JP2010278317A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2010278317A
JP2010278317A JP2009130781A JP2009130781A JP2010278317A JP 2010278317 A JP2010278317 A JP 2010278317A JP 2009130781 A JP2009130781 A JP 2009130781A JP 2009130781 A JP2009130781 A JP 2009130781A JP 2010278317 A JP2010278317 A JP 2010278317A
Authority
JP
Japan
Prior art keywords
light
substrate
led chip
emitting device
light distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009130781A
Other languages
Japanese (ja)
Other versions
JP5390938B2 (en
Inventor
Takumi Taura
巧 田浦
Masao Kirihara
昌男 桐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009130781A priority Critical patent/JP5390938B2/en
Publication of JP2010278317A publication Critical patent/JP2010278317A/en
Application granted granted Critical
Publication of JP5390938B2 publication Critical patent/JP5390938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which has simplified structure and also is made inexpensive although including an optical detection element having a light reception portion receiving a part of light emitted by an LED chip. <P>SOLUTION: The light emitting device includes the LED chip 1, a base substrate 20 formed using a first silicon substrate (first semiconductor substrate) 20a and mounted with the LED chip 1 on one surface side, and a substrate 30 for light distribution formed using a second silicon substrate (second semiconductor substrate) 30a, having an opening window 31 for exposing the LED chip 1, and joined to the one surface side of the base substrate 10. The substrate 30 for light distribution includes the opening window 31 formed in an inversely tapered shape gradually decreasing in opening area as the distance from the base substrate 20 is increased, and the light reception portion 4a of the optical detecting element 4 detecting a part of the light emitted by the LED chip 1 is formed along an inner side face of the opening window 31. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LEDチップ(発光ダイオードチップ)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED chip (light emitting diode chip).

従来から、図5に示すように、LEDチップ1と、LEDチップ1を収納するパッケージAとを備え、LEDチップ1から放射される光の一部を受光する受光部4aを有するフォトダイオードからなる光検出素子4がパッケージAに一体に設けられた発光装置が提案されている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 5, the LED chip 1 and a package A that houses the LED chip 1 are provided, and the photodiode has a light receiving portion 4 a that receives part of the light emitted from the LED chip 1. A light emitting device in which the light detection element 4 is provided integrally with the package A has been proposed (see, for example, Patent Document 1).

上述のパッケージAは、LEDチップ1を収納する収納凹所2b’が一表面に形成されLEDチップ1が実装される実装基板2’と、実装基板2’の上記一表面側で収納凹所2b’を閉塞する形で配設された透光性部材8とで構成され、光検出素子4の受光部4aが実装基板2’における収納凹所2b’の周部から内方へ突出する突出部2c’に形成されており、収納凹所2b内がLEDチップ1を封止した透光性封止材(例えば、シリコーン樹脂など)からなる封止部5により充実されている。   In the package A, the housing recess 2b ′ for housing the LED chip 1 is formed on one surface, and the mounting substrate 2 ′ on which the LED chip 1 is mounted, and the housing recess 2b on the one surface side of the mounting substrate 2 ′. And a light-transmitting member 8 disposed so as to close the light-receiving portion 4a of the light-detecting element 4 so that the light-receiving portion 4a protrudes inward from the peripheral portion of the housing recess 2b 'on the mounting substrate 2'. The housing recess 2b is filled with a sealing part 5 made of a light-transmitting sealing material (for example, silicone resin) that seals the LED chip 1.

ここにおいて、実装基板2’は、シリコン基板20aを用いて形成されLEDチップ1が実装されるベース基板20と、シリコン基板40aを用いて形成され光取出窓41が形成されるとともに光検出素子4が形成された光検出素子形成基板40と、シリコン基板30aを用いて形成されてなり光取出窓41に連通する開口窓31が形成されベース基板20と光検出素子形成基板40との間に介在する配光用基板30とで構成されている。ここで、光検出素子4は、配光用基板30に形成された貫通孔配線34およびベース基板20に形成された貫通孔配線24を介して外部接続用電極27c,27dと電気的に接続されている。なお、LEDチップ1は、ベース基板20に形成された図示しない貫通孔配線を介して図示しない外部接続用電極と電気的に接続されている。   Here, the mounting substrate 2 ′ is formed using the silicon substrate 20 a and the base substrate 20 on which the LED chip 1 is mounted, the silicon substrate 40 a is formed, the light extraction window 41 is formed, and the light detection element 4. Is formed between the base substrate 20 and the photodetecting element forming substrate 40. The photodetecting element forming substrate 40 is formed with an opening window 31 that is formed using the silicon substrate 30a and communicates with the light extracting window 41. And a light distribution substrate 30. Here, the light detection element 4 is electrically connected to the external connection electrodes 27 c and 27 d through the through-hole wiring 34 formed in the light distribution substrate 30 and the through-hole wiring 24 formed in the base substrate 20. ing. The LED chip 1 is electrically connected to an external connection electrode (not shown) through a through-hole wiring (not shown) formed in the base substrate 20.

上述の図5に示した構成の発光装置では、実装基板2’においてLEDチップ1を収納する収納凹所2b’の周部から内方へ突出する突出部2c’に、LEDチップ1から放射される光の一部を検出する光検出素子4の受光部4aが形成されているので、実装基板2’の上記一表面側において収納凹所2b’の周囲に受光部4aを配置するためのスペースを別途に確保する必要がなく、光検出素子4を実装基板2’に設けながらも平面サイズの小型化が可能になるという利点がある。なお、図5に示した構成の発光装置では、光検出素子形成基板40の基礎となるシリコン基板40aの導電形がn形であり、光検出素子4においてLEDチップ1からの光を受光する受光部4aがp形領域により構成されている。   In the light emitting device having the configuration shown in FIG. 5 described above, the LED chip 1 radiates to the projecting portion 2c ′ projecting inward from the peripheral portion of the housing recess 2b ′ that houses the LED chip 1 in the mounting substrate 2 ′. Since the light receiving portion 4a of the light detecting element 4 for detecting a part of the light to be detected is formed, a space for arranging the light receiving portion 4a around the housing recess 2b ′ on the one surface side of the mounting substrate 2 ′. Therefore, there is an advantage that the planar size can be reduced while the photodetecting element 4 is provided on the mounting substrate 2 ′. In the light emitting device having the configuration shown in FIG. 5, the conductivity type of the silicon substrate 40 a serving as the basis of the light detection element forming substrate 40 is n type, and the light detection element 4 receives light from the LED chip 1. The part 4a is constituted by a p-type region.

しかして、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の回路基板上に近接して配置して、当該回路基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出素子4の出力がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出部4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、所望の混色光を安定して得ることができる。なお、上記特許文献1には、図5に示した構成の発光装置において、透光性部材8に、LEDチップ1から放射される光(例えば、青色光)によって励起されてLEDチップよりも長波長の光(例えば、黄色光)を放射する蛍光体を含有させておくことにより、LEDチップ1からの光と蛍光体からの光との混色光(例えば、白色光)を得ることができることも記載されている。   Thus, for example, a light emitting device employing a red LED chip as the LED chip 1, a light emitting device employing a green LED chip as the LED chip 1, and a light emitting device employing a blue LED chip as the LED chip 1 are the same circuit. A driving circuit unit that is arranged close to the substrate and drives the LED chip 1 of each light emitting device on the circuit board, and a driving circuit unit that maintains the output of each photodetecting element 4 at a target value. By providing a control circuit unit that feedback-controls the current flowing from the LED chip 1 of each emission color to the light output of the LED chip 1 of each emission color based on the output of each light detection unit 4 It is possible to control the accuracy of the light color and the color temperature of the mixed color light (here, white light) regardless of the temporal change in the light output of the LED chip 1 for each emission color. It is possible to above. In short, desired mixed color light can be stably obtained. In Patent Document 1, in the light emitting device having the configuration shown in FIG. 5, the translucent member 8 is excited by light (for example, blue light) emitted from the LED chip 1 and is longer than the LED chip. By including a phosphor that emits light of a wavelength (for example, yellow light), it is possible to obtain mixed light (for example, white light) of the light from the LED chip 1 and the light from the phosphor. Are listed.

また、従来から、発光素子から放射される光の一部を検出する光検出素子を備えた光デバイスとして、図6に示すように、シリコン基板120aを用いて形成され一表面側にLDチップからなる発光素子101および光ファイバ62が実装された光学基台120と、発光素子101から放射された光の一部を受光するフォトダイオードチップからなる光検出素子140および光学基台120が搭載された多層ベース基板110とを備えた光モジュールが提案されている(例えば、特許文献2参照)。   Further, as shown in FIG. 6, as an optical device provided with a photodetecting element that detects a part of light emitted from a light emitting element, a silicon substrate 120a is used and an LD chip is formed on one surface side. The optical base 120 on which the light emitting element 101 and the optical fiber 62 to be mounted are mounted, and the light detecting element 140 and the optical base 120 including a photodiode chip that receive a part of the light emitted from the light emitting element 101 are mounted. An optical module including a multilayer base substrate 110 has been proposed (see, for example, Patent Document 2).

