部142のマイク105の移動速度を追従させるように、サーボ系を構成して例えばPID制御を行う。また、可動部142がレールタイプではなくマニピュレータのような多関節アームである場合には、トラバース制御器141はアームの各関節変数とアーム先端の位置・姿勢・速度を関係付ける運動学モデルを備えているものとする。
<データ解析>
上述したように、ある経路の測定が開始されると、記憶部102に格納された連続的な音圧データ(マイク収音信号)の解析がデータ解析部120によって開始される。以下では、記憶部102に格納されたこれらのデータをデータ解析部120で逐次解析し、定在波を検出する流れについてさらに詳細に説明する。
図12は、データ解析部によるデータ解析のフローチャートである。
ステップS201では、記憶部102に記録されたマイク収音信号の切り出しを時間窓により行う。切り出された時間信号の周波数解析を後のステップでフーリエ変換により行う場合、時間長によって周波数分解能が決まるため、所望の周波数分解能dfによって窓の長さは決定される。初めは、時間窓の長さ分のマイク収音信号が記憶部102に溜まった時点で切り出しを行う。以降は、時間窓のシフト量分のマイク収音信号が記憶部102に記録されるたびに信号の切り出しを行い、フローチャートの残りの処理を実行する。よって、測定中のフローチャート全体の処理周期間隔は、時間窓のシフト量分の時間となる。
ステップS202では、S201で信号の切り出しを行ったタイミングで、システム制御器101を通してトラバース制御器141から可動部142のマイク105の座標を取得する。
ステップS203では、S201で信号の切り出しを行ったタイミングで、システム制御器101を通してトラバース制御器141から可動部142のマイク105の移動速度を取得する。マイク105の移動速度が取得できず位置のみ取得できる場合には、S203ではS202で得られた座標について、ひとつ前の処理周期における座標との差分および処理周期間隔から移動速度を算出する。
ステップS204では、記憶部102に記録されている原信号とS201で切り出されたマイク収音信号から、マイク収音信号/原信号の伝達関数を計算する。一般に伝達関数の計算においては、入力信号と出力信号を構成する信号列のパターンが、信号列の周期化を仮定した上で一致することが望ましい。マイク収音信号にはスピーカ132とマイク105の間の距離による遅延が原信号に対して存在するが、測定用信号をMLSとする場合にその周期をS201の時間窓の長さに合わせておけば、MLSの周期性により概ね上記の条件は満たされる。伝達関数の計算自体は、公知の処理であるためここでは詳述しない。
次に、S204で計算した伝達関数について周波数別に処理を行っていくループに入る。すなわち、対象周波数範囲の下限であるf1から上限のf2まで、周波数分解能dfの周波数間隔でループ内の処理を繰り返す。1回目のループに入る前のみ、変数sおよびbを0に、変数fpおよびfdをf1に初期化する初期化処理が行われる。ここで、sは極値点に接近している判定される周波数成分の数を格納する変数、bは極値点を逃したと判定される周波数成分の数を格納する変数である。また、fpは極値点のうちピークに関する判定条件を満たした最大周波数を格納する変数、fdは極値点のうちディップに関する判定条件を満たした最大周波数を格納する変数である。
ステップS205では、伝達関数の対象周波数の振幅を音圧レベルとなるようデシベル表示した量について、前処理周期との差分Δを計算する。このΔのような、対象周波数成分の時系列変化量をモニタリングすることで、定在波の極値点の位置を予測する。
ところで、以下に示す2つの理由から、差分Δをそのまま極値点の予測に用いるのは望ましくない。
・差分Δは、処理周期間隔の間にマイク105の位置が大きく変わるほど、すなわちマイク105の移動速度が速いほど、定在波の空間的に離れた点を見ることになるため絶対値が大きく出やすい。
・差分はピーク位置周辺およびディップ位置周辺の双方において周波数に依存する。図13は、2つの周波数の正弦波を音圧レベルのようにデシベル表示したグラフおよびそれらの傾き(微分値)のグラフを示す図である。ここで、細線のグラフに対応する正弦波の周波数は、太線のグラフに対応する正弦波の周波数の2倍である。まず、ピークを合わせて表示した図13(a)のグラフより、周波数が高い方がピーク近傍での傾きの絶対値は大きいことがわかる。よって、ピーク近傍では周波数が高いほど差分Δの絶対値が大きくでるため、傾きが0に近づくことで予測される定在波のピークの判断が遅れることになる。一方、ディップを合わせて表示した図13(b)のグラフでは、周波数が高い方がディップ近傍での傾きの絶対値は若干小さい。ただし、ディップに近づくにつれて周波数による傾きの差は無くなっていく。
ステップS206では、上述のようにマイク105の移動速度と対象周波数によってΔの大きさが影響を受けることを踏まえ、移動速度vと周波数fにより差分Δをスケーリングして傾き指標mを算出する。この傾き指標mを導入することにより、以降のS208、S210、S212、S214の各判定条件において、閾値をそれぞれ一定値とすることができる。
ピーク近傍における傾き指標は、移動速度が大きいほど、また周波数が高いほど|Δ|が大きく出ることを踏まえ、例えば次式(2)のように表すことが出来る。
m=Δ/(v・f) (2)
ただし、実際上はこのような単純な形ではなく、v、fとΔの関係をより詳細に反映させて、|m|がvおよびfに関して単調減少となるようにスケーリングを行う。次に、ディップ近傍における傾き指標は、移動速度が大きいほどΔが大きく、また周波数が高いほどΔが若干小さく出ることを踏まえ、次式(3)のように表すことが出来る。
m=(f・Δ)/v または m=Δ/v (3)
これについても、実際上はこのような単純な形ではなく、v、fとΔの関係をより詳細に反映させて、|m|がvに関して単調減少、fに関しては単調増加となるようにスケーリングを行う。
以下の極値点に関する判定条件において、ピークに関する判定条件では傾き指標mを数式(2)に基づいて計算し、ディップに関する判定条件では傾き指標mを数式(3)に基づいて計算するものとする。また、現在の処理周期における傾き指標をm2、ひとつ前の処理周期における傾き指標をm1とする。
ステップS207では、現在の処理周期における差分Δ2と前処理周期における差分Δ1について積を計算し、差分の符号変化から極値点の通過を判定する。傾き指標mではなく差分Δを用いるのは、大きさに関するスケーリングは符号変化の判定に影響を及ぼさないからである。
Δ1・Δ2<0 (4)