ここにおいて、光学基台は、多層ベース基板110上の光検出素子140に対応する領域に、シリコン基板120aを厚み方向の両側から異方性エッチングすることにより貫通孔121が形成されており、発光素子から放射された光の一部を光検出素子140の受光面側へ反射するミラー123が、貫通孔121の傾斜した内側面から当該内側面の法線方向に突出する形で固着されている。なお、図6中の矢印は発光素子101から放射された光の光路を示している。   Here, in the optical base, through-holes 121 are formed by anisotropically etching the silicon substrate 120a from both sides in the thickness direction in a region corresponding to the light detection element 140 on the multilayer base substrate 110, and light emission A mirror 123 that reflects a part of the light emitted from the element to the light receiving surface side of the light detecting element 140 is fixed so as to protrude from the inclined inner surface of the through-hole 121 in the normal direction of the inner surface. . Note that the arrows in FIG. 6 indicate the optical path of the light emitted from the light emitting element 101.

特開2007−294834号公報JP 2007-294834 A 特開2005−257911号公報JP 2005-257911 A

ところで、図5に示した構成の発光装置では、実装基板2’を3枚のシリコン基板(半導体基板)20a,30a,40aを用いて形成する必要があり、構造が複雑になってしまうとともにコストが高くなってしまう。   By the way, in the light emitting device having the configuration shown in FIG. 5, it is necessary to form the mounting substrate 2 ′ using three silicon substrates (semiconductor substrates) 20a, 30a, and 40a. Becomes higher.

また、図6に示した構成の光モジュールにおいて、発光素子101としてLEDチップを用い、光ファイバ62をなくして発光装置とすることも考えられるが、発光素子101から放射される光の一部を光検出素子140に導くためにミラー123を設ける必要があり、構造が複雑になってしまうとともにコストが高くなってしまう。また、図6に示した構成では、光検出素子140の受光面に外来光が入射しやすく、光検出素子140の検出精度の高精度化が難しい。   In addition, in the optical module having the configuration shown in FIG. 6, it is possible to use an LED chip as the light emitting element 101 and eliminate the optical fiber 62 to form a light emitting device, but a part of the light emitted from the light emitting element 101 is used. In order to guide to the light detection element 140, it is necessary to provide the mirror 123, which makes the structure complicated and increases the cost. In the configuration shown in FIG. 6, extraneous light is likely to enter the light receiving surface of the light detection element 140, and it is difficult to increase the detection accuracy of the light detection element 140.

本発明は上記事由に鑑みて為されたものであり、その目的は、LEDチップから放射される光の一部を受光する受光部を有する光検出素子を備えながらも、構造の簡略化を図れるとともに低コスト化を図れる発光装置を提供することにある。   The present invention has been made in view of the above reasons, and the object thereof is to simplify the structure while including a light detection element having a light receiving portion for receiving a part of light emitted from an LED chip. Another object is to provide a light emitting device capable of reducing the cost.

請求項1の発明は、LEDチップと、第1の半導体基板を用いて形成され一表面側にLEDチップが実装されたベース基板と、第2の半導体基板を用いて形成されてLEDチップを露出させる開口窓を有しベース基板の上記一表面側に接合された配光用基板とを備え、配光用基板は、開口窓の少なくとも一部がベース基板から離れるにつれて開口面積が徐々に小さくなる逆テーパ状に形成され、LEDチップから放射される光の一部を検出する光検出素子の受光部が開口窓のうち当該逆テーパ状に形成された部位の内側面に沿って形成されてなることを特徴とする。   According to the first aspect of the present invention, an LED chip, a base substrate formed using a first semiconductor substrate and mounted on one surface side, and a second semiconductor substrate are used to expose the LED chip. And a light distribution substrate bonded to the one surface side of the base substrate. The light distribution substrate has an opening area that gradually decreases as at least a part of the opening window moves away from the base substrate. The light receiving portion of the light detection element that is formed in a reverse taper shape and detects a part of the light emitted from the LED chip is formed along the inner surface of the portion formed in the reverse taper shape in the opening window. It is characterized by that.

この発明によれば、LEDチップを実装するベース基板が第1の半導体基板を用いて形成され、LEDチップから放射される光の一部を検出する光検出素子の受光部が第2の半導体基板を用いて形成される配光用基板の開口窓のうち逆テーパ状に形成された部位の内側面に沿って形成されているので、LEDチップから放射される光の一部を受光する受光部を有する光検出素子を備えながらも、構造の簡略化を図れるとともに低コスト化を図れる。   According to the present invention, the base substrate on which the LED chip is mounted is formed using the first semiconductor substrate, and the light receiving portion of the light detecting element that detects a part of the light emitted from the LED chip is the second semiconductor substrate. A light receiving portion that receives a part of the light emitted from the LED chip because it is formed along the inner surface of the portion of the opening window of the light distribution substrate formed by using the reversely tapered portion In addition, the structure can be simplified and the cost can be reduced.

請求項2の発明は、請求項1の発明において、前記配光用基板の前記開口窓は、前記ベース基板から離れるにつれて開口面積が徐々に小さくなる形状に形成されてなることを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the opening window of the light distribution substrate is formed in a shape in which the opening area gradually decreases as the distance from the base substrate increases.

この発明によれば、前記配光用基板の前記開口窓を容易に形成することができる。   According to this invention, the opening window of the light distribution substrate can be easily formed.

請求項3の発明は、請求項1の発明において、前記配光用基板の前記開口窓は、前記配光用基板の厚み方向の両側から中間位置に近づくにつれて開口面積が徐々に大きくなる形状に形成されてなることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the opening window of the light distribution substrate has a shape in which the opening area gradually increases as it approaches an intermediate position from both sides in the thickness direction of the light distribution substrate. It is formed.

この発明によれば、請求項2の発明に比べて、前記配光用基板の平面視における前記開口窓の占有面積を縮小でき、前記配光用基板および前記ベース基板の小型化が可能となる。また、この発明によれば、前記配光用基板の前記開口窓を形成する際に前記第2の半導体基板の厚み方向の両側からエッチングすることができるので、エッチング時間の短縮を図れる。   According to this invention, compared with the invention of claim 2, the area occupied by the opening window in plan view of the light distribution substrate can be reduced, and the light distribution substrate and the base substrate can be miniaturized. . Further, according to the present invention, when the opening window of the light distribution substrate is formed, etching can be performed from both sides in the thickness direction of the second semiconductor substrate, so that the etching time can be shortened.

請求項4の発明は、請求項1の発明において、前記配光用基板の前記開口窓は、前記配光用基板の厚み方向の両側から中間位置に近づくにつれて開口面積が徐々に小さくなる形状に形成されてなることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, the opening window of the light distribution substrate has a shape in which the opening area gradually decreases as it approaches an intermediate position from both sides in the thickness direction of the light distribution substrate. It is formed.

この発明によれば、請求項2の発明に比べて、前記配光用基板の平面視における前記開口窓の占有面積を縮小でき、前記配光用基板および前記ベース基板の小型化が可能となる。また、この発明によれば、前記配光用基板の前記開口窓を形成する際に前記第2の半導体基板の厚み方向の両側からエッチングすることができるので、エッチング時間の短縮を図れる。   According to this invention, compared with the invention of claim 2, the area occupied by the opening window in plan view of the light distribution substrate can be reduced, and the light distribution substrate and the base substrate can be miniaturized. . Further, according to the present invention, when the opening window of the light distribution substrate is formed, etching can be performed from both sides in the thickness direction of the second semiconductor substrate, so that the etching time can be shortened.

請求項5の発明は、請求項1ないし請求項4の発明において、前記第2の半導体基板は、シリコン基板であることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the second semiconductor substrate is a silicon substrate.

この発明によれば、前記配光用基板の前記開口窓を、アルカリ系溶液を用いた異方性エッチングにより精度良く形成することができる。   According to this invention, the opening window of the light distribution substrate can be accurately formed by anisotropic etching using an alkaline solution.

請求項6の発明は、請求項1ないし請求項5の発明において、前記光検出素子の前記受光部が前記LEDチップの鉛直上方に位置していることを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the invention, the light receiving portion of the photodetecting element is located vertically above the LED chip.

この発明によれば、前記光検出素子の前記受光部での受光量の増大を図れ、前記光検出素子の検出精度の向上を図れる。   According to this invention, it is possible to increase the amount of light received by the light receiving portion of the light detection element, and to improve the detection accuracy of the light detection element.

請求項1の発明では、LEDチップから放射される光の一部を受光する受光部を有する光検出素子を備えながらも、構造の簡略化を図れるとともに低コスト化を図れるという効果がある。   According to the first aspect of the present invention, there is an effect that the structure can be simplified and the cost can be reduced while including a light detecting element having a light receiving portion for receiving a part of light emitted from the LED chip.

実施形態1の発光装置を示す概略断面図である。1 is a schematic cross-sectional view showing a light emitting device of Embodiment 1. FIG. 実施形態2の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device of Embodiment 2. FIG. 実施形態3の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device according to Embodiment 3. FIG. 実施形態4の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device according to Embodiment 4. FIG. 従来例の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device of a prior art example. 他の従来例を示す光モジュールを示す概略断面図である。It is a schematic sectional drawing which shows the optical module which shows another prior art example.

(実施形態1)
以下、本実施形態の発光装置について図1に基づいて説明する。
(Embodiment 1)
Hereinafter, the light emitting device of this embodiment will be described with reference to FIG.

本実施形態の発光装置は、LEDチップ1と、第1のシリコン基板20aを用いて形成され一表面側にLEDチップ1が実装されたベース基板20と、第2のシリコン基板30aを用いて形成されてLEDチップ1を露出させる開口窓31を有しベース基板10の上記一表面側に接合された配光用基板30と、ベース基板20と配光用基板30とで囲まれた空間に充填された透光性材料(例えば、シリコーン樹脂など)からなりLEDチップ1および当該LEDチップ1に接続されたボンディングワイヤ(図示せず)を封止した封止部5とを備えている。ここにおいて、配光用基板30は、開口窓31が、ベース基板20から離れるにつれて開口面積が徐々に小さくなる逆テーパ状に形成され、LEDチップ1から放射される光の一部を検出する光検出素子4の受光部4aが開口窓31の内側面に沿って形成されている。なお、本実施形態では、第1のシリコン基板20aが第1の半導体基板を構成し、第2のシリコン基板30aが第2の半導体基板を構成している。   The light emitting device of the present embodiment is formed using the LED chip 1 and the first silicon substrate 20a, the base substrate 20 on which the LED chip 1 is mounted on one surface side, and the second silicon substrate 30a. The light distribution substrate 30 having the opening window 31 that exposes the LED chip 1 and bonded to the one surface side of the base substrate 10, and the space surrounded by the base substrate 20 and the light distribution substrate 30 are filled. The LED chip 1 and the sealing part 5 which sealed the bonding wire (not shown) connected to the said LED chip 1 are provided with the translucent material (for example, silicone resin etc.). Here, the light distribution substrate 30 is formed in an inversely tapered shape in which the opening window 31 gradually decreases as the distance from the base substrate 20 increases, so that light for detecting a part of the light emitted from the LED chip 1 is detected. The light receiving portion 4 a of the detection element 4 is formed along the inner side surface of the opening window 31. In the present embodiment, the first silicon substrate 20a constitutes a first semiconductor substrate, and the second silicon substrate 30a constitutes a second semiconductor substrate.

ベース基板20および配光用基板30の外周形状は矩形状であり、配光用基板30はベース基板20と同じ外形寸法に形成されている。   The outer peripheral shapes of the base substrate 20 and the light distribution substrate 30 are rectangular, and the light distribution substrate 30 is formed to have the same outer dimensions as the base substrate 20.

上述の第1のシリコン基板20aおよび第2のシリコン基板30aとしては、それぞれ、導電形がn形で一表面が(100)面の単結晶シリコン基板を用いており、配光用基板30の開口窓31の内側面が、アルカリ系溶液(例えば、TMAH溶液、KOH溶液など)を用いた異方性エッチングにより形成された(111)面により構成されている。   As the first silicon substrate 20a and the second silicon substrate 30a described above, single crystal silicon substrates each having an n-type conductivity and a (100) surface are used, and the openings of the light distribution substrate 30 are used. The inner surface of the window 31 is constituted by a (111) surface formed by anisotropic etching using an alkaline solution (for example, TMAH solution, KOH solution, etc.).

ところで、本実施形態の発光装置では、LEDチップ1として、結晶成長用基板として導電性基板を用い厚み方向の両面に電極(図示せず)が形成された可視光LEDチップを用いており、光検出素子4をフォトダイオードにより構成している。なお、LEDチップ1の構造や発光色などは特に限定するものではなく、厚み方向の一面側に両電極が形成されたものでもよいし、紫外線LEDチップでもよい。   By the way, in the light-emitting device of this embodiment, the LED chip 1 uses a visible light LED chip in which a conductive substrate is used as a crystal growth substrate and electrodes (not shown) are formed on both surfaces in the thickness direction. The detection element 4 is constituted by a photodiode. The structure and emission color of the LED chip 1 are not particularly limited, and both electrodes may be formed on one surface side in the thickness direction, or an ultraviolet LED chip may be used.

ベース基板20は、第1のシリコン基板20aの上記一表面側に、LEDチップ1の厚み方向の一面側(図1における上面側)の電極が電気的に接続される第1の導体パターン(図示せず)と前記厚み方向の他面側(図1における下面側)の電極が電気的に接続される第2の導体パターン25aが形成されるとともに、配光用基板30に形成された2つの貫通孔配線34,34を介して光検出素子4と電気的に接続される第3の導体パターン25cおよび第4の導体パターン25dが形成されている。ここにおいて、ベース基板20は、LEDチップ1に電気的に接続された上記第1の導体パターンおよび第2の導体パターン25aとシリコン基板20aの他表面側に形成された2つの第1の外部接続用電極(図示せず)とがそれぞれ貫通孔配線(図示せず)を介して電気的に接続されており、光検出素子4に電気的に接続された各導体パターン25c,25dとシリコン基板20aの上記他表面側に形成された2つの第2の外部接続用電極27c,27dとがそれぞれ貫通孔配線24,24を介して電気的に接続されている。また、ベース基板20は、シリコン基板20aの上記一表面側に、配光用基板30と接合するための接合用金属層29も形成されている。   The base substrate 20 has a first conductor pattern (FIG. 1) in which an electrode on one surface side (upper surface side in FIG. 1) in the thickness direction of the LED chip 1 is electrically connected to the one surface side of the first silicon substrate 20a. (Not shown) and a second conductor pattern 25a electrically connected to the electrode on the other surface side in the thickness direction (the lower surface side in FIG. 1), and two formed on the light distribution substrate 30 A third conductor pattern 25c and a fourth conductor pattern 25d that are electrically connected to the photodetecting element 4 through the through-hole wirings 34 are formed. Here, the base substrate 20 has the first and second conductor patterns 25a and 25a electrically connected to the LED chip 1 and two first external connections formed on the other surface side of the silicon substrate 20a. Electrodes for electrodes (not shown) are electrically connected to each other through through-hole wirings (not shown), and the respective conductor patterns 25c, 25d electrically connected to the light detecting element 4 and the silicon substrate 20a. The two second external connection electrodes 27c and 27d formed on the other surface side are electrically connected through the through-hole wirings 24 and 24, respectively. The base substrate 20 is also formed with a bonding metal layer 29 for bonding to the light distribution substrate 30 on the one surface side of the silicon substrate 20a.

また、ベース基板20は、LEDチップ1が電気的に接続される第2の導体パターン25aを、LEDチップ1がダイボンディングされる矩形状のダイパッド部25aaと、ダイパッド部25aaに連続一体に形成され図示しない上述の貫通孔配線との接続部位となる引き出し配線部(図示せず)とで構成してある。要するに、LEDチップ1は、第2の導体パターン25aのダイパッド部25aaにダイボンディングされており、ダイパッド部25aa側の電極がダイパッド部25aaに接合されて電気的に接続され、光取り出し面側の電極が上記ボンディングワイヤを介して上記第1の導体パターンと電気的に接続されている。なお、LEDチップ1は、ダイパッド部25aaにAuSnの共晶接合により接合されているが、LEDチップ1とダイパッド部25aaとの接合方法は共晶接合に限らず、例えばAgペーストでもよい。また、LEDチップ1として厚み方向の上記一面側に両電極が形成されたものを用いる場合には、LEDチップ1とダイパッド部25aaとを樹脂により接着してLEDチップ1の両電極と上記第1の導体パターンおよび第2の導体パターン25の上記引き出し配線部とをそれぞれボンディングワイヤで電気的に接続するようにしてもよいが、放熱性の観点から、LEDチップ1とダイパッド部25aaとは熱伝導率の高い材料により接合することが好ましい。   In addition, the base substrate 20 is formed by continuously and integrally forming a second conductor pattern 25a to which the LED chip 1 is electrically connected, a rectangular die pad portion 25aa to which the LED chip 1 is die-bonded, and a die pad portion 25aa. A lead-out wiring portion (not shown) serving as a connection portion with the above-described through-hole wiring (not shown) is used. In short, the LED chip 1 is die-bonded to the die pad portion 25aa of the second conductor pattern 25a, and the electrode on the die pad portion 25aa side is joined to and electrically connected to the die pad portion 25aa, and the electrode on the light extraction surface side. Is electrically connected to the first conductor pattern via the bonding wire. The LED chip 1 is bonded to the die pad portion 25aa by AuSn eutectic bonding. However, the bonding method between the LED chip 1 and the die pad portion 25aa is not limited to eutectic bonding, and for example, Ag paste may be used. When the LED chip 1 having both electrodes formed on the one surface side in the thickness direction is used, the LED chip 1 and the die pad portion 25aa are bonded to each other by a resin, and the both electrodes of the LED chip 1 and the first electrode are bonded. However, from the viewpoint of heat dissipation, the LED chip 1 and the die pad portion 25aa are thermally conductive. It is preferable to join with a material having a high rate.