数式(4)の判定結果について、偽の場合は符号変化がなかった、すなわち極値点の通過はなかったとして、極値点の接近に関する判定条件へと進む。一方、式(4)の判定結果が真であった場合は、極値点を通過したとして極値点の検出に関する判定条件へ進んでいる。
図14は、ピーク/ディップへの接近またはピーク/ディップの検出を判定するパターンを例示的に示す図である。
ステップS208では、図14(a)に示すように次式で表される判定条件を用いてピークへの接近を判定する。ここでmpは所定の閾値である。
m2>0 かつ m2<mp (5)
数式(5)の判定結果が真の場合は、対象周波数成分のピークが近いと判定されS209へと進む。
ステップS209では、極値点に接近している判定される周波数成分の数を格納するsをインクリメントし、ピークに関する判定条件を満たした周波数を格納するfpを上書きする。上書きを行うことで、最終的にfpはピークに関する判定条件を満たした最大周波数を示すことになる。
ステップS210では、図14(b)に示すように以下の数式(6)で表される判定条件を用いてディップへの接近を判定する。ここでmdは所定の閾値である。
m2<0 かつ |m2|>md (6)
数式(6)の判定結果が真の場合は、対象周波数成分のディップが近いと判定されS211へと進む。
ステップS211では、sをインクリメントし、ディップに関する判定条件を満たした周波数を格納するfdを上書きする。
ステップS212では、図14(c)に示すように数式(7)で表される判定条件を用いてピークの検出を判定する。すなわち、極値点を検出できていれば傾き指標m1、m2に対応する矢印の線は略左右対称になると考えられるので、傾き指標の絶対値の差の絶対値により判定を行う。ここでcpは所定の閾値である。
m2<0 かつ ||m1|ー|m2||>cp (7)
数式(7)の判定結果が真となった場合は、対象周波数成分のピークを逃したと判定されS213へと進む。
ステップS213では、極値点を逃したと判定される周波数成分の数を格納するbをインクリメントし、ピークに関する判定条件を満たした周波数を格納するfpを上書きする。
ステップS214では、図14(d)に示すように次式(8)で表される判定条件を用いてディップの検出を判定する。ここでcdは所定の閾値である。
m2>0 かつ ||m1|ー|m2||>cd (8)
数式(8)の判定結果が真となった場合は、対象周波数成分のディップを逃したと判定されS215へと進む。
ステップS215では、bをインクリメントし、ディップに関する判定条件を満たした周波数を格納するfdを上書きする。
以上のS205からS215までが、ある周波数成分の極値点に関する判定処理であり、ループによってf1からf2までの周波数について繰り返される。なお、S208、S210、S212、S214の各判定条件でmの代わりにΔをそのまま用い、各判定条件の閾値の方を数式(2)、数式(3)を基に移動速度と周波数でスケーリングしても同様である。
上記ループを抜けて最初のステップであるステップS216では、現在のマイク105の移動速度vと、上記ループの極値点に関する判定結果で決まる許容速度vthを比較する。許容速度vthとは、実際の移動速度vがvth以下であれば、上記ループ内で判定条件を満たした極値点を全て検出できるとするものである。具体的には次のような処理で取得する。
vth=min(vp(fp),vd(fd)) (9)
ここで、minはカンマで区切られた2つの引数の最小値を返す関数とする。また、vpは極値点のうちピークに対する許容速度を表し、ピークに関する判定条件を満たした最大周波数fpで決まる。同様に、vdは極値点のうちディップに対する許容速度を表し、ディップに関する判定条件を満たした最大周波数fdで決まる。
図15は、各周波数に対するvpとvdのテーブルを示す図である。当該テーブルは、記憶部102に格納されている。所望の周波数のデータが無い場合には、近い周波数のデータから補間するものとする。
以下に、許容速度vthを計算で算出する際の考え方の一例を示す。ステップS201で信号を切り出す際の時間窓の長さをtw、周波数fの定在波の波長をλfとする。ここで、時間窓の長さtwの間に進む距離(tw・v)について、波長λfに対する比が所定値α以下であれば、そのときの移動速度vは極値点の検出に十分であると考える。
(tw・v)/λf≦α (10)
よって、数式(10)の等号が成立する場合にvについて解けば、
vth(f)=(α・λf)/tw (11)
として許容速度vthが周波数の関数として計算できる。ここで、αをピークとディップに対してαp、αdのように個別に定め、αpよりαdの方が小さい必要があるとしてαp>αdとすれば、図15に示したようなテーブルが得られる。
極値点の予測において判定条件を満たした最大周波数を保存していたのは、数式(11)より許容速度vthが周波数に関して単調減少であるため、最大周波数を押さえれば最大周波数までの極値点を検出できる許容速度がわかるからである。また、測定開始時のマイク105の初期速度v0をvd(f2)としておくとよい。そのようにすることにより、測定開始点において対象周波数範囲の上限であるf2成分のディップが接近していても検出できる。さらに、極値点の判定に関するループに入る前にfpとfdはf1に初期化されるので、移動速度は常にvd(f1)以下であることが保証される。
ステップS216では、上述した許容速度vthと実際の移動速度vとを比較し、vがvth以下であれば極値点の検出に関しては問題ないと判定される。すなわち、S212またはS214で検出を逃したと判定された極値点があったとしても、誤差の範囲内とされる。しかし、vがvthより小さいということは、測定時間についてはムダが生じているのでS217へと進む。一方、S216で実際の移動速度vが許容速度vthを超えていた場合は、それに応じた処理を行うためS218へと進む。
ステップS217では、極値点の検出精度を保ちつつ測定時間を短縮するために、指示速度をvthまで上げる指示内容を確定して現在の処理周期の処理を終える。
ステップS218では、極値点を逃したと判定された周波数成分の数bを所定の閾値bthと比較し、閾値を超えていた場合は対処を行うためS219に進む。ここで、例えば閾値bthが0である場合は、ひとつでも極値点を逃したと判定された周波数があれば対処を行うということである。ステップS218の判定条件が偽であった場合はS220へと進む。
ステップS219では、移動速度が許容速度vthを超えていたために極値点を逃したとして、前処理周期の測定点まで戻って再測定を行うようにする。すなわち、指示速度の符号を反転して前測定点に戻り、指示速度vthで再測定を行うという指示内容を確定して現処理周期の処理を終える。