また、ベース基板20は、第1のシリコン基板20aの上記他表面側に、第1のシリコン基板20aよりも熱伝導率の高い金属材料からなる矩形状の放熱用パッド部28が形成されており、ダイパッド部25aaと放熱用パッド部28とが第1のシリコン基板20aよりも熱伝導率の高い金属材料(例えば、Cuなど)からなる複数(本実施形態では、9つ)の円柱状のサーマルビア26を介して熱的に結合されており、LEDチップ1で発生した熱が各サーマルビア26および放熱用パッド部28を介して放熱されるようになっている。   The base substrate 20 has a rectangular heat radiation pad portion 28 made of a metal material having a higher thermal conductivity than the first silicon substrate 20a on the other surface side of the first silicon substrate 20a. The die pad portion 25aa and the heat radiating pad portion 28 are made of a plurality (9 in this embodiment) of columnar thermal materials made of a metal material (for example, Cu) having a higher thermal conductivity than the first silicon substrate 20a. They are thermally coupled via the vias 26 so that the heat generated in the LED chip 1 is dissipated through the thermal vias 26 and the heat dissipation pad portions 28.

ところで、ベース基板20は、第1のシリコン基板20aに、上記第1の導体パターンおよび第2の導体パターン25aそれぞれに電気的に接続される上述の図示しない2つ貫通孔配線それぞれが内側に形成される2つの第1の貫通孔(図示せず)と、第3の導体パターン25cおよび第4の導体パターン25dそれぞれに電気的に接続される2つの貫通孔配線24それぞれが内側に形成される2つの第2の貫通孔22aと、上述の9つのサーマルビア26それぞれが内側に形成される9つ第3の貫通孔22bとが厚み方向に貫設され、第1のシリコン基板20aの上記一表面および上記他表面と各第1の貫通孔、各第2の貫通孔22a、各第3の貫通孔22bの内面とに跨って熱酸化膜(シリコン酸化膜)からなる第1の絶縁膜23が形成されており、上記第1の導体パターン、第2の導体パターン25a、第3の導体パターン25c、第4の導体パターン25d、接合用金属層29、上記各第1の外部接続用電極、第2の各外部接続用電極27c,27d、放熱用パッド部28、上記各第1の貫通孔の内側に形成された上記各貫通孔配線、各第2の貫通孔22aの内側に形成された各貫通孔配線24および各第3の貫通孔22bの内側に形成された各サーマルビア26が、第1のシリコン基板20aと電気的に絶縁されている。   By the way, in the base substrate 20, the two through-hole wirings (not shown) that are electrically connected to the first conductor pattern and the second conductor pattern 25a are formed inside the first silicon substrate 20a, respectively. Two first through holes (not shown) to be formed, and two through hole wirings 24 electrically connected to the third conductor pattern 25c and the fourth conductor pattern 25d, respectively, are formed inside. Two second through-holes 22a and nine third through-holes 22b in which each of the nine thermal vias 26 described above is formed are provided in the thickness direction so that the above-mentioned one of the first silicon substrate 20a. The first insulating film 23 made of a thermal oxide film (silicon oxide film) straddling the surface and the other surface and the inner surfaces of the first through holes, the second through holes 22a, and the third through holes 22b. Formed The first conductor pattern, the second conductor pattern 25a, the third conductor pattern 25c, the fourth conductor pattern 25d, the bonding metal layer 29, the first external connection electrodes, the second External connection electrodes 27c, 27d, heat dissipation pad 28, each through-hole wiring formed inside each first through-hole, and each through-hole formed inside each second through-hole 22a. Each thermal via 26 formed inside the hole wiring 24 and each third through hole 22b is electrically insulated from the first silicon substrate 20a.

ここにおいて、上記第1の導体パターン、第2の導体パターン25a、第3の導体パターン25c、第4の導体パターン25d、接合用金属層29、上記各第1の外部接続用電極、各第2の外部接続用電極27c,27d、放熱用パッド部28は、第1の絶縁膜23上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されている。ここで、ベース基板20は、第1のシリコン基板20aの上記一表面側の上記第1の導体パターン、第2の導体パターン25a、第3の導体パターン25c、第4の導体パターン25d、接合用金属層29が同時に形成され、第1のシリコン基板20aの上記他表面側の上記各第1の外部接続用電極、各第2の外部接続用電極27c,27d、放熱用パッド部28が同時に形成されている。なお、本実施形態では、第1の絶縁膜23上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と第1の絶縁膜23との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、図示しない貫通孔配線、貫通孔配線24およびサーマルビア26の材料としては、Cuを採用しているが、Cuに限らず、例えば、Niなどを採用してもよい。   Here, the first conductor pattern, the second conductor pattern 25a, the third conductor pattern 25c, the fourth conductor pattern 25d, the bonding metal layer 29, the first external connection electrodes, the second conductor patterns, respectively. The external connection electrodes 27c and 27d and the heat dissipating pad portion 28 are composed of a laminated film of a Ti film formed on the first insulating film 23 and an Au film formed on the Ti film. Here, the base substrate 20 includes the first conductor pattern, the second conductor pattern 25a, the third conductor pattern 25c, and the fourth conductor pattern 25d on the one surface side of the first silicon substrate 20a. The metal layer 29 is formed at the same time, and the first external connection electrodes, the second external connection electrodes 27c and 27d, and the heat dissipation pad portion 28 on the other surface side of the first silicon substrate 20a are formed at the same time. Has been. In this embodiment, the thickness of the Ti film on the first insulating film 23 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are examples. There is no particular limitation. Further, the material of each Au film is not limited to pure gold, and may be one added with impurities. Further, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the first insulating film 23, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr TiN, TaN, etc. may be used. Further, as a material for the through-hole wiring (not shown), the through-hole wiring 24 and the thermal via 26, Cu is adopted, but not limited to Cu, for example, Ni may be adopted.

配光用基板30は、第2のシリコン基板30aの一表面側に、ベース基板20の第3の導体パターン25cおよび第4の導体パターン25dそれぞれと接合されて電気的に接続される2つの導体パターン35c,35dが形成されるとともに、ベース基板20の接合用金属層29と接合される接合用金属層36が形成されている。また、配光用基板30は、第2のシリコン基板30aの他表面側に、貫通孔配線34,34を介して上記一表面側の導体パターン35c,35dと電気的に接続される導体パターン37c,37dが形成されている。   The light distribution substrate 30 has two conductors that are joined and electrically connected to the third conductor pattern 25c and the fourth conductor pattern 25d of the base substrate 20 on one surface side of the second silicon substrate 30a. The patterns 35c and 35d are formed, and the bonding metal layer 36 bonded to the bonding metal layer 29 of the base substrate 20 is formed. Further, the light distribution substrate 30 is provided on the other surface side of the second silicon substrate 30a with a conductor pattern 37c electrically connected to the conductor patterns 35c and 35d on the one surface side through the through-hole wirings 34 and 34. , 37d.

また、配光用基板30は、上述の2つの貫通孔配線34それぞれが内側に形成される2つの貫通孔32が第2のシリコン基板30aの厚み方向に貫設され、第2のシリコン基板30aの上記一表面および上記他表面と各貫通孔32の内面とに跨って熱酸化膜(シリコン酸化膜)からなる第2の絶縁膜33が形成されており、各導体パターン35c,35d,37c,37dおよび接合用金属層36が、第2のシリコン基板30aと電気的に絶縁されている。ここにおいて、各導体パターン35c,35d,37c,37dおよび接合用金属層36は、第2の絶縁膜33上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されている。ここで、配光用基板30は、第2のシリコン基板30aの上記一表面側の導体パターン35c,35d、接合用金属層36が同時に形成され、第2のシリコン基板30aの上記他表面側の導体パターン37c,37dが同時に形成されている。なお、本実施形態では、第2の絶縁膜33上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。ここにおいて、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と第2の絶縁膜33との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、貫通孔配線34の材料としては、Cuを採用しているが、Cuに限らず、例えば、Niなどを採用してもよい。   Further, in the light distribution substrate 30, two through holes 32 in which the above-described two through hole wirings 34 are respectively formed are penetrated in the thickness direction of the second silicon substrate 30a, and the second silicon substrate 30a. A second insulating film 33 made of a thermal oxide film (silicon oxide film) is formed so as to straddle the one surface and the other surface and the inner surface of each through-hole 32, and each conductor pattern 35c, 35d, 37c, 37d and the bonding metal layer 36 are electrically insulated from the second silicon substrate 30a. Here, each of the conductor patterns 35c, 35d, 37c, 37d and the bonding metal layer 36 is a laminated film of a Ti film formed on the second insulating film 33 and an Au film formed on the Ti film. It is configured. Here, in the light distribution substrate 30, the conductor patterns 35c, 35d on the one surface side of the second silicon substrate 30a and the bonding metal layer 36 are formed at the same time, and the other surface side of the second silicon substrate 30a is formed. Conductive patterns 37c and 37d are formed simultaneously. In this embodiment, the thickness of the Ti film on the second insulating film 33 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples. There is no particular limitation. Here, the material of each Au film is not limited to pure gold, and may be added with impurities. In addition, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the second insulating film 33, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr TiN, TaN, etc. may be used. Moreover, although Cu is adopted as the material of the through-hole wiring 34, it is not limited to Cu, and for example, Ni may be adopted.

ところで、配光用基板30は、上述のように、開口窓31が、ベース基板10から離れるにつれて開口面積が徐々に小さくなる逆テーパ状に形成され、LEDチップ1から放射される光の一部を検出するフォトダイオードからなる光検出素子4の受光部4aが開口窓31の内側面に沿って形成されている。ここにおいて、配光用基板30の基礎となる第2のシリコン基板30aとしては、導電形がn形で抵抗率が10Ωcm程度の単結晶シリコン基板を用いており、第2のシリコン基板30aの厚さ寸法は、LEDセンサ1の厚さ寸法よりも大きく設定してある。   By the way, as described above, the light distribution substrate 30 is formed in a reverse tapered shape in which the opening window 31 gradually decreases as the distance from the base substrate 10 increases, and a part of the light emitted from the LED chip 1 is formed. A light receiving portion 4 a of the light detecting element 4 made of a photodiode for detecting the light is formed along the inner surface of the opening window 31. Here, as the second silicon substrate 30a serving as the basis of the light distribution substrate 30, a single crystal silicon substrate having an n-type conductivity and a resistivity of about 10 Ωcm is used. The thickness of the second silicon substrate 30a The size is set larger than the thickness of the LED sensor 1.

また、光検出素子4は、フォトダイオードの高濃度のp形領域を構成する受光部4aが、第2のシリコン基板30aの上記他表面側に形成された2つの導体パターン37c,37dの一方の導体パターン37cと電気的に接続され、フォトダイオードのn形領域4bを構成する第2のシリコン基板30aが、他方の導体パターン37dと電気的に接続されている。ここにおいて、受光部4aを構成するp形領域は、第2のシリコン基板30aにおける当該p形領域の形成予定領域に第2のシリコン基板30aの上記他表面側からp形不純物(例えば、ボロンなど)のイオン注入を行った後に、酸化炉内でドライブを行うことにより当該p形領域を形成する。ここで、受光部4aを構成するp形領域は、第2のシリコン基板30aの上記他表面側からp形不純物を拡散させるので、配光用基板30の逆テーパ状の開口窓31の内側面における第2のシリコン基板30aの上記他表面の近傍の部位(つまり、第2のシリコン基板30aの開口窓31の周部であって断面が鋭角となっている頂点の近傍部位)に受光面が位置するように設ける。なお、第2のシリコン基板30aの抵抗率の値は一例であって特に限定するものではない。また、第2のシリコン基板30aの導電形をp形として受光部4aの導電形をn形としてもよい。   Further, in the light detection element 4, the light receiving portion 4a constituting the high-concentration p-type region of the photodiode is one of the two conductor patterns 37c and 37d formed on the other surface side of the second silicon substrate 30a. The second silicon substrate 30a that is electrically connected to the conductor pattern 37c and forms the n-type region 4b of the photodiode is electrically connected to the other conductor pattern 37d. Here, the p-type region constituting the light-receiving portion 4a is a p-type impurity (for example, boron or the like) from the other surface side of the second silicon substrate 30a to the formation region of the p-type region in the second silicon substrate 30a. ) Ion implantation and then driving in an oxidation furnace to form the p-type region. Here, since the p-type region constituting the light receiving portion 4a diffuses p-type impurities from the other surface side of the second silicon substrate 30a, the inner surface of the reverse tapered opening window 31 of the light distribution substrate 30 is used. In the second silicon substrate 30a, the light receiving surface is located in the vicinity of the other surface (that is, the peripheral portion of the opening window 31 of the second silicon substrate 30a and the vicinity of the apex where the section has an acute angle). Provide to be located. Note that the resistivity value of the second silicon substrate 30a is an example and is not particularly limited. The conductivity type of the second silicon substrate 30a may be p-type, and the conductivity type of the light receiving portion 4a may be n-type.

また、配光用基板30の開口窓31は、第2のシリコン基板30aを上記一表面側から、アルカリ系溶液(例えば、TMAH溶液、KOH溶液など)を用いて異方性エッチングすることにより形成されており、ベース基板20から離れるにつれて開口面積が徐々に小さくなる逆テーパ状に形成されている。ここにおいて、光検出素子4の受光部4aは、第2のシリコン基板30aの上記他表面側で開口窓31の内側面に沿って形成されている。   The opening window 31 of the light distribution substrate 30 is formed by anisotropically etching the second silicon substrate 30a from the one surface side using an alkaline solution (eg, TMAH solution, KOH solution, etc.). The opening area is gradually reduced as the distance from the base substrate 20 increases. Here, the light receiving portion 4a of the light detecting element 4 is formed along the inner surface of the opening window 31 on the other surface side of the second silicon substrate 30a.

また、上述の封止部5の透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラスなどを採用してもよい。   Moreover, the translucent material of the above-mentioned sealing part 5 is not limited to a silicone resin, and for example, an acrylic resin, an epoxy resin, a polycarbonate resin, glass, or the like may be employed.

本実施形態の発光装置の製造にあたっては、LEDチップ1を実装したベース基板20と光検出素子4が形成された配光用基板30とを低温での直接接合が可能な常温接合法などにより接合する接合工程を行った後、封止部5を形成する封止部形成工程を行うようにすればよい。常温接合法では、接合前に互いの接合表面へアルゴンのプラズマ若しくはイオンビーム若しくは原子ビームを真空中で照射して各接合表面の清浄化・活性化を行ってから、接合表面同士を接触させ、常温下で直接接合する。また、本実施形態の発光装置の製造にあたっては、上述の接合工程において、低温での直接接合が可能な常温接合法を採用しているので、接合工程でLEDチップ1のジャンクション温度が最大ジャンクション温度を超えるのを防止することができ、LEDチップに熱ダメージが生じるのを防止することができる。また、接合後にベース基板20および配光用基板30にひずみが発生することを防止することができるので、ベース基板20のひずみに起因した応力がLEDチップ1に発生するのを防止することができる。なお、上述の接合工程で採用している常温接合法では、各接合表面の清浄化・活性化を行ってから、常温下で適宜の荷重を印加しいているが、常温下に限らず、例えば、光検出素子4およびLEDチップ1へ熱ダメージが生じない温度(光検出素子4およびLEDチップ1それぞれのジャンクション温度が最大ジャンクション温度を超えない温度)であれば、加熱条件下(例えば、80℃〜100℃程度に加熱した条件下)において適宜の荷重を印加するようにしてもよく、加熱条件下において適宜の荷重を印加して接合することで、接合信頼性をより一層高めることが可能となる。   In manufacturing the light emitting device according to the present embodiment, the base substrate 20 on which the LED chip 1 is mounted and the light distribution substrate 30 on which the light detection element 4 is formed are bonded by a room temperature bonding method or the like that can be directly bonded at a low temperature. What is necessary is just to make it perform the sealing part formation process which forms the sealing part 5, after performing the joining process to perform. In the room temperature bonding method, each bonding surface is irradiated with argon plasma or ion beam or atomic beam in vacuum before bonding to clean and activate each bonding surface, and then the bonding surfaces are brought into contact with each other. Join directly at room temperature. Further, in the manufacture of the light emitting device of the present embodiment, the room temperature bonding method capable of direct bonding at a low temperature is employed in the above-described bonding process, so that the junction temperature of the LED chip 1 is the maximum junction temperature in the bonding process. Can be prevented, and thermal damage to the LED chip can be prevented. Moreover, since it can prevent that the distortion | strain generate | occur | produces in the base substrate 20 and the light distribution board | substrate 30 after joining, it can prevent that the stress resulting from the distortion | strain of the base substrate 20 generate | occur | produces in the LED chip 1. . In addition, in the room temperature bonding method adopted in the above-described bonding process, an appropriate load is applied at room temperature after cleaning and activation of each bonding surface, but not limited to room temperature, for example, If the temperature does not cause thermal damage to the light detection element 4 and the LED chip 1 (the junction temperature of each of the light detection element 4 and the LED chip 1 does not exceed the maximum junction temperature), the heating condition (for example, 80 ° C.) It is possible to apply an appropriate load under a condition of heating to about 100 ° C., and to apply the appropriate load under the heating condition to perform bonding, thereby further improving the bonding reliability. Become.

上述の接合工程では、ベース基板20の接合用金属層29と配光用基板30の接合用金属層36とが接合されるとともに、ベース基板20の第3の導体パターン25cおよび第4の導体パターン25dと配光用基板30の導体パターン35c,35dとが接合され電気的に接続される。ここで、ベース基板20側の各導体パターン25c,25dと配光用基板30側の各導体パターン35c,35dとの接合部位は、貫通孔配線34に重なる領域からずらしてあるので、各導体パターン25c,25dと各導体パターン35c,35dとの互いの接合面の平坦度を高めることができ、接合歩留まりを高めることができるとともに接合信頼性を高めることができる。   In the bonding step described above, the bonding metal layer 29 of the base substrate 20 and the bonding metal layer 36 of the light distribution substrate 30 are bonded, and the third conductor pattern 25c and the fourth conductor pattern of the base substrate 20 are bonded. 25d and the conductor patterns 35c and 35d of the light distribution board 30 are joined and electrically connected. Here, since the joint portions of the conductor patterns 25c and 25d on the base substrate 20 side and the conductor patterns 35c and 35d on the light distribution substrate 30 side are shifted from the region overlapping the through-hole wiring 34, each conductor pattern The flatness of the joint surfaces of 25c and 25d and the respective conductor patterns 35c and 35d can be increased, so that the junction yield can be increased and the junction reliability can be increased.