ステップS220では、極値点に接近していると判定された周波数成分の数sを所定の閾値sthと比較し、閾値を超えていた場合は対処を行うためS217に進む。ここで、例えば閾値sthが0である場合は、ひとつでも極値点に接近していると判定された周波数があれば対処を行うということである。S217では、極値点の検出精度を保証するために、指示速度をvthまで下げる指示内容を確定して現在の処理周期の処理を終える。S220の判定条件も偽であった場合は、前処理周期の指示内容を更新せずに現処理周期の処理を終えることになる。
トラバース装置140のような機械制御システムにおいて、マイク105の移動速度を常に指示速度に追従させている場合、極値点接近の判定結果に応じて移動速度を逐次調整するため、極値点を逃すようなことは基本的にないと考えることが出来る。ただし、例えば突発的なノイズなどによって傾き指標の非対称的な符号変化は起こり得るため、そのような場合に前測定点へ戻って再測定を行うのは有効である。
図12のフローチャートを繰り返しながら、マイク105は所定の経路に沿って測定対象エリアをサーチする。そして、極値点を予測して対応を行った上で得られた音響データについて、処理周期ごとにマイク105の位置座標や移動速度、許容速度とともに記憶部102に記録していく。また、再測定を行った場合は上書きして更新する。測定対象エリアをサーチし終えるとスピーカ132からの発音は止まり、移動測定を終了する。
以上説明したように第4実施形態にかかる定在波検出装置によれば、室内において生じている定在波(極値点)の位置を移動測定中に予測することが可能となる。そのため、極値点の予測結果に基づきマイクの移動速度へのフィードバック制御を逐次実行することで、測定時間の短縮と極値点の高精度な検出を両立できる。
(第5実施形態)
第5実施形態では、ステレオ音源を用いて定在波を検出する構成について説明する。
<装置構成>
図16は、第5実施形態に係る定在波検出装置の機能構成を示すブロック図である。主な構成は第1実施形態と同様であるが、音源として2個のスピーカ632、633を用いる点が異なる。
<装置の動作>
定在波検出のためのルートメニューの表示までは第1実施形態と同様である。ユーザは、ルートメニューから各種データの入力として、スピーカ632、633やデータ解析部620に関する設定値をリモコン103から入力することができる。スピーカ632、633に関する設定としては、スピーカ間の距離の入力や、測定用信号を発音するスピーカのチャンネルの指定が挙げられる。以下の説明では、スピーカ632が測定用信号を発音するものとする。データ解析部620に関する設定についても第1実施形態と同様である。
リモコン103を操作することにより定在波検出のルートメニューから検出開始のメニューを選択すると、測定開始点への移動を促すガイダンスが表示される。よって、ユーザはマイク605を持って測定開始点、例えばリスニングエリアの四隅のいずれかに移動してスタンバイする。
準備が整ったらリモコン103から測定開始を知らせるコマンドをコントローラ100に送り、これをトリガとして信号発生器608は測定用および測距用の信号を生成する。そして、これらの信号を原信号としてそのまま記憶部102に記録する一方、測定用信号はDA変換器109、増幅部110を通してスピーカ632から発音し、測距用信号はDA変換器109、増幅部110を通してスピーカ633から発音する。なお、スピーカ632、633が増幅部内蔵型のアクティブスピーカである場合には、コントローラ100内の増幅部110で増幅を行う必要はない。測距用信号としては例えば、定在波検出の対象周波数範囲であるf1からf2に含まれない、周波数f3成分を持つパルス列信号を用いる。パルス間隔はデータ解析部620における時間窓の長さに合わせておけばよい。
信号の発生と同時に、マイク605からAD変換器106およびシステム制御器101を通して、マイク収音信号の時系列データが記憶部102へ記録開始される。ユーザはスピーカ632、633から信号の発音を聞いて、マイク605を持って歩き始めることで移動測定を開始する。このとき、ユーザがマイク605を持つ高さは、ユーザが室内において座って音楽を聴くときの耳の高さ(約1m)が望ましい。
検出対象である定在波の極値点の検出精度はマイク605の移動速度に影響される。このため、記憶部102に記録されたマイク収音信号はデータ解析部620で逐次解析され、周波数ごとに定在波の極値点の位置が予測される。そして、この予測結果と現在の移動速度に基づいて指示内容が決定され、データ解析部620からシステム制御器101を通してガイダンス生成部607に送られる。ガイダンス生成部607では、システム制御器101から送られてきた指示内容をもとに、表示装置131、スピーカ632、633といった通知手段になり得るデバイスに応じた通知信号を生成する。また、マイク605が点灯部を備えていれば通知も可能であるため、第5実施形態ではマイク605も通知デバイスのひとつとして扱う。このような通知デバイスを通して、ガイダンス生成部607で生成された通知信号をユーザに通知することで、システム制御器101から送られてきた指示内容の実現が期待される。
<データ解析>
上述したように、ある経路の測定が開始されると、記憶部102に格納された連続的な音圧データ(マイク収音信号)の解析がデータ解析部620によって開始される。以下では、記憶部102に格納されたこれらのデータをデータ解析部620で逐次解析し、定在波を検出する流れについてさらに詳細に説明する。
図17は、データ解析部によるデータ解析のフローチャートである。
ステップS701のマイク収音信号からの信号の切り出しは、図12のS201と同じである。また、ステップS702の伝達関数の計算はS204に対応する。
ステップS703では、マイク105の座標を取得する。ただし、第4実施形態のようなトラバース装置140がなく、直接マイク105の座標を取得することは出来ない。そのため、スピーカ632、633からの音の情報を含む、S702で計算した伝達関数から算出する。
まず、測定用信号を発音しているスピーカ632からマイク605までの伝搬時間t1を求める。具体的には例えば、伝達関数から測距用信号の周波数f3成分を除去したあと逆フーリエ変換を行い、得られた時間波形の立ち上がり開始時間から求める。次に、測距用信号を発音しているスピーカ633からマイク605までの伝搬時間t2を求める。具体的には例えば、伝達関数から測距用信号の周波数f3成分を取り出して逆フーリエ変換を行い、得られた時間波形の立ち上がり開始時間から求める。立ち上がり開始時間を判別しやすくするために、時間波形の二乗振幅値から求めてもよい。
以上のようにして得られた伝搬時間t1、t2に音速cを掛けることで、スピーカ632からマイク605まで距離Rおよびスピーカ633からマイク605まで距離rが得られる。そのため、マイク605の位置座標は2つのスピーカ632、633各々を中心とする2円の交点として求められる。
図18は、2つのスピーカとマイクとの位置関係を例示的に示す図である。スピーカ632、633の間の距離を2aとして図18に示すようなスピーカ座標系を設定すれば、マイク605の位置座標は以下の2円の交点として求められる。
(x+a)+y=R
(x−a)+y=r (12)
連立方程式(12)を解いて、マイク605の位置座標(xm、ym)を次のように得る。
=(R−r)/4a
=√{R−(x+a)} (13)
スピーカ間の距離2aについては、各種データの入力としてユーザが入力する方法の他に、スピーカ間の距離を検出するメニューを設けておいて測定により取得してもよい。すなわち、スピーカ632、633を結ぶ直線上を横切るように測定して、伝搬時間の和が最小となったときに音速を掛けることでc・(t1+t2)のように得られる。
ステップS704では、S703で得られた座標について、ひとつ前の処理周期における座標との差分および処理周期間隔から、マイク105の移動速度を算出する。
ステップS705からS715までのループについては、第4実施形態におけるS205からS215までのループと同一であるため説明を省略する。
ステップS716では、上記ループの極値点に関する判定結果で決まる許容速度vthと、S704で算出した実際の移動速度vを比較する。vがvth以下であれば極値点の検出に関しては問題ないと判定されるが、測定時間についてはムダが生じていると判断されてS717へと進む。一方、S716で移動速度vが許容速度vthを超えていた場合は、それに応じた処理を行うためS718へと進む。
ステップS717では、測定時間を短縮するために、「もっと速く歩いてもよい」という指示内容を確定して現処理周期の処理を終える。理想的には移動速度をvthにするような指示をしたいが、相手がトラバース装置140のような機械制御システムではなくユーザであるため、ファジィ化された指示内容となる。
ステップS718では、S218と同様に、極値点を逃したと判定された周波数成分の数bを所定の閾値bthと比較し、閾値を超えていた場合は対処を行うためS719に進む。S718の判定条件が偽であった場合はS720へと進む。
ステップS719では、移動速度が許容速度vthを超えていたために極値点を逃したとして、「少し戻って再測定」というファジィ化された指示内容を確定して現処理周期の処理を終える。
ステップS720ではS220と同様に、極値点に接近していると判定された周波数成分の数sを所定の閾値sthと比較し、閾値を超えていた場合は対処を行うためS721に進む。S720の判定条件も偽であった場合は、前処理周期の指示内容を更新せずに現処理周期の処理を終えることになる。
ステップS721では、極値点の検出精度を保証するために、「もっとゆっくり歩け」というファジィ化された指示内容を確定して現処理周期の処理を終える。
データ解析部620で上記のように確定された指示内容は、システム制御器101を介してガイダンス生成部607に送られる。ガイダンス生成部607では送られてきた指示内容をもとに、表示装置131、点灯部付のマイク605、スピーカ632、633といった通知デバイスに応じた通知信号を生成する。
通知デバイスに表示装置131を用いる場合、指示内容をそのまま文章として表示してもよいし、矢印のような図形の向きを各指示内容に対応させてもよい。例えば、上向きなら「もっと速く歩いてもよい」、横向きなら「もっとゆっくり歩け」、下向きなら「少し戻って再測定」という具合である。
通知デバイスに点灯部付マイク605を用いる場合、点灯色を各指示内容に対応させることができる。例えば信号機を連想させるように、青色なら「もっと速く歩いてもよい」、黄色なら「もっとゆっくり歩け」、赤色なら「少し戻って再測定」という具合である。マイク605はユーザの手元にあるため、効果的な通知ができると考えられる
通知デバイスにスピーカ632や633を用いる場合、音の高さや長さ、断続間隔を各指示内容に対応させることができる。例えば「少し戻って再測定」なら、車のバックの音を連想させる音といった具合である。ただし、通知信号の周波数帯域は測定用信号や測距用信号と被らないようにするとよい。
ファジィ化された指示内容だけでなく、実際の移動速度vや許容速度vthといった定量的な情報もガイダンス生成部607に送っておけば、それらの値に応じた通知を行うこともできる。例えば通知デバイスに表示装置131を用いる場合、指示内容を示す文字や図形の大きさをvthとvの差に応じて変えてもよいし、速度を単位としたスケールを表示し、許容速度vthとユーザの移動速度vの位置をリアルタイムに指し示してもよい。こうすることで、ユーザは移動速度を調整しやすくなると考えられる。また、表示装置131や点灯部付マイク605のように視覚的な通知信号を用いる場合、vthとvの差に応じて信号の輝度や色、点滅間隔を連続的に変化させてもよい。同様に、スピーカ632や633のように聴覚的な通知信号を用いる場合、vthとvの差に応じて信号の振幅(音の大きさ)を連続的に変化させてもよい。
このように、通知デバイスを通してガイダンス生成部607で生成された通知信号をユーザに通知することで、システム制御器101から送られてきた指示内容の実現が期待される。
以上の動作を繰り返しながら、ユーザはリスニングエリアを掃くようにサーチする。そして、極値点を予測して対応を行った上で得られた音響データは、マイク105の位置座標や移動速度、また許容速度や測定用信号を発音したスピーカのチャンネルとともに、処理周期ごとに記憶部102に記録される。ここで、再測定を行った場合は上書き更新される。リスニングエリアをサーチし終えると、ユーザはリモコン103から測定終了を知らせるコマンドをコントローラ100に送り、これをトリガとしてスピーカ632、633からの発音が止まるため、移動測定を終了する。
以上説明したように、第5実施形態に係る定在波検出装置によれば、室内において生じている定在波(極値点)の位置を移動測定中に予測することが可能となる。そのため、極値点の予測結果に基づきマイクと共に移動しているユーザに対し移動速度のガイダンスを逐次行なうことで、測定時間の短縮と極値点の高精度な検出を両立できる。
(他の実施形態)
以上、本発明の実施形態について詳述したが、本発明は、複数の機器から構成されるシステムに適用しても良いし、また、一つの機器からなる装置に適用しても良い。さらに、本発明の機能処理をコンピュータで実現するために、コンピュータにインストールされるプログラムコード自体も本発明の技術的範囲に含まれる。プログラムを供給するための記録媒体としては、例えば、フロッピー(登録商標)ディスク、ハードディスク、光ディスク(CD、DVD)、光磁気ディスク、磁気テープ、不揮発性のメモリカード、ROMなどがある。