ところで、本実施形態の発光装置の製造にあたっては、上述の各シリコン基板20a,30aとして、それぞれベース基板20、配光用基板30を多数形成可能なウェハ状のもの(シリコンウェハ)を用い、上述の接合工程、封止部形成工程などの各工程をウェハレベルで行うことでウェハレベルパッケージ構造体を形成してから、ダイシング工程により発光装置のサイズに分割されている。したがって、ベース基板20と配光用基板30とが同じ外形サイズとなり、小型のチップパッケージを実現できるとともに、製造が容易になる。   By the way, in manufacturing the light emitting device of the present embodiment, a wafer-like one (silicon wafer) capable of forming a large number of base substrates 20 and light distribution substrates 30 is used as the silicon substrates 20a and 30a. The wafer level package structure is formed by performing each process such as the bonding process and the sealing part forming process at the wafer level, and then divided into the size of the light emitting device by the dicing process. Therefore, the base substrate 20 and the light distribution substrate 30 have the same outer size, so that a small chip package can be realized and manufacturing is facilitated.

以上説明した本実施形態の発光装置では、LEDチップ1を実装するベース基板20が第1のシリコン基板20aを用いて形成され、LEDチップ1から放射される光の一部を検出する光検出素子4の受光部4aが第2のシリコン基板30aを用いて形成される配光用基板30の開口窓31のうち逆テーパ状に形成された部位(ここでは、全部)の内側面に沿って形成されているので、LEDチップ1から放射される光の一部を受光する受光部4aを有する光検出素子4を備えながらも、構造の簡略化を図れるとともに低コスト化を図れる。また、本実施形態の発光装置では、LEDチップ1から斜め方向(LEDチップ1の光軸とは交差する方向)へ放射された光の一部を開口窓31の内側面で反射させることなく受光部4aへ直接入射させることができるので、光検出素子4の受光量の増大による検出精度の向上を図れる。また、本実施形態の発光装置では、配光用基板30の逆テーパ状の開口窓31の内側面に沿って受光部4aの受光面が形成されているので、受光部4aの受光面が第2のシリコン基板30aの上記他表面に平行な場合(つまり、LEDチップ1の光軸に直交する平面上に受光部4aの受光面がある場合)に比べて、LEDチップ1から斜め方向へ放射された光が受光部4aに入りやすくなり、光検出素子4の検出精度の向上を図れる。   In the light emitting device of this embodiment described above, the base substrate 20 on which the LED chip 1 is mounted is formed using the first silicon substrate 20a, and the light detection element detects a part of the light emitted from the LED chip 1. The four light receiving portions 4a are formed along the inner surface of the reversely tapered portion (here, all) of the opening window 31 of the light distribution substrate 30 formed by using the second silicon substrate 30a. Therefore, the structure can be simplified and the cost can be reduced while the photodetector 4 having the light receiving portion 4a for receiving a part of the light emitted from the LED chip 1 is provided. In the light emitting device of the present embodiment, a part of the light emitted from the LED chip 1 in an oblique direction (a direction intersecting the optical axis of the LED chip 1) is received without being reflected by the inner surface of the opening window 31. Since the light can be directly incident on the portion 4a, the detection accuracy can be improved by increasing the amount of light received by the light detection element 4. Further, in the light emitting device of this embodiment, the light receiving surface of the light receiving unit 4a is formed along the inner surface of the reverse tapered opening window 31 of the light distribution substrate 30, so that the light receiving surface of the light receiving unit 4a is the first light receiving surface. Compared with the case where the second silicon substrate 30a is parallel to the other surface (that is, when the light receiving surface of the light receiving portion 4a is on a plane perpendicular to the optical axis of the LED chip 1), the LED chip 1 emits in an oblique direction. Thus, the detected light can easily enter the light receiving portion 4a, and the detection accuracy of the light detection element 4 can be improved.

また、本実施形態の発光装置では、配光用基板30の開口窓31が、ベース基板20から離れるにつれて開口面積が徐々に小さくなる形状に形成されているので、配光用基板30の開口窓31を容易に形成することができる。また、本実施形態の発光装置では、配光用基板30の基礎となる第2の半導体基板として第2のシリコン基板30aを用いているので、配光用基板30の開口窓31を、アルカリ系溶液を用いた異方性エッチングにより精度良く形成することができる。つまり、配光用基板30の開口窓31を、エッチング速度の結晶面方位依存性を利用した異方性エッチングにより形成することができる。   Further, in the light emitting device of this embodiment, the opening window 31 of the light distribution substrate 30 is formed in a shape in which the opening area gradually decreases as the distance from the base substrate 20 increases. 31 can be formed easily. In the light emitting device of this embodiment, since the second silicon substrate 30a is used as the second semiconductor substrate that is the basis of the light distribution substrate 30, the opening window 31 of the light distribution substrate 30 is made alkaline. It can be formed with high accuracy by anisotropic etching using a solution. That is, the opening window 31 of the light distribution substrate 30 can be formed by anisotropic etching utilizing the crystal plane orientation dependence of the etching rate.

また、本実施形態の発光装置は、配光用基板30に光検出素子4が設けられているので、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の配線基板(回路基板)上に近接して配置して、当該配線基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出素子4の出力がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、所望の混色光を安定して得ることができる。   Moreover, since the light detection device 4 is provided on the light distribution substrate 30 in the light emitting device of this embodiment, for example, a light emitting device employing a red LED chip as the LED chip 1 and a green LED chip as the LED chip 1. And a light emitting device adopting a blue LED chip as the LED chip 1 are arranged close to each other on the same wiring board (circuit board), and the LED chip 1 of each light emitting device is placed on the wiring board. A drive circuit unit for driving, a control circuit unit for feedback controlling the current flowing from the drive circuit unit to the LED chip 1 of each emission color so that the output of each photodetecting element 4 is maintained at the respective target value, and the like are provided. Accordingly, the light output of the LED chip 1 of each emission color can be controlled separately based on the output of each of the light detection elements 4, and the LED chip 1 for each emission color can be controlled. The light output of the difference such as to depend not mixed color light of aging (here, white light) can improve the accuracy of the light color and color temperature. In short, desired mixed color light can be stably obtained.

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図2に示すように、配光用基板30の開口窓31の形状が相違している。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of this embodiment is substantially the same as that of the first embodiment, and the shape of the opening window 31 of the light distribution substrate 30 is different as shown in FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態における配光用基板30の開口窓31は、配光用基板30の厚み方向の両側から中間位置に近づくにつれて開口面積が徐々に大きくなる形状に形成されている。ここにおいて、配光用基板30の開口窓31は、第2の半導体基板である第2のシリコン基板30aを厚み方向の両側から、アルカリ系溶液を用いて異方性エッチングすることにより形成してあり、内側面が(111)により構成されている。   The opening window 31 of the light distribution substrate 30 in this embodiment is formed in a shape in which the opening area gradually increases as it approaches the intermediate position from both sides in the thickness direction of the light distribution substrate 30. Here, the opening window 31 of the light distribution substrate 30 is formed by anisotropically etching the second silicon substrate 30a, which is the second semiconductor substrate, from both sides in the thickness direction using an alkaline solution. Yes, the inner surface is constituted by (111).

ここにおいて、配光用基板30の開口窓31は、ベース基板20に近い側が順テーパ状に形成され、ベース基板20から遠い側が逆テーパ状に形成されており、光検出素子4の受光部4aは、配光用基板30の開口窓31のうち当該逆テーパ状に形成された部位の内側面に沿って形成されている。   Here, the opening window 31 of the light distribution substrate 30 is formed in a forward tapered shape on the side close to the base substrate 20 and is formed in a reverse tapered shape on the side far from the base substrate 20, and the light receiving portion 4 a of the light detection element 4. Is formed along the inner surface of the portion of the opening window 31 of the light distribution substrate 30 that is formed in the reverse tapered shape.