Claims (10)

  1. 所定空間における定在波を検出する定在波検出装置であって、
    前記所定空間内に配置された音源から発せられる音声を入力する音声入力手段と、
    前記所定空間内の所定の経路に沿った移動の間、前記音声入力手段により取得された音圧レベル時系列データを記憶する記憶手段と、
    前記記憶手段に記憶された前記音圧レベル時系列データの下側包絡線を用いて決定される補正曲線に基づいて、前記記憶手段に記憶された前記音圧レベル時系列データを補正する補正手段と、
    前記補正された音圧レベル時系列データに基づいて、前記所定空間における定在波の存在位置を検出する検出手段と、
    を備えることを特徴とする定在波検出装置。
  2. 前記補正手段は、前記音圧レベル時系列データの各時点での音圧レベル値から前記補正曲線上の対応する各時点の値を減算することを特徴とする請求項1に記載の定在波検出装置。
  3. 前記検出手段は、前記補正された音圧レベル時系列データに含まれる極小値を検出し、該極小値に対応する時点を前記所定空間における定在波の節の存在位置として検出することを特徴とする請求項1または2に記載の定在波検出装置。
  4. 前記検出手段は、前記補正された音圧レベル時系列データに含まれる極大値を検出し、該極大値に対応する時点を前記所定空間における定在波の腹の存在位置として検出することを特徴とする請求項1または2に記載の定在波検出装置。
  5. 前記所定空間における前記検出手段により検出された定在波の存在位置を映像出力する表示手段をさらに備えることを特徴とする請求項1乃至4の何れか一項に記載の定在波検出装置。
  6. 少なくとも前記音声入力手段は前記所定空間内を移動可能なように前記定在波検出装置から取り外し可能に構成されており、
    前記定在波検出装置は、前記音声入力手段と共に移動するユーザへの音声指示を前記音声入力手段により取得される音声の帯域外で出力する音声指示手段をさらに備えることを特徴とする請求項1乃至5の何れか一項に記載の定在波検出装置。
  7. 前記補正手段は、
    前記記憶手段に記憶された前記音圧レベル時系列データの下側包絡線を用いて決定される補正曲線が所定の閾値を超えるか否かを判定する判定手段と、
    前記判定手段により前記補正曲線が前記所定の閾値を超えると判定された場合、前記音声指示手段により再測定の音声指示を出力することを特徴とする請求項6に記載の定在波検出装置。
  8. 少なくとも前記音声入力手段は前記所定空間内を移動可能なように前記定在波検出装置から取り外し可能に構成されており、
    前記定在波検出装置は、
    前記音声入力手段を前記所定空間内で移動させる駆動手段と、
    前記駆動手段を遠隔制御するための遠隔制御手段と、
    をさらに備えることを特徴とする請求項1乃至5の何れか一項に記載の定在波検出装置。
  9. 前記音声入力手段の前記所定空間内における位置を検出する位置検出手段と、
    前記所定空間内の所定の経路に沿った移動の間、前記音声入力手段により入力された音圧レベルの変化に基づいて定在波の節または腹の存在位置を予測する予測手段と、をさらに備え、
    前記遠隔制御手段は、前記位置検出手段により検出した前記位置と前記予測した定在波の節または腹の存在位置とに基づいて前記音声入力手段の移動速度を変化させるよう前記駆動手段を制御することを特徴とする請求項7に記載の定在波検出装置。
  10. 所定空間における定在波を検出する定在波検出装置の制御方法であって、
    前記所定空間内に配置された音源から発せられる音声を音声入力部により入力する音声入力工程と、
    前記所定空間内の所定の経路に沿った移動の間、前記音声入力工程により取得された音圧レベル時系列データを記憶部に記憶する記憶制御工程と、
    前記記憶部に記憶された前記音圧レベル時系列データの下側包絡線を用いて決定される補正曲線に基づいて、前記記憶部に記憶された前記音圧レベル時系列データを補正する補正工程と、
    前記補正された音圧レベル時系列データに基づいて、前記所定空間における定在波の存在位置を検出する検出工程と、
    を備えることを特徴とする定在波検出装置の制御方法。
JP2009133452A 2009-06-02 2009-06-02 定在波検出装置およびその制御方法 Active JP5451188B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009133452A JP5451188B2 (ja) 2009-06-02 2009-06-02 定在波検出装置およびその制御方法
US12/783,023 US8532308B2 (en) 2009-06-02 2010-05-19 Standing wave detection apparatus and method of controlling the same
EP10164363A EP2261616B1 (en) 2009-06-02 2010-05-28 Standing wave detection apparatus and method of controlling the same
CN2010101909282A CN101907699B (zh) 2009-06-02 2010-06-02 驻波检测装置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133452A JP5451188B2 (ja) 2009-06-02 2009-06-02 定在波検出装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2010281902A true JP2010281902A (ja) 2010-12-16
JP5451188B2 JP5451188B2 (ja) 2014-03-26

Family

ID=42734694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133452A Active JP5451188B2 (ja) 2009-06-02 2009-06-02 定在波検出装置およびその制御方法

Country Status (4)

Country Link
US (1) US8532308B2 (ja)
EP (1) EP2261616B1 (ja)
JP (1) JP5451188B2 (ja)
CN (1) CN101907699B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044796A (ja) * 2011-08-22 2013-03-04 Osaka Gas Co Ltd 定在波騒音低減方法
JP2014167442A (ja) * 2013-02-28 2014-09-11 Toyota Home Kk 音場シミュレーション装置及び音場シミュレーションプログラム
JP2015155978A (ja) * 2014-02-20 2015-08-27 トヨタホーム株式会社 音環境シミュレーション装置
JP5954606B1 (ja) * 2015-12-16 2016-07-20 富士ゼロックス株式会社 診断装置、診断システム、装置およびプログラム
JP5954648B1 (ja) * 2016-01-08 2016-07-20 富士ゼロックス株式会社 端末装置、診断システム及びプログラム
JP6016149B1 (ja) * 2016-01-08 2016-10-26 富士ゼロックス株式会社 端末装置、診断システム及びプログラム

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606234B2 (ja) * 2010-09-13 2014-10-15 キヤノン株式会社 音響装置
US9084058B2 (en) 2011-12-29 2015-07-14 Sonos, Inc. Sound field calibration using listener localization
US9106192B2 (en) 2012-06-28 2015-08-11 Sonos, Inc. System and method for device playback calibration
US9219460B2 (en) 2014-03-17 2015-12-22 Sonos, Inc. Audio settings based on environment
US9706323B2 (en) 2014-09-09 2017-07-11 Sonos, Inc. Playback device calibration
US9690539B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration user interface
JP6074263B2 (ja) 2012-12-27 2017-02-01 キヤノン株式会社 雑音抑圧装置及びその制御方法
CN105229414B (zh) * 2013-05-16 2018-11-23 皇家飞利浦有限公司 房间尺寸估计的确定
JP6371516B2 (ja) 2013-11-15 2018-08-08 キヤノン株式会社 音響信号処理装置および方法
CN103645117B (zh) * 2013-12-11 2015-08-19 辽宁工程技术大学 一种气体驻波测定实验装置
US9264839B2 (en) 2014-03-17 2016-02-16 Sonos, Inc. Playback device configuration based on proximity detection
JP6460676B2 (ja) 2014-08-05 2019-01-30 キヤノン株式会社 信号処理装置および信号処理方法
US9952825B2 (en) 2014-09-09 2018-04-24 Sonos, Inc. Audio processing algorithms
US9910634B2 (en) 2014-09-09 2018-03-06 Sonos, Inc. Microphone calibration
US9891881B2 (en) 2014-09-09 2018-02-13 Sonos, Inc. Audio processing algorithm database
US10127006B2 (en) * 2014-09-09 2018-11-13 Sonos, Inc. Facilitating calibration of an audio playback device
WO2016172593A1 (en) 2015-04-24 2016-10-27 Sonos, Inc. Playback device calibration user interfaces
US10664224B2 (en) 2015-04-24 2020-05-26 Sonos, Inc. Speaker calibration user interface
US9538305B2 (en) 2015-07-28 2017-01-03 Sonos, Inc. Calibration error conditions
CN111314826B (zh) 2015-09-17 2021-05-14 搜诺思公司 由计算设备执行的方法及相应计算机可读介质和计算设备
US9693165B2 (en) 2015-09-17 2017-06-27 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US9743207B1 (en) 2016-01-18 2017-08-22 Sonos, Inc. Calibration using multiple recording devices
US10003899B2 (en) 2016-01-25 2018-06-19 Sonos, Inc. Calibration with particular locations
US11106423B2 (en) 2016-01-25 2021-08-31 Sonos, Inc. Evaluating calibration of a playback device
US9864574B2 (en) 2016-04-01 2018-01-09 Sonos, Inc. Playback device calibration based on representation spectral characteristics
US9860662B2 (en) 2016-04-01 2018-01-02 Sonos, Inc. Updating playback device configuration information based on calibration data
US9763018B1 (en) 2016-04-12 2017-09-12 Sonos, Inc. Calibration of audio playback devices
US9860670B1 (en) 2016-07-15 2018-01-02 Sonos, Inc. Spectral correction using spatial calibration