しかして、本実施形態の発光装置では、実施形態1に比べて、配光用基板30ベース基板20から遠い側における開口窓31の開口面積を変えることなく、配光用基板30の平面視における開口窓31の占有面積を縮小でき、配光用基板30およびベース基板20の小型化が可能となる。また、本実施形態の発光装置では、配光用基板30の開口窓31を形成する際に第2のシリコン基板30aの厚み方向の両側からエッチングすることができるので、エッチング時間の短縮を図れる。また、本実施形態の発光装置では、配光用基板30の開口窓31のうちベース基板20から遠く且つ逆テーパ状に形成された部位の内側面に沿って受光部4aの受光面が形成されているので、受光部4aの受光面が第2のシリコン基板30aの上記他表面に平行な場合(つまり、LEDチップ1の光軸に直交する平面上に受光部4aの受光面がある場合)に比べて、LEDチップ1から斜め方向へ放射された光が受光部4aに入りやすくなり、光検出素子4の検出精度の向上を図れる。   Therefore, in the light emitting device of the present embodiment, the light distribution substrate 30 in a plan view can be obtained without changing the opening area of the opening window 31 on the side far from the light distribution substrate 30 base substrate 20 as compared with the first embodiment. The area occupied by the opening window 31 can be reduced, and the light distribution substrate 30 and the base substrate 20 can be downsized. Further, in the light emitting device of this embodiment, the etching time can be shortened because etching can be performed from both sides in the thickness direction of the second silicon substrate 30a when the opening window 31 of the light distribution substrate 30 is formed. Further, in the light emitting device of the present embodiment, the light receiving surface of the light receiving unit 4a is formed along the inner surface of the portion of the opening window 31 of the light distribution substrate 30 that is far from the base substrate 20 and formed in an inversely tapered shape. Therefore, when the light receiving surface of the light receiving unit 4a is parallel to the other surface of the second silicon substrate 30a (that is, when the light receiving surface of the light receiving unit 4a is on a plane orthogonal to the optical axis of the LED chip 1). As compared with the above, light emitted in an oblique direction from the LED chip 1 can easily enter the light receiving portion 4a, and the detection accuracy of the light detection element 4 can be improved.

(実施形態3)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図3に示すように、配光用基板30の開口窓31の形状や、光検出素子4の受光部4aの形成位置などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 3, the shape of the opening window 31 of the light distribution substrate 30 and the formation of the light receiving portion 4 a of the light detecting element 4. The position is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態における配光用基板30の開口窓31は、配光用基板30の厚み方向の両側から中間位置に近づくにつれて開口面積が徐々に小さくなる形状に形成されている。ここにおいて、配光用基板30の開口窓31は、第2の半導体基板である第2のシリコン基板30aを厚み方向の両側から、アルカリ系溶液を用いて異方性エッチングすることにより形成してあり、内側面が(111)により構成されている。   The opening window 31 of the light distribution substrate 30 in the present embodiment is formed in a shape in which the opening area gradually decreases as it approaches the intermediate position from both sides in the thickness direction of the light distribution substrate 30. Here, the opening window 31 of the light distribution substrate 30 is formed by anisotropically etching the second silicon substrate 30a, which is the second semiconductor substrate, from both sides in the thickness direction using an alkaline solution. Yes, the inner surface is constituted by (111).

ここにおいて、配光用基板30の開口窓31は、ベース基板20に近い側が逆テーパ状に形成され、ベース基板20から遠い側が順テーパ状に形成されており、光検出素子4の受光部4aは、配光用基板30の開口窓31のうち当該逆テーパ状に形成された部位の内側面に沿って形成されている。   Here, the opening window 31 of the light distribution substrate 30 is formed in a reverse tapered shape on the side close to the base substrate 20, and is formed in a forward tapered shape on the side far from the base substrate 20, and the light receiving portion 4 a of the light detection element 4. Is formed along the inner surface of the portion of the opening window 31 of the light distribution substrate 30 that is formed in the reverse tapered shape.

また、本実施形態における配光用基板30は、実施形態1で説明した貫通孔配線34,34(図1参照)および導体パターン37c,37d(図1参照)を設けておらず、第2のシリコン基板30aの上記一表面側の導体パターン35c,35dを開口窓31の内側面に沿って延長して光検出素子4に電気的に接続してある。   Further, the light distribution substrate 30 in the present embodiment does not include the through-hole wirings 34 and 34 (see FIG. 1) and the conductor patterns 37c and 37d (see FIG. 1) described in the first embodiment, and the second The conductor patterns 35c and 35d on the one surface side of the silicon substrate 30a are extended along the inner surface of the opening window 31 and are electrically connected to the light detecting element 4.

しかして、本実施形態の発光装置では、実施形態1に比べて、配光用基板30をベース基板20から遠い側における開口窓31の開口面積を変えることなく、配光用基板30の平面視における開口窓31の占有面積を縮小でき、配光用基板30およびベース基板20の小型化が可能となる。また、本実施形態の発光装置では、配光用基板30の開口窓31を形成する際に第2のシリコン基板30aの厚み方向の両側からエッチングすることができるので、エッチング時間の短縮を図れる。また、本実施形態の発光装置では、配光用基板30の開口窓31のうちベース基板20に近く且つ逆テーパ状に形成された部位の内側面に沿って受光部4aの受光面が形成されているので、受光部4aの受光面が第2のシリコン基板30aの上記他表面に平行な場合(つまり、LEDチップ1の光軸に直交する平面上に受光部4aの受光面がある場合)に比べて、LEDチップ1から斜め方向へ放射された光が受光部4aに入りやすくなり、光検出素子4の検出精度の向上を図れる。   Therefore, in the light emitting device according to the present embodiment, the light distribution substrate 30 is seen in plan view without changing the opening area of the opening window 31 on the side farther from the base substrate 20 than in the first embodiment. The area occupied by the opening window 31 can be reduced, and the light distribution substrate 30 and the base substrate 20 can be downsized. Further, in the light emitting device of this embodiment, the etching time can be shortened because etching can be performed from both sides in the thickness direction of the second silicon substrate 30a when the opening window 31 of the light distribution substrate 30 is formed. Further, in the light emitting device of the present embodiment, the light receiving surface of the light receiving unit 4a is formed along the inner surface of the portion of the opening window 31 of the light distribution substrate 30 that is close to the base substrate 20 and formed in an inversely tapered shape. Therefore, when the light receiving surface of the light receiving unit 4a is parallel to the other surface of the second silicon substrate 30a (that is, when the light receiving surface of the light receiving unit 4a is on a plane orthogonal to the optical axis of the LED chip 1). As compared with the above, light emitted in an oblique direction from the LED chip 1 can easily enter the light receiving portion 4a, and the detection accuracy of the light detection element 4 can be improved.

(実施形態4)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図4に示すように、実施形態1に比べて開口窓31の開口面積が小さく設定されており、光検出素子4の受光部4aがLEDチップ1の鉛直上方に位置している点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the light emitting device of this embodiment is substantially the same as that of the first embodiment. As shown in FIG. 4, the opening area of the opening window 31 is set smaller than that of the first embodiment. The light receiving portion 4a is located vertically above the LED chip 1 and the like. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態の発光装置では、光検出素子4の受光部4aでの受光量の増大を図れ、光検出素子4の検出精度の向上を図れる。また、本実施形態の発光装置では、実施形態1の発光装置に比べて、狭角配光を得ることができるとともに、小型化を図れる。   In the light emitting device of this embodiment, the amount of light received by the light receiving unit 4a of the light detection element 4 can be increased, and the detection accuracy of the light detection element 4 can be improved. In addition, the light emitting device of this embodiment can obtain a narrow-angle light distribution and can be downsized as compared with the light emitting device of the first embodiment.

なお、実施形態2や実施形態3において、光検出素子4の受光部4aがLEDチップ1の鉛直上方に位置するように開口窓31の開口面積を設定してもよい。   In the second and third embodiments, the opening area of the opening window 31 may be set so that the light receiving unit 4a of the light detection element 4 is positioned vertically above the LED chip 1.

ところで、上記各実施形態の発光装置では、ベース基板20の上記他表面側に上記各第1の外部接続用電極および各第2の外部接続用電極27c,27d、放熱用パッド部28を設けてあるが、これらを設けずに、例えば、ベース基板20の上記一表面側に、LEDチップ1および光検出素子4それぞれと電気的に接続された複数のパッドを設けて、配光用基板30に、各パッドそれぞれを露出させる複数の切欠部を設けるようにしてもよい。   By the way, in the light emitting device of each of the above embodiments, the first external connection electrodes, the second external connection electrodes 27c and 27d, and the heat dissipation pad portion 28 are provided on the other surface side of the base substrate 20. However, without providing them, for example, a plurality of pads electrically connected to the LED chip 1 and the light detection element 4 are provided on the one surface side of the base substrate 20, and the light distribution substrate 30 is provided. A plurality of notches for exposing each pad may be provided.