US9794710B1 (en) 2016-07-15 2017-10-17 Sonos, Inc. Spatial audio correction
US10372406B2 (en) 2016-07-22 2019-08-06 Sonos, Inc. Calibration interface
US10459684B2 (en) 2016-08-05 2019-10-29 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
JP2019020530A (ja) 2017-07-13 2019-02-07 キヤノン株式会社 信号処理装置、制御方法、及びプログラム
CN107801120B (zh) * 2017-10-24 2019-10-15 维沃移动通信有限公司 一种确定音箱摆放位置的方法、装置及移动终端
US10299061B1 (en) 2018-08-28 2019-05-21 Sonos, Inc. Playback device calibration
US11206484B2 (en) 2018-08-28 2021-12-21 Sonos, Inc. Passive speaker authentication
CN110081965B (zh) * 2019-05-17 2021-04-30 电子科技大学中山学院 一种驻波波节、波腹定位探测结构
US10734965B1 (en) 2019-08-12 2020-08-04 Sonos, Inc. Audio calibration of a portable playback device
CN112461805A (zh) * 2020-11-16 2021-03-09 三诺生物传感股份有限公司 一种用于荧光强度基底计算的方法
CN116819186B (zh) * 2023-08-30 2023-11-24 福州物联网开放实验室有限公司 一种物联网通信终端天线性能调测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107884A (en) * 1976-03-05 1977-09-09 Bridgestone Tire Co Ltd Sounddtoolight converter
JPH03277926A (ja) * 1990-03-28 1991-12-09 Amada Co Ltd 音圧コンター作成装置
JPH0493727A (ja) * 1990-08-10 1992-03-26 Amada Co Ltd 音センサによる振動の共振状態を推定する方法およびその装置
JP2000055730A (ja) * 1998-08-07 2000-02-25 Kumagai Gumi Co Ltd 室間音圧レベル差の測定方法及びその装置
JP2004112528A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 音響信号伝送装置および方法
JP2007158589A (ja) * 2005-12-02 2007-06-21 D & M Holdings Inc 音場補正方法、音場補正装置及びオーディオ装置
JP2008261700A (ja) * 2007-04-11 2008-10-30 Chugoku Electric Power Co Inc:The 音の波長測定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831646A (ja) * 1981-08-19 1983-02-24 Aihon Kk 通話装置筐体内への発音体の装着方法
GB9026906D0 (en) * 1990-12-11 1991-01-30 B & W Loudspeakers Compensating filters
JP3028977B2 (ja) * 1991-08-30 2000-04-04 日産自動車株式会社 能動型騒音制御装置
JP3537674B2 (ja) * 1998-09-30 2004-06-14 パイオニア株式会社 オーディオシステム
US6721428B1 (en) * 1998-11-13 2004-04-13 Texas Instruments Incorporated Automatic loudspeaker equalizer
CN1659927A (zh) * 2002-06-12 2005-08-24 伊科泰克公司 房间内扬声器声音的数字均衡方法及其使用
US8705755B2 (en) * 2003-08-04 2014-04-22 Harman International Industries, Inc. Statistical analysis of potential audio system configurations
EP1523221B1 (en) 2003-10-09 2017-02-15 Harman International Industries, Incorporated System and method for audio system configuration
US20070030979A1 (en) * 2005-07-29 2007-02-08 Fawad Nackvi Loudspeaker
US8577048B2 (en) * 2005-09-02 2013-11-05 Harman International Industries, Incorporated Self-calibrating loudspeaker system
US20080267426A1 (en) * 2005-10-24 2008-10-30 Koninklijke Philips Electronics, N.V. Device for and a Method of Audio Data Processing
US8194874B2 (en) 2007-05-22 2012-06-05 Polk Audio, Inc. In-room acoustic magnitude response smoothing via summation of correction signals
US8320588B2 (en) * 2009-02-10 2012-11-27 Mcpherson Jerome Aby Microphone mover

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107884A (en) * 1976-03-05 1977-09-09 Bridgestone Tire Co Ltd Sounddtoolight converter