また、上記各実施形態において、封止部5を、LEDチップ1から放射される光によって励起されてLEDチップ1よりも長波長の光を放射する蛍光体(図示せず)を含有した透光性材料(例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料など)により形成してもよい。例えば、LEDチップ1として青色の光を放射するLEDチップを用い、上述の蛍光体として、LEDチップ1から放射された青色の光によって励起されてブロードな黄色系の光を放射する粒子状の黄色蛍光体を採用すれば、LEDチップ1から放射された青色の光と黄色蛍光体から放射された光とが封止部5から出射されることとなり、白色光を得ることができる。なお、封止部5の透光性材料としてガラスを採用すれば、シリコーン樹脂などの有機材料を採用している場合に比べて、封止部5の熱伝導性が向上するので、蛍光体の温度上昇を抑制できて蛍光体の温度消光による量子効率の低下を抑制することができ、しかも、水蒸気やNOなど対するガスバリア性や耐透湿性が向上するとともに、蛍光体の吸湿劣化を抑制でき、信頼性および耐久性が向上する。また、封止部5の材料として用いる透光性材料に混合する蛍光体も黄色蛍光体に限らず、例えば、赤色蛍光体と緑色蛍光体とを混合しても白色光を得ることができ、赤色蛍光体と緑色蛍光体とを用いれば演色性を高めることができる。 Further, in each of the above embodiments, the sealing portion 5 is light-transmitting containing a phosphor (not shown) that emits light having a longer wavelength than the LED chip 1 when excited by the light emitted from the LED chip 1. It may be formed of a functional material (for example, an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or the molecular level), such as a silicone resin, an acrylic resin, an epoxy resin, a polycarbonate resin, glass. For example, an LED chip that emits blue light is used as the LED chip 1, and a particulate yellow that emits broad yellow light when excited by the blue light emitted from the LED chip 1 is used as the phosphor described above. If the phosphor is employed, the blue light emitted from the LED chip 1 and the light emitted from the yellow phosphor are emitted from the sealing portion 5, and white light can be obtained. If glass is used as the translucent material of the sealing portion 5, the thermal conductivity of the sealing portion 5 is improved as compared with the case where an organic material such as silicone resin is used. it becomes possible to suppress the temperature rise can be suppressed decrease in quantum efficiency due to the temperature quenching of phosphor, moreover, with improved gas barrier properties and moisture impermeability against water vapor and NO x, can suppress moisture absorption deterioration of the phosphor , Improve reliability and durability. Further, the phosphor mixed with the translucent material used as the material of the sealing portion 5 is not limited to the yellow phosphor, and for example, white light can be obtained by mixing the red phosphor and the green phosphor. If a red phosphor and a green phosphor are used, color rendering can be improved.

1 LEDチップ
4 光検出素子
4a 受光部
20 ベース基板
20a 第1のシリコン基板(第1の半導体基板)
30 配光用基板
30a 第2のシリコン基板(第2の半導体基板)
31 開口窓
DESCRIPTION OF SYMBOLS 1 LED chip 4 Photodetection element 4a Light-receiving part 20 Base substrate 20a 1st silicon substrate (1st semiconductor substrate)
30 Light distribution substrate 30a Second silicon substrate (second semiconductor substrate)
31 Open window

Claims (6)

LEDチップと、第1の半導体基板を用いて形成され一表面側にLEDチップが実装されたベース基板と、第2の半導体基板を用いて形成されてLEDチップを露出させる開口窓を有しベース基板の上記一表面側に接合された配光用基板とを備え、配光用基板は、開口窓の少なくとも一部がベース基板から離れるにつれて開口面積が徐々に小さくなる逆テーパ状に形成され、LEDチップから放射される光の一部を検出する光検出素子の受光部が開口窓のうち当該逆テーパ状に形成された部位の内側面に沿って形成されてなることを特徴とする発光装置。   An LED chip, a base substrate formed using a first semiconductor substrate and having an LED chip mounted on one surface side, and a base plate formed using a second semiconductor substrate and exposing the LED chip. A light distribution substrate bonded to the one surface side of the substrate, and the light distribution substrate is formed in an inversely tapered shape in which the opening area gradually decreases as at least a part of the opening window moves away from the base substrate, A light-emitting device, wherein a light-receiving portion of a light-detecting element that detects a part of light emitted from an LED chip is formed along an inner surface of a portion of the opening window that is formed in an inversely tapered shape. . 前記配光用基板の前記開口窓は、前記ベース基板から離れるにつれて開口面積が徐々に小さくなる形状に形成されてなることを特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein the opening window of the light distribution substrate is formed in a shape in which the opening area gradually decreases as the distance from the base substrate increases. 前記配光用基板の前記開口窓は、前記配光用基板の厚み方向の両側から中間位置に近づくにつれて開口面積が徐々に大きくなる形状に形成されてなることを特徴とする請求項1記載の発光装置。   The said opening window of the said light distribution board | substrate is formed in the shape where an opening area becomes large gradually as it approaches an intermediate | middle position from the both sides of the thickness direction of the said light distribution board | substrate. Light emitting device. 前記配光用基板の前記開口窓は、前記配光用基板の厚み方向の両側から中間位置に近づくにつれて開口面積が徐々に小さくなる形状に形成されてなることを特徴とする請求項1記載の発光装置。   The said opening window of the said light distribution board | substrate is formed in the shape where an opening area becomes gradually small as it approaches an intermediate position from the both sides of the thickness direction of the said light distribution board | substrate. Light emitting device. 前記第2の半導体基板は、シリコン基板であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the second semiconductor substrate is a silicon substrate. 前記光検出素子の前記受光部が前記LEDチップの鉛直上方に位置していることを特徴とする請求項1ないし請求項5のいずれか1項に記載の発光装置。   6. The light emitting device according to claim 1, wherein the light receiving portion of the light detection element is positioned vertically above the LED chip.
JP2009130781A 2009-05-29 2009-05-29 Light emitting device Active JP5390938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130781A JP5390938B2 (en) 2009-05-29 2009-05-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130781A JP5390938B2 (en) 2009-05-29 2009-05-29 Light emitting device

Publications (2)

Publication Number Publication Date
JP2010278317A true JP2010278317A (en) 2010-12-09
JP5390938B2 JP5390938B2 (en) 2014-01-15

Family

ID=43424994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130781A Active JP5390938B2 (en) 2009-05-29 2009-05-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP5390938B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135431A (en) * 2013-01-11 2014-07-24 Ngk Spark Plug Co Ltd Wiring board for mounting light-emitting element, method of manufacturing the same, and light-emitting element mounting wiring board
JP2014143300A (en) * 2013-01-24 2014-08-07 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2016167572A (en) * 2015-03-02 2016-09-15 豊田合成株式会社 Light-emitting device
KR20210123551A (en) * 2020-04-03 2021-10-14 주식회사 아이티엠반도체 Light emitting device, its manufacturing method and multi sensor package module for wearable device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294831A (en) * 1999-04-08 2000-10-20 Omron Corp Semiconductor light emitting device, array thereof, photosensor, and photosensor array
JP2005101329A (en) * 2003-09-25 2005-04-14 Kyocera Corp Package for accommodating light emitting element, and light emitting device
JP2005183558A (en) * 2003-12-18 2005-07-07 Hitachi Ltd Optical part mounting package, and method for manufacturing the same
JP2005191111A (en) * 2003-12-24 2005-07-14 Kyocera Corp Package for storing light emitting element, and light emitting device
JP2005276895A (en) * 2004-03-23 2005-10-06 Kyocera Corp Package for storing light emitting element, light emitting apparatus and lighting apparatus
JP2007294834A (en) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd Light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294831A (en) * 1999-04-08 2000-10-20 Omron Corp Semiconductor light emitting device, array thereof, photosensor, and photosensor array
JP2005101329A (en) * 2003-09-25 2005-04-14 Kyocera Corp Package for accommodating light emitting element, and light emitting device
JP2005183558A (en) * 2003-12-18 2005-07-07 Hitachi Ltd Optical part mounting package, and method for manufacturing the same
JP2005191111A (en) * 2003-12-24 2005-07-14 Kyocera Corp Package for storing light emitting element, and light emitting device
JP2005276895A (en) * 2004-03-23 2005-10-06 Kyocera Corp Package for storing light emitting element, light emitting apparatus and lighting apparatus
JP2007294834A (en) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd Light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135431A (en) * 2013-01-11 2014-07-24 Ngk Spark Plug Co Ltd Wiring board for mounting light-emitting element, method of manufacturing the same, and light-emitting element mounting wiring board
JP2014143300A (en) * 2013-01-24 2014-08-07 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2016167572A (en) * 2015-03-02 2016-09-15 豊田合成株式会社 Light-emitting device
KR20210123551A (en) * 2020-04-03 2021-10-14 주식회사 아이티엠반도체 Light emitting device, its manufacturing method and multi sensor package module for wearable device
KR102353292B1 (en) 2020-04-03 2022-01-20 주식회사 아이티엠반도체 Light emitting device, its manufacturing method and multi sensor package module for wearable device

Also Published As

Publication number Publication date
JP5390938B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5243806B2 (en) Ultraviolet light emitting device
JP5192666B2 (en) Light emitting device
JP6048880B2 (en) LIGHT EMITTING ELEMENT PACKAGE AND LIGHT EMITTING DEVICE USING THE SAME
JP5010203B2 (en) Light emitting device
JP5390938B2 (en) Light emitting device
JP5010366B2 (en) Light emitting device
JP5010198B2 (en) Light emitting device
JP4877239B2 (en) Method for manufacturing light emitting device
JP5102652B2 (en) Light emitting device
JP5010199B2 (en) Light emitting device
JP5351624B2 (en) LED module
JP2011009559A (en) Light-emitting device
JP2009177095A (en) Light-emitting device
JP2009010048A (en) Light-emitting device
JP5249856B2 (en) Light emitting device
JP2009177099A (en) Light-emitting device
JP5102605B2 (en) Light emitting device and manufacturing method thereof
JP5320169B2 (en) Light emitting device
JP2010278316A (en) Light emitting device
JP5475954B2 (en) Light emitting device
JP5192847B2 (en) Light emitting device
JP2009130294A (en) Mounting method
JP2009130293A (en) Mounting method
JP5192667B2 (en) Light emitting device
JP2009177101A (en) Light-emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5390938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150