JPH03277926A (ja) * 1990-03-28 1991-12-09 Amada Co Ltd 音圧コンター作成装置
JPH0493727A (ja) * 1990-08-10 1992-03-26 Amada Co Ltd 音センサによる振動の共振状態を推定する方法およびその装置
JP2000055730A (ja) * 1998-08-07 2000-02-25 Kumagai Gumi Co Ltd 室間音圧レベル差の測定方法及びその装置
JP2004112528A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 音響信号伝送装置および方法
JP2007158589A (ja) * 2005-12-02 2007-06-21 D & M Holdings Inc 音場補正方法、音場補正装置及びオーディオ装置
JP2008261700A (ja) * 2007-04-11 2008-10-30 Chugoku Electric Power Co Inc:The 音の波長測定装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044796A (ja) * 2011-08-22 2013-03-04 Osaka Gas Co Ltd 定在波騒音低減方法
JP2014167442A (ja) * 2013-02-28 2014-09-11 Toyota Home Kk 音場シミュレーション装置及び音場シミュレーションプログラム
JP2015155978A (ja) * 2014-02-20 2015-08-27 トヨタホーム株式会社 音環境シミュレーション装置
JP5954606B1 (ja) * 2015-12-16 2016-07-20 富士ゼロックス株式会社 診断装置、診断システム、装置およびプログラム
US10352820B2 (en) 2015-12-16 2019-07-16 Fuji Xerox Co., Ltd. Diagnostic device, diagnostic system, diagnostic method, and non-transitory computer-readable medium
JP5954648B1 (ja) * 2016-01-08 2016-07-20 富士ゼロックス株式会社 端末装置、診断システム及びプログラム
JP6016149B1 (ja) * 2016-01-08 2016-10-26 富士ゼロックス株式会社 端末装置、診断システム及びプログラム
CN106961514A (zh) * 2016-01-08 2017-07-18 富士施乐株式会社 终端装置和信息输出方法
CN106961514B (zh) * 2016-01-08 2021-05-28 富士施乐株式会社 终端装置和信息输出方法

Also Published As

Publication number Publication date
EP2261616B1 (en) 2012-07-11
US8532308B2 (en) 2013-09-10
CN101907699A (zh) 2010-12-08
CN101907699B (zh) 2013-06-05
EP2261616A1 (en) 2010-12-15
US20100303248A1 (en) 2010-12-02
JP5451188B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5451188B2 (ja) 定在波検出装置およびその制御方法
KR102602149B1 (ko) 가상 현실 환경을 위한 이동 스피커
US10262230B1 (en) Object detection and identification
EP3400718B1 (en) An audio communication system and method
JP5075664B2 (ja) 音声対話装置及び支援方法
JP5606234B2 (ja) 音響装置
CN107172566B (zh) 音频处理方法及装置
JP2011071702A (ja) 収音処理装置、収音処理方法、及びプログラム
JP2021510012A (ja) スピーカ制御方法及びスピーカ制御装置
JP2013025776A (ja) 音変換装置を備えた工作機械の数値制御装置
JP2012208782A (ja) 移動予測装置、ロボット制御装置、移動予測プログラムおよび移動予測方法
TW202215419A (zh) 在開放現場中主動噪聲消除的系統和方法
US9307335B2 (en) Device for estimating placement of physical objects
JP4517606B2 (ja) 監視システム、信号処理装置および方法、並びにプログラム
Magalhães et al. Identification of hybrid ARX–neural network models for three-dimensional simulation of a vibroacoustic system
JP2016188791A (ja) 音源探査装置および音源探査方法
JP4556099B2 (ja) 監視システム、制御装置および方法、並びにプログラム
JP5393544B2 (ja) ロボット、ロボット制御方法およびプログラム
EP2809085A1 (en) Device for estimating placement of physical objects
JPH10191498A (ja) 音信号処理装置
Höber et al. Generating a Position-Adaptive Quiet Zone in Enclosed Spaces
WO2020095517A1 (ja) 制御装置及びプログラム
CN112380890A (zh) 个人空间制作***、个人空间制作方法及记录介质
JP2007289713A (ja) 仮想三次元音像生成装置及びその方法並びに媒体
JP2021175145A (ja) パラメトリックスピーカのコントローラ、パラメトリックスピーカの制御方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R151 Written notification of patent or utility model registration

Ref document number: 5451188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151